
LSTM-Based Proactive Congestion Management for
Internet of Vehicle Networks

Aly Sabri Abdalla1, Ahmad Al-Kabbany2, Ehab F. Badran2, and Vuk Marojevic1

1 Department of Electrical and Computer Engineering, Mississippi State University, MS 39762, USA
2 Department of Electronics and Communications Engineering, Arab Academy for Science, Technology, and

Maritime Transport, Alexandria, Egypt

Abstract—Vehicle-to-everything (V2X) networks support a va-
riety of safety, entertainment, and commercial applications. This
is realized by applying the principles of the Internet of Vehicles
(IoV) to facilitate connectivity among vehicles and between vehi-
cles and roadside units (RSUs). Network congestion management
is essential for IoVs and it represents a significant concern
due to its impact on improving the efficiency of transportation
systems and providing reliable communication among vehicles
for the timely delivery of safety-critical packets. This paper
introduces a framework for proactive congestion management for
IoV networks. We generate congestion scenarios and a data set to
predict the congestion using LSTM. We present the framework
and the packet congestion dataset. Simulation results using
SUMO with NS3 demonstrate the effectiveness of the framework
for forecasting IoV network congestion and clustering/prioritizing
packets employing recurrent neural networks.

Index Terms—V2X, IoV, Safety, Congestion Management,
Machine Learning, NS3, SUMO, LSTM.

I. INTRODUCTION

Vehicle-to-everything (V2X) communication is a new gen-
eration of wireless technology that enables vehicles to interact
with the surrounding infrastructure and other mobile units
on the road. The vehicles can communicate under the V2X
umbrella in four modes: vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-network (V2N), and vehicle-
to-pedestrian (V2P) [1]. These modes of communication offer
cooperative awareness to provide intelligent transportation
services. There are two major V2X standards: Dedicated Short
Range Communications (DSRC) and cellular-based V2X (C-
V2X). DSRC is standardized by the IEEE, whereas C-V2X is
defined by the Third Generation Partnership Project (3GPP)
in the context of 4G and 5G networks [2].

The Internet of Vehicles (IoV) emerged for linking vehi-
cles together through networks of interconnected units that
communicate with one another and with the surrounding
infrastructure. The IoV has the potential to reduce congestion,
improve traffic flow, reduce road accidents, and improve over-
all transportation safety and efficiency through connectivity
enabling real-time situational awareness. This can be done by
exchanging safety-related information through the basic safety
message (BSM). The BSM is broadcast by a DSRC or C-V2X
device to inform other nearby vehicles about vehicle position,
speed, and so forth, as well as any circumstance that has been
detected on the road. These messages are short, single-message
transmissions that are sent regularly by all vehicles [3].

Mechanisms to detect, avoid, and manage packets conges-
tion to alleviate vehicle congestion is of critical importance
as mostly the road traffic congestion is leading to packet
congestion via the increased communication demand within
close proximity of vehicles. V2X congestion management
mechanisms can be categorized into five classes: rate-based,
power-based, carrier sense multiple access (CSMA)/collision
avoidance (CA)-based, priority and scheduling-based, and
hybrid [4]. Several work items have discussed this problem
in the literature [5]–[9]. In [5], the authors aim to anticipate
road hazards for V2X via Long Short-Term Memory (LSTM)
to enhance road safety. The authors of [6] proposed stacked
LSTM for improving the traffic conditions of vehicular net-
works. The work presented in [7] introduces an accumulative
approach to time series prediction based on LSTM, aiming to
improve the accuracy of predictions. The study in [8] integrates
convolutional neural network (CNN) and LSTM models to
classify various Transmission Control Protocol (TCP) con-
gestion control algorithms, enhancing the understanding and
management of V2X congestion control. In [9], the authors
studied a hybrid congestion control for allocating traffic by
employing a fusion model for traffic prediction.

While these work items have explored the use of LSTM
for congestion control for vehicular networks, the integration
of LSTM for congestion protection with the packet prior-
itization for proactive congestion management to improve
delay and minimize dropped safety packets has not been
well addressed. Therefore, this work introduces a proactive
open-loop prioritized scheduling scheme that predicts IoV
channel congestion to avoid such conditions. Using a LSTM
for real-time forecasting and a historical congestion database
with selective features, the proposed method ensures accurate
prediction results. It classifies packets into two categories,
ensuring high-priority safety messages are transmitted without
delay even in congested scenarios. The key contributions of
this paper are detailed further

• We design and implement a real-time framework for
proactive network congestion management for IoV. Con-
gestion events are predicted before they occur to facilitate
packet scheduling actions that enhance the delivery ratio
of the most important packets.

• Through the course of this study, an enormous dataset
is generated using Network Simulator Version 3 (NS3),
which contains the congestion channel parameters to be



Fig. 1: IoV-based vehicular networks congestion scenario
with the proposed solution components.

used as historical entries for the prediction phase.
• A LSTM architecture is designed to maximize the accu-

racy of the prediction.
• The K-means clustering technique is employed to cluster

packets into two classes and minimize transmission delay
of safety-critical packets in congested environments.

The structure of the paper is given as: Section II discusses
the proposed multi-tier strategy for congestion prediction and
packet classification. Section III numerically analyzes the
performance. Section IV summarizes the main takeaways and
Section V provides the concluding remarks.

II. PROPOSED SOLUTION

The increasing population and expanding metropolitan areas
has led to increased road congestion. Vehicular traffic conges-
tion can lead to network congestion which severely impacts
the network performance. Furthermore, the degradation of link
reliability and packet delivery ratio due to a congested channel
can have dire road safety consequences. As a result, it is
critical to be able to handle congested situations in vehicular
networks and provide the highest safety levels for vehicles and
pedestrians. The problem focuses on developing an effective
framework for channel congestion prediction enabling real-
time adjustments that are protocol agnostic and scalable.

We introduce a framework to address real-time congestion
prediction and packet classification in IoV networks. We
utilize LSTM, known for its capability to capture temporal
dependencies in traffic data, to predict network congestion.
We implement stacked LSTM allowing the model to learn
hierarchical traffic patterns through multiple LSTM layers
to improve prediction accuracy. Additionally, we introduce
K-means clustering for packet classification based on key
features extracted from simulation data, enabling dynamic
prioritization and timely delivery of safety-critical messages.

Fig. 1 illustrates the main components of the proposed solu-
tion. The congestion management framework consists of three
phases. Fig. 2 depicts the flow. First, the IoV-based vehicular
communication network scenario is practically implemented
and the congestion parameters are captured under different

conditions to create data set. The generated data set is used as
inputs to a neural network that predicts future crowded events
in real time. Finally, the system assigns distinguished priorities
depending on the content of the messages, which will assist
the packet clustering during network congestion.

A. Congestion data set generation

The aim of this stage is to detect and store the congestion
parameters of vehicles in the IoV-based vehicular network in a
dataset. The generated dataset contains the number of dropped
packets and the time of occurrence of these packet drops. We
are utilizing the NS3 as it incorporates realistic traffic models
and mobility patterns that closely mimic real-world conditions.
NS3 is widely recognized for testing V2X protocols because of
its accuracy in emulating vehicular networks [10], [11]. The
process is composed of three sub-processes: We first create
an IoV-based vehicular communication scenario where the
vehicles start transmitting packets under neutral congestion
conditions. The IoV-based communication environment will
be implemented through via multi-objective functions, such
as initialization of grid parameters, creation of vehicles, and
implementation of agents and traffic via a traffic simulatoras
Simulation of Urban MObility (SUMO) tool.

The NS3 software applies a variable congestion rate which
affects the transmission delay and packet delivery ratio of
the system. The variable congestion rate is employed in our
model by using a Markov chain, which can be referred to as
the multi-state Markov chain error model. It is implemented
to show the transition probabilities of congestion rates in
matrix format where the rows reflect the current state and
columns the next state of congestion, where these transitions
are probabilistically determined, affecting transmission delay
and packet delivery ratio. Finally, for documentation purposes,
the dataset measurements captured over the simulation time
that is divided into a number of time slots within each time slot
there will be a different congestion rate, also packet delivery
ratio will be monitored and the number of drop packets
will be counted, which makes the dataset more representative
of real-world situations. Fig. 1 shows the key components
of the proposed solution including developing the IoV-based
vehicular congestion dataset, real-time congestion prediction,
and packet prioritization and classification. NS3 includes some
functions to terminate and avoid congestion in the network,
such as adaptive congestion window size and back-off timer
which controls the retransmission timer period.

This paper’s focus is on designing multiple functions for
monitoring several factors, which give the direct indication
on the number of dropped packets during the simulation
time. The main modified function to generate the dataset
is the Congestion Action Difference (CongActDiff) counter.
CongActDiff counts how many congestion flags were activated
during a predefined interval within the overall simulation
scenario. The congestion flag is enabled or activated when NS3
starts the process of changing the congestion window phase
from a slow start to a fast retransmission phase. Moreover,
modification of the congestion window phase occurs when the
size of the congestion window becomes higher than a threshold



as an indicator of the increase of the number of retransmitted
packets. Algorithm 1 presents the congestion action function
scenario. The simulation scenario is generated by executing
the tool command language (TCL) script, which does the
node initialization, variable congestion rate implementation,
and congestion dataset entry storage. The observation of the
final results can be done graphically by plotting CongActDiff
over the simulation time or by checking the saved dataset. This
dataset consists of 25 records where each record is captured
over 18 hours and covers 12,961,249 observations.
Algorithm 1 CongActDiff Algorithm
Precondition: Allocate Packet P at transmitter side
1: Initialize:

CongAct, CongInit, Packs,
CongActT ime, and CongDiff = 0
PackTH = 350

2: for each P in Packets do
3: if congestion flag[P ]← true &&
4: P ̸= re− transmitting packet then
5: CongAct← CongAct + 1
6: CongActT ime← instance() . clock()
7: congestion flag ← false
8: end if
9: Packs← Packs + 1

10: if Packs counter = PackTH then
11: CongDiff = CongAct− CongInit
12: CongInit = CongAct
13: end if
14: end for
15: return CongDiff , CongActT ime

B. Real-Time Congestion Prediction

The prediction phase reiles on two elements to enable proac-
tive actions in real-time: Firstly, the previous crowdedness
log from networked vehicles, which contains the CongActDiff
counter and the occurrence time during the day, is obtained.
Secondly, the historical congestion dataset is fitted to the
LSTM [12]. In this paper, the aim is to reach the optimum
structure of the LSTM network to achieve accurate real-
time prediction readings from many perspectives. LSTMs are
particularly well-suited for handling time-series data gener-
ated by vehicular networks, as they can capture long-term
dependencies and complex temporal patterns. The LSTMs,
with forget, input, and output gates, address the vanishing and
exploding gradient problems, ensuring stable training. Addi-
tionally, stacked LSTM layers enhance the model’s capacity
to learn hierarchical features, leading to improved real-time
prediction accuracy. This capability is essential for proactive
congestion management in IoV environments. Recent studies
have demonstrated the effectiveness of LSTMs in similar
applications [5]–[9]

LSTM models can be classified as a function of the batch
size, the number of epochs, and the hidden layers. An LSTM
with multiple hidden layers is referred to as a stacked LSTM.
The stacked LSTM model can be seen as a representational
optimization, where the added layers are used to defragment
the learned features of prior layers and generate high-level
representations. The second concern of the LSTM model
structure is the size of the batch, which controls the update of
the model weights. Because real-time congestion forecasting
needs an enormous historical log of previous crowded events,
which cannot be processed by the LSTM model at once, the
dataset is divided into small groups called batches. The batch

size controls the tradeoff between the training speed and the
learning process. The third feature of the LSTM model is the
effect of the number of epochs on the real-time prediction
process. In particular, when the model is exposed to the same
random samples of the dataset many times, the model may
memorize it. As a result, the LSTM network becomes over-
fitted. Too few numbers of epochs, on the other hand, may
lead to under-fitting. The appropriate choices for the epoch
and batch sizes is presented in the next section. This solution
for the congestion prediction problem is classified as an LSTM
sequence-to-sequence (seq2seq) prediction, where the input
and output are time series sequences.

Fig. 3 shows the internal structure of LSTM Memory Block.
We denote Ct and ht as the cell state and final hidden state
at time t, respectively. We consider xt the vector of the input
sequence at time step t. Eq. 1 to Eq. 6 shows how the single
LSTM works, while Eq. 7 generalizes this to the stacked
LSTM [6]. First, the computation of the forget and input gate
vectors are given as follows:

ft = σ(W f
1 .xt +W f

h .ht−1 + bf ), (1)
it = σ(W i

1.xt +W i
h.ht−1 + bi), (2)

Then, we compute a vector of new candidate values that can
be added to the cell state:

C̃t = tanh(WC
1 .xt +WC

h .ht−1 + bC), (3)
The next step is to update the new cell status Ct with the new
information and the calculated gate vectors:

Ct = it ∗ C̃t + ft ∗ Ct−1, (4)
Then, the output gate determines the required portion of the
cell state will be at the output:

ot = σ(W o
1 .xt +W o

h .ht−1 + bo), (5)
Finally, we compute the hidden state at the output using the
output gate vector and the cell state:

ht = ot ∗ tanh(Ct) (6)
The connection between the input xt and three LSTM gates
and cell input is controlled by weight matrices W i

1,W
f
1 ,W

o
1 ,

and WC
1 , while W i

h,W
f
h ,W

o
h , and WC

h are weight matrices
adjusting the link between previous hidden layer state ht−1

and three gates plus cell input. The bi, bf , bo, and bC are bias
factors of input, forget, output, and cell input respectively,
a sigmoid activation function used in LSTM calculation and
tanh expresses the hyperbolic tangent function which used to
overcome the vanishing gradient problem. In a stacked LSTM,
these operations are repeated for each l layer:

hl
t, C

l
t = LSTM(xt, h

l−1
t−1, C

l−1
t ) (7)

C. Packet Prioritization and Classification

Congestion scenarios and channels can effectively decrease
the reliability of the system. The previous crowdedness disad-
vantage has a damageable weight on the packet delivery ratio.
The third procedure proposed in our system is crystallizing the
importance of delivering safety message in congestion condi-
tions. The predicted congestion facilitates system flexibility by
giving higher priority to safety critical messages for improving
their delivery ratio in congested conditions.

Prioritization of packets is based on the content of the
message by adding a priority field to the TCP header within
the creation of packets in the Medium Access Control (MAC)



Fig. 2: Overall process of proposed strategy.

Fig. 3: LSTM Memory Block structure.

layer before transmission. A classification technique is then
used to classify the flow of packets that will face congestion in
the channel based on the priority and time to live (TTL) fields
in the packet header. The TTL field defines the remaining
hops before the intermediate node. If any node at any time
receives a packet with TTL equaling zero then this packet will
be dropped to avoid formulating loops inside the network. By
finding the almost expired and highest priority safety message,
this packet is transmitted with minimum hops and delays.

The K-means unsupervised machine learning algorithm is
implemented for clustering packets [13]. It is a widely used
clustering solution because of its speed of convergence, effi-
cient handling of large dimension features, and simplicity of
implementation [13]. K-means classifies packets upon training
with the large dataset generated for header fields of packets
during the simulation time. NS3 by default does not generate
an output file containing any information about the packet
header. While the TTL field is already defined as one of the
packet header fields, the other classification feature (priority)
needs to be added to the header structure of NS3. The dataset
containing the modified packet header fields after the NS3
modifications can then be fed to the K-means.

The K-means algorithm is utilized for classifying packets
based on features extracted from simulation data, such as
packet size, TTL, priority, generation time, and hop count.
This algorithm is selected for its efficiency and simplicity in
handling large datasets. Initially, centroids are chosen either
randomly or using the K-means++ method to ensure optimal
starting points. Each packet is then assigned to the nearest
centroid based on Euclidean distance, forming clusters. The
centroids are iteratively updated by calculating the mean of

the packets in each cluster until convergence is achieved. The
performance of the clustering is validated using the Silhouette
Score, ensuring well-defined and distinct clusters. This ap-
proach enables dynamic prioritization and timely delivery of
safety-critical messages, enhancing the overall effectiveness of
the congestion management framework.

The new packet header trace contains header fields, such as
source IP, destination IP, TTL, packet size, and recently added
field priority. Algorithm 2 indicates the steps needed to add the
new priority field to the IP header of the generated packets at
the transmitter. Without loss of generality, the condition that
define safety packets used in our algorithm is that the size
is below 100 bytes. Furthermore, the defined safety message
will take random priority between 1 to 10, on the other hand,
normal packets will have priority from 11 to 20.
Algorithm 2 Priority Field Algorithm

Precondition: Allocate Packet P at transmitter side
1: for each P in Packets do
2: PH ← hdr access(p)
3: if PH → ptype(P )← Routing then
4: if PH → size(P ) <= 100 then
5: PH → prio(P ) = random(1 10)
6: else
7: PH → prio(P ) = random(11 20)
8: end if
9: end if

10: end for

III. PERFORMANCE EVALUATION
Fig. 2 shows the stages of the proposed solution and the

operations that occur in each of the respective stages. This
framework is implemented employing different software tools
including SUMO, NS3, LSTM, and K-Means. The proposed
framework executes in a centralized node in an IoV network
and can be integrated into radio access network (RAN) intel-
ligent controllers of future Open-RAN systems [14] or in the
form of O-RAN distributed learning [15].

A. Simulation Parameters

SUMO is used to generate mobility patterns of vehicles
[16]. The scenario of this paper is based on a real map
extracted from OpenStreetMap (OSM) for the Arab Academy
for Science and Technology (AAST) campus in Alexandria,
Egypt. The simulation area is two dimensional 1530 m length



and 1052 m width with 93 junctions and 134 single lane
route. The simulation scenario employs the two-ray ground
radio propagation model with omnidirectional antennas and
the 802.11p MAC protocol for IoV communications. The
packets are routed between vehicles using the ad hoc on-
demand distance vector (AODV) routing protocol. The number
of vehicles simulated in this scenario is 150 driving at a fixed
speed of 25 kilometers per hour. The simulation time is 450
hours. We evaluate our framework for four congestion stages
of 0.1, 0.35, 0.2 and 0.3 packet drop rates. The next stage is
selected using the Markov chain matrix mechanism.

B. LSTM Network Structure and Results

The LSTM is fed with the generated dataset from the
previous steps. The data set is partitioned as 70% and 30% for
training and testing. We consider different LSTM structures
based on the size of the batch, number of epochs and the
number of hidden layers. Table I shows the obtained training
and testing accuracy and the overall root mean square error
(RMSE) of the different LSTM models based on the previously
mentioned categories. The results show that the performance
of the LSTM model greatly improves by decreasing the size
of the batch from 128 to 32. The small batch size is capable of
effectively capturing the generalization pattern of the dataset.
The second parameter used to investigate the LSTM model
structure is the number of epochs, where more epochs enhance
the accuracy of predictions as shown in Table 1.

The depth of the the LSTM model refers to the number
of hidden layers and the number of neurons in each layer.
Table I includes the results obtained for different depths of
the network. Where we can notice that using two or more
layers provides an accurate understanding of the complex
representations in the dataset. Also, the use of a small number
of neurons in the hidden layer can lead to under-fitting. On

Fig. 4: Predicted test verus test data.
the other hand, a large number of neurons per hidden layer
will be the reason for an over-fitted model. After many trials
the proposed model is composed of two hidden layers with 64
and 16 neurons respectively, a batch size of 64 samples, and
1000 epochs. The RMSE is added to evaluate the accuracy of
results. The proposed model structure achieves a test accuracy
equivalent to 99.3% with 2147 RMSE.

Fig. 4 contains samples taken during the simulation from the
predicted and the actual test data to illustrate the efficiency of
the LSTM model. Table 1 shows that the two-layer stacked

LSTM significantly outperforms the single LSTM. Specifi-
cally, the two-layer stacked LSTM achieves an RMSE that
is less than 50% of the RMSE of the single LSTM, with
a prediction accuracy of 98.53%. This high level of accu-
racy, combined with efficient training, highlights the stacked
LSTM’s ability to capture long-term dependencies, making it
ideal for real-time congestion prediction in IoV networks.
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Fig. 5: The RMSPE performance of the proposed LSTM
solution versus RNN benchmark technique.

Fig. 5 illustrates the Root Mean Square Percentage Error
(RMSPE) comparison between the proposed LSTM-based
method and a standard Recurrent Neural Network (RNN)
over the training episodes. The RMSPE, a metric used to
evaluate the accuracy of predictive models, is defined as:

RMSPE =

√
1
n

∑n
i=1

(
yi−ŷi

yi

)2

× 100, where yi is the ac-
tual value, ŷi is the predicted value, and n is the number
of observations. The proposed LSTM method demonstrates
superior performance, rapidly converging to a lower RMSPE
within the initial episodes and maintaining a stable error rate
of approximately 3-5%. In contrast, the RNN shows significant
fluctuations with a higher RMSPE, stabilizing around 8-12%.
This outcome highlights the LSTM’s ability to effectively
capture long-term dependencies and overcome the vanishing
gradient problem that degrades the RNN performance, result-
ing in more accurate and stable predictions.

C. Packet Prioritization and Classification Model
The K-means classification model is fed by a packet header

dataset during the simulation time, which contains 1, 048, 576
entries. This dataset contains all previously mentioned packet
header fields despite that the effective fields which are used to
categorize the packet are the TTL and the priority. Therefore,
based on the provided classification features the aim of this
step is to classify all created packets into two classes, the
most critical and the least critical packets. The most critical
packets have a small TTL and high priority and will be
sent first and immediately. The least critical packets deal
with the channel’s normal conditions, which are sent in case
of free congestion or dropped channel. For the K-means++
implementation presented in Fig. 6, the candidate center must
minimize the sum squared distances from each case point
being clustered to the first randomly chosen cluster center.

IV. TAKEAWAYS

Building a rich dataset for our IoV research in this paper
is challenging for these reasons: the need to collect data from



LSTM Model Structure

Batch Size No.of Epochs
Hidden layers Size

(Nuerons) Training Accuracy Test Accuracy Overall RMSE

Based on Batch Size
32 1000 1 layer (64) 98.23 99.16 2454.07
64 1000 1 layer (64) 98.20 98.59 4325.29

128 1000 1 layer (64) 98.51 98.57 4388.65

Based on No.of Epochs
32 350 1 layer(64) 97.15 95.26 13712.17
32 750 1 layer (64) 98.56 96.62 10368.44
32 1000 1 layer (64) 98.23 99.16 2454.07

Based on Hidden Layers Size
64 1000 1 layer(64) 98.20 98.59 4325.29
64 1000 2 layers(64-32) 98.40 98.86 3497.03
64 1000 2 layers(64-16) 98.53 99.26 2147.31

TABLE I: Categorical LSTM model structure results.

Fig. 6: K-means cluster assignments and centroids.

multiple sources, the need to capture data at different levels
of granularity, and the sheer amount of data needed. The
quality of the data is a fundamental aspect of data-driven
research and has an effect on the accuracy of the models
and inferences. Data quality is defined in terms of validity,
reliability, and representativeness. The quality level can be
measured using the fidelity of the data via how closely the
data mimics the desired characteristics of the real world by
measuring the accuracy, completeness, timeliness, relevance,
and authenticity of the data. Defining accurate and consistent
data acquisition procedures is essential and we have performed
several validation checks, including 1 checking for dataset
completeness by ensuring the availability of necessary data
points and the lack of significant gaps or missing values,
2 checking the data for errors and inconsistencies to verify

its accuracy, and 3 checking for any potential biases in
the data that could impact the results or conclusions drawn
from the data. In addition, we aim to do more verification
of the dataset in the future by comparing the data points
with actual data measured in real-world scenarios performed
over V2X testbeds/industrial test tracks or in production IoV
environments during trials similar to what we have done for
aerial vehicle research [17].

V. CONCLUSION

In this research, we are concerned with the problem of
network congestion management for the IoV. Different from
previous techniques in the literature, we have proposed a novel
pipeline that features a proactive congestion prediction using
LSTM to mitigate packet loss and ensure reliable safety mes-
sage delivery. We adopt K-means clustering to classify packets
based on priority and TTL parameters. Performance evaluation
for different LSTM structures and training hyperparamters

are presented. The adopted LSTM architecture performance
exceeds 98% prediction accuracy, enhancing delivery ratio and
reducing delays. We were able to cluster the packets effectively
into two groups of high and low message priority levels.
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