Federated Neuroevolution O-RAN: Enhancing the
Robustness of Deep Reinforcement Learning xApps

Mohammadreza Kouchaki, Aly Sabri Abdalla, Vuk Marojevic
Electrical and Computer Engineering, Mississippi State University, USA
mk1682 @msstate.edu, asa298 @msstate.edu, vm602 @msstate.edu

Abstract—The open radio access network (O-RAN) architec-
ture introduces RAN intelligent controllers (RICs) to facilitate the
management and optimization of the disaggregated RAN. Rein-
forcement learning (RL) and its advanced form, deep RL (DRL),
are increasingly employed for designing intelligent controllers,
or XApps, to be deployed in the near-real time (near-RT) RIC.
These models often encounter local optima, which raise concerns
about their reliability for RAN intelligent control. We there-
fore introduce Federated O-RAN enabled Neuroevolution (NE)-
enhanced DRL (F-ONRL) that deploys an NE-based optimizer
xApp in parallel to the RAN controller xApps. This NE-DRL
xApp framework enables effective exploration and exploitation
in the near-RT RIC without disrupting RAN operations. We
implement the NE xApp along with a DRL xApp and deploy them
on Open Al Cellular (OAIC) platform and present numerical
results that demonstrate the improved robustness of xApps while
effectively balancing the additional computational load.

Index Terms—O-RAN, reinforcement learning, neuroevolution,
resource allocation, genetic algorithm, distributed computing.

I. INTRODUCTION

In the face of today’s dynamic digital landscape character-
ized by increasing interconnectivity and technology conver-
gence, traditional rigid and closed network deployments no
longer suffice to meet the demands of modern communication
systems. To address these challenges, open radio access net-
work (O-RAN) offers a groundbreaking approach to mobile
networks, aiming to revolutionize the industry by enhancing
flexibility, interoperability, and cost efficiency. Unlike tradi-
tional networks that heavily rely on proprietary and tightly
integrated solutions, O-RAN introduces a novel disaggregated
RAN architecture with open interfaces, effectively decoupling
the hardware and software components involved. This decou-
pling enables greater agility and adaptability, allowing easier
integration of new functionalities and technologies.

O-RAN also introduces RAN Intelligent Controllers (RICs),
two logical control units enabling monitoring and optimizing
RAN configurations at non-real time (RT)—seconds to min-
utes or more—and near-RT—10 ms to 1 second—time scales,
respectively [1]. These intelligent controllers serve as the
orchestrators of the xApps and rApps microservices embracing
artificial intelligence (AI) and machine learning algorithms.
rApps are deployed in the non-RT RIC which is part of the
service management and orchestration asset of an O-RAN
operator. They enable long-term network optimization, policy-
based management, and data-driven orchestration. XApps, on
the other hand, live in the near-RT RIC which interfaces
with the disaggregated RAN through O-RAN’s E2 interface.

They may support near-RT decision making and optimization
that influence short-term RAN operations, such as resource
allocation, interference monitoring, and mobility control.

While rApp type network orchestration is common in
cellular networks, this paper emphasizes on improving the
reinforcement learning (RL) and deep RL (DRL) performance
for xApps. RL and DRL, in particular, empower the network to
learn, adapt, and optimize its operations. The incorporation of
deep neural networks (DNNs) as function approximations that
are trained through gradient-descent methods has been widely
adopted for DRL algorithms for solving complex optimization
problems. For instance, RL and Federated RL models leverag-
ing the actor-critic approach have been effectively employed
for resource management [2] [3], an RL-based cell association
xApp [4], and a traffic steering xApp [5] in O-RAN.

One known difficulty of RL algorithms is the temporally
disjointed nature of its reward feedback system. Rewards are
often sparse and substantially delayed, leading to the well-
known credit assignment problem [6]. This issue is particularly
challenging for gradient-based techniques, as they inherently
assume immediate and frequent feedback for efficient learning.
Striking a balance between exploration and exploitation is
another core challenge of RL. Gradient-based techniques often
fall into local optima, focusing on known rewards while
inadequately exploring the environment for potentially higher
returns [6]. With each agent policy update, the data distribution
continuously changes, which is in contrast to the static data
distribution assumed by gradient-based learning, leading to
potential instability and reduced performance. Moreover, RL
lacks labeled samples that are prevalent in supervised learning,
relying instead on scalar reward signals [7]. These challenges
form significant drawbacks for RL, potentially undermining
their efficacy for network and resource management in O-RAN
systems [5]. The above problems apply to DRL, which we
consider in this paper because of its superior in exploring the
large action spaces of advanced wireless network resources.

The integration of evolutionary algorithms (EA) within DRL
models offers key advantages, including the ability to handle
sparse and delayed rewards through a holistic evaluation as
well as to promote global exploration for avoiding local
optima [8]. EA-based techniques moreover provide stable
learning in non-stationary environments and leverage gradient-
free optimization, addressing many limitations of traditional
gradient-based approaches. EA is a bio-inspired metaheuristic
optimization model that replicates the process of natural evo-
lution. It is characterized by its principal operations: mutation,

reproduction, selection, and recombination. These operations
when applied to DRL guide the DNN weight adjustments,
steering the Al model toward optimal performance.

Efforts in EA have led to substantial advancements in
DNNSs. There have been few initial studies that provide insights
into how EA can be applied to O-RAN. For instance, the work
presented in [9] highlights some of the design choices for
combining RL with EA to improve network efficiency and
adaptability by simplifying the inference models for dynamic
RAN optimization. The authors of [10] propose an EA-
based DRL framework that optimizes slice management while
avoiding service level agreement violations. These works are
theoretical in nature, and lack testbed demonstrations.

The performance of DRL-based xApps can be enhanced by
introducing a novel hybrid EA to evolve the DNN architecture,
a process known as neuroevolution (NE) [8]. This empowers
xApps to better navigate the complexities of learning in
unknown environments, thereby improving the efficiency and
robustness of O-RAN. However, the increased complexity
resulting from this integration needs to be addressed. There-
fore, in this paper, we introduced a federated NE enhanced
DRL based solution for O-RAN’s near-RT RIC, leveraging
the O-RAN architecture and its Kubernetes (K8s) container
deployments to enhance the computing efficiency and robust-
ness of DRL based xApps. The proposed Federated O-RAN
enabled NE-enhanced DRL (F-ONRL) entails a single EA
optimizer xApp, which utilizes parallel computing resources
within the near-RT RIC. This enables the parallel integration
of the optimizer xApp with other xApps that are dedicated to
specific RAN control functions. We deploy this framework on
a real-world O-RAN testbed, enabled by the Open AI Cellular
(OAIC) platform, to validate the proposed F-ONRL solution.

The rest of the paper follows as such: Section II presents
the proposed F-ONRL xApp framework. Section III details
the experimental deployment of the proposed framework and
obtained results. Section IV introduces the challenges and
future directions and Section V offers concluding remarks.

II. PROPOSED F-ONRL XAPP FRAMEWORK

NE employs EA to generate parameters or learning rules and
guide the DRL model toward more effective strategies. The
two main categories of NE are direct and indirect encoding.
Direct encoding explicitly represents every element of the
DNN architecture, neurons, connections, and their weights
in the genome. This means each gene directly influences a
specific aspect of the network. This approach offers precise
control over the DNN architecture and its parameters but can
be computationally expensive for complex state-action spaces.
Instead of directly representing the DNN architecture, indirect
encoding uses a more compact genome that encodes a set of
rules or a blueprint for constructing the network architecture.

We opt for direct encoding for the xApp optimization
framework because it is well-suited for the scalability demands
of O-RAN. This approach allows for more targeted adjust-
ments, ensuring that the DRL model explores a broad solution
space while maintaining the high performance necessary for
near-RT decision-making and continuous learning in large-
scale wireless networks. We employ the genetic algorithm

e — — — — — — — — e — — — — —
Yo Decentralized o Decentralized

" i;X | Local DRL " gﬂ) Local DRL

R e ‘\ xApp Agent I.I U ‘\ XxApp Agent ZI

i >0 | state~ 25 State™

7 o= W Acquisition

I

I

I Action State I I
I /

I

Action

Selection Selection

DRL Agent

Reward
Collection

Sending RL
agents rewards,
weights, and
constraints
Delivering optimize
architectures and
evolved policies to

RL agents

NE / NE Agent : O
Operationy ', a
J)6 / Target Achieved \ ‘ l ‘
L Check Multi-Objecti
— JIL \,w - ecopti‘:nilzatiu!::m e

Selection imizati] v 'y Performance
Operation Ré%omlmlxatlon o C

Crossover Elitism

Operation Strategy Centralized

Gobal NE

Mutation xApp Agent

Operation
Fig. 1: The DRL and NE agent processes and interactions,
showing two distinct DRL agents being controlled by a single
NE agent.

(GA), a form of EA known for its robustness in traversing
complex search spaces, for fostering diversity in the solution
exploration and mitigating premature convergence to sub-
optimal solutions. However, the NE approach suffers from
two major limitations including slow learning rates and high
computational demands [11]. We therefore introduce the F-
ONRL employing separate computing engines within the K8s
platform used for deploying O-RAN’s near RT RIC. This setup
supports concurrent NE and DRL operations.

A. Design, Deployment, and Operation

F-ONRL uses the global search capabilities of NE while
leveraging the local optimization efficiency of DNNs. The NE
and DRL agents are encapsulated as separate, containerized
xApps with two main functionalities: The NE xApp accel-
erates the DNN training/weight adaptation process while the
DRL xApps perform primary RAN control tasks, such as
load balancing, slicing, or resource optimization. The DRL
agent xApps therefore continuously interact with the O-RAN
environment. They perform state acquisition, action selection,
action execution, reward collection, and state transition for
their respective RAN control tasks. Each DRL xApp thus
maintains a distinct Markov Decision Process with task-
specific states, actions, and reward structures tailored to its
unique optimization objective. It monitors the reward over
specified intervals and sends its AI model parameters to the
NE xApp whenever its performance drops. The NE xApp then
refines the DRL parameters and sends the updated ones back
to the DRL xApp for immediate deployment, without inter-
fering with the RAN control operations. More precisely, each
DRL agent independently assesses its own performance and
upon detecting insufficient improvement or persistent under
performance relative to set targets, asynchronously triggers
the centralized NE xApp for evolutionary optimization. The

Service Management and

Non Real-Time RIC

Orchestration

Al

(" NE xApp

Near Real-Time RIC

<
S
GA % i
Algorithm £ RIC Message Router
£ E— <=
th 14 E\/ c E \ 'g
o]
o gsE 5E |8 -é £ :
25 25 |2
— Messaging Router DL & %ﬂ 2 %ﬂ éi‘uEn g E2
Database - REE = : Open Fronthaul
sbL — G oy
il
D-RU
&) K8S Cluster @ @

Fig. 2: F-ONRL deployed in the near-RT RIC of the O-RAN architecture

optimized network parameters are returned to the DRL xApp.
Fig. 1 illustrates this.

In the current version of our solution, the NE xApp sequen-
tially handles optimization requests; thus, the optimization of
neural network parameters for each DRL agent is performed
individually based on the received DNN parameters, reward
information, and related performance metrics.

The interactions between the RAN controller xApps and the
NE xApp follow federated learning (FL) principles, balancing
exploration and exploitation [3], The DRL xApps are decen-
tralized actors that continuously collect rewards and execute
RAN control actions. The NE xApp is a centralized global op-
timizer that asynchronously optimizes the DLR model param-
eters of a single or multiple DRL agents. This asynchronous
workflow ensures that DRL actions remain unaffected during
parameter adaptation, maintaining responsiveness and stability.

F-ONRL leverages the K8s platform’s containerization and
a custom resource definition (CRD) to allocate dedicated re-
sources to each DRL and NE agent. This enables encapsulating
DRL and NE xApps in separate K8s pods for their independent
deployment, operation, and control of dedicated resources
within the K8s cluster (Fig. 2).

B. Detailed Workflow

The F-ONRL process begins with the DRL agent perform-
ing its core operations: state acquisition, action selection,
action execution, reward collection, and state transition. This
loop operates continuously, allowing the DRL agent to interact
with its environment to fulfill its designated tasks and itera-
tively collects feedback from its actions (Fig. 3).

Each DRL agent evaluates its performance based on these
feedback and predefined performance metrics, which are typ-
ically represented as reward function targets. The average
return of the reward function, calculated over the state-action-
reward cycles within an NE interval, serves as a key indicator
of the agent’s effectiveness. If the agent continues to exploit
its current knowledge (captured by the DNN configuration
and weights) without achieving sufficient improvement in the
average return, it signals the need for further exploration.
The NE agent facilitates this exploration by introducing new
configurations of DRL model parameters, potentially uncov-
ering more effective solutions for improving the DRL agent’s
decision making (RAN control) performance. It optimizes the

DRL agent’s network configuration based on the performance
feedback from the DRL agent and sends the optimized param-
eters back to the DRL agent. The process continues until the
system achieves the desired performance level or until reaching
a cut-off point. A checkpoint at the end of the GA loop, as
shown in Fig. 3, evaluates performance to decide whether to
terminate the NE evolution or continue refining the parameters.

The workflow of the NE agent is centered around three
main GA operations—selection, crossover, and mutation—
that are supplemented by an elitism strategy. The selection
operation drives the optimal search in the DNN weight space
by prioritizing the fittest individuals for reproduction based
on their evaluated fitness. The crossover operation, modeled
after genetic recombination, generates an offspring by aver-
aging weights from two-parent solutions. This exploration of
intermediate solutions enriches the search process by broad-
ening the population’s genetic diversity. Mutation introduces
random alterations to the offspring weights, enabling further
exploration of the weight space and avoiding local optima.
The elitism strategy ensures that top-performing individuals
are carried over across generations for population fitness
improvement. Through iterative evolution over a defined gen-
eration, these operations produce a population of solutions
with improved DRL model parameters.

F-ONRL integrates two synergistic mechanisms for param-
eter tuning and resource management, enabling the NE agent
to dynamically adjust its computational effort based on the
DRL agent’s performance and system resource constraints.

Performance-Based Adaptation with Iterative Refine-
ment: The DRL agent computes the difference between the
desired performance metric, which is defined as the system’s
reward, and the current situation as an indication metric. This
metric guides the NE agent to select one of three predefined
GA parameter sets (low, medium, high) that correspond to
increasing levels of computational effort (population size,
mutation rate). Low-tier parameters are applied for minimal
adjustments, while higher tiers address significant reward
stagnating or divergence. This dynamic adjustment ensures
that the NE agent dedicates more resources to exploration only
when necessary to balance performance and complexity.

Dynamic Resource Allocation: At the beginning of each
NE refinement, the NE agent considers the GA parameter set

DRL Agent

Initialize DRL & GA
pre-trained
models and
parameters

DRL Agent
Inference

Calculate
Performance
metric

< J

A\
| Update DRL Agent Parameters

Performance metric
meets required

NE Agent

I Send DNN parameters
1 YES —® and indication metrics %
to GA

Generate .

—» Reproduction

network

I I Kubernetes cluster
I and Pods resources I

information
c No

Yes --I— Generation loop_><4— Mutation <— Crossover <€— Selection
l end? l

Fig. 3: F-ONRL workflow.

indication (high, medium, low) based on the DRL agent’s
reward and queries the K8s API and CRD to gain knowledge
of resource requests, limits, and the current near-RT RIC’s K8s
cluster utilization. The obtained resource information assists
the NE agent in adjusting key GA parameters (population size,
mutation rate, and number of generations) via a scaling factor.
This approach ensures that GA operations are resource-aware
and balanced against system constraints.

C. Data Flow

O-RAN defines the components, processes, and interfaces
for the non and near-RT RICs to interact with the disaggre-
gated RAN, which consists of the O-RAN or open central
unit (O-CU), distributed unit (O-DU), and radio unit (O-RU),
as illustrated in Fig. 2. The O-CU is responsible for higher-
layer functions such as radio resource control and handover
management. It interfaces with the O-DU via the F1 interface.
The O-DU handles real-time processing of lower protocol
layers, the higher part of the physical layer and the medium
access control layer, and interfaces with the O-RU for signal
processing and baseband operations of the lower part of
the PHY. The O-RU manages the radio frequency front-end,
including antenna control and signal transmission/reception,
and connects to the O-DU via the open fronthaul interface [12].

Data and control messages between the near-RT RIC and
the E2 nodes (O-CUs and O-DUs) are exchanged employing
the E2 protocol over the E2 interface. O-RAN’s E2 interface
thus facilitates the exchange of RAN data and DRL actions.
These interactions between the RAN and the xApps leverage
the shared data layer, which is supported by a time-series
database (InfluxDB), and the RIC message router (RMR). The
communication between the DRL and NE agents is also sup-
ported by the RMR, which uses the K8s networking model to
ensure timely DNN weight evolution. K8s inherently supports
load balancing and resource auto-scaling for efficient resource
utilization by the DRL and NE agents while maintaining
reliable performance under varying workloads.

Deploying the NE optimization as an xApp within the near-
RT RIC ensures timely parameter evolution through secure
internal message exchanges via the RMR protocol, mitigating
security vulnerabilities associated with external communica-
tions. Conversely, an rApp implementation of the NE agent
would incur additional latency and expose the parameters to
potential security vulnerabilities.

III. EXPERIMENTAL DEPLOYMENT AND RESULTS
A. Experimental Platform

OAIC provides a community research platform for develop-
ing a variety of cellular traffic patterns, channel conditions, and
user behaviors experiments. OAIC is based on open-source 5G
RAN software and the O-RAN Alliance specifications to facil-
itate rapid prototyping and testing of new AI-RAN solutions,
enabling 6G research [13]. It implements the standard near-
RT RIC based on O-RAN Software Community’s software,
E-Release and the E2 interface. Data and control message
exchanges between the near-RT RIC and the E2 nodes follow
the E2 application protocol.

The srsRAN software Version 21.10 runs on Ubuntu 20.04
LTS with Docker Engine Version 24.0 on a commercial off-
the-shelf computer. We use an Intel Xeon server, 256 GB
DDR5 RAM, and a dual NVIDIA RTX A6000 GPU. Instead
of SDR hardware, we employ Zero Message Queue (ZMQ) for
message passing between the srstrRAN and the srsUE software.

The testbed is configured with varying network parameters,
including neighboring base stations and traffic intensity. Key
parameters, such as channel quality indicator (CQI), data
rates, and user distribution, are modeled based on standard
5G benchmarks to ensure consistency with real-world deploy-
ments. This setup facilitates creating dynamic network condi-
tions for evaluating different traffic management strategies.

B. RAN Control xXApp

We validate F-ONRL using single and multiple E2 nodes
managed by xApps in the near-RT RIC. The xApp under test
is designed to optimize RAN operations by performing traffic
steering and dynamic resource allocation. In each cycle, it
collects metrics from E2 nodes, including CQI, data rates,
and the number of active and connected UEs. These metrics
represent channel conditions, user throughput, and network
load distribution, providing the xApp with the necessary
information to make informed decisions in near-RT time.

The primary goal of the xApp is to improve overall network
performance by maximizing throughput while ensuring fair
resource allocation across users and maintaining long-term
network resilience. To achieve this, the xApp dynamically
adjusts user associations to balance the network load and
allocates spectrum resources to maximize efficiency. While not

TABLE I: Experiment configurations.

Network Parameters Experiment1 Experiment2 Experiment3 Experiment4 Experiment5 Experiment6 Experiment7
Model Name NE-DQN(Ist) NE-DQN(2nd) NE-DQN(3rd) NE-A2C(1st) NE-A2C(2nd) NE-A2C(3rd) NE-MARL
NE Interval 125 125 125 125 125 125 125
Indication Metric Low Medium High Low Medium High High
Scaling Factor 1 1 1 1 1 1 1
Generation Number 50 100 300 50 100 300 500
Population Size 40 70 125 40 70 125 125x2
Elitism Number 1 2 5 1 2 5 5
GA Mutation Rate 0.01 0.1 0.2 0.01 0.1 0.2 0.2
GA Crossover Rate 0.3 0.5 0.8 0.3 0.5 0.8 0.8
Learning Rate 0.005 0.005 0.005 0.001 0.005 0.001 0.001
Gamma () 0.95 0.95 0.95 0.99 0.99 0.99 0.99
Max Downlink Traffic per UE 1 Mbps 1 Mbps 1 Mbps 1 Mbps 1 Mbps 1 Mbps 1 Mbps
Bandwidth 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz
Number of Episodes 1000-1500 1000-1500 1000-1500 1000-1500 1000-1500 1000-1500 1500-2000
DRL Action Time per Episode 10-20 ms 15-25 ms 20-35 ms 10-20 ms 15-25 ms 20-35 ms 25-40 ms
NE Action Time per Episode 120 ms-1 s 150 ms-1 s 250 ms-1 s 120 ms-1 s 150 ms-1 s 250 ms-1 s 300 ms-1 s

explicitly designed for admission control, the xApp indirectly
supports network stability by optimizing resource distribution,
thereby preventing overload and maintaining consistent per-
formance under varying network conditions.

Three DRL models are employed for RAN control: deep Q-
network (DQN), advantage actor-critic (A2C), and multi-agent
RL (MARL). DQN determines optimal actions in discrete ac-
tion spaces, making it effective for single-node resource alloca-
tion. A2C combines policy optimization with value estimation
for dynamic resource allocation in continuous environments.
MARL addresses multi-agent coordination and interaction
across multiple E2 nodes. The testbed enables analysis of
the xApp’s performance metrics, such as convergence rate,
learning stability, and computational efficiency, under varying
RAN conditions. The open-source Al models and installation
instructions will be available through the OAIC repository'.

C. Experiments

We consider three Al models to design seven separate
experiments, which are detailed in Table I. The first model,
NE-DQN, is deployed as a single-agent DQN model to
manage a single E2 node with 13 active UEs. The first
three experiments focus on systematically varying the GA
configuration across low, medium, and high setups based on
specific performance thresholds derived from the indication
metrics. These configurations include the generation number,
population size, GA mutation rate, elitism, and crossover
rate. Table I also outlines key DRL parameters such as
the learning rate and gamma (), where ~ represents the
discount factor in RL that prioritizes long-term rewards. As
previously discussed, we employ adaptive tuning mechanisms
for the GA parameters, ensuring they dynamically align with
the system’s performance and available compute resources.
This adaptability is achieved through the Indication Metric,
which is derived from the DRL agent’s performance, and the
Scaling Factor, determined by querying K8s APIs for resource
availability. The Scaling Factor, which ranges between 0
and 1, represents the relative resource availability within the
system. A value of 1 indicates maximum capacity is available
for GA optimization processes, while 0 reflects minimum
or no capacity. Setting the Scaling Factor to 1 in these
experiments assumes sufficient resources are available to fully

Ihttps://github.com/openaicellular

exploit the GA configurations for optimization. These adaptive
mechanisms enable efficient utilization of GA settings in real
time. The NE-DQN experiments provide a targeted evaluation
of the NE algorithm’s capacity to refine DRL xApp behavior
within the computational constraints of the RAN environment.

The second model, NE-A2C, operates as a single-agent A2C
model tasked with managing a single base station also han-
dling 13 UEs. Lastly, the MARL model is deployed to manage
two E2 nodes serving a total of 28 UEs. This multi-agent setup
reflecting the complexity challenges of coordinating multiple
agents within the same environment. Experiments four through
seven, as outlined in Table I, systematically vary the GA
configurations, incorporating adaptive tuning mechanisms to
analyze performance and resource utilization under diverse
network conditions. The NE-integrated models are particularly
evaluated for their ability to balance exploration and exploita-
tion in these increasingly complex scenarios.

By examining both single-agent and multi-agent setups, we
evaluate the F-ONRL framework’s scalability and its ability
to maintain robust performance across varying levels of net-
work complexity. Throughout these experiments, key network
parameters such as the NE interval, maximum UE downlink
traffic, operating frequency, bandwidth, transmit power, reward
function, and success level are held constant across the exper-
iments to ensure consistency and comparability.

D. Metrics

We evaluate the proposed F-ONRL framework using a va-
riety of metrics, including convergence rate, achieved reward,
and learning stability, which captures the effectiveness of the
models achieving the target performance. Also, we measure
action processing time per episode (time step), a critical metric
for assessing the computational overhead introduced by the
integration of NE optimization into the DRL xApp.

E. Results

Figure 4 illustrates the outcomes of the seven experiments,
demonstrating the effects of integrating NE through GA into
the DQN, A2C, and MARL models. Each subfigure con-
trasts the baseline models (GA Not Activated) with the NE-
augmented models (GA Activated), offering insights into the
impact of GA-triggered optimization under various configura-
tions. In these experiments we assume the worst case scenario,
where the GA triggers when the reward drops to zero.

Return

Episode 147 297 447 597 747 897 1047
Episode

- - Target ——DQN-GA NotActivated — DQN-GA Activated-1st
—DQN-GA Activated-2nd —DQN-GA Activated-3rd

(a) NE-DQN

Return

745 995 1245 1495 1745

Episode
- —Target ——MARL-Agent1 MARL-Agent2
——MARL-Agent1-GA Activated — MARL-Agent2-GA Activated
(c) NE-MARL

Return

Episode s 495 745 995 1245 1495
Episode

- = Target ——A2C-GA NotActivated — A2C-GA Activated-1st
—A2C-GA Activated-2nd—A2C-GA Activated-3rd

(b) NE-A2C

:

0.16
0.1

0.12
0.1

0.08

Action Time (s)

a
.06
.04 :

0.0
0.0

0.02

0
Step 140 280 420 560 700 840 980 1120 1260 1400

Episode

—GA_Action_Time RL_Action_Time

(d) Action Time

Fig. 4: Results for NE-DQN (a), NE-A2C (b), and NE-MARL (c) models, compared to their respective baselines (GA Not Activated) for
the seven experiments of Table I. Actions times of NE (GA) and DRL agents (d).

In the single-agent experiments (experiments 1-3, Table I),
the DQN baseline (DQN-GA Not Activated) shows slower
convergence and stagnates at suboptimal reward levels due
to limited exploration and susceptibility to local optima. In
contrast, the DQN-GA Activated results demonstrate signif-
icantly faster convergence and higher stability. These gains
are achieved through GA-driven NE optimization, which ef-
fectively fine-tunes the DNN weights to navigate the action
space more effectively. The reward trajectories highlight a
consistent improvement as GA configurations evolve from low
to medium to high (Experiments 1, 2, and 3).

Similarly, in the A2C-based Experiments 4-6, the baseline
model (A2C-GA Not Activated) exhibits slower learning and
higher sensitivity to environmental dynamics, such as varying
UE numbers and traffic conditions. The NE-augmented results
(A2C-GA Activated) show improved learning stability and
faster convergence across all configurations. By balancing
exploration and exploitation more effectively, the GA fine-
tuning combats hyperparameter sensitivity and enables the
A2C model to achieve the target reward faster.

In the multi-agent scenario (Experiment 7), baseline agents
(MARL-Agent] and MARL-Agent2) display disparate per-
formances, with Agent2 stalling at a reward of 800 due
to coordination inefficiencies and local optima. Once GA
is activated, both agents (MARL-Agent]-GA Activated and
MARL-Agent2-GA Activated) reach the target reward of 1000,
underscoring the ability of NE to recalibrate agent interactions
and optimize multi-agent learning in complex environments.

The computational dynamics are depicted in Fig. 4(d),

showing that GA operations introduce higher processing times
compared to DRL. During activation episodes, GA incurs
additional computational overhead because of its intensive
optimization processes. However, because the F-ONRL frame-
work deploys the NE and DRL agents in separate K8s pods
with dedicated computational resources, the DRL action times
remain consistent, demonstrating the benefit of F-ONRL,
where GA optimizations execute in parallel without interfering
with the DRL decision-making. This parallelism ensures that
the framework maintains responsiveness while benefiting from
NE’s global optimization capabilities. Although the F-ONRL
architecture necessitates additional computational resources
compared to conventional DRL deployment, it shifts compu-
tation from frequent, inefficient DRL updates to less frequent
but more effective NE-based exploration.

These experiments also highlight the critical role of GA
parameter selection for balancing performance gains and com-
putational costs. Fine-tuning these parameters, as outlined
in Table I, enhances the learning process while minimizing
resource consumption, demonstrating the adaptability of the F-
ONRL framework to account for different network constraints.

F. Experimental Challenges

Parameter tuning poses a notable challenge during imple-
mentation, as inappropriate GA configurations could increase
computational complexity and significantly impact DRL agent
convergence speed and model stability. We employ a Bayesian
optimization algorithm to efficiently search and identify opti-
mal hyperparameters for GA configuration, resulting in stable

convergence and reduced computational overhead. The RMR
messaging library ensures timely and secure parameter ex-
changes between decentralized DRL agents and the centralized
NE optimizer. The OAIC platform facilitates the integration of
the developed xApps into the near-RT RIC interfacing with the
RAN software through the E2 interface.

IV. RESEARCH DIRECTIONS

Typically, O-RAN deployments have to simultaneously op-
timize multiple objectives, such as spectral efficiency, service
latency, and fairness, in large-scale wireless networks serving
numerous end devices with heterogeneous service requests.
The direct encoding capabilities of the F-ONRL xApp pre-
sented in this paper empower each genome to be structured
in such a way to represent both the network topology and its
specialization for a particular O-RAN metric of interest. The
cooperative fitness function then evaluates each genome based
on the metrics it optimizes while considering the combined
performance of multiple xApps. After that, the crossover and
mutation procedures create a capable offspring to address the
multi-objective optimization function with adjusted weights.
However, encoding all weights and connections in such large-
scale deployments can lead to extensive computing overhead
during the evolutionary process. Future research needs to
address this. We recommend exploring two research avenues
for scaling the proposed framework: First, employing transfer
learning to initialize the weights of NE populations from pre-
viously optimized models can accelerate model convergence
in similar O-RAN use cases with similar objectives. Secondly,
multiple versions of the multi-objective F-ONRL framework
can be mapped to decentralized near-RT RICs to collabora-
tively evolve the AI models. This can be augmented with
incremental evolution where only subsets of weights/layers are
evolved per cycle per decentralized RIC.

V. CONCLUSION

Through an in-depth examination of the theoretical foun-
dations and practical challenges of DRL for xApps in O-
RAN’s near-RT RIC, we argue for the transition toward
Hybrid NE techniques. F-ONRL aligns more closely with
the inherent structure of DRL, offering a more natural and
effective means of learning from scalar reward signals in
complex and dynamic wireless network environments. This
transition represents not merely an incremental adjustment,
but a significant shift in methodology, with the potential to
unlock new levels of performance and efficiency of DRL used
for network operation and resource management in O-RAN.
While the presented F-ONRL model incurs more computing
than traditional DRL-based xApp solutions, its performance
benefits overweigh the overhead. We identify targeted research
for large-scale O-RAN deployments, where scalability can be
achieved through offline and transfer learning combined with

distributed computing which aligns with O-RAN’s dual-RIC
architecture and enhanced deployment solutions.

ACKNOWLEDGEMENT
This work was supported in part by the National Science Foundation under
grant number 2120442 and by the Office of Naval Research under Award No.
N00014-23-1-2808.

REFERENCES

[1] A.S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward
next generation open radio access networks—what O-RAN can and
cannot do!” IEEE Network, pp. 1-8, 2022.

[2] M. Kouchaki and V. Marojevic, “Actor-critic network for O-RAN
resource allocation: xApp design, deployment, and analysis,” in 2022
IEEE Globecom Workshops (GC Wkshps), 2022, pp. 968-973.

[3] M. Kouchaki et al., “OpenAl dApp: An open Al platform for distributed
federated reinforcement learning apps in O-RAN,” in 2023 IEEE Future
Networks World Forum (FNWF), 2023, pp. 1-6.

[4] O. Orhan et al., “Connection management xApp for O-RAN RIC:
A graph neural network and reinforcement learning approach,” in
2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA), 2021, pp. 936-941.

[5] 1. Tamim, S. Aleyadeh, and A. Shami, “Intelligent O-RAN traffic steer-
ing for URLLC through deep reinforcement learning,” arXiv preprint
arXiv:2303.01960, 2023.

[6] S.S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement learn-
ing: an overview,” in Proceedings of SAI Intelligent Systems Conference
(IntelliSys) 2016: Volume 2. Springer, 2018, pp. 426—440.

[71 G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” arXiv preprint arXiv:1904.12901, 2019.

[8] K. Stanley et al., “Designing neural networks through neuroevolution,”
Nature Machine Intelligence, vol. 1, 01 2019.

[9] P.Li, J. Thomas, X. Wang, A. Khalil, A. Ahmad, R. Inacio, S. Kapoor,

A. Parekh, A. Doufexi, A. Shojaeifard, and R. J. Piechocki, “RLOps:

Development life-cycle of reinforcement learning aided open RAN,”

IEEE Access, vol. 10, pp. 113 808-113 826, 2022.

F. Lotfi, O. Semiari, and F. Afghah, “Evolutionary deep reinforcement

learning for dynamic slice management in O-RAN,” in 2022 [EEE

Globecom Workshops (GC Wkshps), 2022, pp. 227-232.

E. Galvan and P. Mooney, “Neuroevolution in deep neural networks:

Current trends and future challenges,” IEEE Transactions on Artificial

Intelligence, vol. 2, no. 6, pp. 476-493, 2021.

M. Kouchaki, S. B. H. Natanzi, M. Zhang, B. Tang, and V. Marojevic,

“O-RAN performance analyzer: Platform design, development, and

deployment,” IEEE Communications Magazine, pp. 1-8, 2024.

P. S. Upadhyaya, A. S. Abdalla, V. Marojevic, J. H. Reed, and

V. K. Shah, “Prototyping next-generation O-RAN research testbeds with

SDRs,” arXiv preprint arXiv:2205.13178, 2022.

[10]

(11]

[12]

[13]

BIOGRAPHIES

Mohammadreza Kouchaki (mk1682@msstate.edu) is a PhD student in
Electrical and Computer Engineering at Mississippi State University, MS,
USA. His research interests focus on integrating AI and Machine Learning
techniques into communication networks, with emphasis on network security,
anomaly detection, resource management, and ORAN.

Aly Sabri Abdalla (asa298 @msstate.edu) is an Assistant Research Professor
in the Department of Electrical and Computer Engineering at Mississippi
State University, Starkville, MS, USA. His research interests are on wireless
communication and networking, software radio, spectrum sharing, wireless
testbeds and testing, and wireless security.

Vuk Marojevic (vuk.marojevic@msstate.edu) is a professor in electrical and
computer engineering at Mississippi State University, Starkville, MS, USA.
His research interests include software radios, vehicle-to-everything commu-
nications, and wireless security with application to cellular communications,
O-RAN, mission-critical networks, and unmanned aircraft systems.

