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ABSTRACT

Smart contracts in Decentralized Finance (DeFi) platforms are at-
tractive targets for attacks as their vulnerabilities can lead to mas-
sive amounts of financial losses. Flash loan attacks, in particular,
pose a major threat to DeFi protocols that hold a Total Value Locked
(TVL) exceeding $106 billion. These attacks use the atomicity prop-
erty of blockchains to drain funds from smart contracts in a single
transaction. While existing research primarily focuses on price
manipulation attacks, such as oracle manipulation, mitigating non-
price flash loan attacks that often exploit smart contracts’ zero-day
vulnerabilities remains largely unaddressed. These attacks are chal-
lenging to detect because of their unique patterns, time sensitivity,
and complexity. In this paper, we present FlashGuard, a runtime
detection and mitigation method for non-price flash loan attacks.
Our approach targets smart contract function signatures to iden-
tify attacks in real-time and counterattack by disrupting the attack
transaction atomicity by leveraging the short window when trans-
actions are visible in the mempool but not yet confirmed. When
FlashGuard detects an attack, it dispatches a stealthy dusting coun-
terattack transaction to miners to change the victim contract’s state
which disrupts the attack’s atomicity and forces the attack transac-
tion to revert. We evaluate our approach using 20 historical attacks
and several unseen attacks. FlashGuard achieves an average real-
time detection latency of 150.31ms, a detection accuracy of over
99.93%, and an average disruption time of 410.92ms. FlashGuard
could have potentially rescued over $405.71 million in losses if it
were deployed prior to these attack instances. FlashGuard demon-
strates significant potential as a DeFi security solution to mitigate
and handle rising threats of non-price flash loan attacks.
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1 INTRODUCTION

Smart contracts in blockchains manage decentralized finance (DeFi)
protocols and enable users’ financial transactions [4]. They au-
tonomously enforce agreements between users and facilitate ser-
vices, such as lending, asset management, and liquidity pool aggre-
gation [39]. Even though smart contracts have become common
in many financial interactions in DeFi, they are still prone to nu-
merous vulnerabilities [6, 15] including vulnerabilities that have
led to massive financial losses. The Total Value Locked (TVL) in
DeFi is estimated to be $106 billion in 2024 [21], and is projected to
expand further. However, as DeFi continues to grow, attacks have
been rapidly increasing to exploit DeFi protocol vulnerabilities [60].
The total assets lost from these attacks amount to $79.8 billion of
which only $6.7 billion has been recovered [20].

In this paper, we focus on flash loans, a temporary loan that
is borrowed and repaid within one transaction block on the DeFi
platform. Most flash loan providers do not require paying premiums
because of the existence of massive liquidity vaults [57] which
facilitate borrowing large amounts of assets, and guarantee that
the borrowed funds are returned as enforced by the blockchain
atomicity property. Atomicity in DeFi platforms ensures that all
operations in a transaction either succeed entirely or are reverted
without partial execution. If the fund is not returned at the block
confirmation time, all internal transactions (actions) that depend on
the flash loan are reverted. Blockchain atomicity has also been used
to exploit DeFi vulnerabilities [41]. Flash loans were first used to
manipulate the token price of DeFi platforms [41]. From there, new
variations of large asset manipulations have emerged. In total, flash
loan attacks have caused a total loss of more than $968 million [20].

Non-price flash loan attacks refer to a new variation of flash
loan attacks where attackers bypass logical preconditions (i.e., state
validation checks) to manipulate contract states without altering
token prices [8]. This is contrast to traditional flash loan attacks that
are usually associated with manipulating prices, either to inflate
or deflate them [55]. Non-price flash loan attacks are not related
directly to token prices but they share some properties with tradi-
tional flash loan attacks, such as atomic execution within a single
transaction. Mitigating non-price flash loan attacks is inherently
challenging because they mostly exploit zero-day vulnerabilities
and usually have unique attack patterns, which make detection
difficult. In addition, once assets are compromised, they cannot be
recovered after a transaction is confirmed. For instance, in April
2024, due to an exploit of an unknown smart contract vulnerability
in Hedgey Finance, the platform lost $44 million [20] that could not
be recovered because the vulnerability was previously unknown to
the platform.

In general, non-runtime defense solutions may fail to mitigate
such non-price flash loan attacks, and we need effective countermea-
sures that can stop the attack by intervening in real-time. Previous
research has mainly focused on flash loan attacks that manipulate
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prices, such as post-attack analysis and machine learning mod-
els for detection. These methods help to understand the attack
vector, but they are not tailored for non-price flash loan attacks.
Some real-time methods, such as STING [59] target general smart
contract vulnerabilities, but they are insufficient for these attacks.
Other studies, such as Flashot [13], propose tools to illustrate asset
flows, but they do not provide detection or mitigation methods.
Al-based approaches by analyzing transaction data achieve high
accuracy, however, they do not support real-time intervention that
is highly crucial for time-sensitive attacks involving flash loans [34].
FrontDef [22] is a mitigation system designed to synthesize coun-
terattacks for suspicious pending transactions. However, FrontDef
relies on high gas fees and has risks of transaction deadlock in
public mempools that make it impractical for many scenarios. The
above studies have key limitations in two ways: they either focus
on general attacks or they do not support real-time mitigation that
is crucial for stopping non-price flash loan attacks.

In this paper, we introduce a novel framework called FlashGuard
for supporting runtime detection and defense that addresses exist-
ing research gaps in mitigating non-price flash loan attacks. Flash-
Guard disrupts attacks using a stealthy counterattack transaction
by leveraging private relays [25] to bypass the public mempool and
avoid detection or front-running. It interacts with the blockchain
mempool to support real-time detection and effectively disrupts the
flash loan attack by interacting with the DeFi victim’s smart con-
tract. Since FlashGuard continuously scans pending transactions to
identify attack patterns, it dispatches a counterattack transaction
once a possible attack is detected. The counterattack disrupts the
atomicity of the non-price flash loan attack by altering the DeFi
protocol’s current state after the attacker calls the DeFi contract
before it is confirmed. This prevents the attack transaction from
being finalized and stops the attack from completing and mitigates
its threat without requiring the redeployment of the current DeFi
smart contract. FlashGuard is highly effective against non-price
flash loan attacks and is generalizable to any EVM-based blockchain.

We evaluate FlashGuard on 20 real-world historical attacks that
exploited DeFi protocol vulnerabilities from different blockchains
such as Ethereum (ETH), Base (Base), Arbitrum (ARBI), Polygon
(POLY), and Avalanche (AVAX). In addition, we examine six po-
tential new attack scenarios to assess our method’s adaptability
to new vulnerabilities. Our experiments indicate that FlashGuard
could have potentially rescued losses of over $405.71 million in DeFi
platforms if it were deployed prior to these attacks. FlashGuard
effectively provides an additional layer of protection for actively
disrupting on-chain and real-time attacks to reduce financial losses
and retain users’ trust in DeFi platforms.

Our Contributions. Our paper makes the following contributions
to safeguarding DeFi protocols from non-price flash loan attacks:

e Real-Time Defense: We propose FlashGuard, a real-time so-
lution for detecting and disrupting non-price flash loan attacks.
FlashGuard is designed to safeguard DeFi protocols without
changing the current deployments.

e Heuristic-Based Detection: We develop a novel detection al-
gorithm that monitors the mempool for non-price flash loan
attack signatures and enables to track function signatures for
each internal transaction in atomic transactions. It also distin-
guishes malicious transactions before they are included in the
blockchain.
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e Atomicity Attack Disruption: We introduce a dusting coun-
terattack mechanism that disrupts the attack by altering the
victim’s smart contract state. This minimal intervention is timed
to invalidate the attack atomicity while providing cost-effective
mitigation without replicating attack transactions (i.e., front-
running).

o Stealthy Counterattack: To prevent front-running risks, Flash-
Guard bypasses the public mempool and interacts directly with
the miners through private relays for stealthy counterattack
transactions.

¢ EVM Blockchains Applicability: We show that FlashGuard
can be deployed on any EVM-compatible blockchain, such as
Ethereum, Arbitrum, Polygon, Avalanche, and Base, to demon-
strate its broad generalizability.

e Empirical Validation: We evaluate FlashGuard on 20 real-
world historical attacks and FlashGuard achieves an average
detection latency of 150.31ms with a minimal false positive
rate of 0.074%. FlashGuard could have prevented up to $405.71
million in losses.

2 BACKGROUND
2.1 Transactions on Ethereum

Ethereum. Ethereum is a decentralized ledger that supports smart
contracts [26]. There are two types of accounts on Ethereum: Ex-
ternally Owned Accounts (EOAs) and Smart Contract Accounts
(SCAs)[45]. In Ethereum Virtual Machine (EVM) based blockchains,
EOAs are used to sign sent transactions and are controlled by pri-
vate keys. SCAs are smart contracts that execute encoded agreement
logic. Smart contracts are used to govern on-chain protocols but
are also used to craft attacks[46].

Transactions. Transactions are used to transfer assets and interact
with smart contracts. For each transaction , the nonce ensures each
transaction is unique to prevent replay attacks. The gas price in-
fluences the transaction’s priority to be included in the blockchain
and is part of the fee paid to miners. The maximum computational
resources that the transaction can use is determined by the gas
limit [54].

Atomic Transactions. A transaction with more than one inter-
nal transaction is an atomic transaction, and if any operation fails,
the entire transaction is rolled back [44]. DeFi protocols typically
need atomicity in order to reduce risks in executing transactions
that have multiple steps. Atomicity is implemented on EVM-based
blockchains using the REVERT function [37], which undoes all
changes when the smart contract’s expected conditions are vio-
lated, causing the transaction to fail.

Mempool. Mempool, or memory pool, temporarily stores all pend-
ing transactions [17]. These transactions wait to be included in
the blockchain before they are confirmed and included in a block.
It allows transaction prioritization based on gas prices as miners
typically select transactions with higher fees to be included in the
next block to maximize their profit from mining [35]. The mempool
is publicly visible, which provides a short window where trans-
actions can be analyzed before confirmation. This short period of
time allows detecting and mitigating malicious activities before
they are included. For example, this period can be used to detect
front-running attacks [30]. Also, the mempool propagates pending
transactions, so each node in the network has a copy of the pending
transactions until they are confirmed [28].
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2.2 Flash Loans attacks and On-chain Defenses

Flash Loans. Flash loans enable users to borrow large amounts
of cryptocurrency without collateral [3]. However, they must be
repaid within the same block. If the loan is not repaid in the same
block, the transaction is reverted, causing all other internal trans-
actions to revert. It is built on the atomicity property of blockchain
transactions to prevent the lender from being exposed to potential
risks [41]. Flash loans can be used in different financial operations,
such as arbitrage to exploit price discrepancies in DEXs to gain
profit [19]. Flash loans also enable swapping of collateral to allow
users to change the collateral backing a loan in DeFi protocols with-
out the need to repay them and reinitiate the loan. Additionally,
they are used to repay a portion of a loan in self-liquidation to
avoid loss of collateral. However, flash loans have also been used
in several high-profile attacks, including price manipulation and
oracle manipulation [41]. Price manipulation attacks involve using
large, borrowed sums to artificially increase or decrease the prices
of assets on DEXSs, creating arbitrage opportunities. For instance,
an attacker might manipulate the price of a token on Uniswap
[5] to profit from discrepancies on another platform. On the other
hand, oracle manipulation exploits weaknesses in price oracles by
feeding incorrect prices to smart contracts. This leads to inaccurate
calculations and enables exploits.

On-chain Defenses. The idea of deploying on-chain methods to
protect DeFi platforms has gained attention due to increasing losses
from exploits. These attacks target smart contract vulnerabilities,
which can bypass traditional testing methods. This is because no
matter how rigorously the smart contract is tested to minimize vul-
nerability, flaws can still be exploited by new attack vectors, such
as flash loan exploits. On-chain defense tools [12, 42] contribute
to mitigating flash loan attacks in real-time and provide not only
monitoring and defense but also auditing smart contract services.
Auditing is a process that evaluates smart contracts’ correctness,
vulnerabilities, and readiness for deployment, but it does not guar-
antee the absence of vulnerabilities. Even with these efforts, many
audited smart contract vulnerabilities are still exploited and they re-
sult in severe losses for DeFi platforms. For example, Euler Finance
was exploited by a non-price flash loan attack and lost $197 mil-
lion [43]. Similarly, in April 2024, Hedgey Finance suffered losses of
$44.7 million. These attacks have occurred despite the fact that both
of these protocols had undergone full auditing [20, 21, 50]. This
presses the need for more robust and proactive on-chain measures

tailored to counteract these evolving threats in real-time.
Table 1: Limitations solved by FlashGuard (RTP: Real-time Prevention,

RTD: Real-time Detection, FL: Flash Loan)

Study RTP RTD Bypass Mempool Non-Price FL
FlashGuard v v v v
FlashSyn [16] X v X X
STING [59] v X X X

2.3 Limitations of Existing Defense Methods

Existing solutions to combat attacks against smart contract vulner-
abilities can be broadly categorized into detection techniques and
mitigation methods.

Detection Techniques. Existing methods for detecting flash loan
attacks are generally not sufficient and have significant limitations
(Table 1). Typically, a flash loan transaction is detected by iden-
tifying a transaction with borrowed and repaid amounts to the
same provider at the end of the transaction. However, the challenge
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FROM TO AMOUNT
’Flash loan providerl ‘Attacker's smart contract
Balancer 0xC7..F2b3 1.3M = USDC
OxBA...F2C8 0xC7...F2b3 $1.3M
0xC7..F2b3 Hedgey 1.3M = USDC
0xC7...F2b3 0xBc...D511 $1.3M
Victim's smart contractl Deposit $1.3M |

Hedgey -~ 0xC7..F2b3 1.3M = USDC
0xBc...D511 0xC7...F2b3 > $1.3M

Exploit $1.3M

1.3M = USDC g3

o O0xC7.F2b3 g Balancer
0xC7...F2b3 OXxBA...F2C8

Figure 1: Non-price flash loan attack exploited Hedgey Finance.

arises in identifying if that flash loan transaction is actually an
attack. Previous studies [22] attempt to overcome this challenge
by defining a profit threshold for the initiator of the transaction. If
the threshold is exceeded, the transaction is classified as an attack.
However, this approach can be highly inaccurate, as numerous flash
loan transactions yield significant profit, yet they are not attacks.
For instance, in arbitrage [53], a user buys a token on a DEX and
sells for a higher price on another DEX, exploiting the price differ-
ence. With access to large funds, such as flash loans, the profit can
be significant but it is not necessarily an attack.

Mitigation Methods. Mitigation in real-time is also a challenging
issue. Studies that have tried to overcome this challenge are either
focused on non real-time mitigation or they do not provide a detec-
tion mechanism. In both cases, this makes the solution less effective
as both are essential to stopping the attack before the transaction of
the stolen assets is committed to the blockchain. Some studies such
as [59] in Table 1 provide only a mitigation solution that is in real-
time, but their method is generic for all smart contract attacks and
does not provide a detection mechanism, which makes the solution
less effective. Also, even though previous solutions include price
manipulation attacks, they are not tailored to non-price flash loan
attacks. This is critical because such attacks need a prompt response
in the limited time window before the execution of the attack is
finalized. In Ethereum, for instance, on average, a block is minted
every ~12-13 seconds [32], which adds to the challenge as these
attacks have complex interactions and therefore, countermeasures
need to be efficient given the limited timeframe.

3 NON-PRICE FLASH LOAN ATTACKS

When a flash loan is used to attack a DeFi protocol to exploit a smart
contract logic vulnerability, it is classified as a non-price flash loan
attack [56]. Non-price flash loan attacks do not depend on price
manipulation (i.e., arbitrage)[41], instead, the attacker uses a flash
loan in complex smart contract function calls (i.e., misconfigured
permissions [33]) to exploit the code in a single atomic transaction.
The attacker’s goal is to steal funds by exploiting the vulnerability
in the smart contract. The stolen assets are typically in ERC20
tokensthat are fungible digital assets on EVM blockchains that
comply with the ERC-20 standard [52]. They can be in a single
ERC20 token (i.e., USDC) or a combination of tokens (i.e., USDC,
MATIC, and WBTC). In both cases, the ownership of ERC20 tokens
is transferred to the attacker before it is transferred to the attacker’s
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wallet in the same transaction and before the flash loan is repaid
after the attack is finalized[43, 50].

3.1 Real-world examples

There are several real-world incidents of non-price flash loan at-
tacks. For instance, Euler Finance, which is a well-known lending
protocol on Ethereum was exploited by a non-price flash loan attack
on March 13, 2023 [20]. The platform lost $196 million, and the
attacker bridged the assets from the BNB Smart Chain (BSC) [11]
to Ethereum and used Tornado Cash, a token mixing service, to
hide their traces. A similar attack targeted JIMBO, a DeFi platform
on Arbitrum, in May 2023 [43]. The attack exploited a logic flaw
in its slippage control mechanism, which is a function designed
to limit token price fluctuations. This allowed the attacker to steal
4,000 ETH, which was worth $7.5 million at that time. The stolen
funds were later moved to Ethereum via the Stargate bridge and
the Celer network [23, 40]. Platypus Finance, an Automated Mar-
ket Maker (AMM) on Avalanche, was also targeted by a flash loan
exploit. The attacker minted 41.7 million unauthorized USP tokens
through a vulnerability in its liquidity stability control function
which resulted in a loss of $8.5 million. While some funds were
recovered through Tether (USDT) and Circle (USDC), the attacker
successfully bridged $2.4 million USDC out of reach using Gnosis
Proxy [29].

We present a case study of the vulnerability in the Hedgey Fi-
nance platform that was exploited in a non-price flash loan attack.
Hedgey Finance [1] distributes and locks tokens for other DeFi
projects. If a DeFi platform intends to distribute tokens (i.e., air-
drop to its users), it uses Hedgey Finance to manage the locking
and distribution of tokens. However, Hedgey Finance had an un-
known vulnerability in creating a campaign function, namely the
createLockedCampaign function.

Figure 2 shows a simplified view of the Hedgey Finance contract
that was exploited and we outline the attack sequence in Figure 1
to show how the flash loan was borrowed, used in the exploit, and
repaid. To exploit the vulnerability, the attacker first deployed a
smart contract designed for exploiting the Hedgey Finance protocol.
The attacker’s smart contract address is 0xC7...F2b3, and the Hedgey
exploited smart contract address is 0xBc..D511 as shown in Figure 1.
The attacker first took a flash loan from the Balancer[10] vault and
targeted the Hedgey Finance smart contract. The attacker’s smart
contract then called the createLockedCampaign function (line 3) to
create a campaign using the funds obtained from the flash loan. In
this function, once the campaign is created and locked, the user
interacting with it receives approval to spend the same amount
deposited in case of campaign cancellation (line 12). However, the
attacker immediately canceled the campaign by calling cancelCam-
paign on line 15. Then, the funds locked from createLockedCam-
paign were refunded. Nevertheless, there was no revocation of the
prior approval in line 12. This allowed the attacker to receive a
refund from the canceled campaign and retain approval to spend
the same amount from the flash loan. Therefore, the cancellation of
the campaign without revoking the approval allowed the attacker
to withdraw nearly $2 million from the Hedgey Finance vault [20].

3.2 Attack Model

We present a generalized model to capture all non-price flash loan
attacks in DeFi platforms. Our model is drawn from real-world
attacks, such as the examples presented in Section 3.1 and it pro-
vides a framework for understanding these attacks and informs our
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1| contract ClaimCampaigns {

3] function createLockedCampaign(id, campaign, claimLockup)
external {
4 require(!usedIds[id], "Campaign in use");
5 require(campaign.amount > @ && campaign.end > block.
timestamp, "Invalid campaign");

6

7 usedIds[id] = true;

8 campaigns[id] = campaign;

9 claimLockups[id] = claimLockup;
]

]

// Vulnerability: Approving tokenLocker with campaign

amount

12 IERC20 (campaign. token).approve(claimLockup.tokenLocker
, campaign.amount);

13 b

14

15 function cancelCampaign(id) external {

16 require(campaigns[id].manager == msg.sender, "Not
manager");

17

18 delete campaigns[id];

19 delete claimLockups[id];

20

21 // Vulnerability: Allowance to tokenLocker not revoked

22 emit TokensClaimed(id, msg.sender, campaign.amount);

23 b

24| 3}

Figure 2: Simplified view of the Hedgey Finance smart contract.

solution design. Our approach builds upon prior work that char-

acterizes the properties of flash loan exploits [13, 22] but focuses

specifically on non-price vulnerabilities.

We assume that the attacker (A) and the victim contract (C)
operate on an EVM-compatible blockchain that supports smart con-
tracts executed by the Ethereum Virtual Machine (EVM), including
forks [58] that use the same codebase of Ethereum such as BNB
Smart Chain (BSC) [11]. The attacker’s transaction (tx) is atomic,
meaning all operations succeed or fail together, consisting of mul-
tiple internal txs, and passes through the mempool (a temporary
storage for unconfirmed transactions). The functions referenced
below are deterministic and produce the same output for a given
contract state, vulnerability, and input. The following steps detail
the sequence of actions for executing a non-price flash loan attack:
@ Acquire a flash loan: The attacker A borrows a flash loan

(F) from a flash loan provider (L) for use in a single atomic

tx F = Loan(A, L, amount, fee), where F > 0. The repayment is

atomic Repay(F) € tXatomic- Here, Loan and Repay are functions
provided by L that respectively grant and reclaim borrowed
liquidity. The fee is an optional parameter where fee=0 is possible
as not all L requires a premium. This is different from the gas
fee, which is required by all transactions txs on the blockchain.

@ Satisfy precondition: The attacker once has F, they use it to
override conditions required to call the vulnerable function FC
in C. Typical conditions include token approvals or specific
input parameters. In the code example discussed in Section 3.1
example, this is equivalent to approve to spend an equal amount
of F deposited.

® Invoke vulnerable functions: The attacker invokes a vulner-
able function FC(C, state, inputs) that transitions the contract
from state to a corrupted state, state’ FC(C, state, inputs) —
state’. Here, state represents the C’s internal FCs, variables,
while inputs are attacker parameters which is F.

@ Manipulate contract state: The attacker changes the state of C
by applying state’”” = CorruptState(state’, F), where CorruptState
modifies state” of the smart contract using F. This modification
results in unauthorized actions, such as minting assets or pre-
venting token allowance revocation.
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Figure 3: FlashGuard overview.

(B Overtake assets: Next, the attacker extracts funds from C,
P = assets(C, state”’, A), where P represents ERC20 tokens or
stablecoins. This captures any unauthorized transfer to A which
represents the exploited assets.

(® Repay the flash loan: Finally, since tx is atomic, the attacker
must repay F to L (Repay(F, L)), and the exploit succeeds only if
all steps in tX,tomic (Borrow, Exploit, Repay) are completed. The
borrowed amount plus fees, if any, are returned to L in the same
transaction.

After the attacker repays F, the exploit transaction (tx) is complete,

and the attacker has successfully exploited the non-price flash loan

vulnerability. We show the main steps of the attack model for the

real-world examples from Section 3.1 in Table 2.

Table 2: Real-world examples of non-price flash loan attacks.

Attack Precondition State Corruption Overtaken Assets

$2M in stablecoins

Unrevoked token ($1.3M in one

Hedgey Overriding token

Finance approval approvals transaction)
. Minting
P.latypus Bypassing the USP unauthorized $8.5M in stablecoins
Finance solvency check
tokens
JIMBO Exploiting slippage =~ Manipulating token $7.5M in ETH
control swaps

3.3 Challenges

Detecting and mitigating non-price flash loan attacks involve multi-
ple challenges. Looking at the attack model and the exploited DeFi
protocol in Section 3.1, flash loan borrowing (Step 1) and attack
initiation (Step 2) in Figure 1 must be detected before exploitation
of the funds (Step 5). In addition, any real-time mitigation, such
as counterattacks, must be submitted to the blockchain nodes (i.e.,
miners or validators) before steps 5 and 6 are completed. Therefore,
an effective solution to tackle flash loan attacks should address the
following challenges:

(C1) Stopping attacks before they are finalized. Non-price
flash loan attacks operate rapidly in an atomic transaction
within a single block, requiring proactive measures to pre-
vent losses. Hence, the defense solution needs to incorporate
a real-time strategy to disrupt the attack transaction and
protect DeFi assets before it is included in the blockchain.

(C2) Identifying complex and unique attack patterns. Non-
price flash loan attacks are generally difficult to detect as each
attack uses a unique pattern with sophisticated strategies.
The absence of collateral for such loans substantially reduces
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the access barriers of large-scale manipulation operations,
which allows anyone to launch a large-scale exploit [13, 22].

(C3) Protecting DeFi contracts on any EVM blockchains.
Many DeFi protocols deploy the same contracts across mul-
tiple blockchains, most of which are EVM-compatible. If a
vulnerability is identified on one blockchain, it is trivial for
attackers to exploit the same vulnerability on another. For
example, the attack that hit Hedgey Finance caused nearly
$44 million [20] in losses for the same protocol running on
two different blockchains.

(C4) Preventing irrecoverable losses. In most cases, non-price
flash loan attacks result in significant financial losses as
DeFi protocols manage substantial asset vaults. Mitigating
these attacks needs timely countermeasures because once
the attack is finalized and the transaction is confirmed, the
lost funds cannot be recovered involuntarily. This is evident
from the fact that only about 8.3% of the total assets lost in
blockchain attacks have been recovered [20].

4 FLASHGUARD

FlashGuard is designed to address the key challenges of detecting
and mitigating non-price flash loan attacks in DeFi platforms. At a
high level, FlashGuard consists of three main components (Figure 3)
as described below:

Event-based Attack Detection. FlashGuard uses real-time anal-
ysis of pending transactions function signatures (unique function
identifiers for smart contract methods) in the mempool to detect
non-price flash loan attacks. This identifies attack transactions that
exploit smart contract logic vulnerabilities using flash loans.
Dusting Counterattack. When the attack is detected, FlashGuard
passes the attack details to the disruptor module. This module initi-
ates a dusting transaction, which is a small ERC20 token transfer
to or from the victim’s smart contract, after the attacker calls the
victim’s smart contract but before the attack confirmation. It modi-
fies the contract’s state and disrupts the atomicity of the attacker’s
transaction. This counterattack invalidates the exploit.
Counterattacks using Private Relays. FlashGuard submits the
dusting transaction through a private relay [25] which prevents
it from appearing in the public mempool while ensuring that the
counterattack is confirmed before the attacker’s transaction.

4.1 Event-based Attack Detection.

Attack detection in FlashGuard aims to identify suspicious transac-
tion hashes for the disruptor to prevent the attack from being final-
ized by monitoring the mempool in real-time, which is a temporary
storage for pending transactions. It identifies potential non-price
flash loans that exploit smart contract logic before attack transac-
tions are minted on the blockchain.

Attack Transactions. We observe that the attack transactions
typically share a combination of function signatures used for iden-
tifying specific methods. They are usually emitted when the trans-
action calls the smart contract and can be captured from the trans-
action input data in the mempool before the transaction confir-
mation. Therefore, the detection targets a combination of these
signatures as a signal of an attack initiation. The signatures S in-
clude FlashLoan, token transfers, approvals, and withdrawals to a
smart contract or wallet. For a transaction tx, its decoded function
signatures are F(tx) = DecodelnputData(¢x.input_data). The in-
put data, tx.input_data, encodes data of the smart contract function



CODASPY ’°25, June 4-6, 2025, Pittsburgh, PA, USA

Algorithm 1 FlashGuard Mempool Detection

Require: 7: Mempool transactions, £: Excluded addresses, S: Function signatures
Ensure: Q: Set of attack transactions

1: Q0

2: foralltx € T do

3: from_addr < tx.from

4: to_addr « tx.to

5: if from_addr € € or to_addr € £ then
6: continue

7: end if

8 input_data « tx.input_data

9: functions « DecodelnputData(input_data)
10: flashLoan « False

11: transfer « False

12: withdrawal < False

13: approval < False

14: for all func € functions do

15: if func.signature € Sqyshroan then

16: flashLoan < True

17: else if func.signature € Syansfer then
18: transfer < True

19: else if func.signature € Syjithdrawal then
20: withdrawal < True

21: else if func.signature € Sypproval then
22: approval < True

23: end if

24: end for

25: if flashLoan and (transfer or withdrawal) and approval then
26: Q «— QU {tx.hash}

27: end if

28: end for

29: return Q

being called and its parameters. These parameters represent the
values passed to the called function. However, parameter value
changes do not change the function signature, but functions related
specifically to flash loans from different providers can have distinct
signatures. The FlashLoan signature, for instance, can differ and
depend on the flash loan provider.

Each flash loan provider may have a distinct event signature
for the function used to lend a flash loan when interacting with
the blockchain. Table 3 shows the function signatures for different
flash loan providers and widely used functions such as transfers,
approvals, and withdrawals have the same signatures across EVM-
blockchains. Each signature is a 256-bit (32-byte) value [2].

A combination of these signatures is in fact a signal of a non-
price flash loan attack. A transaction tx consists of a flash loan if
F(tx)NSfashLoan # 0, where Sqashioan denotes the set of flash loan
providers’ function signatures. Similarly, ¢x is an attack if it contains
transfers, approvals, or withdrawals such that F (tx) N\ Siransfer # 0,
F(tx) N Sapproval # 0, or F(tx) N Syithdrawal # O, respectively.

These function signatures may overlap with known benign ad-
dresses, such as MEV bots that search and front-run profitable
transactions.[19]. This is especially true for those transactions when
an MEV bot spots a profitable opportunity. In such cases, it initi-
ates a flash loan transaction to secure it, but not all MEV bots are
designed to borrow flash loans and therefore, FlashGuard care-
fully excludes these known addresses in its detection approach. We
discuss address exclusion further in the detection approach.
Attack Identification Identifying the above-mentioned events in
a single transaction signifies an attack transaction as a non-price
flash loan attack relies on executing the attack in an atomic trans-
action. These events manifest as internal transactions and interact
with different smart contracts as atomic transactions. This increases
the transaction complexity, making it challenging to decode it in a
timely manner before the transaction is included by the miners [9].
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Table 3: Examples of function signatures used for the mempool attack
detection.

Function Function Signature Event Signature

0x@d7d7...95f@
0xf4626...22ab

flashLoan(address,uint256,...) 0x1b8b5af1
flashLoan(address,uint256,...) @xc2b12a73

transfer(address,uint256) 0xa9059chb 0xddf25. . .b3ef
approve(address,uint256) 0x095ea7b3 0x8c5be. . .b925
withdraw(uint256) 0x2ela7d4d oxelfff...39db

Note: Function signatures are 4-byte identifiers derived from the first four bytes of the
Keccak-256 hash of the function.

Once the transaction is included in the blockchain, the stolen assets
belong to the attackers. Note that reducing irrelevant transactions
and focusing on only possible attack transactions is important to
make the detection run faster [47].

Detection Approach and Detection Parameters. To identify
and mitigate attacks on any EVM blockchain, FlashGuard employs
an EVM-compatible approach for real-time mempool monitoring,
shown in Algorithm 1. A transaction tx € 7, where T represents
all mempool transactions, is excluded if the sender (tx.from) or re-
ceiver (tx.to) of tx is on the exclusion list £, which is a list of known
benign addresses compiled based on historical on-chain interactions
with smart contracts to reduce misclassification of attacks. As we
have mentioned, some MEV bots are benign with the goal of gaining
profit by front-running transactions. However, in some cases, they
front-run attack transactions. In this case, the MEV bot returns the
funds to the saved smart contract and deems it as a rescue transac-
tion [36]. Therefore, tx.from € £ V tx.to € . tx is scrutinized if it
satisfies F(£x) NSfiashLoan # O AF (1x) N (Stranster Y Swithdrawal) #
O A F(tx) N Sapproval # 0. This means that all attack transactions
call flashLoan and approve to spend exploited tokens but could
interact with either transfers or withdraw or both to obtain assets
depending on the target smart contract’s vulnerability.

Any tx that does not include these function signatures is re-
moved from being a potential attack, which makes the detection
more efficient. In general, accurate detection depends on identify-
ing unique patterns of flash loan transactions. These are based on
function signatures corresponding to known flash loan providers
such as Balancer and dYdX smart contracts’ function calls. These
signatures serve as markers within the transaction events. The
transactions flagged as an attack are denoted as Q = {tx.hash |
tx € T,=(tx.from € £ V tx.to € &), Qualify(¢x) }. Once the attack
is detected (Algorithm 1), the transaction hash is dispatched to the
counterattack component of FlashGuard to stop the attack.

4.2 Dusting Counterattack

The dusting process in FlashGuard initiates a counterattack trans-
action that changes the current state of the victim smart contract
after attack detection. This occurs after the attack transaction calls
the victim’s vulnerable smart contract. As discussed in Section 4.1,
when FlashGuard detects a potential attack, the set of attack trans-
actions Q identified in the detection proceeds to the disruption and
FlashGuard immediately dispatches a dusting counter-transaction.
dusting can be performed in two ways as discussed next.

Allowance-Based State Dusting (ABSD). DeFi platforms can
subscribe to FlashGuard to counterattack potential non-price flash
loan attacks. Once subscribed, FlashGuard will be granted a small
allowance allowance (i.e., 1 USDC) to spend from the DeFi smart
contract. This approach reduces reliance on FlashGuard’s reserves
and increases the chance of a successful counterattack, as it targets
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the specific smart contract address of the vulnerable function. Here,
subscription is more efficient as FlashGuard needs to only call the
DeFi-specific disrupter smart contract. Even though the required
funds are minimal, FlashGuard needs this allowance to guarantee
state dusting in case of an attack. FlashGuard determines the token
that is involved in the attack by inspecting the tokenAddress pa-
rameter of the transaction. It then populates the dusting amount as
dustingAmount = min(allowance, fixed_amount), where allowan
ce is the maximum amount granted to FlashGuard, and fixed_amount
is predefined for dusting. The current allowance is checked using
IERC20.allowance(), which verifies how much the vulnerable
contract has authorized FlashGuard to transfer. If allowance <
dustingAmount, FlashGuard terminates the disruption and returns
Failure. Otherwise, FlashGuard uses IERC20. transferFrom() to
transfer dustingAmount from the vulnerable contract to a burn
address'. This alters the expected state of the vulnerable contract
after the attack transaction call. FlashGuard then calls revert ()
to invalidate the attack transaction and return the dusted value to
the DeFi smart contract. Figure 5 considers a DeFi platform where

Algorithm 2 FlashGuard Disruption

Require: tx: Detected transaction, S: Function signatures
Ensure: Attack transaction is disrupted

1: to_addr « tx.to

2: token < GetToken(tx)

3: dustingAmount « CalculateDustingAmount(token)

4: if isSubscribed(to_addr) then

5: allowance «— GetAllowance(to_addr, token)

6 if allowance < dustingAmount then
7 return Failure: "Insufficient allowance for disruption”
8 end if

9: TransferFrom(to_addr, BurnAddress, dusting Amount)
10: else
11: Transfer (token, BurnAddress, dustingAmount)
12: end if
13: Revert transaction: "Disruption successful"

FlashGuard has been granted an allowance of 2 USDC. Suppose a
flash loan attack is detected to target this platform, FlashGuard uses
the IERC20. transferFrom() function to transfer 1 USDC (dusting-
Amount) from the DeFi smart contract to the burn address and then
calls revert() after the attacker’s call. This alters the contract’s
state between the time of the attack call and the attempt to confirm
the transaction. The attacker’s transaction will no longer be valid
as its prior assumption about the DeFi smart contract is invalidated
by changing its state, which triggers the EVM to revert to preserve
atomicity and undo all internal transactions.

1(ox dEaD)
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Self-Funded State Dusting (SFSD). If the DeFi platform has not
subscribed to FlashGuard, no allowance is granted to use the plat-
form’s tokens. In this case, FlashGuard disrupts the attack using
its own funds. Note that the fund used, even though it is small,
will be returned to FlashGuard as a result of the revert. However,
FlashGuard will minimize the gas fee spent to counter attacks under
this model, which may result in attack evasion for non-ABSD DeFi
smart contracts. When a malicious transaction tx € Q is detected,
FlashGuard assigns dustingAmount = fixed_amount and initial-
izes the token interface using IERC20(tokenAddress). FlashGuard
directly calls IERC20. transfer () to send dustingAmount from its
own reserves to the burn address. This changes the state of the
vulnerable contract and invalidates the attack transaction’s assump-
tion about the atomicity. Finally, FlashGuard calls revert (), which
forces the attack transaction to fail and prevents the attacker from
completing their exploit. FlashGuard attack disruption for these
two scenarios under ABSD and SFSD are shown in Figure 5.

4.3 Counterattacks using Private Relays

Both ABSD and SFSD disrupt non-price flash loan attacks by intro-
ducing a minimal state change in the victim smart contract. We note
that there is no specific dustingAmount required in this process,
as only the minimal value is transferred and then reverted using
revert(), causing the attack transaction to fail. However, the most
effective disruption occurs under the ABSD model when dusting
is executed after the attacker borrows the flash loan and calls the
victim smart contract before the attack transaction is confirmed.
If dusting occurs before the attacker calls the victim contract or
after the confirmation, it has no effect. Hence, timing is critically
important. To address this, FlashGuard utilizes private relays [25].
Transactions submitted through private relay bypass the public
mempool and are delivered directly to miners. This provides a low-
latency confirmation time for the dusting transaction and avoids
the delays incurred during the public mempool transaction confir-
mation.

1| contract FlashGuardDisruptor {

2] function disruptAttack(bool isSubscribed,

3 address tokenAddress) external {

4 uint256 dustingAmount = ©0.1; // Minimal amount "dust"
to cause state change

5 IERC20 targetToken = IERC20(tokenAddress); //

Determine the the token involved in the attack

6

7 if (isSubscribed) {

8 // Case 1: DeFi platform subscribed to FlashGuard

9 uint256 allowance = targetToken.allowance(
VULNERABLE_CONTRACT , address(this));

10 require(allowance >= dustingAmount, "Insufficient

allowance");

11 targetToken.transferFrom(VULNERABLE_CONTRACT,

address (@0xdead), dustingAmount);

12 } else {

13 // Case 2: DeFi platform not subscribed to
FlashGuard

14 targetToken. transfer (address (@xdead),
dustingAmount); // Use FlashGuard's funds

15 }

16 // Revert to disrupt the attack's atomicity

17 revert("Disruption successful: Attack invalidated");

18 b

19 }

Figure 5: The disruption mechanism of FlashGuard handles two cases
ABDS and SFDS, whether the DeFi platform subscribes to FlashGuard with
a minimal allowance or not. The used fund in the dusting transaction is too
small to alter the vulnerable contract’s state. The token used for dusting (i.e.,
USDC) is determined by the vulnerability the attack attempts to exploit.
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Table 4: Non-price flash loan attacks detection computational overhead in DeFi for various blockchain networks, Ethereum (ETH), Base (Base), Arbitrum
(ARBI), Polygon (Poly), and Avalanche (AVAX). PMU stands for Peak Memory Usage. DeT is the detection time.

Attack Date Chains Loss Detected DeT(ms.) Avg. CPU(%) Avg. PMU(MiB)
Hedgey Finance 04-19-2024 ETH $2.00M v 129.93 1.80 0.53
Sumer Money 12-04-2024 Base $350K v 122.93 4.10 0.45
Lavalending  03-29-2024 ARBI $340K 148.91 3.46 0.87
PRISMAFI 03-28-2024 ETH  $11.60M 142.92 3.78 0.69
RosaFinance ~ 01-18-2024 ARBI  $4467K v 121.93 3.28 0.92
Themis Protocol 06-27-2023 ARBI $367.75K v 127.93 3.04 0.17
JIMBO 05-29-2023 ARBI $7.50M v 294.83 3.25 0.57
EON 06-02-2023 POLY  $29.20K v 110.94 35.72 0.05
Ovix 04-28-2023 POLY  $2.00M 403.77 27.82 0.70
Euler Finance ~ 03-13-2023 ETH  $196.00M 146.42 7.44 0.10
Platypus Finance 02-16-2023 AVAX $8.50M v 76.96 8.87 0.15
Midas Capital ~ 01-15-2023 POLY $650K v 147.91 15.57 0.72
Cauldron 09-06-2022 AVAX $370K 86.95 6.63 071
Cream Finance ~ 10-27-2021 ETH  $130.00M 162.91 3.08 0.53
XTOKEN 05-12-2021 ETH  $2450M 183.40 2.59 0.06
Warp Finance 12-18-2020 ETH $7.80M v 97.94 5.21 0.07
Akropolis 12-11-2020 ETH $2.00M v 135.92 8.15 0.16
Origin Protocol ~ 11-17-2020 ETH $8.00M v 137.92 830 0.15
Cheese Bank  11-06-2020 ETH $330M v 111.94 5.49 0.08
bZx 02-18-2020 ETH ~ $355.88K v/ 113.93 7.16 0.41
FROM To AMOUNT need to wait in the mempool to be included by miners in the next
block.
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Figure 6: Disruption example of the Hedgey Finance exploit based on
Figure 1. The figure illustrates the dusting counterattack by FlashGuard (in
the blue box), which occurs after the flash loan borrowing and forces the
attack transactions (in red boxes) to revert. As a result, the flash loan is
repaid, and the attacker contract receives 0 USDC.

Most transactions get added to the blockchain via the mempool
[49]. In the mempool, transactions are queued, waiting for the
miners to include them in the next block and they are prioritized
based on gas fee. Our approach includes the counterattack transac-
tion before the attack transaction is committed to the blockchain.
Therefore, we utilize private relays from Flashbots that mitigate the
negative effect of MEV on blockchain fairness. MEVs can profit from
reordering or inserting transactions and here, blockchain fairness
refers to the unbiased transaction inclusion and ordering without
miner manipulation such as front-running [25].

MEVs benefit from rearranging transactions in a block to max-
imize their profit [38]. Thus, private relays provide the ability to
submit transactions directly to the blockchain miners which is usu-
ally faster but could incur a slightly higher gas fee. For our approach,
it provides two benefits. First, it hides the counterattack transaction
of FlashGuard from being visible in the mempool and second, it
ensures that the transaction is confirmed faster since it does not

attacks. In addition, we have replicated several unseen attacks for
different vulnerabilities from [51] and our study includes a total of
20 real-world non-price flash loan attacks that occurred between
2020 and 2024, in addition to the unseen attacks.

Table 5: Comparison with previous studies on detection and mitigation
capabilities of real-world non-price flash loan attacks. DeT denotes detection
and M mitigation methods.

Study # of Attacks DeT. M. Real-time
FlashGuard 20 v v v
STING[59] 2 v v
LeiShen[56] 4 v

DeFiRanger[55] 3 N v

5.1 Attack Replication

We replicate attacks by first modeling the DeFi protocol and then
we reproduce the attack transaction, the liquidity pools, and token
smart contracts. Since we need to mirror the same state of the
blockchain at the time of the attack, we used The Remote Blockchain
Call (RBC) [24] of each blockchain for accurately reproducing the
DeFi protocol and the attacker’s smart contracts with the same
state as when the attack occurred. The attack sequence includes
the steps for flash loan initiation, repayment as well as the DeFi
protocol exploitation. We developed a mock ERC20 token contract
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called MockUSDC, to reproduce the stablecoin behavior within our
test environment. The mock tokens are used to reproduce attacks
that had no pre-existing code by controlling the interactions exactly
as needed to mimic each attack. Attack replication is recreating the
sequence of the attack steps based on the transaction that exploits
the DeFi protocol.

For each attack, we granted the allowance and permission needed
to interact with the smart contract. The allowance represents the
maximum asset amount that an external EAO can spend while in-
teracting with the smart contract. We also preloaded the attacker’s
address with the necessary balances to carry out the reproduced
exploit. The malicious smart contract consists of the exploitation
sequence and it is invoked by the attacker. We model the attack
sequence, such as flash loans, token swaps, and liquidity manipula-
tion to mimic how the borrowed tokens can be used to exploit the
DeFi protocol and steal assets. After each replication, we calculated
the attack’s value of exploited assets. Note that some of these assets
are a mix of tokens. For example, in the exploit of Rosa Finance
[20], the attack took DAI, USDC, and WBTC after repaying the
flash loan. As shown in Tables 4 and 7 in Section5.3, FlashGuard is
able to detect and disrupt all historic attacks. However, to evaluate
the generalizability of FlashGuard, we analyze the effectiveness
of FlashGuard for new attacks based on the DeFi smart contract
vulnerabilities outlined in DeFiVulnLabs [51]. These vulnerabilities
are not exploited in the historical non-price flash loan attacks but
they are potential vulnerabilities that could be exploited at any
point in time. For a vulnerability to be realistically exploitable us-
ing a flash loan in non-price flash loan attacks, the attack must
result in a profit for the attacker. Therefore, we examine relevant
vulnerabilities shown in Table 8.

The table shows susceptible DeFi smart contract vulnerabilities
that can be exploited by flash loans in non-price flash loan attacks.
For example, unchecked return values can allow token transfers to
an attacker when the tokens return false instead of reverting. In this
case, flash loans would provide large liquidity. Also, improper dele-
gatecall enables attackers to execute arbitrary code in the caller’s
context, and flash loans can amplify the impact by manipulating
large amounts of liquidity. Uninitialized storage pointers could cre-
ate opportunities for state corruption by exploiting uninitialized
variables. Flash loans, in this context, provide the funds needed to
leverage this vulnerability. Finally, improper access control allows
unauthorized access to restricted functions [59] and flash loans can
amplify manipulation by exposing critical operations to unautho-
rized EOAs, especially when they are token-related.

We reproduce the vulnerabilities shown in Table 8 on the DeFi
platform to realize the unseen attacks. We set $50,000 in a stablecoin
as the vulnerable funds to a flash loan attack. For each unseen
attack, we first observe the expected behavior for the vulnerable
function before applying FlashGuard to ensure that the original
DeFi function runs with no logical error. In total, we conducted 6
tests for the 3 vulnerabilities consisting of two tests per vulnerability
for ABSD and SFDS respectively.

5.2 Metrics

Detection. We measure the effectiveness of FlashGuard’s detection
in terms of detection latency, CPU usage, and memory consumption
for each historical attack (Table 4). Detection latency represents
the time duration between the occurrence of the transaction in the
mempool to its identification as a threat. Achieving low detection
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latency is important for real-time detection in FlashGuard as even
small delays can prevent FlashGuard from stopping an attack. Low
CPU and memory usage ensures that FlashGuard operates with
minimal overhead and can be integrated into environments with
limited computational resources.

Disruption. The effectiveness of FlashGuard’s disruption is mea-
sured using multiple metrics that capture its performance for differ-
ent attacks in various blockchains. Time(ms) measures how quickly
FlashGuard’s execution acts from dusting to forcing the attack to
fail. The total number of transactions (#txs) involved in the attack
reflects the attack’s complexity. However, not all internal txs are
malicious. Some txs are used to set up the targeted exploit. #Entities
represents the count of the unique addresses involved in the attack
which includes attackers, victim contracts, and intermediaries such
as the flash loan provider. DD (Data Dependencies) captures the
number of events including approvals and allowances that attackers
need to execute their attack. We use MF (Money Flow Events) to
track how funds move during the attack. Usually, the exploited
assets are transferred to the attacker’s authorized wallet or smart
contract. TK (ERC20 Tokens) represents the number of tokens af-
fected by the attack. The Gas cost of the counterattack transaction
to stop the attack and Price (USD) quantify the financial cost of
FlashGuard.

Table 6: Detection accuracy from different EVM blockchains for non-price
flash loan attacks in our study.

Blockchain Transactions False Positive Rate (FPR) Accuracy (%)

Ethereum 475,992 0.03% 99.97%
Base 53,268 0.05% 99.95%
Arbitrum 8,576 0.09% 99.91%
Polygon 68,909 0.16% 99.84%
Avalanche 7,884 0.04% 99.96%

5.3 Experiment Results

Attack Detection. FlashGuard successfully detects all the 20 real-
world historical attacks (Table 4). Our detection latency shows an
average detection time of 150.31ms. We also examine FlashGuard’s
performance in terms of false positives, where transactions are
incorrectly identified as attacks. FlashGuard incurs a low false pos-
itive rate of 0.074% of examined transactions. For each identified
attack, we analyze 200 blocks before and 200 blocks after the attack
(Table 6). If a transaction is false positive but normal, FlashGuard
will prevent it from being executed by applying the dusting mecha-
nism described in Section 4.2, which, in the worst case, will cause
the transaction to fail. While we found minimal misclassification,
shown in Table 6, they can be rectified by excluding the found
known normal transactions, such as Maximal Extractable Value
(MEV) bots that search for profit using flash loans. We also found
some MEV bot transactions flagged as attacks, which we excluded
and considered them as non-attacks in our experiments.
FlashGuard stores transactions temporarily in a dictionary to
correlate the components of each transaction. As transactions enter
the mempool, we exclude irrelevant transactions to reduce time in
identifying the target transactions. This reduces the overall identi-
fication time by 44.78% (Figure 7 compares the two methods). The
rest of the transactions are then parsed and logged based on their
function signatures and it creates a structured dictionary where
each transaction hash is mapped to a series of potential exploit
indicators. In a general sense, if a transaction contains a flash loan
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Table 7: Counterattack disruption metrics from different blockchain networks. #txs is the number of transactions, #Entities shows the number of entities
involved, DD is for the number of distinct data dependency events (i.e., approve token), MF is money flow events (unique interactions), and TK is the count

of ERC20 tokens involved in the attack.

Attack Chain  Root Cause Time (ms) #txs #Entities DD MF TK  Gas Cost (Gwei) Cost (Native Token) Price (USD)
Hedgey Finance ETH Abusing createLockedCampaign 23.21 10 3 3 4 1 6,933,637.62 0.0069 ETH 16.81
Sumer Money Base Manipulating wrapper contracts 55.06 65 8 1 19 5 126,897 0.0038 ETH 6.09
LavaLending ARBI Exploiting lending protocol 41.48 187 24 16 80 9 32,9433 0.00003 ETH 0.0593
PRISMAFI ETH Logic flaw in migration contract 7.11s 75 22 4 29 9 51,967,530 0.052 ETH 90.94
Rosa Finance ARBI Liquidity index logic vulnerability 73.36 51 23 3 16 15 7,929.3 0.0079 ETH 0.01957
Themis ARBI Vulnerabilities in multiple pools 64.48 129 24 15 46 21 6,250,187 0.0063 ETH 10.62
JIMBO ARBI slippage control in the shift() function 134.88 373 12 16 117 3 107,046 0.000107046 ETH 0.1926828
EON POLY Inadequate pool control 86.97 23 31 9 10 20 2,629,440 0.00262944 MATIC 0.0011219
Ovix POLY Exploit in deflationary token contract 65.4 736 40 66 278 21 948,328.356 0.0009 MATIC 0.000384
Euler Finance ETH Improper liquidation checks 83.41 56 4 2 20 4 2,873,970 0.0029 ETH 4.60
Platypus Finance =~ AVAX Issue with LP-USDC conversion 163.33 72 17 2 22 19 167,375 0.0047 AVAX 0.1232
Midas Capital POLY Collateral logic vulnerability 30.42 207 33 27 87 3 1,149,659 0.0011 MATIC 0.0004656
Cauldron AVAX Exchange rate logic flaw 74.91 70 15 10 29 8 1,210,825 0.0012 AVAX 0.03182
Cream Finance ETH Uncapped supply manipulation 4233 164 39 5 69 29 13,577,264 0.0136 ETH 21.72
XTOKEN ETH Inadequate validation of input 69.45 248 18 23 40 3 6,221.544 0.0062 ETH 11.20
Warp Finance ETH Collateral valuation logic 25.88 57 3 3 12 3 2,588.439 0.0026 ETH 4.66
Akropolis ETH Reentrancy via fake token deposit 36.40 123 10 8 69 4 3,262.749 0.0033 ETH 5.87
Origin Protocol ETH Origin Dollar (OUSD) reentrancy vulnerability ~ 16.35 156 3 4 12 2 2,877.504 0.0029 ETH 5.18
Cheese Bank ETH Collateral valuation logic 5.28 64 11 21 5 6 6,352.731 0.0064 ETH 11.43
bZx ETH Logic flaw in collateral validation 15.89 43 14 1 17 6 6,942.480 0.0069 ETH 12.49
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Figure 7: Detection times for non-price flash loan attacks using optimized
function signatures (FS) and all function signatures, which includes all
transactions in the mempool.

and token transfers, approvals, or withdrawals, then it gets flagged.

This correlation is performed with a low detection time to ensure
that suspect transactions are identified and marked for disruption
before they are included in the next block on the blockchain.
Disrupting Attack Atomicity. Our method was able to disrupt
the attack sequence and prevent the attacker from draining the
funds from the protocol. We show counterattack disruption for the
recent attacks in Table 7. We show detection time in Table 4 and
time of attack disruption in Table 7. Finally, our results show that
FlashGuard could have effectively rescued about $405.71 million in
total losses if it were deployed prior to these attacks.

Table 8: Unseen evaluated vulnerabilities [51].

Vulnerability Description

Restricted function execution.
Tokens return false without reverting.
Corrupt state from uninitialized variables.

Improper access control
Unchecked return values
Uninitialized storage pointers

faster than other relevant studies, such as [59], which is consid-
ered state-of-the-art for synthesizing counterattacks. The median
runtime overhead ranges from 0.08 to 0.59 seconds and the worst-
case times range from 4.26 to 15.57 seconds. FlashGuard achieves
this high performance by targeting the atomicity property of the
blockchain to revert attack transactions while ensuring minimal
overhead. We note that the average combined time for detection
and disruption across the attacks is only 561.23 ms.

Disrupting Unseen Attacks. The evaluation of the FlashGuard
against different unseen attack vectors is shown in Table 9. Specif-
ically, we test six scenarios for access control, unchecked return
value, and uninitialized storage attacks, as shown in Table 8. For
platforms utilizing the ABSD model, FlashGuard successfully dis-
rupts all attack types by maximizing the consumed gas to break
the attack atomicity. This leads to the attack reversion as a result
of FlashGuard’s dusting counterattack that forces it to fail. On the
other hand, platforms running under SFSD were protected against
access control attacks, however, unchecked return value and unini-
tialized storage attacks proceed with no disruption. This is a result
of FlashGuard minimizing the gas consumption for disruption in
platforms with no pre-allowance granted. Nevertheless, FlashGuard
still maintains protection against a critical vulnerability without in-
curring excessive resource costs. The gas cost trade-off shows that
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FlashGuard can achieve higher resource utilization for platforms

under ABSD in exchange for better security and can reduce costs

for platforms under SFSD with targeted protection measures.
Table 9: Disruption metrics for unseen attacks.

Attack Type Mechanism  Gas (Gwei)  Disrupted
Access Control Attack ABSD 1,714,375 Yes
Access Control Attack SFSD 1,642,925 Yes
Unchecked Return Value Attack ABSD 1,167,725 Yes
Unchecked Return Value Attack SFSD 588,075 No
Uninitialized Storage Attack ABSD 1,721,800 Yes
Uninitialized Storage Attack SFSD 1,138,950 No

Performance. FlashGuard detects the attacks listed in Table 4
with an average latency of 150.31 ms, which allows passing the
attack information discussed in Section 4.2 immediately to the
disruption mechanism in real-time. On average, the disruption
reverts attack transactions within 410.92 ms, with a worst-case
time of 7.11 seconds. This is significantly faster than solutions
like [59], which can take up to 15.57 seconds in the worst case.
FlashGuard is also resource-efficient, using only 8.24% CPU and
0.40 MiB of memory for detection. This makes it scalable on EVM-
compatible blockchains. With gas costs for countertransactions
averaging 0.0038 ETH ($6.09), FlashGuard balances cost and effec-
tiveness, aiming to provide practical and scalable protection against
DeFi threats from non-price flash loan attacks.

6 RELATED WORK

Users utilize flash loans to borrow large amounts of cryptocurrency
without collateral and flash loans require that the loan is repaid
in the same block[53]. Even though it is used in many legitimate
scenarios, such as arbitrage, maliciously attacks on flash loans can
lead to huge financial losses. In non-price manipulation, flash loan is
used to exploit vulnerabilities in smart contracts directly. Therefore,
the main goal is to exploit the flaws in the protocol to drain funds
rapidly, usually in a single transaction.

Several studies have investigated flash loan and its implications
on DeFi. One of the previous works is FrontDef [22] in which the
authors present a detection system designed to front-run malicious
transactions, and monitor pending transactions in the mempool,
and analyze the bytecode of the contracts involved. If a suspicious
transaction is detected, FrontDef assembles and executes the same
transactions to preempt the attack to prevent losses. This approach
was validated against historical attacks and the detection and as-
sembly of mimic transactions were successful in several cases. On
the other hand, FlashSyn proposed by [14] synthesizes flash loan
attacks using a counterexample-driven approximation. This tool
evaluates DeFi protocols by simulating adversarial conditions to
identify potential exploits. FlashSyn has demonstrated efficacy in
detecting vulnerabilities across multiple DeFi platforms and pro-
vides insights into attack vectors and suggests mitigations. DeFiTail
proposed in [34] focuses on cross-contract execution analysis. By
examining smart contracts interactions, it identifies vulnerabili-
ties and potential exploits that could be utilized by the adversarial,
which includes flash loan attacks.

Most studies focus on analyzing flash loan attacks, particularly
price manipulation attacks. Although existing solutions, such as
[55, 56], demonstrate potential in mitigating price manipulation
attacks, their practicality is limited to detecting such attacks. Gen-
eralized systems, such as [22, 59], attempt to front-run malicious
transactions by increasing the gas cost to prioritize transaction in-
clusion, but they do not explicitly address non-price attack patterns.
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In particular, some studies, such as [59], focus only on mitigation
without detection capabilities, which reduces their practical effec-
tiveness in real-world scenarios. Also, their proposed techniques
reconstruct the attack transaction to simulate its behavior and
rescue smart contract funds. We note that this approach is time-
consuming for atomic attack transactions, where numerous entities
in smart contracts interact in a single rapid transaction. Never-
theless, in real-world blockchain transactions, especially in attack-
related transactions, adversaries increase the gas fee significantly
to avoid such countermeasures. This could lead to a successful
attack identification, but the attack transaction can be confirmed
before the counter-transaction is dispatched. Recent work in [8]
introduced the preliminary idea for addressing this problem. Build-
ing on that work, this paper provides a comprehensive solution,
including theoretical methods, algorithmic enhancements, and a
detailed evaluation of FlashGuard on diverse DeFi protocols for
different blockchains.

7 FUTURE WORK

We identify several important directions for future work on Flash-
Guard. In real-world scenarios, FlashGuard can integrate into the
DeFi protocol without the need to modify its infrastructure, as
it does not require redeploying the smart contract to include the
FlashGuard mechanism. Future work could deploy FlashGuard on-
chain for an extended period to evaluate its performance. Future
studies also could explore how attacks can be obfuscated and de-
sign possible mitigation strategies by developing techniques to de-
tect obfuscation. For example, machine learning models or pattern
recognition algorithms could help recognize obfuscated signatures
and identify obfuscated attack signatures. Finally, collaborating
with DeFi platforms to deploy and test FlashGuard in real-world
scenarios can provide more insights for real-world deployments. In
addition, implementing a feedback loop where the system learns
from any detection failures can significantly improve its perfor-
mance over time, which can further increase the reliability and
accuracy of FlashGuard.

8 CONCLUSION

We have presented FlashGuard, a novel method for run-time detec-
tion and prevention of non-price flash loan attacks in DeFi platforms
that is generalizable to any Ethereum Virtual Machine compati-
ble blockchain. FlashGuard leverages direct communication with
miners for transaction submission and employs dusting counterat-
tack transactions to disrupt attack sequences and prevent financial
losses.FlashGuard detects non-price flash loans by identifying a
combination of attack patterns, which we found to be common
among all historical attacks, and introduces two attack disruption
models for on-chain protection against non-price flash loan attacks.
Our evaluation of real-world historical and unseen attacks shows
that FlashGuard is highly effective, with an attack detection accu-
racy of over 99.93%, an average detection time of 150.31ms, and
a disruption time of 410.92ms. FlashGuard is practical, has a low
overhead, and is faster than the state-of-the-art.
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