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Abstract

Task-oriented dialogue (TOD) requires capa-
bilities such as lookahead planning, reason-
ing, and belief state tracking, which continue
to present challenges for end-to-end methods
based on large language models (LLMs). As a
possible method of addressing these concerns,
we are exploring the integration of structured
semantic representations with planning infer-
ences. As a first step in this project, we describe
an algorithm for generating Minimal Recursion
Semantics (MRS) from dependency parses, ob-
tained from a machine learning (ML) syntactic
parser, and validate its performance on a chal-
lenging cooking domain. Specifically, we com-
pare predicate-argument relations recovered by
our approach with predicate-argument relations
annotated using Abstract Meaning Representa-
tion (AMR). Our system is consistent with the
gold standard in 94.1% of relations.

1 Introduction

Natural Language Understanding (NLU) is a core
capability of all dialogue systems. It enables ma-
chines to interpret and generate contextually appro-
priate responses to language. Semantic parsing has
long been a crucial component of NLU, providing
an early-stage component for converting language
into a structured semantic representation. How-
ever, since the emergence of large language models
(LLMs), there has been a trend towards entirely
replacing NLU modules and structured semantic
representations with end-to-end model inference
(OpenAI, 2022). Such systems have been shown
to perform well in question answering, natural lan-
guage generation (NLG), translation, summariza-
tion, and many other applications (OpenAI, 2024).
Nevertheless, state-of-the-art Task-Oriented Dia-
logue (TOD) systems still benefit from an NLU
module or a semantic representation (Feng et al.,
2021; Zhu et al., 2023; Sun et al., 2023), and out-
perform single-call LLM systems in specific TOD

benchmarks (Hudeček and Dusek, 2023). LLMs
struggle with key aspects of TOD, including looka-
head planning problems (Bachmann and Nagarajan,
2024), reasoning (Jiang et al., 2024), and tracking
belief states (Chiu et al., 2023). These issues high-
light the potential advantages of having a structured
semantic representation that can be updated based
on dialogue, information from the environment,
and plan-based task reasoning (Geib et al., 2022).

In this paper, we explore MRS as a semantic
representation framework due to its rich expressive
power, connections to logical inference, close links
to syntax, and potential for constraint-based dis-
ambiguation (Copestake et al., 2005). We develop
methods for benchmarking MRS approaches for
dialogue based on annotations expressed in terms
of Abstract Meaning Representations (AMR), by
comparing the consistency of predicate-argument
relations across representations, thus showing that
MRS shows promise for TOD. Our evaluation
shows that in 94.1% of cases, our implementation
of MRS using spaCy yields edges consistent with
gold-standard predicate-argument relations anno-
tated in a cooking domain (Jiang et al., 2022).

2 Related Work

2.1 LLM TOD systems

Multiple recent TOD systems have been built us-
ing LLMs and specialized NLU modules for their
specific task. However, most end-to-end LLMs can
struggle in three areas. The first is with lookahead
planning problems, where understanding the final
goal is crucial to avoid early errors that can ob-
struct later steps. Bachmann and Nagarajan (2024)
demonstrate cases where models trained to solve
problems using only next-token prediction struggle
to learn what the model should choose for the first
token. Momennejad et al. (2023) and Valmeekam
et al. (2023) found that models struggle on planning
tasks framed as word problems. The second area
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where LLMs may struggle is reasoning. Jiang et al.
(2024) determined that state-of-the-art LLMs fail
to reason consistently across minor variations, such
as changing names of people or places. The third
area is belief state tracking, where it has been seen
that an end-to-end LLM inference compares poorly
to supervised models. Hudeček and Dusek (2023)
shows five state-of-the-art models performing bet-
ter than LLMs, 3 of which use an NLU component
or a semantic representation (Feng et al., 2021; Sun
et al., 2023; Zhu et al., 2023).

LLM-based systems can stage multiple prompts
to perform dialogue state tracking, knowledge re-
trieval, and dialogue planning (Dong et al., 2025;
Xu et al., 2024; Zhang et al., 2023). However,
as the amount of LLM calls or tokens in the out-
put increase, the inference latency of LLMs can
become a pain point for real-time dialogue sys-
tems; many AI assistants require a response within
a particular time frame, such as Alexa’s 8-second
requirement for responses.1 The specialized com-
ponents that TOD systems use to achieve real-time
performance—track belief states (Hudeček and
Dusek, 2023) or generate responses(Chiu et al.,
2023)—typically rely on explicit semantic repre-
sentations.

2.2 TOD systems using Procedural Semantic
Representations

One approach to explicit semantics in TOD is pro-
cedural semantics (Bollini et al., 2013; Nevens
et al., 2024; Verheyen et al., 2023). Procedural se-
mantics offers representations for task descriptions
that are specific enough to be executed program-
matically and achieve desired results. Ultimately,
collaborative agents need executable action repre-
sentations, but there are potential disadvantages to
deriving those representations directly from utter-
ances. Deriving them may involve planning and
plan recognition as well as processes of compo-
sitional interpretation and resolution of grounded
references (Geib et al., 2022). For example, ac-
tion plans may depend on the capabilities of the
agent and the physical state of the environment. An
abstract semantic representation can play an impor-
tant role for collaborative dialogue by representing
task content in a way that can be shared across
agents and contexts and can mediate between vari-
ous kinds of linguistic and plan-based reasoning.

1
https://developer.amazon.

com/docs/alexa/custom-skills/

send-the-user-a-progressive-response.html

2.3 TOD systems using AMR
AMR is another form of semantic representation
used in NLU modules for TOD (Tam et al., 2023).
AMR represents each sentence as a rooted, directed,
acyclic graph. In the graph, each edge has a label
for the relation, and each leaf represents a con-
cept (Banarescu et al., 2013). These graphs can
also be written in PENMAN notation (Matthiessen
and Bateman, 1992). AMR has been extended
to be more suitable for representing dialogues
(O’Gorman et al., 2018; Bonial et al., 2020) and
multimodal communication (Brutti et al., 2022).
Tam et al. (2023) has shown that AMR can be used
to annotate actions for both human-human inter-
actions and human-object interactions. AMR has
also shown promise in TOD through interactive
simulations (Krishnaswamy et al., 2017).

2.4 Minimal Recursion Semantics
We have chosen to use MRS in our work. MRS is
a framework that can encode predicate arguments
and other grammatical constraints on lexical and
phrasal semantics to generate flat semantic repre-
sentations. An MRS structure is a tuple containing
a top handle (GT), a bag of elementary predicates
or EPs (“an EP is a single relation with its associ-
ated arguments”), and a bag of handle constraints
(C) (Copestake et al., 2005). Like AMR, MRS is
scalable because it abstracts away from domain-
specific content.

While AMR is easy to annotate, and has become
a popular semantic representation for text-based
tasks, AMR does not support constraint-based am-
biguity resolution like MRS does (Copestake et al.,
2005; Wein, 2025). The incremental constraint-
based approach of MRS also streamlines the rep-
resentation of dialogue processes such as clarifica-
tion, thereby facilitating system efforts to ensure
common ground. In addition, AMR lacks the full
logical expressiveness of MRS (Bender et al., 2015;
Bos, 2016), which underpins logical approaches to
bridging semantic and common-sense inferences
(Hobbs, 1985; Copestake et al., 2005).

We have chosen not to build on existing MRS im-
plementations, such as English Resource Grammar
(ERG) (Flickinger et al., 2000) 2, because our ap-
proach allows for more flexibility, such as choosing
to ignore scopal arguments (which would not have
an impact when combining linguistic reasoning and
plan-based inferences, since planning modules typ-

2
https://delph-in.github.io/delphin-viz/demo/

https://developer.amazon.com/docs/alexa/custom-skills/send-the-user-a-progressive-response.html
https://developer.amazon.com/docs/alexa/custom-skills/send-the-user-a-progressive-response.html
https://developer.amazon.com/docs/alexa/custom-skills/send-the-user-a-progressive-response.html
https://delph-in.github.io/delphin-viz/demo/
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ically do not account for scopal arguments), there-
fore allowing for a more lightweight and efficient
representation. Our MRS implementation is builds
on dependency parsing provided by spaCy. This
decision is primarily for convenience; dependen-
cies provide a simple and effective starting point
for our work. We believe our approach could be
adapted as needed to other state-of-the-art real-time
dependency or constituency parsers.

3 System Design

For this paper, MRS is used as an early component
of NLU to help create a logical form (LF) as a se-
mantic representation that can be used for dialogue
systems and updated with information from the
planner’s inferences, allowing the LF to be updated
with information from the environment. Since we
are comparing MRS to AMR (to show that if AMR
is used in TOD, MRS should be able to do so as
well), we will focus on non-scopal EPs, ignoring
all EPs that can be a scopal EP (such as adverbs).3

3.1 spaCy
For dependency parsing, spaCy was selected due to
its popularity and its capability for real-time depen-
dency parsing. It is a transition-based dependency
parser that uses an arc-eager system. SpaCy’s En-
glish models were trained using OntoNotes 5.0
(Weischedel et al., 2013), which contains approx-
imately 1.5 million words from news media, tele-
phone conversations, broadcast conversations, and
weblogs. SpaCy’s developers report a 95.1% ac-
curacy for unlabeled attachment score (UAS) and
93.7% labeled attachment score (LAS) accuracy
when tested on the Penn Treebank (Marcus et al.,
1993)4, which contains articles from the Wall Street
Journal (WSJ) from 1984 to 1989. However, a
machine learning model evaluated on WSJ may
have different accuracy for other domains. We took
Cookdial and evaluated predicate-argument rela-
tions reported by spaCy and translated to MRS (dis-
cussed in Section 4) to determine their consistency
with the corresponding Extended-AMR (EAMR).
We used spaCy version 3.7.4 with en_core_web_lg
model version 3.7.1.

3.2 Implementation
Algorithm 1 shows the logic used to implement
MRS to create an LF. It assumes that each word

3Note that an entire MRS structure can generally be created
with a dependency tree parse.

4
https://spacy.io/usage/facts-figures

Algorithm 1 Build MRS LF from Dependencies
1: Input: sent = sentence
2: Output: lf
3: lf = set()
4: ignore_deps ={det,punct,case,adv}
5: for all (child,rel,head) → sent.deps() do
6: if is_pred(child) then
7: lf.add ([child.pred,child.var])
8: if rel → UD_Modifiers then
9: lf.add([=,head.var,child.var])

10: if child.tag = VBG then
11: lf.add([nsubj,child.var,head.var])
12: else if child.tag = VBN then
13: lf.add([dobj,child.var,head.var])
14: if rel = pobj, dobj then
15: lf.add([role(rel,head),
16: head.head.var,child.var])
17: else if rel /→ ignore_deps then
18: lf.add([rel,head.var,child.var])
19: return lf

in the sentence is associated with a head, a depen-
dency label, a part-of-speech (POS) tag, and its
position in the sentence. Each word may also be
associated with a predicate (the meaning carried by
the word) and a variable (the discourse referent it
evokes).

The algorithm loops through each relation in the
sentence, focusing on representing the contribution
of the dependent element (child). Nouns, pronouns,
adjectives, verbs, and auxiliaries without depen-
dents contribute elementary predications. Verbal
dependent modifiers assign an appropriate syntac-
tic role to the head referent (subject for present
participle, object for past participle). All other
modifiers, excluding adverb modifiers which are
ignored, equate their variable to the variable of the
elementary predicate they are describing. Objects
of prepositions are assigned a suitable semantic role
with respect to the entity modified by the prepo-
sition. Aside from root, determiners, punctuation,
adverbs, and case modifiers, all other dependency
labels are included in the logical form. Since plan-
ning modules typically do not account for scopal
arguments, determiners and adverb modifiers have
been excluded from consideration.

For the sentence "Pour cranberry juice into a 5-
cup ring mold", the MRS algorithm will go through
each relation given by spaCy (as shown in Figure 1).
If the first dependency identified is the direct object

https://spacy.io/usage/facts-figures
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Token Relation Part of Speech Tag Head Children Ancestors

Pour root VERB VB Pour [juice,into] [ ]
cranberry compound NOUN NN juice [] [juice, Pour]
juice dobj NOUN NN Pour [cranberry] [Pour]
into prep ADP IN Pour [mold] [Pour]
a det DET DT mold [] [mold, into, Pour]
5 nummod NUM CD cup [ ] [cup, mold, into, Pour]
- punct PUNCT HYPH cup [ ] [cup, mold, into, Pour]
cup compound NOUN NN mold [5, - ] [mold, into, Pour]
ring compound NOUN NN mold [ ] [mold, into, Pour]
mold pobj NOUN NN into [a, cup, ring] [into, Pour]
. punct PUNCT . Pour [ ] [Pour]

Table 1: spaCy parse of "Pour cranberry juice into a 5-cup ring mold."

Remove and let stand for 5 minutes .

ROOT

cc
conj

xcomp prep
pobj

nummod

punct

Figure 1: spaCy dependency parse of the sentence: “Remove and let stand for 5 minutes.” Parsed using spaCy.

relationship between the head "Pour" and the child
"juice", the algorithm identifies that "juice" evokes
a discourse referent, and stores the fact that the
predicate "juice" applies to the referent "x_juice_2"
by storing [juice, "x_juice_2"] Then, it will identify
that the dependency is not a Universal Dependency
modifier, and that the dependency is not a preposi-
tion, so it will be represented as ["dobj", x_Pour_0,
x_juice_2]. This process will be completed while
going through all remaining dependencies.

(inst-0 / R

:inform (ac-0-0 "Pour" 3:7/ AC

:ppt (ing-0 "cranberry juice" 8:23 / FOOD)

:gol(tool-0-0 "a 5-cup ring mold" 29:46 / TOOL)

:_result (juice-in-mold))

Figure 2: EAMR representation of the instruction “Pour
cranberry juice into a 5-cup ring mold.”

For the sentence "Remove and let stand for 5
minutes.", the MRS algorithm will go through
each relation given by spaCy (as shown in Fig-
ure 4). It will identify and store the elemen-
tary predications, "remove", "let", "stand", "5",
"minutes" as before. For example, "remove" will
be stored as [remove, "x_remove_0"]. It will
stores additional relations such as noting the num-
mod relation between "minutes" and "5" as [’=’,
’x_5_5’, ’x_minutes_6’]. The remaining relations

are from the else if clause on line 17. These re-
lations are: [’cc’, ’x_Remove_0’, ’and’], [’conj’,
’x_Remove_0’, ’x_let_2’], [’xcomp’, ’x_let_2’,
’x_stand_3’], [’for’, ’x_stand_3’, ’x_minutes_6’].
When supplied to reference resolution and clarifi-
cation module, we can potentially recognize that
"remove" and "stand" concern an implicit object de-
rived from dialogue context. When combined with
a planner module, the planner could infer how to
achieve the successive "remove" and "stand" tasks
with suitable planner actions.

(inst-8 / R

:inform (ac-8-0 "Remove" 3:9/ AC

:ppt (NULL / FOOD)

:ppt (NULL / FOOD)

:inform (ac-8-0 "stand" 18:23/ AC

:duration (dur-8-0 "5 minutes"@28:37 / DUR)

:ppt (NULL / FOOD)))

Figure 3: EAMR representation of the instruction “Re-
move and let stand for 5 minutes.”

4 Evaluation

For our evaluation we chose the Cookdial dataset
(Jiang et al., 2022). The data set contains Extended-
AMR (EAMR) annotations of recipe instructions,
which mimic many ideas and notations from AMR
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(Jiang et al., 2022). EAMR uses PENMAN nota-
tion (the string and index annotations are placed
into “:name” or “:named”), and represents a di-
rected acyclic graph composed of nodes (the entity
type) and edges (relation between the predicate and
its arguments) (Jiang et al., 2022). For the purposes
of evaluation, we will be only considering EAMR
with multiple edges or nodes, since EAMR of just a
single node would not have any significant informa-
tion to compare against spaCy’s parse, as the entire
sentence would be the constituent. This provides
us with 227 sentences, totaling 951 constituents to
evaluate for the consistency of predicate-argument
relations in EAMR captured in both the spaCy
parse and MRS clauses.

4.1 Predicate-Argument Consistency

We recursively iterate through the AMR graph,
starting from its root node (Algorithm 2 in Ap-
pendix), and verify if each constituent has exactly
one semantic relation with a different constituent
(Algorithm 3 in Appendix). This is done by identi-
fying and counting the external semantic relations
the constituent has, and by verifying the alignment
of AMR with the dependency head relation (that
would be provided to MRS) by spaCy’s parse. For
example, if you consider Figure 2, the phrase "cran-
berry juice", we would confirm that there is only
one external semantic relation, which in this case
would be the head verb "Pour". This means no ad-
ditional dependencies link to a word in the phrase
from elsewhere in the AMR graph, therefore show-
ing that the EAMR and spaCy parse are consistent.
This evaluation can be applied across any AMR
that contains multiple edges or nodes by following
the same methods.

4.2 Evaluation Results

Out of the 951 edges evaluated, it was found that
56 had inconsistent constituency (↑ 5.9%). This
performance (↑ 94.1%) is comparable with spaCy
RoBERTa (2020) dependency parsing accuracy
on Penn Treebank (Marcus et al., 1993), which
is 95.1% for unlabeled attachment score.5 Note
that spaCy had incorrectly interpreted "in." as the
end of a sentence for two utterances; therefore, it
was decided "inch" would be substituted for "in."
While this analysis of the consistency of the De-
pendency Parser’s and MRS algorithm highlights
specific limitations of the parser, the implications

5
https://spacy.io/usage/facts-figures

of the dependency parser’s accuracy for the LF are
not yet fully understood.

5 Conclusion

In this paper, we have built on existing AMR an-
notations to argue that MRS may also be used for
semantic representations in TOD. We showed how
to evaluate MRS by comparing predicate-argument
relations in the input of MRS to those annotated in
EAMR for a cooking domain. Evaluation shows
that MRS aligns with EAMR relations with 94.1%
accuracy when using spaCy’s dependency parsing
as the main input for our MRS algorithm.

In future work, we plan to explore further uses
of MRS as structured, semantic representations to
bridge language-based and plan-based inferences
for TOD. We hope to develop a versatile NLU mod-
ule that can be used across multiple domains and
even languages—since the Universal Dependen-
cies framework provides consistent cross-linguistic
grammar annotations (de Marneffe et al., 2021).
We further hope to build on strategies from Traum
(1995) and Rich et al. (2001) to allow for tracking
and maintaining common ground in collaborative
interactions. Finally, we are interested in using our
MRS module for coordinating activity by extend-
ing our existing implementation of plan filtering
and semantic grounding using planning and plan
recognition (Geib et al., 2022).

Limitations

While this paper evaluates the dependency parse on
EAMR, only relations between EAMR nodes are
tracked, leaving out node-internal relations, such
as the relation between "cranberry" and "juice" in
the EAMR constituent "cranberry juice". Also,
while our NLU module may be applicable across
domains, it will still require planning modules that
may have to be created for each domain, as well
as a knowledge base for each domain to identify
action types and resolve references. We have also
not demonstrated the impact of our techniques on
dialogue quality or task success.

Acknowledgments

Thanks to Rich Magnotti and the reviewers for help-
ful feedback. Supported by NSF awards 2021628,
2119265, and 2427646.

https://spacy.io/usage/facts-figures


35

References
Gregor Bachmann and Vaishnavh Nagarajan. 2024.

The pitfalls of next-token prediction. Preprint,
arXiv:2403.06963.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Emily M. Bender, Dan Flickinger, Stephan Oepen,
Woodley Packard, and Ann Copestake. 2015. Layers
of interpretation: On grammar and compositionality.
In Proceedings of the 11th International Conference
on Computational Semantics, pages 239–249, Lon-
don, UK. Association for Computational Linguistics.

Mario Bollini, Stefanie Tellex, Tyler Thompson,
Nicholas Roy, and Daniela Rus. 2013. Interpreting
and executing recipes with a cooking robot. In Exper-
imental Robotics: The 13th International Symposium
on Experimental Robotics, pages 481–495. Springer.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
684–695, Marseille, France. European Language Re-
sources Association.

Johan Bos. 2016. Squib: Expressive power of Abstract
Meaning Representations. Computational Linguis-
tics, 42(3):527–535.

Richard Brutti, Lucia Donatelli, Kenneth Lai, and James
Pustejovsky. 2022. Abstract Meaning Representation
for gesture. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
1576–1583, Marseille, France. European Language
Resources Association.

Justin Chiu, Wenting Zhao, Derek Chen, Saujas
Vaduguru, Alexander Rush, and Daniel Fried. 2023.
Symbolic planning and code generation for grounded
dialogue. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7426–7436, Singapore. Association for
Computational Linguistics.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan
Sag. 2005. Minimal recursion semantics: An intro-
duction. Reseach On Language And Computation,
3:281–332.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Wenjie Dong, Sirong Chen, and Yan Yang. 2025. Pro-
TOD: Proactive task-oriented dialogue system based
on large language model. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 9147–9164, Abu Dhabi, UAE. Associa-
tion for Computational Linguistics.

Yue Feng, Yang Wang, and Hang Li. 2021. A sequence-
to-sequence approach to dialogue state tracking. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1714–
1725, Online. Association for Computational Linguis-
tics.

Dan Flickinger, Ann Copestake, and Ivan A. Sag. 2000.
HPSG Analysis of English, pages 254–263. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Christopher Geib, Denson George, Baber Khalid,
Richard Magnotti, and Matthew Stone. 2022. An
integrated architecture for common ground in collab-
oration. ACS 2022.

Jerry R. Hobbs. 1985. Ontological promiscuity. In 23rd
Annual Meeting of the Association for Computational
Linguistics, pages 60–69, Chicago, Illinois, USA.
Association for Computational Linguistics.
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A Appendix

A.1 Algorithms
We present Algorithm 2 to show how the AMR
graph was traversed while checking relations. We
gave each node in a sentence a unique identification,
and for each relation in the AMR, we would call
Algorithm 3, and report the returned results.

In Algorithm 3, we show how we verify if each
constituent has exactly one semantic relation with
a different constituent, and how we verify the align-
ment of the AMR graph and spaCy’s parse.

A.2 spaCy Dependency Diagram
Table 1 presents the spaCy dependency parse for
the example sentence "Pour cranberry juice into a
5-cup ring mold".
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Algorithm 2 AMR_TRAVERSAL

Input: node_id = first node id in amr_graph, amr_graph, visited = [], prev_word=None
Output: Dataframe updated by report_result function
if node_id in visited then return
visited.add(node_id)
head_node = amr_graph[node_id]
for each child_id in head_node.relations do

child_node = amr_graph[child_id]
if prev_word ↓= None then

relations,head_relations = check_relation(head_node.words,child_node.words)
report_result(relations,head_relations)

Traverse_AMR(child_id, amr_graph, visited, node_id)

Algorithm 3 CHECK_RELATION(WORDS, HEAD_WORDS)
Input: words, head_words
Output: relations, head_relations
relations = []
head_relations = []
apart_relations = []
for each word in words: do

if word.head not in words then
relations.append(word.head)

if len(relations) == 1 : then
for word in head_words : do

if word in relations then
head_relations.append(word)

else
ancestors = get_ancestors(words,word)
for ancestor in ancestors do

if ancestor == word and not in apart_relation and not in words then
apart_relation.append(ancestor)

if len(head_relations)< 1: then
head_relations = apart_relation

return relations, head_relations

Pour cranberry juice into a 5 - cup ring mold .

ROOT

dobj

compound

prep

nummod
punct

pobj
det

compound

compound

punct

Figure 4: spaCy dependency parse of the sentence: “Pour cranberry juice into a 5-cup ring mold.” Parsed using
spaCy.
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