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Camera-view supervision for
bird's-eye-view semantic
segmentation

Bowen Yang*, LinLin Yu and Feng Chen

Al Safety Laboratory, Department of Computer Science, The University of Texas at Dallas, Richardson,
TX, United States

Bird's-eye-view Semantic Segmentation (BEVSS) is a powerful and crucial
component of planning and control systems in many autonomous vehicles.
Current methods rely on end-to-end learning to train models, leading to
indirectly supervised and inaccurate camera-to-BEV projections. We propose
a novel method of supervising feature extraction with camera-view depth and
segmentation information, which improves the quality of feature extraction
and projection in the BEVSS pipeline. Our model, evaluated on the nuScenes
dataset, shows a 3.8% improvement in Intersection-over-Union (loU) for vehicle
segmentation and a 30-fold reduction in depth error compared to baselines,
while maintaining competitive inference times of 32 FPS. This method offers
more accurate and reliable BEVSS for real-time autonomous driving systems.
The codes and implementation details and code can be found at https://github.
com/bluffish/sucam.

KEYWORDS

segmentation, perception, autonomous driving (AD), supervision, birds-eye-view,
nuScenes dataset

1 Introduction

Autonomous driving systems rely on accurate and reliable perception systems to safely
navigate the world around them. A widely adopted perception technique is bird’s-eye-view
semantic segmentation (BEVSS). BEVSS fuses sensor inputs into a top-down, overhead
view of a vehicle’s surroundings, orthographically mapping key elements such as vehicles,
roads, and lanes. A bird’s-eye-view (BEV) representation is crucial for autonomous driving
systems. It is very useful to assess the surrounding environment and plan safe actions.

Prior approaches to this problem rely on end-to-end learning to learn BEV
representations (Hu et al., 2021; Philion and Fidler, 2020; Zhou and Krihenbiihl, 2022). A
key problem in BEVSS is mapping features from the camera-view perspective to the bird’s-
eye-view perspective. The geometric relationships between the inputs seen by the camera
and the outputs projected in BEV are represented by the relative depth of objects within
the scene, so depth perception is crucial. The two primary approaches to BEVSS differ on
whether they model depth explicitly or implicitly. Methods such as LSS (Philion and Fidler,
2020) and FIERY (Hu et al,, 2021) leverage direct geometric relationships to transform
features from camera-view features to BEV. These methods require an explicit camera-
view depth estimate in order to project camera-view features to BEV. Other methods, such
as CVT (Zhou and Krihenbiihl, 2022) and GKT (Chen et al., 2022) leverage attention to
directly learn implicit geometric relationships, and thus do not require an explicit depth
estimate. However, both of these methods have major shortcomings regarding the quality
of camera-view to BEV projections.
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In this work, we propose two novel improvements to the
traditional BEVSS approach, focusing on the family of methods
that explicitly model depth. First, we introduce a supervision
process for extracting camera-view features. We do this in order
to improve the quality of feature extraction in camera-view, which
improves feature relevance in birds-eye-view. In addition, we
propose supervising the explicit camera-view depth estimation that
is used to map camera features to BEV. Previous BEVSS methods
rely on the indirect supervision of depth from the final detection
loss. We show that this leads to inaccurate depth mappings,
which lowers accuracy. We show that our method significantly
improves the camera-view depth estimation, which provides
better information about the relative distance and positioning of
objects. Through extensive experiments, we show that our BEVSS
model with camera-view segmentation supervision and camera-
view depth supervision outperforms current methods on real-
world benchmarks by improving the quality of feature extraction
in camera-view and the reliability of camera-view depth when
compared to the baseline end-to-end approach.

To summarize, our main contributions are as follows:

e we propose directly supervising camera-view depth
estimation. We first map LiDAR points to the camera-
view to generate dense depth labels, and then directly
supervise categorical depth estimation using these labels to
improve the accuracy and reliability of camera-view depth
estimation. The accuracy of the depth prediction on the
nuScenes dataset increases by a factor of 30 times, and the
BEV segmentation IOU increases by 2.6% from without
supervision. Empirical results indicate that this approach
significantly enhances the quality of BEVSS, improving the
accuracy of camera-to-BEV mapping.

e We propose directly supervising segmentation feature
extraction in camera-view. We utilize semantically labeled
LiDAR points that are projected to camera-view to supervise
relevant feature extraction from the camera-view encoder.
Our empirical results demonstrate that adding camera-view
segmentation supervision allows our model to learn a more
meaningful camera-view representation, achieving 78.9%
IOU in camera-view. This improves the quality of BEVSS by
a significant margin on the nuScenes dataset, beating the best
baseline by 2.7%.

e We demonstrate that our method outperforms the current
real-time BEVSS models on the most popular real-world
dataset, nuScenes (3.8% IOU improvement), while still only
requiring camera RGB inputs at testing time. It runs inference
at 32 FPS on an RTX 2080 Ti GPU, which is very competitive

with the real-time baselines that we compare to.

2 Related work

2.1 Bird's eye view semantic segmentation

The goal of BEVSS in autonomous driving is to predict the
semantic layout of a scene in the birds-eye-view perspective.
BEVSS is a crucial perception task for downstream applications
such as path planning, where an accurate representation of the
surroundings is needed. BEVSS relies on transforming sensor
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inputs, such as camera images or LiDAR point-clouds, into bird’s-
eye-view. Broadly, there are two common approaches to this task.

Implicit geometric methods leverage learned geometric
relationships between camera-view and BEV (Zhou and
Krihenbiihl, 2022; Chen et al, 2022; Pan et al., 2020; Xu
et al., 2022b; Roddick and Cipolla, 2020; Gosala and Valada, 2022).
These methods often utilize transformers (Zhou and Krihenbiihl,
2022; Liu et al, 2023; Xu et al., 2022b; Roddick and Cipolla,
2020; Gosala and Valada, 2022) or MLPs (Pan et al., 2020) to
encode camera-view images to the BEV space. CVT (Zhou and
Krihenbiihl, 2022) uses a cross-view transformer to learn the
camera to BEV transform. BEVFusion (Liu et al., 2023) introduces
a fusion mechanism that integrates information from multiple
sensors into a common BEV space. CoBEVT (Xu et al., 2022b)
introduces a collaborative approach by fusing features from
multiple agent vehicles to create a more comprehensive BEV
representation.

Explicit geometry based methods focus on directly projecting
camera-view features to BEV (Philion and Fidler, 2020; Hu
et al., 2021; Roddick et al., 2018; Harley et al., 2022). Methods
in this category estimate a depth distribution that is used for
projection (Philion and Fidler, 2020; Hu et al., 2021). FIERY
(Hu et al,, 2021) introduces instance segmentation and temporal
modeling in BEV. OFT (Roddick et al., 2018) forgoes the depth
distribution to uniformly project features into BEV. SimpleBEV
(Harley et al., 2022) utilizes radar aggregation to further improve
the camera-to-BEV mapping. Other works explore combining BEV
segmentation with other tasks such as object detection to improve
the performance (Kumar et al., 2024; Xie et al., 2022).

In previous approaches, whether implicit or explicit, the
transform from camera-view to birds-eye-view is learned
indirectly, typically through the final segmentation loss. In
contrast, we propose supervising the view-transformation by
directly learning the camera-view depth distribution during
training. Similarly, the feature extraction in camera-view is
supervised by the final segmentation loss, whereas in this work
we directly supervise it during training. Through experiments we
show that directly supervising the camera-view depth estimation
and camera-view feature extraction significantly improves the
accuracy of the BEV prediction.

2.2 3D object detection

3D object detection is a perception task that is commonly
in autonomous perception systems. The task is to locate objects
of interest in a scene by estimating 3D bounding boxes. Early
approaches perform 2D object detection and predict depth
information to project to 3D (Manhardt et al., 2019; Girshick
et al., 2014). With the popularization of LiDAR and other point-
scanning technology, methods that utilize point-cloud data rose
to the forefront. PointNet (Qi et al., 2017a) directly processes
point-clouds leading to improved object detection. PointNet++
(Qi et al,, 2017b) refined this approach further, addressing the
hierarchical structure of point clouds. Voxel-based methods such
as VoxelNet (Zhou and Tuzel, 2018) convert point-clouds into
a voxel grid to leverage 3D convolutions. Pseudo-LiDAR based
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approaches project image features into 3D by predicting a pseudo
point-cloud rather than using LiDAR. This allows these methods to
only need camera inputs at testing time. BEVDepth (Li et al., 2023)
proposes supervising the point-cloud projection. BEVFusion (Liu
et al., 2023) proposes directly fusing LiDAR and camera features
in order to incorporate multi-sensor information into 3D object
detection.

BEVSS and 3D object detection share significant similarities,
particularly in tasks like autonomous driving where understanding
complex environments is critical. Both techniques require sensor
fusion, integrating data from LiDAR, cameras, and radar to
create a comprehensive 3D representation of the scene. BEV
segmentation classifies regions (e.g., roads, vehicles), while 3D
object detection identifies objects and their spatial boundaries. Both
face challenges such as occlusion handling, where parts of the
environment are obscured, and the need for real-time processing
to ensure fast and accurate decision-making. These shared goals
and obstacles make advancements in one field directly applicable to
the other.

2.3 Monocular depth estimation

Monocular depth estimation tries to infer depth information
from a single RGB image. Traditional approaches rely on hand-
crafted features and probabilistic graphical models (Saxena et al.,
2005, 2008). Deep learning-based methods have demonstrated
promising results by learning depth cues directly from data. Eigen
et al. (2014) introduced one of the first CNN based models for
depth estimation. Some approaches proposed a fully convolutional
architecture that improved performance (Laina et al., 2016). Other
notable works include the use of conditional random fields (Liu
et al,, 2015), adversarial training (Chen et al., 2018), and attention
mechanisms (Xu et al, 2022a) to enhance depth prediction.
Recently, methods using self-supervised (Godard et al., 2019; Liu
etal., 2023) and unsupervised (Godard et al., 2017; Sun et al., 2023)
approaches rose to prominence, alleviating the need for large-scale
ground truth depth data.

Monocular depth estimation plays a crucial role in enhancing
BEVSS. In BEVSS, understanding the spatial structure of the
environment is vital for accurate scene interpretation, and
monocular depth estimation helps bridge the gap between 2D
image data and 3D scene representation. By leveraging monocular
depth cues, BEVSS can estimate object heights, relative distances,
and spatial relationships, which are critical for generating precise
top-down views.

3 Method

In this section, we introduce our proposed method for the
BEVSS task. The fundamental structure of our model follows
LSS (Philion and Fidler, 2020): Given N camera-view images
Xj € R>*HXW o with intrinsics I, € R3*3 and extrinsics E; €
R3*4, our goal is to generate a bird’s-eye-view representation of the
scene. From this, we predict a binary segmentation mask in the BEV
frame y € ROXXY where X and Y denote the BEV coordinate
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dimensions. In the following sections, we will introduce our novel
components. We summarize our proposed architecture in Figure 1.

The basic framework of our proposed architecture follows LSS
and FIERY (Philion and Fidler, 2020; Hu et al., 2021). There are
two stages to our architecture. The first stage extracts features from
inputs and projects them into 3D space. The second stage pools
3D features into a BEV voxel grid that we use to predict semantic
segmentation.

The first stage of our model extracts context features and
estimates a depth distribution for N camera-view input images.
We generate representations at all possible depths for any given
pixel by predicting a probabilistic categorical depth distribution for
each pixel. LSS supervises this depth estimate with only the final
detection loss. Instead, we propose a novel process to supervise the
depth distribution prediction and context feature extraction, which
we expand on in Sections 3.1, 3.2. In this context, we consider a set
of discrete depths D and define |D| points {(h, w,d) € R> | d € D}
at each pixel in the camera-view. For a given pixel p in camera-view
M, we predict a context vector ¢ € R with C channels and a depth
distribution & € API=!. The context features are projected into the
3D space by scaling them with the probabilistic depth distribution.
The context feature ¢; € RC associated with point py is then
defined as the context vector ¢ scaled by the corresponding depth
probability &,.

Cg = &dc. (1)

The next stage of our model is voxel pooling, which combines
extracted features from camera-view into a unified coordinate
system, and pools them into a feature map. We follow the voxel-
pooling method described in BEVFusion (Liu et al., 2023). We first
associate each point in the camera-view point cloud with a cell in
the BEV grid. We can precompute this, since the position for each
point in the pointcloud is fixed, unlike in LIDAR. We sort all points
according to the grid indices and record the rank of each point,
so that all points within the same BEV cell will be consecutive. We
aggregate the features in the BEV grid by performing a sum pooling
on the features. This creates a C x H x W BEV tensor that can be
processed by a standard CNN to create BEV predictions.

3.1 Depth supervision

In previous models, the supervision of depth distribution relied
solely on the final detection loss, which limited their ability to
effectively capture depth information. To address this limitation,
we introduce direct supervision for discrete depth prediction from
the camera-view perspective. This camera-view depth supervision
allows our model to better capture spatial relationships and depth
cues, resulting in more accurate camera-to-BEV mappings.

To generate dense ground-truth depth information, we use
LiDAR point clouds. A LiDAR point P = (X, Y, Z) can be projected
into camera view k using the rotation matrix R, € R3*3, translation
vector tp € R3 and intrinsic parameters K € R3**3. The
corresponding image coordinates (1, vx) are obtained through the
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features into BEV view, and predict a BEV occupancy map.

Diagram of our proposed model. We extract context features from input images, predict camera-view segmentation and depth, project camera

following equation:

(uk Ve 1) — K x [Rilti] x (X YZ 1) )
Next, we perform a min-pooling operation on the matrix of
projected camera-view points A to generate a dense camera-view

depth label B, with dimensions m x n, by downscaling by a factor
of k:

Bi,j :min{Akiﬂ,,ij:p,q:O,l,...,k— 1}

, ) (3)
fori=1,2,.. and j=1,2,...,n

,m

We utilize focal loss as our depth loss function, which has
the property of encouraging more evenly distributed softmax
probabilities across multiple depth bins rather than concentrating
on a single incorrect bin. This property is particularly useful when
the model is uncertain about the depth, as distributing the context
vector uniformly across depth bins helps mitigate the impact of
incorrect predictions. Formally, we supervise the predicted depth
distribution & with the ground-truth depth distribution a8*, where
the depth loss is defined as:

Logn =—y_ d=1"-(1-a)" ‘log@s) ()

In this formulation, aff is the one-hot encoding of the ground-
truth depth class d, @ is the predicted probability for depth class d,
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y is the focusing parameter, and D is the total number of discrete
depth classes.

As shown in Figure 2, the depth predictions from the “Without
Depth Supervision” column are significantly inferior to those in
the “With Depth Supervision” column. Furthermore, in Table 2, we
observe that incorporating depth supervision results in a 30-fold
reduction in depth prediction error. This substantial improvement
demonstrates the necessity of depth supervision for accurate depth
distribution predictions.

3.2 Segmentation supervision

Even with our proposed depth supervision, the depth
prediction and by extension the mapping to BEV can still be
noisy and incorrect. Semantic information is noisy and hard
to decode correctly in BEV, leading to worse predictions. To
address this, we propose supervising the extraction of camera-
view features using ground-truth LiDAR points labeled with
semantic segmentation classes. Specifically, we feed camera-view
context features ¢ into a segmentation head in order to predict a
camera-view occupancy mask of relevant objects for each pixel.
Although the output of the segmentation head is not directly
used in the model, we show that supervising camera-view feature
extraction teaches the model to extract more relevant features,
which leads to better BEV performance. We can use the same
process described in Section 3.1 to project a semantically labeled
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Input Image

FIGURE 2

depth distribution

Without Depth Supervision

Qualitative results of the proposed camera-view supervisions. Supervising depth greatly improves the accuracy and meaningfulness of the predicted

With Depth Supervision

pointcloud into camera view. We adopt Binary Cross-Entropy loss
to enforce relevant feature extraction in camera-view. Formally,
we supervise camera-view context feature extraction by predicting
binary camera-view occupancy mask $7¢? with camera-view
segmentation ground truth S&. The loss that we use to supervise
camera-view segmentation that we use can be formulated as

Loeg = — (sg‘ log(8P™) + (1 — $%') - log(1 — sP”d)) (5)

where $¢' is the ground truth camera-view segmentation and
stred s the predicted probability. Camera-view segmentation
supervision allows the model to more effectively learn relevant
features in camera-view, which improves the feature quality in BEV
frame.

3.3 Overall loss function

We use focal loss as our loss function in BEV. Our BEV loss can
be defined as

Leey = — (yi- (1= pi)” -log(pi) + (1 — ;) - p} - log(1 — p;))

(6)
where y; is the true label of the BEV pixel i, p; is the
predicted probability of the BEV pixel i, and y represents the
focusing parameter of the loss. Our overall loss function involves
three terms. The BEV, camera-view depth, and camera-view
segmentation losses are summed together to create our final loss.
We jointly optimize these terms during training. Our overall loss
function is defined below.

L = Lpgv + )‘DepthEDepth + )\SegESeg (7)
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4 Implementation details
4.1 Architecture

For our camera-view backbone, we wuse a pre-trained
EfficientNet-B4 (Tan and Le, 2019) and a camera input resolution
of 224 x 480 for fair comparison to previous literature (Zhou
and Krihenbiihl, 2022; Hu et al., 2021; Chen et al., 2022). We
downscale camera-view inputs by a factor of k = 8 from 224 x 480
to 28 x 60 to extract context features, following Hu et al. (2021).
We discretize continuous camera-view depth into depth bins:
bin@d = [%2]+ 1, for2 = d < 58 which we find to be
a good balance for the amount of depth bins. We implement
the voxel-pooling method described in Liu et al. (2023) to
perform our view transform from camera-view to BEV. We pool
camera view features into a BEV grid of C x H x W, where
C 128,H 200, W 200, following previous literature
(Hu et al,, 2021). We utilize ResNet18 (He et al., 2016) as our
BEV feature decoder to obtain our final prediction, following
LSS and FIERY (Philion and Fidler, 2020; Hu et al., 2021). For
our camera-view depth prediction module and camera-view

segmentation prediction module, we use an architecture consisting
of atrous spatial pyramid pooling and a deformable convolution
layer to provide accurate depth estimation and occupancy masks.t
This architecture allows us to handle geometric variations and
multi-scale features (Chen et al,, 2017). We use Apepn, = 0.0025
and Aseg = 0.05, which we obtained through hyper-parameter
tuning.

4.2 Training details

Following Zhou and Krihenbiihl (2022), we train all models
using focal loss (Lin et al., 2017) with y = 2, following Zhou and
Krihenbiihl (2022). We use a batch size of 32 on 4 A6000 GPUs.
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Camera View

Bird’s Eye View Prediction

FIGURE 3

Qualitative results of our method. We show two examples, one on the left and one on the right. The leftmost column of each example shows
camera-view images. The first row is the input image to the model, the second row is the camera-view depth prediction of our model, and the third
row is the camera-view segmentation prediction of our model. The rightmost column of each example shows the segmentation prediction in bird’s
eye view. Our model meaningfully predicts camera-view depth and segmentation, and BEV segmentation.
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Camera View Bird’s Eye View Prediction

We optimize using the Adam optimizer (Kingma and Ba, 2014)
and the One-Cycle learning rate scheduler (Smith, 2017). We set
the learning rate to 4 x 107> and the weight decay to 4 x 1077,
following Zhou and Kridhenbiihl (2022). We train for a total of 20
epochs, which finishes in approximately 6 h.

5 Experiments

Our experiments aim to show the effectiveness of our method
and compare it to the state-of-the-art. We evaluate our method
on vehicle and driveable region segmentation on a real-world
commonly used driving dataset (Caesar et al., 2020).

5.1 Dataset

Following the evaluation settings of the previous baselines
(Zhou and Krihenbiihl, 2022; Philion and Fidler, 2020; Hu et al.,
2021; Xu et al., 2022b; Chen et al., 2022), we evaluate our proposed
method on the nuScenes dataset (Caesar et al., 2020). The nuScenes
dataset comprises data from 1,000 real-world scenes, with each
scene lasting 20 seconds and containing 40 frames. This results in a
total of 40,000 samples. It offers a 360° view around the ego-vehicle
through six camera perspectives, with each view providing both
intrinsic and extrinsic details. We resize the camera images to 224 x
480 pixels, and generate Bird’s-Eye-View (BEV) labels of 200 x 200
pixels for analysis. The dataset also contains semantically-labeled
LiDAR points for each frame, which we use to generate camera-
view depth and segmentation labels. Objects are annotated with 3D
bounding boxes. Using the pose of the ego vehicle, we generate
200 x 200 BEV binary occupancy masks by orthographically
projecting 3D bounding boxes to the BEV plane. We evaluate the
quality of the bird’s-eye-view segmentation in a 100m x 100m
region around the ego vehicle, and we sample the map at a 50
cm resolution. This setting was popularized by LSS (Philion and
Fidler, 2020), and is used in most current literature (Zhou and
Krihenbiihl, 2022; Hu et al., 2021; Chen et al., 2022; Xu et al.,
2022b).

Frontiersin Big Data

5.2 Metrics

We use (IoU) to evaluate

segmentation tasks, including bird’s-eye-view and camera-view

Intersection-over-Union

segmentation, following established literature (Philion and Fidler,
2020; Xu et al., 2022b; Hu et al., 2021; Zhou and Kriahenbiihl, 2022).
IoU is a widely accepted metric that measures the overlap between
the predicted and true regions. A higher scores indicates better
performance. For camera-view depth prediction, we use Relative
Square Error (RSE), as depth prediction involves predicting
continuous values rather than binary labels (Xie et al., 2022; Eigen
et al., 2014; Ranftl et al., 2021). A lower RSE score indicates better
performance. We follow literature in using different metrics for
segmentation (IoU) and depth prediction (RSE). Additionally, we
report inference speeds on a single RTX 2080 Ti GPU and provide
qualitative results in Figure 3. We report inference speeds with
Frames Per Second (FPS), which is the amount of samples that our
model can process per second.

5.3 Comparison to baselines

We compare our model to the most recent competitive
benchmarks for real-time BEV semantic segmentation in Table 1.
For a fair comparison we use models with a similar input resolution
(in our case, 224 x 480), and only use camera information at test
time. We also only use models that consider one single time-step
prediction, since multi time-step prediction gives an advantage. We
compare our method to VPN (Pan et al.,, 2020), OFT (Roddick
et al., 2018), LSS (Philion and Fidler, 2020), CVT (Zhou and
Krihenbiihl, 2022), FIERY (Hu et al., 2021), CoBEVT (Xu et al.,
2022b), and GKT (Chen et al., 2022). For vehicle segmentation, our
method obtains a 3.8% higher IoU than the next most competitive
model, GKT. For driveable region segmentation, our method
obtains a 3.4% higher IoU than the next most competitive model
that reports it. We also match previous baselines with a very
competitive inference time of 32 FPS evaluated on a RTX 2080 Ti.
As can be seen from Table 3, supervising camera-view depth greatly
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TABLE 1 Comparison to baselines on the nuScenes dataset.

10.3389/fdata.2024.1431346

BEV model Input resolution Vehicle Drivable area Params (M)

VPN 224 x 480 29.3 - 4 31
OFT 360 x 1,080 30.1 71.7 - -
LSS 128 x 352 32.1 72.9 143 25
FIERY 224 x 480 35.8 - 7.3 8
CVT 224 x 480 36.0 74.3 L1 35
SinBEVT 512 x 512 37.1 - 16 35
GKT 224 x 480 38.0 - 12 45
SUCAM (Ours) 224 x 480 418 78.1 105 32

BEV Vehicle and Drivable Area evaluation is done with Intersection-over-Union (IoU). A score higher is better. Inference times are measured on an RTX 2080 Ti GPU. Our method performs

at the state-of-the-art while maintaining competitive inference times. Best values are bolded.

increases the accuracy of the depth projection, and since that depth
projection is directly used in the camera-to-BEV projection, our
method performs better. Table 3 also shows that our camera-view
supervision also improves the feature extraction in camera-view.
These factors contribute to the better performance of our method.

5.4 Ablation study

In this section, we demonstrate the effectiveness of the
components of our proposed method.

5.4.1 Depth ablation study

Table 2 ablates different methods of obtaining the depth
estimate used to project camera-view features into the BEV plane.
The first row, Uniform Depth, is assigning a uniform depth
distribution over all depths to each pixel. Note that there are no
learnable parameters for this method. Soft Probabilities is what
LSS (Philion and Fidler, 2020) and FIERY (Hu et al., 2021) use.
It indirectly supervises the camera-view depth distribution of each
pixel using the BEV segmentation loss. This method does involve
learnable parameters, but there is no direct supervision. GT Depth
directly uses ground-truth camera-view depth obtained from
LiDAR point-clouds in order to project camera-view features to
BEV. This method does not involve learnable parameters, because
it directly uses ground-truth depth for the projection instead of
predicting a distribution. Finally, Lpepy, directly supervises the
depth distribution using ground-truth camera-view depth obtained
from LiDAR point-clouds as the regression target.

Based on Table 2, Uniform Depth performs the worst. We
expect this because the model is unable to learn geometric
relationships between objects in camera-view and BEV, and only
is able to uniformly project features. Soft probabilities performs
better because the model is able to use the final BEV segmentation
loss to improve the depth distribution. As we expect, GT Depth
performs the best by far, since it directly uses ground-truth depth
to create an accurate projection of camera-view features to BEV.
This provides motivation for us to supervise the depth distribution
using the GT depth in Lpepm. We can see that by doing this, we
can improve the IoU by 3% over the soft probabilities method. We
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TABLE 2 Ablation study of different depth projection methods.

‘ Depth type BEV vehicle Depth error ‘
Uniform depth 35.7 -
Soft probabilities 38.3 10.45
GT depth 53.6 -
Lpepth (Ours) 40.9 0.33

BEV vehicle evaluation is done using Intersection-over-Union (IoU). Higher is better. Depth
error is measured in Relative Squared Error (RSE), lower is better. We compare several
representations of the camera-view depth distribution. Best values are bolded.

TABLE 3 Ablation study of our proposed loss terms.

Loss BEV Depth Camera-view
components vehicle error Seg.

Lgry 383 10.5 -

Ly + Lseg 41.0 9.43 78.9

Lpev + Lpepth 40.9 0.33 -

Ly + Loepts + 4138 0.27 71.2

Lseg

The first row is a model trained with only the base BEV loss. The second row is the BEV
loss summed with the camera-view seg. loss. The third row is the BEV loss summed with the
camera-view depth loss. The fourth row is our full model. Best values are bolded.

can also see that this supervision causes a large reduction in the
relative-squared-error (RSE) of the depth distribution by a factor of
30, proving that our depth supervision significantly improves the
quality of camera-view depth estimation.

5.4.2 Loss ablation study

We also ablate the effect of our method components in
Table 3. We compare our base model, model with camera-
view segmentation loss, model with camera-view depth loss, and
model with both. For each method, we report the IoU of BEV
segmentation, the predicted camera-view depth RSE, and the
camera-view segmentation IoU (if applicable). Our base model
achieves an IoU of 38.3%. Supervising camera-view segmentation
improves this IoU by about 3% to 41.0% IoU, while achieving a

frontiersin.org


https://doi.org/10.3389/fdata.2024.1431346
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Yang et al.

10.3389/fdata.2024.1431346

46
—e— SUCAM
o 381
2
<30
= 221
14
0 1 2 3 4

# Cameras Dropped

FIGURE 4

our model as we exclude specific cameras from the input.

On the left, we measure model performance as we exclude m € {0, 1, 2, 3,4, 5} cameras from the input. On the right, we measure the performance of

B
(=]

w

I

w

Vehicle loU

[¥]
a

Front Left ~ Front Front Right Back Left ~ Back

Missing Camera

Back Right

camera-view IoU of 78.9%. Supervision of the depth distribution
has a similar positive effect, improving IoU to 40.9%. Combining
the two components improves IoU to 41.8%, an 5% improvement
over the base model. We guess that the camera-view IoU decreases
when adding depth loss because camera-view segmentation loss has
a relatively small value when compared to the depth loss, and so
outweighs it. This could be potentially solved with further hyper-
parameter tuning. A future direction of work to improve the depth
estimation even further would be to utilize multiple LIDAR sweeps
from different time-steps to generate more dense labels.

5.5 Model robustness

In this section, we evaluate the robustness of our proposed
model in common real-world settings.

5.5.1 Missing cameras

A common real-world scenario in autonomous driving is
dropped cameras: cameras that are disabled and go offline
during operation. We evaluate the robustness of our model in
this common situation. In Figure 4, we evaluate our model’s
performance as we exclude several cameras from our model input.
The model’s performance drops as the number of cameras decreases
due to the decreased observed area. On the right, we measure the
relative importance of each camera by testing model performance
as we drop specific cameras from the input. The front and back
cameras appear to be the most important, as the IoU decreases
the most when these are dropped. Additionally, the back camera
in nuScenes has the largest area covered out of all cameras, so as we
expect, excluding this camera causes the largest IoU decrease. We
note that in the most common case of one camera dropped, our
model still maintains very respectable performance.

5.5.2 Performance over distance

Figure 5 illustrates the robustness of our method as the
distance of perceived objects from the ego vehicle increases.
We measure IoU while varying the minimum distance threshold
for objects to be included in the IoU computation. Specifically,
for each minimum distance value, we exclude any object closer
than the specified threshold to the ego vehicle during the IoU
calculation. This analysis allows us to assess how well our method
performs in segmenting objects at different distances from the
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We measure the effect of distance on model performance. We
measure the loU as we increase the minimum distance from the
vehicle for an object to be included in the loU measurement. In
other words, we exclude objects within the minimum distance from
the ego vehicle from the loU calculation. loU drops approximately
linearly with the minimum distance of evaluation. This may be
because objects that are farther away are more prone to incorrect
camera to BEV projections.

ego vehicle. We observe the impact of object distance on the
segmentation accuracy of our method (depth-based projection)
and CVT (transformer based projection). IoU drops approximately
linearly with the minimum distance of evaluation for both
methods. This may be because objects that are farther away are
more prone to incorrect camera to BEV projections, regardless
of the projection method. Performance is expected to decrease
over distance for a perception model. In real-world scenarios,
predictions that are a large distance away from the sensors should
be trusted less. A future direction of work may be to quantify this
predictive uncertainty.

6 Conclusion

Bird’s eye view (BEV) semantic segmentation is crucial for
autonomous vehicles to accurately perceive and understand their
surroundings in real-world driving scenarios. In this work,
we introduce two novel supervision processes that significantly
enhance the performance of real-time BEV semantic segmentation:
camera-view depth supervision and camera-view segmentation
supervision. Camera-view depth supervision helps our approach
better capture spatial relationships and depth information,
leading to more accurate camera-to-BEV mappings. Camera-view
segmentation supervision allows the model to more effectively
learn the semantic correlations between camera-view and the

frontiersin.org


https://doi.org/10.3389/fdata.2024.1431346
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Yang et al.

BEV frame. Some limitations of our work are the fact that our
training scheme requires LiDAR data and camera-level labels
during testing time. Our camera-view depth and segmentation
supervision also adds extra computational cost to the overall
model. Note that our model still only needs RGB camera inputs
during inference. Through extensive qualitative and quantitative
evaluations, we demonstrate that our proposed method shows
significant improvement compared to previous methods. We also
run experiments to show the robustness of our methodology
to common real world scenarios such as dropped cameras and
distant objects.
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