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Abstract—Autonomous machines minimize human risk in de-
fense and rescue. Although most Unmanned Ground Vehicles 
(UGVs) use LiDAR or stereo cameras, these are easily compro-
mised in fog, smoke, or rain. Therefore, this research explores 
millimeter wave (mmWave) radar due to its resilience to such oc-
clusions, specifically o n t he J ackal U GV. C ontrolling b oth Jackal 
and mmWave radar through Robot Operating System (ROS) and 
rospy softwares allows for real-time mapping and navigation from 
the high-accuracy point clouds and range-azimuth data provided 
by the mmWave radar. Through our research, UGVs can function 
in additional environments compared to other sensing methods.

Index Terms—mmWave, UGV, robotics, navigation, self-
driving.

I. INTRODUCTION

Human risk in fields r  e lated t  o  d  a nger a  n d r  e scue can 
be reduced with the help of autonomous machines. One of
the most integral parts of any autonomous machine is the 
mapping and vision of its environment. Vision technology 
like Light Detection and Ranging (LiDAR) and stereo cam-
era systems are currently used on most Unmanned Ground 
Vehicles (UGVs). However, most of these systems have a
common limitation; a reduction in effectiveness in hazardous
environmental conditions such as fog, rain, and dust. As 
an alternative, millimeter wave (mmWave) radars are more
promising for use in these environments as mmWave does 
not use light for mapping, as it is more resistant to these
occlusions.

Integrating mmWave radars with existing UGVs poses a
viable concept for future robotic development, an avenue
in which this research explores. This study uses the Jackal
UGV in experimentation due to its powerful operating system,
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integration with the Robot Operating System (ROS), and
capability with existing distance sensors. Additionally, this
study uses a mmWave cascade radar from Texas Instruments,
for its increased antennae, which can improve target detection
and resolution compared to a single chip system.

II. INDIVIDUAL SYSTEMS

A. mmWave Radar for Visionless Environment Mapping

Millimeter Wave (mmWave) radar technology has recently
been recognized as an innovative alternative to commonly used
sensing and imaging systems. By using electromagnetic waves,
the mmWave radar offers superior resolution when compared
with systems such as LiDAR and cameras. Standard mmWave
radars use single chip configurations with limited range. For
this research the MMWCAS-RF-EVM was used, creating a
cascading radar with increased range and FOV as shown in
Figure 1.

Fig. 1. The mmWave radar used in this study.
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The mmWave Radar systems rely on the transmission and
reflection of electromagnetic waves. A transmitter on the radar
emits electromagnetic waves in small pulses called “chirps”.
Once the waves reflect back to the radar, a receiver captures
these chirps. The surface of the radar consists of multiple
antennas which facilitate the transmission and reception [1].
Object detection happens as a result of the emitted chirp
encountering an object and reflecting back upon the radar
system. By calculating the time that the waves take to leave
the transmitter and come back, as well as the Doppler shift
observed in the signals, the radar system can identify the
distance, angle, and velocity of the objects [2]. Depending
on the materials in the environments, there will be different
textures on which the waves are reflected on; in this case,
a property called scattering comes in. Given the different
textures of the materials, not all waves will hit the object and
bounce directly back. Only when a perpendicular surface exists
for the wave to hit and immediately bounce back will there
be the detection of a point or object. To resolve this issue,
machine learning algorithms are being developed to make
reasonable assumptions on the material and shape of certain
objects given specific point clouds or object configurations.

1) Benefits of mmWave Radar Sensors: Given the resilience
from light-prohibiting occlusions, the mmWave radar works
effectively in all environments. Imagers such as stereo cameras
or LiDAR have substantially reduced performance in the
presence of occlusions such as fog, rain, and dust, making
mmWave a superior technology [3]. In addition to occlu-
sion resilience, mmWave signals have higher resolution. The
mmWave signal’s high frequency translates to short wave-
lengths which allows for higher resolution of the objects
identified from reflection. The precision of the mmWave Radar
can reach up to millimeters of accuracy in the identification of
an object’s location. Given this sensitivity, the radar is able to
detect minute movements as well as small objects, something
most systems cannot do.

2) Applications of mmWave Radar Sensors: When it comes
to autonomous vehicles, the mmWave radar will be incredibly
crucial to the improvement of self-driving systems. Current
self-driving models are often rendered useless when weather
conditions block the cameras and LiDAR sensors on the car
[2]. By integrating the mmWave radar, these systems would
become substantially more effective. Similarly, military UGVs
will commonly operate in hazardous environments during mis-
sions. For example, quipping mmWave radars on autonomous
vehicles may allow for a UGV to scope out the terrain before
the risk of humans entering the area. The ability of mmWaves
to stay fully-functioning and have effective mapping in ob-
scured conditions makes this radar system extremely valuable
in military and rescue contexts.

3) Signal Processing and Shortcomings: Once data has
been collected, certain visualization softwares can be used
to view the data. This visualization creates graphs showing
certain values calculated and captured by the mmWave radar.
For example, Range-Azimuth Diagrams (RADs) allow for a
user to identify the distance and relative angle of the objects

from the radar as shown in Figure 2. Distance-velocity graphs
can provide the velocity of the object at a specific distance
from the radar in Figure 3.

Fig. 2. Example range-azimuth diagram.

Fig. 3. Example distance-velocity diagram.

The main issue with the current system operation is the need
for individual steps and long wait times between the intent to
capture data and the final RAD and point cloud graphs are
created. Additionally the format of the graphs make it hard
to understand intuitively, which requires a system which can
read the information and interpret it into navigational data that
a UGV can understand.

B. Jackal UGV and LiDAR

Due to its customization options and overall versatility,
our UGV of choice was Jackal from Clearpath Robotics. As
it is relatively small, weatherproof, and all-terrain [4], this
also serves to be an ideal candidate for a real-world rescue
operation. It has a top speed of 2.0 m/s and utilizes the Robot
Operating System (ROS), making communication and data
processing protocols very easy. Attached to the Jackal was
the Velodyne VLP-16 LiDAR, which is a 360-degree LiDAR
capable of scanning until 200 meters of range with precise
accuracy. Although the LiDAR has 360-degree horizontal scan,
this was shortened to 120 degrees in order to mimic the real
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field of view of the mmWave sensor; the robot has access to
range readings from 60 degrees towards the left of the current
direction of travel to 60 degrees towards the right of it.

III. SYSTEM INTEGRATION

A. Self-Driving

Our specific customization of Jackal receives data from
the Velodyne LiDAR approximately 20 times a second [5].
This data gives angle and range readings, from which the
robot must keep or adjust its current course to avoid obstacles
and crashing into walls. In this study, we utilized LiDAR for
implementing self-driving, then validating the applicability of
this same logic with the mmWave sensor.

Logically, in any hazardous circumstance where the robot
needs to uncover the maximum amount of area without crash-
ing, following the direction where there is more to explore
would allow the robot to map more terrain. This translates
to allowing a robot to travel in the angle where the LiDAR
reading is a maximum. For instance, if the robot’s LiDAR
detects that there is an obstacle straight ahead at 4 meters
away, which happens to be the farthest detectable obstacle by
a LiDAR or other distance detecting unit, then the robot will
travel towards the obstacle and cover as much ground as it
can, until it realizes a new area to explore. Figure 4 illustrates
this concept in the case of a straight hallway.

In essence, this is the logic behind the DisparityExtender
algorithm. At its core, this algorithm will find the longest
possible straight traversable path that starts from the robot’s
distance detection unit and drive towards it [6]. However, it
isn’t this simple. As the robot has some amount of width, this
will make turning significantly harder, especially if it is a sharp
turn as opposed to a curved turn.

To avoid such crashes into corners, it is important to factor
in distance measurements a few degrees on either side of
the angle with the largest distance to an obstacle. This will
help detect a significant difference in range-azimuth readings,
which will correspond to impediments that do not block a
LiDAR for detecting an optimal path, but will prevent the
robot from achieving this optimal path. For example, in the
case of a corner turn to the left, the robot might see the optimal
path to round the corner as 6 meters away, but a few degrees
left reads a range of only 2 meters. This means that the robot
is too close to its left wall that is trying to go around and

Fig. 4. Jackal analyzing its surroundings and choosing the path with the
farthest disparity.

therefore must opt for another route. In this case, the robot
can opt for setting course to a few degrees to the right of this
optimal path just to ensure that it does not hit the corner or
wall, as shown in Figure 5.

Fig. 5. Jackal analyzing its surroundings and choosing the path with the
farthest disparity.

In some cases, the robot may need to make sharp turns,
making constant velocity very impractical. Therefore, the
intended steering angle must define the velocity and angular
velocity of the UGV. As velocity should be a minimum at
very extreme intended turning angles (closer to +60 degrees
or -60 degrees azimuth) and a maximum at 0 degrees azimuth,
whereas angular velocity is the opposite, we have utilized
equations 1 and 2 to define the velocity and angular velocity
of the robot. In these equations, θ is treated as the intended
angle of travel, with -60 indicating as left as the LiDAR can
detect, 0 indicating forward, and +60 indicating as right as
the LiDAR can detect. Note that Jackal treats positive angular
velocities as turning to the left, and negative angular velocities
as turning to the right. Maximum velocity (vmax) and maximum
angular velocity (ωmax) can be set manually by the user. For
testing, vmax was set to 0.3 m/s and ωmax was set to 0.7 rad/s
to ensure minimal damage in case Jackal hit a wall.

ω = ωmax · −
θ

60
(1)

v = vmax ·
60− |θ|

60
(2)

In sum, this procedure defines a simplified version of the
DisparityExtender algorithm. While it is designed specifically
to race smaller autonomous miniature cars in the F1Tenth
competition [6], the F1Tenth racing environment that it is
purposed for has only a single possible direction to travel with
no intersections or forks. However, in rescue situations, it is
imperative that the robot can explore a maximum area even
with such forks in the road. Therefore, identifying isolated
peaks in the RADs from the LiDAR and later mmWave sensor
would allow for the robot to identify possible directions of
travel.

For the purposes of this study, these isolated peaks needed
to have a range of at least 2.5 meters from the main LiDAR
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sensor and be 24 degrees from any other peaks. Both the -
60 and +60 degree azimuth endpoints were also considered
to be peaks. Also, range readings 10 degrees to the right and
left of the main lidar needed to be greater than 60% of the
candidate peak or have a range more than 4 meters. If either
the 10 degrees right or 10 degrees left measurements fail this
requirement, the candidate peak will need to be adjusted, and
if both fail, this candidate peak would not be considered to be
an ideal path of travel for the safety of the robot. A result of
applying this method on a range graph is shown in Figure 6.

After evaluating which angles the robot can safely travel,
running a left-hand rule wall follower algorithm would allow
the robot to prefer routes of travel towards the left of the
robot over the right [7], allowing for greater area exploration.
Perfecting this algorithm, the multipath DisparityExtender
(MPDE), on its intended LiDAR sensor then allowed us to
easily port this algorithm for the mmWave sensor.

B. mmWave Substitution for LiDAR

LiDAR maps usually contain a 2D model of the environ-
ment they are in. Depending on the range, a majority of
the environment will be mapped, but in other cases only the
nearby parts of the environment will be mapped by the sensor.
LiDAR maps have the benefit of providing specific detail on
the location and position of each object in the surroundings
around the sensor. However, when it is compared with the
mmWave radar, the radar can also provide enough information
to make meaningful statements on the location and position
of the object. The mmWave Radar will create RADs and
Point Clouds for the position of the objects nearby. Using
the distance, angle, velocity, and XYZ point cloud values,
the radar provides enough information for the robot to use
in navigation. Integration of the mmWave Radar with the
Jackal UGV has other benefits for efficiency as well. Instead
of having an operator manually run radar configurations and
data captures, the ROS on the Jackal robot can run multiple
subsequent capture programs to create a nearly live feed of
data. On the same ROS server, scripts can be immediately run
to use the live captured data and immediately process it into

Fig. 6. Range graph from the LiDAR sensor. Target angles of travel are
indicated by green circles. In this graph, 0 degrees indicates maximum left
and 120 degrees indicates maximum right.

the RAD and point cloud graphs. This processed point cloud
graph is shown in Figure 7.

Fig. 7. Point cloud rendering on the ROS server

IV. TESTING

In order to test our UGV, LiDAR, and mmWave assembly,
different testing environments had to be considered. First, the
robot would need to be able to travel along a straight path
without hitting any walls. This means that for the first testing
environment, a simple hallway in an office environment should
suffice given its minimal obstructions and overall linearity.
DisparityExtender would ideally target the end of the hallway
and correct its angle heading only minimally. However, to
prove the effectiveness of DisparityExtender on the LiDAR
and mmWave sensor, it is imperative to factor its ability to
turn corners, meaning that a second testing environment with
corner turns is needed. This testing environment will also be
of a single path, but this one will have corner turns unlike the
first testing environment.

After validating single path DisparityExtender on these
two environments, it is then necessary to validate MPDE
by deploying the UGV, Lidar, and mmWave assembly in a
third environment where there are intersections where the
robot can correctly choose a path to travel and backtrack
without hitting any of the corners in the fork. For the purpose
of simplicity, an office environment involving multiple turns
and intersections was chosen. This environment would easily
validate that our UGV assembly can correctly traverse and map
out all terrain using the basic left-hand wall follower method.
Figure 8 illustrates the overall layout of these environments.
For the third environment where MPDE was tested, arrows
in repeating rainbow color order show the exact sequence of
moves our UGV should take (starting at the red arrow, then
orange, yellow, and so forth until pink and then restarting from
red).

During some of these tests, the radar was mounted onto the
robot in order to mimic active scenarios as demonstrated in
Figure 9. As the robot moved along in such tests, both the
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Fig. 8. Test environment 1 (top left), 2 (top right), and 3 (bottom) for
evaluating steering, turning, and environment mapping, respectively.

LiDAR and the mmWave radar captured data. Data formats
shown demonstrate the comparable data values deducible from
the RADs and distance-velocity graphs. By running these tests,
the accuracy of the radar data with respect to the environment
is compared with the LiDAR data.

V. CONCLUSIONS

At the current state of the research, creating a closed loop
system of data capture and movement from Jackal was not
achieved for mmWave radar. While this closed loop system
was functional and proved for our UGV-LiDAR system to
function in all three test environments, such a system was not
tested with the UGV responding from mmWave data. Although
the Jackal UGV did not respond to data from the mmWave
sensor, its data reportings in the same hallway and office
environments have very significant similarity to measurements
from the LiDAR sensor, especially for the range-azimuth
diagrams; mmWave has the added advantage of identifying
positional velocity, which was not tested in this research.

Fig. 9. mmWave sensor mounted on Jackal

Given the similar range-azimuth diagrams, our MPDE would
output very similar directions of travel for both the tested
LiDAR system and the mmWave system. In practice, the
mmWave radar can be mounted on the UGV and then both
data systems can direct a UGV.
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