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Abstract For rapidly spreading diseases where many cases show no symptoms,
swift and effective contact tracing is essential. While exposure notification applica-
tions provide alerts on potential exposures, a fully automated system is needed to track
the infectious transmission routes. To this end, our research leverages large-scale
contact networks from real human mobility data to identify the path of transmission.
More precisely, we introduce a new Infectious Path Centrality network metric that
informs a graph learning edge classifier to identify important transmission events,
achieving an F1-score of 94%. Additionally, we explore bidirectional contact trac-
ing, which quarantines individuals both retroactively and proactively, and compare
its effectiveness against traditional forward tracing, which only isolates individuals
after testing positive. Our results indicate that when only 30% of symptomatic indi-
viduals are tested, bidirectional tracing can reduce infectious effective reproduction
rate by 71%, thus significantly controlling the outbreak.

Keywords Graph neural networks - Infection dynamics - COVID-19

1 Introduction

Contact tracing has long been a cornerstone public health strategy for managing
outbreaks of highly traceable diseases such as Ebola and Rabies [16, 23]. In such
instances, the transmission routes are typically clear, as infectees can recall specific
events like animal bites or direct contact with infectious individuals. However, man-
aging pathogens with aerosol transmission and asymptomatic cases like SARS-CoV-
2 [25], RSV [9], or Influenza [26] presents greater disease containment challenges,
as seen during the COVID-19 pandemic.
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Fig. 1 Manual contact tracing involves collecting past interactions to construct a directed acyclic
graph (DAG), where parent nodes are potential sources of infection for their child nodes (forming a
contact tracing network). When identifying superspreaders, potential infections, or vaccination can-
didates, most studies use network analysis techniques such as betweenness centrality on networks
with static interactions but dynamic node labels (i.e., health status). However, as illustrated in the
contact networks from Day 1 and Day 2 (left), nodes with the highest betweenness centrality [19]
do not necessarily hold significant roles in the contact tracing network (right). Instead, nodes with
the highest value of our proposed metric, Infectious Path Centrality-which measures the number
of paths connecting two positive leaf nodes-are often the most recent common ancestors, making
them (and their offspring) crucial for targeted quarantines. We evaluate our metric by comparing its
effectiveness in a bidirectional graph learning mitigation framework, which uses this new transmis-
sion network metric to identify and quarantine unseen branches of the disease, against traditional
forward contact tracing that quarantines those who test positive

To contain a disease outbreak, manual contact tracers need to contact each per-
son who tests positive to identify their recent contacts from the past 24-48h [28].
However, the effectiveness of manual tracing depends on the accuracy of people’s
memories, their awareness of their surroundings, and the tracer’s ability to reach out
to these contacts [17].

In the beginning of an outbreak, the goal of manual contact tracers is to deter-
mine the initial source, often referred to as “patient zero.” However, as an outbreak
escalates into an epidemic, manual tracing can become overwhelmed by rapidly
spreading pathogens, especially when community spread occurs [20, 29]. This is
because numerous undetected transmission events within the community can make
it difficult for individuals to trace their infections to the original source. The goal
of contact tracers then pivots to identifying untested paths of transmission to notify
people who may be infectious.

In response to the rapidly evolving SARS-CoV-2 virus, companies raced to digi-
tize disease contact tracing. By monitoring interactions among individuals, modern
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systems can function as continuous disease surveillance tools. Exposure notifica-
tion applications, for instance, alert users to recent contacts with infected individ-
uals, leveraging advancements in location-tracking technology [18]. Despite these
advances, a critical question remains: Can we effectively backtrack the chain of
transmission, particularly for rapidly spreading diseases where many carriers are
asymptomatic?

With access to the Foursquare Mobility dataset [1] that contains visits at various
Points of Interest (POIs), we present an always-ready disease surveillance system
that tracks the past interactions and performs retroactive disease path detection. In
addition, we propose a new propagation network metric, Infectious Path Centrality,
that characterizes the centrality of a node along a path of a transmission on a con-
tact tracing network; this is in contrast to the static betweenness centrality on the
instantaneous contact networks [7] (Fig. 1).

In this research, we have developed a graph learning framework that utilizes our
newly proposed metric (Infectious Path Centrality) as node features. This frame-
work automates the bidirectional contact tracing process, allowing it to identify and
quarantine more individuals along the suspected transmission paths. To this end, our
contributions are as follows:

1. We introduce a novel Infectious Path Centrality metric, which measures how
central a person is among individuals in a contact tracing network.

2. We provide an automated bidirectional disease contact tracing graph learning
framework using real mobility data that identifies transmission events along
infectious paths.

3. We show that bidirectional contact tracing is more effective than forward contact
tracing at reducing the disease’s effective reproduction rate.

Taken together, our contributions can help build the technology needed to mitigate
the next unknown disease outbreak. The remainder of this paper is organized as
follows: Sect. 2 discusses prior work, Sect. 3 describes our approach, Sect. 4 presents
our experimental results. Finally, Sect. 5 summarizes our contributions.

2 Prior Work and Novel Contribution

In this section we present the relevant prior work in disease contact tracing, targeting
strategies, and graph learning.

2.1 Disease Contact Tracing

Traditionally, contact tracing has been a manual process, relying heavily on inter-
views conducted by trained health workers to identify individuals who might have
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been exposed to an infectious person. This method was instrumental during dis-
ease outbreaks like smallpox [11] and tuberculosis [3]. In these cases, meticulous
record-keeping and follow-ups were key strategies for slowing the spread.

The COVID-19 pandemic spurred unprecedented advancements and the adoption
of digital contact tracing tools. Various countries developed mobile applications
that utilized GPS and Bluetooth technologies to automate the detection of close
contacts [2]. For example, the TraceTogether [6] application in Singapore and Apple
and Google’s joint exposure notification application GAEN [27] were pivotal in
scaling up contact tracing to large populations. These applications could notify users
if they had been near someone who tested positive for COVID-19, thereby facilitating
a quicker self-isolation or testing response. Though useful in theory, in reality too
many false positive alerts resulted in less overall public uptake.

2.2 Targeted Mitigation Strategies

Researchers aimed to measure the efficacy of targeted mitigation strategies such
as enacting targeted testing [13], quarantines [15], and vaccinations [5]. To do so,
they put effort into identifying significant players within the transmission dynamics,
such as superspreaders and transmission bottlenecks, through analyzing network
metrics [30]. Most similar to our proposed network metric, Lev et al. introduced an
Infectious Betweenness Centrality that charts the betweenness centrality of a node
along the path from an infectious node to a susceptible node [24]. In contrast, instead
of node betweenness, we propose a Infectious Path Centrality metric that describes
the nodes that have high betweenness on paths connecting one infectious person to
another thus identifying the likely path of disease transmission.

Furthermore, researchers have compared the effectiveness of forward contact trac-
ing, where a person isolates upon testing positive, to bidirectional contact tracing,
where an infectious person also retraces their interactions to identify potential unseen
infections [4]. They found that isolating these potential cases can prevent more infec-
tions than just isolating those who test positive. Our work aims to provide the first
machine learning-based solution that charts the paths of disease transmission.

2.3 Graph Learning

Graph learning has emerged as a crucial discipline within machine learning, pri-
marily due to the ubiquity of graph-structured data across various domains such as
social networks, biological networks, or communication systems. The introduction of
Graph Neural Networks (GNNs) marked a significant shift towards using deep learn-
ing techniques for graph data [22]. GNNss iteratively update node representations by
aggregating features from neighboring nodes, effectively capturing the local graph
structure. This paradigm was further extended into Graph Convolutional Networks
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(GCNs) [12], simplifying the graph convolution process and significantly improv-
ing the computational efficiency. GCNs have become a cornerstone for numerous
applications in link prediction and classification on nodes, edges, and graphs.

Recent work has addressed the challenges of graph learning in the presence of
significant class imbalances [14]. However, the extent of class imbalance in certain
applications, such as disease contact tracing, is particularly severe. For instance,
in scenarios where the goal is to determine the transmission path of an infection,
typically only one edge (or interaction) out of many possible interactions is respon-
sible for the transmission. This results in a class imbalance ratio that is inversely
proportional to each node degree when contact tracing.

Given the limitations of handling graph imbalance in such extreme cases, our
approach seeks to provide a solution against such profound imbalances. Moreover,
disease contact tracing introduces a novel challenge to graph learning: the task of
identifying specific paths (or graph traversals) based on transmission dynamics. This
necessitates not only managing the severe class imbalance, but also developing tech-
niques capable of accurately tracing the paths of transmission in complex network
structures.

In this paper, we build on prior work in disease contact tracing and graph learning
to (1) develop a new graph learning framework that learns how to chart the path on
infection during a large-scale outbreak, and (2) show that bidirectional contact tracing
outperforms standard forward contact tracing when trying to mitigate transmission.

3 Proposed Approach

In Fig.2, we provide a comprehensive overview of our approach. First, we con-
vert individual dwell times from Foursquare mobility data into person-to-person
networks. We then apply a network-based compartmental epidemiological model
(SEIR) via simulation (step 2). Following this, we map out the path of transmis-
sion, creating an accumulative contact tracing network, and compute the Infectious
Path Centrality for each neighbor connected to an infectious individual (steps 3 and
4). Using these centrality measures as features, we train a graph edge classifier to
identify edges that represent transmission events (step 5). Finally, to evaluate the
experimental efficacy, we conduct new simulations that quarantine nodes based on
standard forward tracing and our bidirectional contact tracing method (step 6).

In this section, we describe in detail our approach for network construction,
epidemic model, Infectious Path Centrality metric, and mitigation evaluation.

3.1 Person-to-Person Network

Given the visits from Foursquare mobility data with venues and dwell times, we
construct the initial person-to-person graph G = (V, E) where V is the set of nodes



S. Hurtado and R. Marculescu

210

(9 doys) yIomowresj uoneINIW 1o Jursn Juroes) JOBIUOD [BUONIAIPIQ pue ‘FUIdRI) JOBIUOD PIeMIO] ‘UONE3NIW Ou S903I9pun jey)
S[ENPIAIPUL SNOTOJJUI dwes Y} PIm papads uonendod e Surredwos £q yoeoidde o jJo Aoeoyje oy 1593 oM ‘A[[eur "(,SNONOJUI-UOU, IO ‘(JUSAD UOISSIWSURI)
anI e “9'1) Snonodjul, 3ureq se yIomjau Jurors) JOBIUOD AY) UT S9FP2 Ay} sayIsse[o a[npouwr Jurured] ydei3d oy ], (¢ dojs) uoneoyisse[o a3pe ul saInjeaj se pasn
uay sI Jey) O1AW Aenua) yred snonsajuy pasodoid mo Sunenofes Jo sisisuod 4 daig pa3odgur 103 A3y} Aep 2y UO SUOTIORIAIUI JIAY) JO [[B S[[BIAI JUOIWOS
Q10U Suroes) 19eIU0D [ENULW Y} SOTWIW SIYT, "UOTIIJUI JO A&p 9Y) UO SBY 99)0JUI Y} SUOTIORIOIUI JOYJIO [[& SE [[oM SE “YI0M)ou SuIoes) 19eju0d Y} 0} UOToRIUI
SNONOJJUI Y} ppe am “((7) doIs ur uonodJuI) JUAAD UOISSIUSURL K19A2 104 *(¢ doIs) pIIYd ay) 03 UONIAJUI JO 921n0s [enuod e s1judred oy A1OYM JI0MIAU SU1ID.4]
JOBIUOD B ULIOJ 9M ‘SJUdAQ UOISSTwsuen) Jo yoexn dooy of, *(7 dois) syTomiou 10eju0d Jrweuip ) uo [(]] [OPOW (PaLaa02ay-snondafuf-pasodxiy-2]q1daosng)
NMIAS [eo1Sojorwopido paseq-judde ue Ajdde uayy 9p\ “Inoy oures oy) UIYIIM UONEIO] dures ay) JISIA A3y} udym pajoduuod are (djdoad “a71) sao1aap omp, (]
dass) syromiou 1oeIU0O uosIad-03-uosiad ojur SO 18 Swn [[oMP 9J1A9p Sururejuod eyep Ajjiqouwr arenbsinog Suissoooid Aq suels juowiradxo nQ g *Sig

sheq
uonoajul o yed auy Jo BpISING — v
Buroe.)’
|euonoanpig - uonoaul o yied sy uQ — €
2 t s . b
2 z
Buroel) w‘
Jemio4 L4
P % i~ \\\////\ ~ \\\///\ X
NZ- 1
femu| N P ,F ,F /F e_\ 0
/F /_\ /t\ «t\ s|dwesqng sdoy
(Buroe.y [euonoalipiq) yied uoissiwsuel)
ay) Buoje sjdoad jo sioqybiau ase ,Shondsjul-uou, Jo snoloajul, wsiueyoaw
oym asoy) pue ‘(Buroes) 10B1UOO pIeMIO)) S| uonoBIRIUI UB JaYIRYM Joj ydeib Moy e ybnoiyy ydeib ayy buidwesgns
anpsod 153} oym asoyy Bulu Buioel) Joeju00 pajdwes-gns ay) buisn Aq s1oqybiau doy-}sii} s,2pou Yoes Jo
uoissiwsuel} aseasip uoneayyissefo abpa Aseulq wiopiad Aujenuao yred snonoajul sy ajejnojen
uonebn ( 9 Buiusea ydeig @ Anjenuag yred snonoajul @
N
~4 x4
EA SV AN

(ydesb woym-parosjul-oym “a'1)
UoISSIWSUEl) JO UoNoalip ainided
sabpa pue ajdoad aie sapou sy}
asaym ydeuh ayjij-aa1) B JoNIISUOY

siom1aN Buioel] 1oeU0) @

syiom}au uosiad-o)-uosiad

2y} 01 (pasaA098y - SnojdayU|

- pasodx3 - 8/q/1daosns) [apow
olwapida paseqg-luabe ue Ajddy

uonejnwig aseasiq @

SHIoMIaU 1081U0D Uosiad
-01-uosiad Ajrep oyl passaooid
ale salio}oalel) Ajjiqow [enpiaipu|

syiomiaN AujiqoN @




Graph Learning for Bidirectional Disease Contact Tracing on Real ... 211

(i.e., persons), and E is the set of edges (i.e., interactions), between them. We define
an interaction if two people are at the same venue within the same hour. We construct
these graphs for each day in the Foursquare mobility dataset with the time granularity
of one hour. We assume an equal chance for any two people to interact within a venue,
therefore, within each venue at a given hour the subgraph is fully connected.

3.2 Epidemic Model

Because we lack the ground truth for health labels on each individual within the
dataset, we rely on simulating the disease spreading. More precisely, we deploy
an agent-based SEIR model [10] on the population where a node on the contact
networks can be one of the four health states, i.e., {Susceptible, Exposed, Infectious,
Recovered}. To introduce heterogeneity, we assign each individual with immunity
6 € [0, 1] and virality v € [0, 1] values. All nodes start off as Susceptible and move
to Incubating when they interact (i.e., edge) with an infectious node that has a virality
v greater than their immunity ¢ (Eq. 1):

Sj—>IjIU[>5j (l)

After the incubation period (5d), the individual is considered to be Infectious
and is assigned a v virality value. After a sickness period (7d), the individual is
considered Recovered and cannot be infected again within the testing span of the
experiment (30d). Note that the immunity threshold, virality value, incubation period,
and illness period, are all tunable parameters that could be chosen to simulate a
different infectious disease.

3.3 Contact Tracing Network Construction

After simulating a disease outbreak on the daily person-to-person networks, we
construct a contact tracing graph. This graph aims to emulate the contact tracing
performed by a manual contact tracer who calls each infectious individual and queries
about their past interactions. To achieve this, for every node that transitions from
Susceptible to Incubating, we add the node’s neighborhood to the contact tracing
graph where all edges point to the most recently infected node. This forms a directed
acyclic graph (tree) where the leaves are all Infectious nodes (Fig.2 Step 3).
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3.4 Infectious Path Centrality

We abstract the question of ‘who infected whom’ to abinary edge classification task to
determine whether an interaction contains a transmission event. Because we assume
that a person gets infected by one other entity (i.e., person or place), there is a large
class imbalance between infectious and non-infectious interactions.

To account for class imbalance, we take advantage of the transmission dynamics
of adisease. As shown in Fig. 3b, we start with the contact tracing network’s leaf node
u and apply an attenuating signal that has a decay a € [0, 1] with each hop 4 to act as
the edge weights w(,., (Eq.2).! Note that « gives the importance of each interaction
in the h-hop neighborhoods and reduces overvaluation of superspreader neighbors.
We traverse a maximum of H hops and accumulate the weights of all incoming
edges at each node y to get ¢, (Eq.3). Finally, we reverse the edges to travel from
H hops back to the 1-hop neighbors of the infectious node u to accumulate all ¢ for
all incoming edges resulting in the Infectious Path Centrality value 7, (Eq.4)

Ww = Q! 2)
b= D Wy ®
V(x,y)ENp=1(y)
Ny-1(v)
Ty = Wy + Z bx 4)

V(v,x)€Ny=(v)

3.5 Mitigation

We evaluate our mitigation strategies by setting up side-by-side comparison between
no-mitigation, forward contact tracing, and bidirectional contact tracing in an ‘online’
simulation. Starting from interactions in July’s person-to-person networks and seed
infections, we then test the population of sick individuals with a virality v > 0.5 to
simulate testing only symptomatic cases. For each day in the simulation, we then
update the contact tracing network and Infectious Path Centralities for each 1-hop
neighbor of those who recently test positive. We then use a trained infectious edge
classifier using May and June contact tracing network to identify who infected the leaf
nodes. In the forward contact tracing, we simply quarantine the individuals who tested
positive for the infectious period (7 d). For the bidirectional contact tracing, we go
back 5 d (incubation period) and quarantine all of the potential new infections. Finally,
we compare the effective reproduction number R; [8] (that averages the number of
new infections caused by one person) of the outbreaks resulting from no mitigation,
forward contact tracing mitigation, bidirectional contact tracing mitigation.

1 All notations relevant to this section are explained in Fig. 3a.
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4 Results

In this section, we present our experimental set up, investigate the H hops for
the Infectious Path Centrality, perform an ablation study on «, and evaluate a few
mitigation strategies.

4.1 Experimental Set Up

We built our framework using four months (i.e., May, June, July, August) in 2020, of
the Foursquare mobility dataset during various stages of COVID-19 lockdown and
reopening in Austin, Texas. For each month, we seed 1% of the person-to-person
networks with infections and form the resulting disease contact tracing network. The
statistics for devices captured, number of infections, and contact tracing network
nodes and edges are shown in Table 1.

We visualize the contact tracing network in Fig.4a—c to show the relationship
between node infections and edge infections. The nodes in red have contracted the
virus, and the edges in red chart the path of infection. Every node has only one
red incoming edge Fig.4c which signifies that every node is only infected by one
person. Figure 5 shows the node degree distribution for all the months captured in the
experiment. Given the heavy tailed distribution, we can conclude that the directed
contact tracing network is scale-free graph where there exists few superspreaders.

4.2 Infectious Path Centrality

After constructing the contact tracing, we calculate the Infectious Path Centralities
for each positive node’s 1-hop neighbor, and analyze the maximum number of hops
H (i.e., depth) needed in order train the edge classifier well. We first investigate
the amount of graph covered by traversing each hop on different graph topologies.
In Fig.6, we compare the contact tracing graph pulled from a disease simulation
on Austin in May of 2020, to scale free, random, and mesh networks of equal size
(20, 000 nodes).

Table 1 Foursquare sample size statistics for 2020

Month Devices Infections Nodes Edges

May 37,049 17,075 20,095 116,615
June 37,039 20,036 21,974 154,548
July 36,347 17,644 19,899 124,821
August 47,598 28,082 31,073 244357
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(a) (b) (c)

Fig.4 a 500 node sub-sample of a contact tracing network. Red edges signify a transmission event
where the parent node infects the child node. b portrays an ego-network view of a leaf node that
has recently tested positive. Their ego-network consists of all contacts made on the day of infection
(incoming edges), as well as those they have infected (outgoing red edges). ¢ depicts a zoomed in
view of an infectious node where there is only one incoming red edge (i.e., source of infection),
and many outgoing red edges (parent of infections). There are also many incoming grey edges that
signify interactions on the day of infection that were not transmission events
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Fig. 5 The in-degree histogram in log-log scale shows that the contact tracing network is scale-
free. This means that few nodes have many incoming edges, while most nodes have few. The class
imbalance for identifying the incoming transmission edge is proportional to the in-degree which
makes training an edge classifier largely unbalanced
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Coverage vs Number of Hops
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Fig. 6 Comparison of percentage of nodes explored between topologies according to hop-depth.
Each network consists of 20,000 nodes and 116,000 edges to be comparable to the Austin contact
tracing network. Of note, the contact tracing network is a DAG structure whereas, the other graphs
are undirected. The scale free network coverage plateaus at 2 hops whereas the Austin contact tracing
and random networks plateau at 3 hops. In contrast, the mesh network coverage is proportional to
the number of hops

We start from a sample of 500 nodes on each graph, traverse to each A-hop
neighborhood and keep track of how many unique nodes are visited. We find that
for all cases except the mesh graph, traversing to the 3-hop neighborhood samples
the largest subset of the graph (Fig.6). Though the random, scale free, and Austin
contact tracing graphs all have an average path length of around 6, this coverage
suggests that the sample nodes are roughly 3 hops away from a superspreader. In
contrast, the mesh covers more nodes with every hop.

To further investigate, we train the edge classifier on different maximum hop
depths H to compare the F1-scores in Fig.7. We use the F1 metric [21] to take into
account the class imbalance rather than accuracy since most of the edges are not
transmission events. We can see the edge classification model achieves the highest
F1-score when traversing to 2-hop neighbors (orange curve). Note that this is one-hop
less than achieving the largest coverage (3-hops). Perhaps this is because at 3-hops
the Infectious Path Centrality metric has a hard time saturating as there are too many
collisions to differentiate the paths.

[Ablation study] In addition, we investigate various values of « to determine how
important we should weigh each A-hop neighborhood; we find that a = 0.5 yields
the highest F1-score (Fig. 8).

As such, we train all of the months using 4 = 2 with a = 0.5 in Fig.9 where F1-
scores range between 0.81 and 0.94. After determining the number of hops that the
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F1-Score vs Epoch
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Fig.7 Comparison of the effect of hops on F1-score for an edge classifier trained over 300 epochs.
0 hops signifies performing edge classification without the Infectious Path Centrality metric. The
contact tracing graph is taken from Austin mobility interactions from May, 2020. The Infectious
Path Centrality metric calculated by traveling 2-hops away from the leaf node gets the highest
Fl1-score of 0.87 after 300 epochs
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Fig.8 [Ablation study] Comparison of «v value used on Austin contact tracing network for May of
2020 using & = 2. For example, an o = 0.1, means that the propagation signal diminishes quickly
between & hops. Decaying the signal by o = 0.5 yields the highest F1-score of 0.85
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Epoch vs F1-Score
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Fig. 9 Comparing training edge classifier on contact tracing networks from Austin in May, June,
July, and August in 2020. August has the most nodes (31,073) and edges (244,357) resulting in the
largest sub-sample for training. The edge classifier achieves an F1-score of 0.94 after training for
300 epochs on August. In contrast, July has the smallest network with a 0.81 F1-score

flow metric should traverse, and training the edge classification model, we investigate
the efficacy of bidirectional contact tracing.

4.3 Mitigation

We utilize an edge classifier trained on contact tracing networks from May and June
and apply ‘online’ mitigation to July and August. As described in the approach, we
test newly symptomatic individuals and calculate the Infectious Path Centralities by
traversing to their H = 2-hop neighbors. We then update the contact tracing net-
work and classify the edges of the 1-hop neighbors to gather the parent infections.
From there, we test whether quarantining those who tested positive (forward contact
tracing), or retroactively quarantining all neighbors of those who infected the posi-
tive individuals (bidirectional contact tracing) lowers the disease reproduction rate
compared to the unmitigated population.

In each case, we seed the infections with the same 1% of individuals so that
the infection comes from the same starting point. We implement the mitigation
techniques starting on the eighth day to ensure that the disease has propagated.
Figure 10 shows a comparison of the effective reproduction number at the end of
each simulation for different percent of population tested. For example, when only
1% of symptomatic cases (i.e., virality v > 0.5) is tested, the unmitigated population
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Rt vs Symptomatic Population Tested
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Fig. 10 Comparison of effective reproduction number R, across 20 simulation runs for three
scenarios: no mitigation measures, forward contact tracing, and bidirectional contact tracing, varying
the percentage of symptomatic cases tested. The mitigation strategies are implemented starting on
the eighth day, and R, represents the average number of secondary infections per case by the end of
each simulation. The shades with lighter colors represent the minimum and maximum R; among
the 20 simulations

has an average effective reproduction rate of 1.33 while the forward tracing has a
rate of 1.27 and bidirectional contact tracing has 0.54. Most notably, regardless of
the percent of population tested, we see a dramatic decrease in effective reproduction
rate between bidirectional contact tracing and unmitigated populations (71%) and
forward contact tracing (54%). This is in contrast to only using forward contact
tracing which decreases the effective reproduction rate by only 16%. Intuitively, this
is because when performing forward contact tracing while only testing a percentage
of the symptomatic cases, many transmission paths will go untested which results in
the continuation of viral propagation. When 100% of the symptomatic individuals
are tested, the bidirectional contact tracing mitigation strategy results in a effective
reproductive rate of 0.42 which means that, on average, every ten infected people
produce roughly four infectious offspring, thereby significantly slowing down the
outbreak.
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5 Conclusion

In this paper, we have presented a framework to automate bidirectional contact tracing
using Foursquare mobility data. We have formulated the transmission path identifi-
cation problem on contact tracing networks as graph learning edge classification that
determines whether an edge is a transmission event. We have also proposed a new
network metric, Infectious Path Centrality, that describes the centrality of a node
along the path from two infectious nodes.

Our proposed metric solves the class imbalance problem on transmission path
identification, as it sub-samples the nodes along the H-hop neighborhoods. More-
over, unlike manual contact tracing, our metric performs better in scenarios of
widespread community transmission. Through training, our edge classification model
achieves an F1-score of 0.94; when used to perform bidirectional contact tracing, the
R; decreases by 71% compared to unmitigated populations.

Our work is limited by the fact that we do not have the ground truth for the
true transmission dynamics, as there is no public dataset that contains large scale
interactions, as well as health labels. Future work includes extending our analysis
to other cities and communities of various size (i.e., New York City vs St. Louis) to
evaluate the viability of our proposed metric. Furthermore, we intend to investigate
the robustness to imperfect quarantines with varying degree of compliance, and
inaccurate testing (i.e., false positives and/or false negatives).

Taken together, our work is an important step towards automating disease contact
tracing to help mitigate the next unknown viral outbreak.
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