

1 **K-Co-Mo-S_x Chalcogel: High-Capacity Removal of Pb²⁺ and Ag⁺ and the**
2 **Underlying Mechanisms**

3
4 *Jing Nie^{1‡}, Subrata Chandra Roy^{1‡}, Sital Dhami¹, Taochedul Islam,¹ Ruhul Amin², Xianchun Zhu³, Kathryn*
5 *Taylor-Pashow,⁴ Fengxiang X. Han¹, Saiful M. Islam^{*1}*

6 ¹*Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson,*
7 *Mississippi, USA*

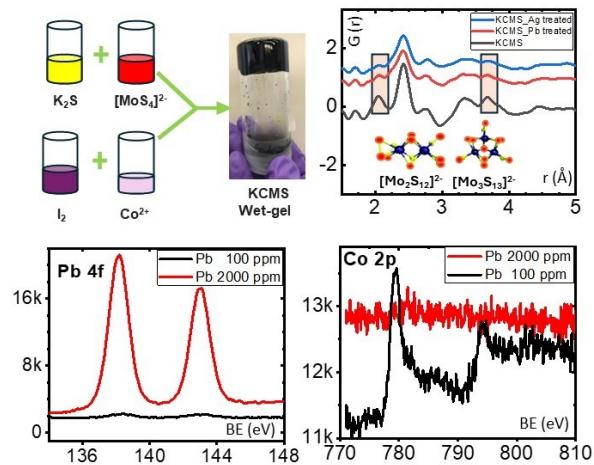
8 ²*Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Hardin*
9 *Valley Campus, Knoxville, TN, 37830, USA*

10 ³*Department of Civil Engineering, Jackson State University, Jackson, Mississippi, USA*

11 ⁴*Savannah River National Laboratory, Aiken, SC-29808, USA*

12 [‡]*Joint first author*

13


14 **ABSTRACT**

15 Chalcogenide-based aerogels, known as chalcogels, represent a novel class of nanoparticle-based
16 porous amorphous materials characterized by high surface polarizability and Lewis base
17 properties, exhibiting promising applications in clean energy and separation science. This work
18 presents K-Co-Mo-S_x (KCMS) chalcogel as a highly efficient sorbent for heavy metal ions and
19 details its sorption mechanisms. Its incoherent structure comprises Mo₂^V(S₂)₆ and Mo₃^{IV}S(S₆)₂
20 anion-like clusters with four- and six-coordinated Co—S polyhedra, forming a Co-Mo-S covalent
21 network that hosts K⁺ ions through electrostatic attraction. Interactions of KCMS with heavy metal
22 ions, particularly Pb²⁺ and Ag⁺, revealed that KCMS is exceptionally effective in removing these
23 ions from ppm concentrations down to trace levels (\leq 5 ppb). KCMS rapidly removes Ag⁺
24 (\approx 81.7%) and Pb²⁺ (\approx 99.5%) within five minutes, achieving $>$ 99.9% removal within an hour, with
25 a distribution constant, $K_d \geq 10^8$ mL/g. KCMS exhibits an impressive removal capacity of 1378
26 mg/g for Ag⁺ and 1146 mg/g for Pb²⁺, establishing it as one of the most effective materials known

27 to date for heavy metal removal. This material is also effective for the removal of Ag^+ and Pb^{2+}
28 along with Hg^{2+} , Ni^{2+} , Cu^{2+} , and Cd^{2+} from various waters even in the presence of highly
29 concentrated and chemically diverse cations, anions, and organic species. Analysis of the post-
30 interacted KCMS by synchrotron X-ray pair distribution function (PDF), X-ray photoelectron
31 spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) revealed the sorption of
32 Pb^{2+} , Ag^+ , and Hg^{2+} mainly occurs by the exchange of K^+ and Co^{2+} . Despite being amorphous, this
33 material exhibits unprecedented ion-exchange mechanisms both for the ionically and covalently
34 bound K^+ and Co^{2+} , respectively. This discovery advances our knowledge of amorphous gels and
35 guides material synthesis principles for the highly selective and efficient removal of heavy metal
36 ions from water.

37 **Keywords:** chalcogels, heavy metal remediation, wastewater, ion-exchange

38 TOC:

39

40 **Synopsis:** Disordered aggregated porous nanoparticles of KCMS are highly efficient and have
41 exceptionally high sorption capacity in removing silver and lead cations following the exchange
42 of potassium and cobalt cations bonded electrostatically and covalently in KCMS, respectively.

43 **INTRODUCTION**

44 The industrial revolution has substantially accelerated the demand for indiscriminate exploitation
45 of global resources, thereby worsening environmental crises worldwide.¹ Among the array of
46 industrial pollutants, heavy metal-containing wastewater remains a focal concern because of their
47 improper handling and disposal leading to their release into water and subsequent contamination
48 of the ecosystem. Heavy metals are generally harmful to biological systems, including humans,
49 with certain ones such as lead, mercury, silver, and cadmium posing significant risks, including
50 carcinogenicity, neurocognitive disorders, and DNA damage to human health even at trace levels.^{2–}

51 ⁷ Hence, it is of utmost importance to decontaminate wastewater containing heavy metals before
52 discharging it into the environment.

53 In recent years, numerous methods, such as electrocoagulation (EC),⁸ adsorption,^{9,10} membrane
54 separation,^{10,11} magnetic field implementations,¹² electrokinetic extraction,¹³ ion-exchange¹⁴ and
55 others were introduced to remove heavy metals from water. Among the various chemical
56 approaches, ion exchange is potentially viable for the decontamination of water because of its
57 superiority in selectivity and efficiency in separating heavy metal ions from wastewater.^{15–18}

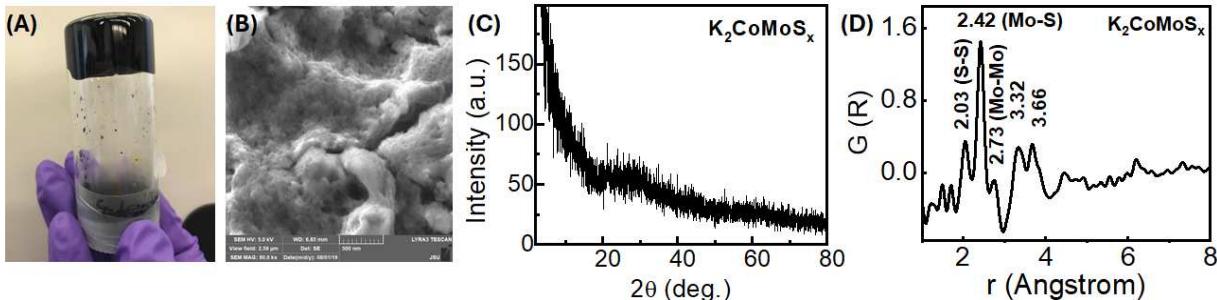
58 Different materials, such as zeolite, activated carbon, biochar, polymer, biomaterials, resin, and
59 layered double hydroxides have been used for heavy metals removal.^{19–25} While these materials
60 demonstrate some degree of effectiveness in separating numerous heavy metals, they often exhibit
61 poor selectivity, efficiency, sorption kinetics, and capacity. Also, their shortcomings become
62 evident when addressing the challenge of removing heavy metals at trace levels from water.

64 Sulfur-based materials exhibit superior affinity towards heavy metal ions²⁶ and possess the
65 capability to selectively bind Lewis acidic soft heavy metal ions, following Pearson's hard-soft
66 Lewis acid-base principles (HSAB).²⁷ Consequently, this class of materials has emerged as
67 efficient sorbents for soft heavy metal cations, such as Hg^{2+} , Pb^{2+} , Ag^+ , Cu^{2+} , and Cd^{2+} enabling
68 their selective separation even at trace levels. In recent years, chemically and structurally diverse
69 metal sulfides have been investigated in removing soft or relatively soft heavy metal cations. These
70 materials include layered metal sulfides: $\text{K}_{2x}\text{Mn}_x\text{Sn}_{3-x}\text{S}_6$ (KMS-1),^{15,28} $\text{H}_{2x}\text{Mn}_x\text{Sn}_{3-x}\text{S}_6$ (LHMS-
71 1),²⁹ $\text{K}_{2x}\text{Mg}_x\text{Sn}_{3-x}\text{S}_6$ (KMS-2),¹⁶ $\text{K}_{2x}\text{Sn}_{4-x}\text{S}_{8-x}$ (KTS-3),¹⁷ open framework structures, such as
72 $\text{K}_6\text{Sn}[\text{Zn}_4\text{Sn}_4\text{S}_{17}]$,³⁰ $[(\text{Me})_2\text{NH}_2]_2[\text{GeSb}_2\text{S}_6]$,³¹ metal sulfide intercalated layered double
73 hydroxides, and chalcogels.^{32,33}

74

75 Among them, chalcogel, an emerging class porous nanoparticle-based amorphous materials, stands
76 out remarkably because of its unique structural skeleton consisting of polysulfides, which finds
77 great affinity toward chemically soft Lewis acidic cations.³⁴⁻³⁶ Structurally, chalcogels typically
78 comprise monomeric units of (metal-)chalcogenides, interconnected through either chalcogen-
79 chalcogen or metal-chalcogenide covalent bonds and thus integrate high-density (poly)sulfide into
80 its nanoparticles. Hence, the incorporation of alkali metals into the covalent networks of metal-
81 sulfide can introduce electrostatic bonding features. This leads to the formation of hybrid
82 chalcogels consisting of covalent and ionic bonds. This can represent a distinct class of porous
83 nanomaterials with ion-exchange properties akin to crystalline metal sulfides, including
84 $\text{K}_{2x}\text{M}_x\text{Sn}_{3-x}\text{S}_6$ ($\text{M} = \text{Mn}$, KMS-1; $\text{M} = \text{Mg}$, KMS-2),^{15,16} $\text{K}_{2x}\text{Sn}_{4-x}\text{S}_{8-x}$ ($x = 0.65-1$),¹⁷ and

85 $K_6Sn_5Zn_4S_{17}$ ³⁰ which shows ion-exchange properties toward chemically soft Lewis acidic heavy
86 metal ions.³⁷ This characteristic holds promise for potential applications in wastewater treatment
87 and the extraction of critical metals from water sources.


88

89 Here, we present the significant potential of K-Co-Mo-S_x chalcogel for effectively separating
90 heavy metal cations from aqueous solutions. This material exhibits over 99.9% removal of Ag⁺
91 and Pb²⁺ from initial concentrations of about 10⁴ ppb, with the distribution constants of $K_d \geq 10^8$
92 mL/g in just an hour. Besides, KCMS exhibits an enormously high sorption capacity of $q_m^{Ag} \sim$
93 1378, $q_m^{Pb} \sim 1146$, and also for mercury, $q_m^{Hg} \sim 461$ mg/g. Moreover, KCMS can remove Ag⁺,
94 Hg²⁺, and Pb²⁺ from ppm to trace level (≤ 5 ppb) from naturally contaminated wastewater systems.
95 Despite being amorphous, this material exhibits double ion-exchange properties for ionically and
96 covalently bound K⁺ and Co²⁺, respectively. Overall, the integration of rapid, high-capacity
97 removal of heavy metals, alongside room temperature-scalable synthesis and an unprecedented
98 adsorption mechanism, demonstrates the transformative potential of chalcogels in wastewater
99 treatment.

100 **RESULTS AND DISCUSSIONS**

101 **Synthesis and characterization:** K-Co-Mo-S_x chalcogel was synthesized via a redox-driven
102 metathesis route in solution at room temperature, following a previously reported procedure
103 (detailed in the SI).³⁸ After the synthesis of the wet-gel, the as-prepared gel in the solution was
104 washed to remove the unreacted spectator ions (Figure 1A). The gel was then dried at room
105 temperature to produce xerogel. Scanning electron microscopy (SEM) images of the xerogel show

homogeneity of the gel particle (Figure 1B). As discussed previously, detailed analysis of the chemical composition by SEM/EDS analysis of the K-Co-Mo-S chalcogel, synthesized from various batches was collected in micrometer length scales, indicating an average atomic abundance of K, Co, Mo, and S as 8.0 ± 2.3 , 7.4 ± 1.7 , 9.4 ± 1.6 , and $74.2\pm4.6\%$, respectively and are closely related to results obtained from submicron-level particles determined by TEM/EDS.³⁸ The absence of any sharp diffraction peak in the XRD pattern of the KCMS gels suggests the lack of periodic arrangement in its amorphous structure (Figure 1C). Synchrotron X-ray pair distribution functions analysis shows peaks at 2.03, 2.42, and 2.73 \AA which are related to S-S, Mo-S, and Mo-Mo bonding correlations, respectively (Figure 1D). This finding is akin to the previously reported results.³⁸ Previously, we elucidated the local coordination environment of KCMS gels by XPS, HRTEM, TEM-EDS, XANES, and EXAFS analysis.³⁸ Modeling of the Co and Mo K-edges data revealed that six- and four-coordinated Co-S polyhedra linked with Mo-S anionic clusters resembling molecular $\text{Mo}_2^{\text{V}}(\text{S}_2)_6$ and $\text{Mo}_3^{\text{IV}}\text{S}(\text{S}_6)_2$ anions.³⁸ We found that KCMS nanoparticles consist of covalent networks of the Co-Mo-S in which K^+ ions are electrostatically bound to form K-Co-Mo-S_x chalcogel. Hence, the presence of electrostatically bound alkali metals in the covalent network of the Co-Mo-S of the KCMS gels can be ion-exchanged with chemically soft heavy metal cations following the Lewis HSAB principles.²⁷

123

124 **Figure 1.** Photograph of the KCMS wet gels (upside down) showing the firmness of the monolith
 125 wet gels (A), SEM image of the KCMS xerogel (B), XRD pattern of KCMS xerogel showing
 126 amorphous nature of the material (C), PDF analysis of KCMS xerogel demonstrates a short rage
 127 atomic order with the local coordination of polyhedra (D).

128

129 **Extraction of Heavy Metal Ions from Aqueous Solutions:** We investigated the interactions of
 130 the xerogels of KCMS, obtained by drying at ambient conditions, with various transition metal
 131 cations that include Cu^{2+} , Hg^{2+} , Ag^+ , Pb^{2+} , Cd^{2+} , Ni^{2+} , and Zn^{2+} (Table 1). Our studies reveal that
 132 KCMS is remarkably efficient for the capture of Ag^+ , Hg^{2+} , and Pb^{2+} from aqueous solutions.
 133 KCMS achieves nearly 100% removal of Ag^+ and Pb^{2+} in an interaction time of just about an hour
 134 with the distribution constant, K_d as high as $\sim 10^8$ mL/g from 10 ppm spiked solutions of metal
 135 cations. It also shows effective removal efficiencies for Cu^{2+} and Hg^{2+} , offering removal of ~ 91
 136 and 98%, respectively, with a $K_d > 10^4$ mL/g (Table 1). Such high K_d values suggest a great affinity
 137 of the Ag^+ , Hg^{2+} , and Pb^{2+} for the KCMS chalcogel. It is important to note that any materials with
 138 a K_d value in the 10^4 – 10^5 mL/g range are regarded as exceptionally high-quality sorbents.^{17,39} It is
 139 important to note that the aerogel form of KCMS which exhibits a surface area of up to 90 m²/g,
 140 as reported previously,³⁸ could potentially be more effective due to its high density of pores across
 141 the aggregated nanoparticles. However, due to the challenges associated with scalable and cost-

142 effective synthesis, this study focuses solely on the xerogel form of KCMS.

143

144 **Table 1:** Removal of various heavy metal cations from aqueous solutions by KCMS.

145

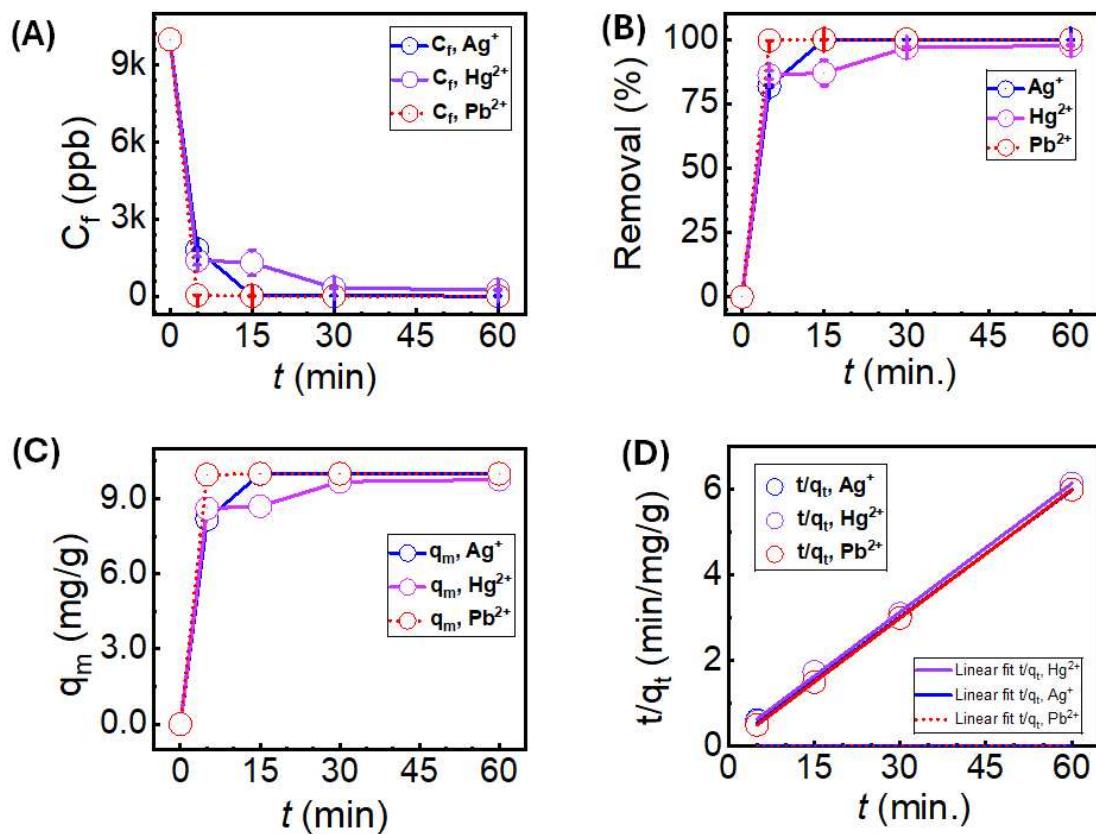
M^{n+}	C_i (ppm)	C_f (ppb)	M^{n+} removal (%)	K_d (mL/g)
Cu^{2+}	10×10^3	872.0	91.30	1.05×10^4
Hg^{2+}	10×10^3	236.8	97.63	4.12×10^4
Ag^+	10×10^3	3.25	99.97	3.08×10^6
Pb^{2+}	10×10^3	0.10	~ 100.0	$\sim 10^8$
Cd^{2+}	10×10^3	9.91×10^3	0.86	8.65
Ni^{2+}	10×10^3	9.12×10^3	8.8	96.49
Zn^{2+}	10×10^3	10×10^3	0.0	0.0

contact time: 1 h, $V = 10.0$ mL; m (mass of KCMS) = 0.01g; V/m ratio=10/0.01=1000 mL/g.

146

147 The competitive sorption analysis of heavy metal cations by KCMS xerogels revealed that only in
148 one hour of interaction, the final concentration of silver ion was reduced from 10,000 to below one
149 ppb, demonstrating an excellent potential of the gels for fast and efficient removal of Ag^+ from
150 aqueous solutions (Table S1). Other heavy metal cations, e.g. Hg^{2+} , and Pb^{2+} , show reasonably
151 good sorption efficiency, whereas other ions show poor to negligible interactions to separate them
152 from water. Based on this result, we found the selectivity order as $Ag^+ > Hg^{2+} > Pb^{2+} >> Cu^{2+} >>$
153 $Ni^{2+} >> Cd^{2+}$. This finding suggests that KCMS is effective for the selective separation of different
154 heavy metal cations as listed above. This kind of selectivity may be understood by the chemical
155 hardness of these cations. This is because of different binding propensities to chemically soft Lewis
156 basic sulfides of the KCMS with heavy metal ions, as demonstrated by Pearson's Lewis hard and
157 soft acid-base principle.²⁷ This observation is in good agreement with the previously reported

158 investigation.⁴⁰

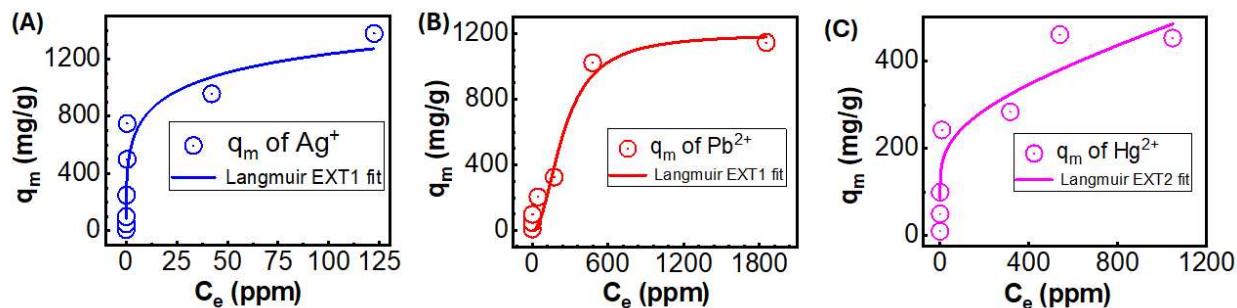

159 Time-dependent experiments for the sorption of Ag^+ , Pb^{2+} , and Hg^{2+} were conducted for
160 KCMS xerogel to determine the removal rate of these metal cations and to understand the
161 mechanism of sorption (Figure 2). The sorption kinetic for Pb^{2+} is ultra-fast. The removal rate of
162 Pb^{2+} cations from the 10^4 ppb spiked solution is 99.51% in 5 minutes and reaches \sim 100% within
163 30 min with a K_d value of \sim 10⁸ mL/g and the final concentration of those heavy metal cations
164 reached < 1 ppb (ng/g). Importantly, such a low concentration for Pb^{2+} is well below the limit for
165 drinking water defined by both the US EPA (15 ppb) and WHO (10 ppb).^{41,42}
166 Furthermore, the removal of Ag^+ and Hg^{2+} reaches about 81.7% and 86.1%, respectively, within 5
167 minutes and increases to \sim 97.6% ($K_d \sim 3.8 \times 10^6$ mL/g) and 97.6% ($K_d \sim 4 \times 10^4$ mL/g) within an
168 hour (Table S2). This kind of exceedingly high uptake rate advert KCMS's potential for the rapid
169 decontamination of Ag^+ , Pb^{2+} , and Hg^{2+} from wastewater. In general, sorption rates and
170 mechanisms can be analyzed by pseudo-first and pseudo-second-order rate equations as described
171 in equations 1 and 2, respectively.⁴³

172 Pseudo-first-order: $\ln(q_e - q_t) = \ln q_e - k_1 t$ (eq. 1)

173 Pseudo-second-order: $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$ (eq. 2)

174 Where q_e (mg/g) is the amount of adsorbed element per unit mass of adsorbent at equilibrium and
175 q_t (mg/g) is the adsorbed amount at time t , while k_1 (min^{-1}) and k_2 ($\text{g}/\text{mg} \cdot \text{min}^{-1}$) are equilibrium
176 rate constants of pseudo-first-order and pseudo-second-order adsorption interactions,
177 respectively.⁴⁴ Fitting of the experimental data led to a decent linear relationship for the ' t/q_t '
178 versus ' t ' plot (Figure 2D), demonstrating the sorption of Ag^+ , Pb^{2+} , and Hg^{2+} follow the pseudo-

179 second-order rate equations where the rate constant, k_2 , for Pb^{2+} is $\sim 3.73 \text{ g/mg}\cdot\text{min}^{-1}$, which is
 180 about one and two orders of magnitude higher than that for Ag^+ ($k_2^{\text{Ag}} \sim 0.14 \text{ g/mg}\cdot\text{min}^{-1}$) and Hg^{2+}
 181 ($k_2^{\text{Hg}} \sim 0.071 \text{ g/mg}\cdot\text{min}^{-1}$), respectively. (Table S3). Such a higher rate constant is indicative of
 182 faster sorption of these ions and agrees with the experimental data (Table S2). The correlation
 183 coefficients (R^2) were nearly equal to unity suggesting that KCMS follows pseudo-second-order
 184 reaction kinetics for the interactions with Ag^+ , Pb^{2+} , and Hg^{2+} .



185
 186 **Figure 2.** Sorption kinetic for M^{n+} (Ag^+ , Pb^{2+} , and Hg^{2+}) using 10.0 mg of KCMS xerogel in 10
 187 mL of solution: (A) change of $[M^{n+}]$ to the time of interactions, (B) removal % of M^{n+} as a function
 188 of time, (C) sorption capacity as a function of contact time, and (D) pseudo-second-order kinetic
 189 plots.

190

191 To determine the sorption capacity of the KCMS xerogel for Hg^{2+} , Ag^+ , and Pb^{2+} in aqueous
192 solutions, we conducted a concentration investigation and fitted the experimental data with the
193 Langmuir adsorption isotherms model (Figure 3, Table S4). This investigation reveals that KCMS
194 has a remarkably high sorption capacity for Hg^{2+} , Ag^+ , and Pb^{2+} . Our investigations show that
195 KCMS can capture over 87% of Ag^+ from a concentration as high as 1500 ppm with a K_d value of
196 1.4×10^4 mL/g (Table S4). At this concentration, the maximum sorption capacity was determined
197 to be ~ 1377 mg/g (Figure 3A) where the sorption data were nicely fitted with Langmuir absorption
198 isotherm. This value of q_m^{Ag} is exceptionally high, and stands out as one of the most efficient
199 sorbents among the top materials, such as LDH- Mo_3S_{13} (1073 mg/g),⁴⁵ amorphous MoO_x (2605
200 mg/g),⁴⁶ LDH- Sn_2S_6 (978 mg/g),³⁹ LDH Ni/Fe/Ti- MoS_4 -LDH (856 mg/g),⁴⁷ Mn- MoS_4 (564
201 mg/g),⁴⁸ LDH- MoS_4 (550 mg/g),⁴⁹ MoS_4 -ppy (480 mg/g at pH ~ 5),⁵⁰ and Mo_3S_{13} -Ppy (408 mg/g)
202 (Table 2).⁵¹ In addition, our experiment shows that KCMS can remove over 99.5 % of Pb^{2+} with
203 starting concentrations over 100 ppm. The maximum removal capacity of 1146 mg/g was obtained
204 for a spiked solution of 3000 ppm (Figure 3B). Such a tremendously high sorption capacity for
205 Pb^{2+} ranks this material top among the other high-performing Pb^{2+} sorbents, as we can see in Table
2.^{48,49,52-57} We have also investigated the adsorption capacity of Hg^{2+} for solutions of 10 to 1500
207 ppm. The KCMS affords the removal capacity, $q_m^{\text{Hg}} \sim 460$ mg/g (Figure 3C) which is comparable
208 to other high-performing sorbents as seen in (Table 2). Importantly, KCMS can remove $\geq 99.6\%$
209 Hg^{2+} from a solution containing as high as 100 ppm of Hg^{2+} (Table S4). Over these concentration
210 ranges (10-100 ppm), the K_d^{Hg} values remain in the range of 10^5 - 10^6 mL/g. Such an exceedingly
211 high K_d demonstrates that KCMS offers paramount potential in the removal of Hg^{2+} from aqueous

212 solutions.

213

214 Figure 3. The sorption capacity of heavy metal cations, Ag^+ (A), Pb^{2+} (B), and Hg^{2+} (C) by KCMS
215 chalcogel was determined by the interaction of 10 mg KCMS with various concentrations of each
216 cation.

217

218 Table 2: Comparison of adsorption capacities for heavy metals with high-performing sorbents
219

Cations	Adsorbents	q_m (mg/g)	References
Ag^+	KCMS	1377	This work
	Amorphous MoO_x	2605	46
	LDH- Mo_3S_{13}	1074	45
	LDH- Sn_2S_6	978	39
	Ni/Fe/Ti- MoS_4 -LDH	856	47
	Mn-LDH- MoS_4	564	48
	MoS_4 -Ppy	480 (pH~5) 725 (pH ~1)	50
	Mo_3S_{13} -ppy	408	51
	MoS_4 -LDH	450	49
	KMS-2	408	58
	Fe- MoS_4	565	52
Pb^{2+}	KCMS	1146	This work
	Lignosulfonate-modified graphene hydrogel	1210	59
	LDH- Sn_2S_6	579	39
	MoS_4 -LDH	290	49
	Mn- MoS_4	357	48
	Fe- MoS_4	345	52
	EDTA-LDH	180	54

CTS/PAM gel	138	55
Mg ₂ Al-LS-LDH	123	56
Cellulose-based chalcogel	240	57
biomass-based hydrogel	422.7	53
Hg²⁺	KCMS	460
LDH-Sn ₂ S ₆	666	39
MoS ₄ -LDH	500	49
Mn- MoS ₄	594	48
Fe-MoS ₄	582	52
KMS-2	297	58
MoS ₄ -ppy	210	50
KMS-1	377	29
Thio-functionalized magnetic graphene oxide	289	60

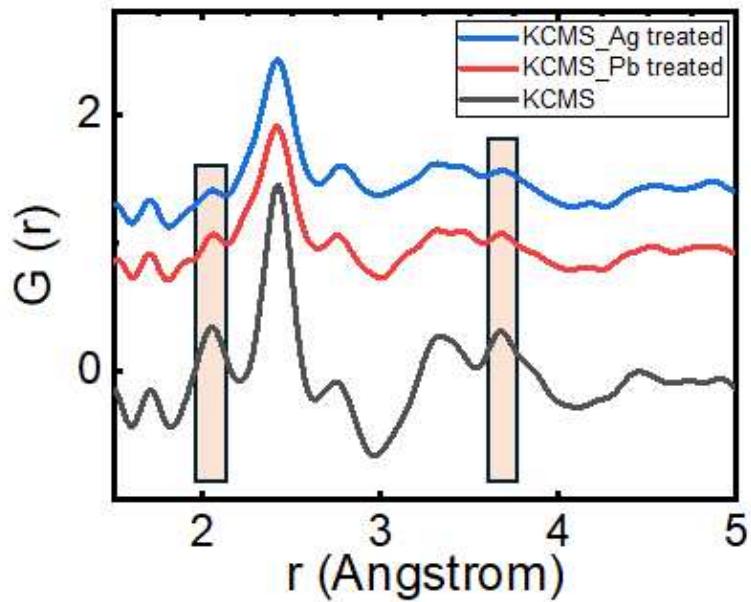
220

221 **Application Potentials:** To evaluate the practical use of KCMS xerogel chalcogel for wastewater
 222 treatment, we analyzed its removal efficiency for heavy metals using Mississippi River Water
 223 (MRW) and Tap Water (TW). Water from both sources was individually spiked with 10 ppm of
 224 each metal as listed, Ag⁺, Hg²⁺, Pb²⁺, Ni²⁺, Cu²⁺, and Cd²⁺, resulting in a total concentration of 70
 225 ppm for seven metal ions. Despite the presence of chemically diverse types of species, including
 226 high concentrations of cations, anions, and diverse organic species, in those water samples, KCMS
 227 can remove Ag⁺, Hg²⁺, Pb²⁺, Ni²⁺, Cu²⁺, and Cd²⁺ (Table 3). Specifically, the removal performance
 228 of Ag⁺ and Pb²⁺ from MRW is over 99% and leads to the final concentration of less than 1 ppb.
 229 We obtained the selectivity order for tap and Mississippi River water to be Ag⁺ ≈ Pb²⁺ > Hg²⁺ >
 230 Cu²⁺ >> Cd²⁺ > Ni²⁺. This finding suggests that KCMS possesses extraordinary potential for the
 231 selective separation of Ag⁺ and Pb²⁺ from contaminated waters and thus could be useful for the
 232 selective extraction of Ag⁺ and Pb²⁺ from wastewater.

233

234 **Table 3.** Sorption results of KCMS in potable Tap water and Mississippi river water containing
235 seven metal ions of 10 ppm for each (70 ppm total), C_i = initial (pre-sorption) concentration, C_f
236 =final (post-adsorption) concentration.

Mix ed- ions	C_i (ppm)	C_f (ppm)	Remov al (%)	K_d (mL/g)	q_m (mg/g)	C_f (ppm)	Removal (%)	K_d (mL/g)	q_m (mg/g)
Tap water					MRW				
Cu^{2+}	10.0	3.6184	63.81	1782.4	6.381	3.1254	68.74	2.22×10^3	6.874
Hg^{2+}	10.0	0.2132	97.86	4.60×10^4	9.786	0.1749	98.25	5.68×10^4	9.825
Ag^+	10.0	0.0336	99.66	2.96×10^5	9.966	0.0524	99.48	2.08×10^5	9.948
Pb^{2+}	10.0	0.0686	99.31	1.51×10^5	9.931	0.0279	99.72	3.4×10^7	9.972
Cd^{2+}	10.0	8.0149	19.85	258.65	1.985	8.1857	18.14	2.30×10^2	1.814
Ni^2	10.0	9.5000	4.64	48.63	0.463	9.3766	6.23	6.63×10^1	0.623
Zn^{2+}	10.0	10	0.0	0.0	0.0	10.0	0.0	0.0	0.0

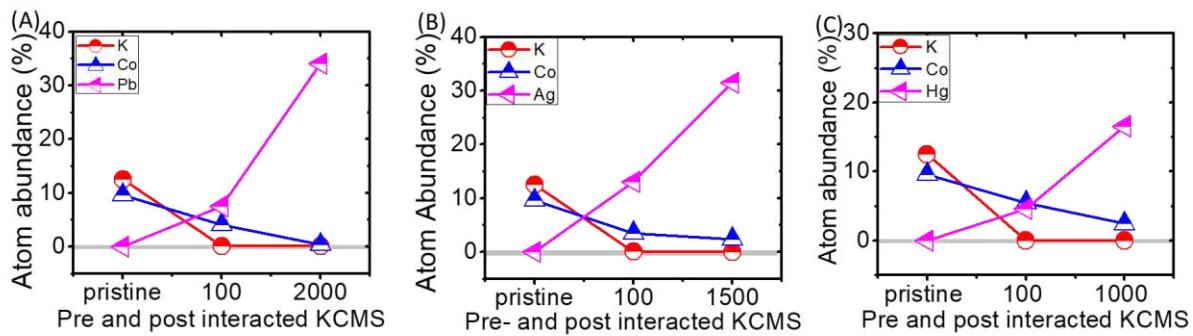

237 contact time: 24 h, $V = 10.0$ mL; m (mass of KCMS) = 0.01g; V/m ratio = 10/0.01 = 1000 mL/g

238

239 **Mechanistic Insights into the Interactions of KCMS with Ag^+ , Hg^{2+} , and Pb^{2+} :** To evaluate the
240 sorption mechanisms of $M^{n+} \equiv Ag^+$, Pb^{2+} , and Hg^{2+} ions by KCMS gels, we analyzed the post-
241 reacted sorbent by XRD, PDF, EDS, and XPS. The XRD of the KCMS after interactions with 100
242 ppm of Ag^+ , Pb^{2+} , and Hg^{2+} cations showed the material remains amorphous (Figure S1). The XRD
243 of the post-interacted materials primarily revealed their amorphousness similar to the pristine
244 KCMS. However, the Ag^+ interacted samples showed weak peak-like humps at $2\Theta \sim 15.5$ and
245 23.0° , which could not be identified. We further analyze the post-treated material by Raman, and
246 TEM for deeper understanding. The strong Raman shift of the pristine KCMS at 487 cm^{-1} (and the
247 shoulder at $\sim 445\text{ cm}^{-1}$) and weak shift at 263 cm^{-1} are attributed to the polysulfide species and K-

248 S bond, respectively³⁸ being missing in the 100 ppm Hg²⁺, Ag⁺, and Pb²⁺ treated material (Figure
249 S2) indicating the ion-exchange and Ag—S—M, Pb—S—M, and Hg—S—M (M=Mo, Co) like
250 interactions. Besides, the TEM images of the Hg²⁺ and Ag⁺ (Figure S3) interacted samples show
251 the aggregation of the particles as expected to the pristine materials. In contrast, the Pb²⁺ interacted
252 sorbent showed a platelike pattern, however, XRD does not reveal the crystalline of the sorbent.
253 Analogous to the pristine KCMS, the PDF of the post-interacted KCMS shows local atomic
254 ordering up to about 6 Å (Figure 4). PDF of KCMS after interactions with 100 ppm of Ag⁺ and
255 Pb²⁺ show a decrease in intensity of the peak at 3.7 Å which is relevant to K···S correlations. Such
256 a reduction in intensity of the 3.7 Å peak can be attributed to a lower concentration of the K⁺ ions
257 in the networks of the KCMS gels suggesting the exchange of K⁺ with Ag⁺ and Pb²⁺. Besides, PDF
258 also shows a decrease in the intensity of S_n²⁻ correlated peaks at ~ 2.0 Å after interactions with Ag⁺
259 and Pb²⁺ ions. This is due to the breakdown of the S—S bonds of the polysulfide species of the
260 surface exposed chalcogels particles through the formation of Ag—S—M and Pb—S—M bonds,
261 where M is Co or Mo of the KCMS. This finding suggests that besides the ion exchange of K⁺ by
262 Ag⁺ and Pb²⁺, covalent interactions of Ag⁺ and Pb²⁺ with the (—S—S—)_n species of the gel
263 nanoparticles, as —S—Ag/Pb— attribute the sorption of these cations. Besides, although the PDF
264 demonstrates the stability of the KCMS gel's first coordination sphere, the structural changes after
265 sorbent interactions cannot be fully verified due to its amorphous nature. It is also important to
266 note that the sorption of Ag⁺, Pb²⁺, and Hg²⁺ is irreversible, which can be attributed to the stronger
267 M-S (M = Ag⁺, Pb²⁺, Hg²⁺) covalent interactions.

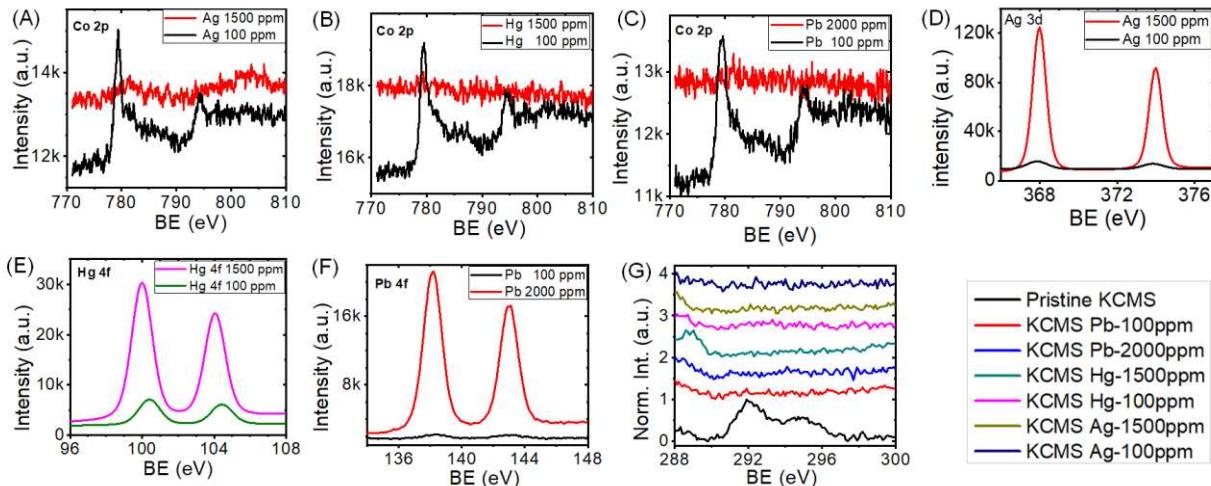
268


269

270 **Figure 4:** A comparison of the pristine and Ag^+ and Pb^{2+} exposed KCMS showing retention of the
 271 local ordering of KCMS gel, light orange shaded lines indicate the change in the intensities
 272 between the pristine and Ag^+ and Pb^{2+} exposed samples.

273

274 EDS data of KCMS after an interaction of 100 ppm of Ag^+ , Pb^{2+} , or Hg^{2+} ions show the presence
 275 of each cation along with a negligible atomic abundance of K^+ ions (Table S5, S6, S7). These
 276 findings are likely to suggest that K^+ ions of the KCMS are exchangeable with Ag^+ , Hg^{2+} , and Pb^{2+}
 277 ions. It is important to note that the ion-exchange phenomenon was reported for other amorphous
 278 chalcogels containing electrostatically bound cations. For example, NH_4^+ of the $(\text{NH}_4)_{0.02}\text{MoS}_x$ ⁶¹
 279 was exchanged by K^+ ions, and Cs^+ and Sr^{2+} cations exchanged K^+ ions of K-Sn-Mo-S gels.²⁶
 280 Apart from this, after the interactions of KCMS with higher concentrations (≥ 1000 ppm) of Ag^+ ,
 281 Hg^{2+} , and Pb^{2+} the relative atomic abundance of Co decreased by nearly zero percent with the
 282 increasing concentration of Ag^+ , Hg^{2+} , and Pb^{2+} (Figure 5, Table S5, S6, S7). For example, after


283 treating KCMS with 100 and 2000 ppm of Pb^{2+} , the residual atomic abundance of Co ion gradually
 284 decreases from ~10 % in the pristine KCMS to ~4.4% and 0.2 % of Co^{2+} , respectively. A very
 285 similar phenomenon was observed for Ag^+ and Hg^{2+} (Figure 5, Table S5, S6, S7). Overall, our
 286 experiments showed a decrease in Co^{2+} ion concentration with the increase of the Hg^{2+} , Ag^+ , and
 287 Pb^{2+} which may suggest that in addition to K^+ ions, the Co^{2+} ions of the KCMS are also ions
 288 exchangeable.

290 **Figure 5.** The trend in the change of atomic abundance of K^+ and Co^{2+} ions in KCMS gel with
 291 increased concentrations of Ag^+ , Pb^{2+} , and Hg^{2+} .
 292

293 We also investigated the post-interacted solids after treating them with 100 and ≥ 1000 ppm of Ag^+ ,
 294 Hg^{2+} , and Pb^{2+} by X-ray Photoelectron Spectroscopy (Figure 6). The XPS of the pristine KCMS
 295 shows the presence of a peak centered at 292.1 eV (Figure 6G), which corresponds to K 2p orbital
 296 energy.⁶² In contrast, the XPS of the 100 ppm Ag^+ , Pb^{2+} , and Hg^{2+} treated KCMS reveals the
 297 absence of a K 2p band but the presence of the bands at 374.0 and 368.0 eV; 104.3 and 100.4 eV;
 298 and 143.1 and 138.2 eV (Figure 6 D-F) that correspond to binding energy for Ag^+ (3d_{3/2}; 3d_{5/2}),⁶³
 299 Hg^{2+} (4f_{5/2}; 4f_{7/2})^{63,64} and Pb^{2+} (4f_{5/2}; 4f_{7/2})⁶³. The finding suggests the exchange of the K^+ ions of
 300 the KCMS by Ag^+ , Pb^{2+} , and Hg^{2+} which also corroborates the EDS findings. Moreover, XPS

301 spectra of the 100 ppm Ag^+ sorbed solid KCMS show peaks at ~ 779.4 and 782.0 eV (Figure 6A),
302 corresponding to the main and satellite peaks of Co^{2+} 2p orbitals, respectively. In contrast, these
303 peaks at ~ 779.4 and 782.0 eV were absent at the 1500 ppm Ag^+ sorbed KCMS (Figure 6A).
304 Likewise, the Co 2p orbitals peak gradually diminished with an increase in the spiking
305 concentration of Hg^{2+} and Pb^{2+} cations (Figure 6B and C). The above findings imply that
306 polysulfide functional groups have a preferable binding propensity towards softer Ag^+ , Hg^{2+} , and
307 Pb^{2+} cations rather than Co^{2+} cations. Furthermore, the intensities of $3\text{d}_{3/2}$ and $3\text{d}_{5/2}$ orbitals of Ag^+ ,
308 $4\text{f}_{5/2}$ and $4\text{f}_{7/2}$, orbitals of Hg , and $4\text{f}_{5/2}$ and $4\text{f}_{7/2}$ orbitals of Pb^{2+} (Figure 6D-F) significantly increase
309 with increasing the spiking concentration of Ag^+ , Hg^{2+} , and Pb^{2+} ion.⁶⁵ This is because of the
310 incorporation of higher concentrations of Ag^+ , Hg^{2+} , and Pb^{2+} in the post-interacted KCMS solids.
311 Hence, EDS and XPS suggest that higher incorporation of Ag^+ , Hg^{2+} , and Pb^{2+} is achieved by the
312 exchange of K^+ and Co^{2+} ions of the KCMS. This kind of double ion exchange for KCMS is
313 chemically driven by the strong affinity of the soft and polarizable Lewis basic sulfide ions toward
314 the soft Lewis acidic Ag^+ , Hg^{2+} , and Pb^{2+} following the Pearson Hard-Soft Lewis Acid-Base
315 paradigm (HSAB).²⁷ Hence a concentration-dependent study shows that KCMS undergoes a
316 preferable ion-exchange at first by the exchange of the electrostatically bound K^+ ions, and then
317 covalently bound Co^{2+} ions. To the best of our knowledge, KCMS is the first example of the
318 amorphous chalcogel that integrates ion-exchange phenomena in both the ionically and covalently
319 bound cations of the chalcogel matrices.

320

321 **Figure 6:** XPS spectra of cobalt 2p (A-C); silver 3d (D); mercury 4f (E); and lead 4f (F); potassium
 322 2p (G) orbitals after interaction of KCMS gels with different concentrations of Ag^+ , Hg^{2+} , and
 323 Pb^{2+} .

324

325 It is important to note that the dissolution of cobalt ions from sorbent material can make it unlikely
 326 for drinking or household water treatment but could be useful for industrial wastewater treatment
 327 of highly toxic Pb^{2+} , Hg^{2+} , and Ag^+ for recycling purposes, non-household applications or
 328 discharging them into natural water bodies. Apart from this decontamination of Co^{2+} from the
 329 KCMS-treated wastewater can be done by the coprecipitation method as the second treatment
 330 method. However, this work introduces KCMS as multi-ion exchangeable materials that can
 331 exchange both covalently and ionically cations following the Hard-Soft Lewis Acid-Base
 332 principles. This finding can potentially open opportunities for designing and synthesizing highly
 333 efficient and high-capacity chalcogel-based sorbent using eco-friendly transition metals for cobalt.

334 **CONCLUSIONS**

335 The KCMS chalcogel was synthesized in solution at room temperature. The highly disordered

336 incoherent structural features of KCMS chalcogels were evidenced by X-ray powder diffraction
337 and Pair Distribution Function (PDF). The KCMS xerogel is highly efficient in removing
338 chemically toxic heavy metal ions, particularly Ag^+ , Hg^{2+} , and Pb^{2+} , achieving over 99.9% removal
339 with a distribution coefficient as high as $\geq 10^8$ mL/g in just half an hour in deionized water
340 solutions. Moreover, Ag^+ , Pb^{2+} , and Hg^{2+} exhibit exceptionally high sorption capacities of 1377,
341 1146, and 460 mg/g, respectively. Furthermore, we found that this material is exceptionally
342 efficient in removing Ag^+ , Pb^{2+} , and Hg^{2+} from highly contaminated water. For instance, it
343 removes over 99% Ag^+ and Pb^{2+} with a K_d of 10^5 mL/g from the Mississippi River which contains
344 over 10,000 ppb of each cation. The selectivity order observed was $\text{Pb}^{2+} > \text{Ag}^+ > \text{Hg}^{2+} > \text{Cu}^{2+} >>$
345 $\text{Cd}^{2+} > \text{Ni}^{2+}$. The remarkable efficiency of KCMS in separating Pb^{2+} and Ag^+ is likely due to the
346 unprecedented and selective ion exchanges of electrostatically bound K^+ and covalently bound
347 Co^{2+} cations and surface sorption. The chemically soft polarizable Lewis basic (poly)sulfide
348 functional groups KCMS offer binding propensities through covalent binding toward Lewis acidic
349 metal cations and the degree of their binding propensity is governed by Pearson's Hard-Soft Lewis
350 Acid-Base (HSAB) paradigm.²⁷ Despite its irreversible sorption properties, KCMS stands out due
351 to its exceptional sorption capacity, fast sorption kinetics, high removal efficiency to trace levels,
352 scalability, solution processability at room temperature, and unique sorption mechanisms, making
353 it an ideal sorbent for chemically soft Lewis acidic heavy metal cations in aqueous solutions.
354 Overall, this study reveals the immense potential of chalcogels for the removal of toxic heavy
355 metal ions and introduces a new paradigm in the design principles of multi-ion-exchangeable
356 chalcogels.

357 **ACKNOWLEDGEMENTS**

358 This work was supported by the US Department of Energy Minority Serving Institution
359 Partnership Program (MSIPP) managed by the Savannah River National Laboratory under BSRA
360 contract (RFP No. 0000542525 and 0000458357). SD is thankful to the NSF Division of
361 Chemistry (NSF-2100797). TI is thankful to the US Department of Energy's Building EPSCoR-
362 State/National Laboratory Partnerships DE-FOA-0002624. This research used resources from the
363 Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility
364 operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-
365 AC02-06CH11357. The mail-in program at Beamline 11-ID-B contributed to the data.

366 **Data availability**

367 Data for this article, including material Characterization, heavy metal removal performance
368 sorption kinetics, and capacity are available at S. M. Islam, email: Muhammad.s.islam@jsums.edu

369 **Author Contributions**

370 This manuscript was written through the contributions of all authors. All authors have approved
371 the final version of the manuscript.

372 **Conflict of Interest**

373 The authors declare no conflict of interest

374 **Supporting Information**

375 The supporting information file is available: Synthesis and characterization of pristine and post-

376 sorption KCMS gel by XRD, Raman, EDS, and TEM analysis. Details on uptake study as well as
377 sorption kinetics and capacity of heavy metal analysis by ICP-MS.

378 **Corresponding Author**

379 Saiful M. Islam*
380 Department of Chemistry, Physics, and Atmospheric Sciences
381 Jackson State University, Jackson, Mississippi-39217, USA
382 *E-mail: Muhammad.s.islam@jsums.edu

383 **REFERENCES:**

384 (1) Türkmen, D.; Bakhshpour, M.; Akgönüllü, S.; Aşır, S.; Denizli, A. Heavy Metal Ions
385 Removal From Wastewater Using Cryogels: A Review. *Front. Sustain.* **2022**, *3*, 765592.
386 <https://doi.org/10.3389/frsus.2022.765592>.

387 (2) Naranjo, V. I.; Hendricks, M.; Jones, K. S. Lead Toxicity in Children: An Unremitting Public
388 Health Problem. *Pediatric Neurology* **2020**, *113*, 51–55.
389 <https://doi.org/10.1016/j.pediatrneurol.2020.08.005>.

390 (3) Nriagu, J. O.; Blankson, M. L.; Ocran, K. Childhood Lead Poisoning in Africa: A Growing
391 Public Health Problem. *Science of The Total Environment* **1996**, *181* (2), 93–100.
392 [https://doi.org/10.1016/0048-9697\(95\)04954-1](https://doi.org/10.1016/0048-9697(95)04954-1).

393 (4) Goldman, L. R.; Koduru, S. Chemicals in the Environment and Developmental Toxicity to
394 Children: A Public Health and Policy Perspective. *Environ Health Perspect* **2000**, *108* (suppl
395 3), 443–448. <https://doi.org/10.1289/ehp.00108s3443>.

396 (5) Needham, L. L.; Barr, D. B.; Caudill, S. P.; Pirkle, J. L.; Turner, W. E.; Osterloh, J.; Jones, R.
397 L.; Sampson, E. J. Concentrations of Environmental Chemicals Associated with
398 Neurodevelopmental Effects in U.S. Population. *NeuroToxicology* **2005**, *26* (4), 531–545.
399 <https://doi.org/10.1016/j.neuro.2004.09.005>.

400 (6) Tamasi, G.; Cini, R. Heavy Metals in Drinking Waters from Mount Amiata (Tuscany, Italy).
401 Possible Risks from Arsenic for Public Health in the Province of Siena. *Science of The Total
402 Environment* **2004**, *327* (1–3), 41–51. <https://doi.org/10.1016/j.scitotenv.2003.10.011>.

403 (7) Kawata, K.; Osawa, M.; Okabe, S. In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic
404 Doses to HepG2 Human Hepatoma Cells. *Environ. Sci. Technol.* **2009**, *43* (15), 6046–6051.
405 <https://doi.org/10.1021/es900754q>.

406 (8) Al-Qodah, Z.; Tawalbeh, M.; Al-Shannag, M.; Al-Anber, Z.; Bani-Melhem, K. Combined
407 Electrocoagulation Processes as a Novel Approach for Enhanced Pollutants Removal: A
408 State-of-the-Art Review. *Science of The Total Environment* **2020**, *744*, 140806.
409 <https://doi.org/10.1016/j.scitotenv.2020.140806>.

410 (9) Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao,

411 B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal
412 of Heavy Metals from Aqueous Solutions: A Critical Review. *Chemical Engineering Journal*
413 **2019**, *366*, 608–621. <https://doi.org/10.1016/j.cej.2019.02.119>.

414 (10) Qasem, N. A. A.; Mohammed, R. H.; Lawal, D. U. Removal of Heavy Metal Ions from
415 Wastewater: A Comprehensive and Critical Review. *npj Clean Water* **2021**, *4* (1), 36.
416 <https://doi.org/10.1038/s41545-021-00127-0>.

417 (11) Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A Review of
418 Pressure-driven Membrane Processes in Wastewater Treatment and Drinking Water
419 Production. *Environ. Prog.* **2003**, *22* (1), 46–56. <https://doi.org/10.1002/ep.670220116>.

420 (12) Zhou, W.; Deng, J.; Qin, Z.; Huang, R.; Wang, Y.; Tong, S. Construction of MoS₂ Nanoarrays
421 and MoO₃ Nanobelts: Two Efficient Adsorbents for Removal of Pb(II), Au(III) and
422 Methylene Blue. *Journal of Environmental Sciences* **2022**, *111*, 38–50.
423 <https://doi.org/10.1016/j.jes.2021.02.031>.

424 (13) Yuan, C.; Weng, C.-H. Electrokinetic Enhancement Removal of Heavy Metals from
425 Industrial Wastewater Sludge. *Chemosphere* **2006**, *65* (1), 88–96.
426 <https://doi.org/10.1016/j.chemosphere.2006.02.050>.

427 (14) Jasim, A. Q.; Ajjam, S. K. Removal of Heavy Metal Ions from Wastewater Using Ion
428 Exchange Resin in a Batch Process with Kinetic Isotherm. *South African Journal of Chemical
429 Engineering* **2024**, *49*, 43–54. <https://doi.org/10.1016/j.sajce.2024.04.002>.

430 (15) Manos, M. J.; Kanatzidis, M. G. Highly Efficient and Rapid Cs⁺ Uptake by the Layered Metal
431 Sulfide K_{2x}Mn_xSn_{3-x}S₆ (KMS-1). *J. Am. Chem. Soc.* **2009**, *131* (18), 6599–6607.
432 <https://doi.org/10.1021/ja900977p>.

433 (16) Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Selective
434 Removal of Cs⁺, Sr²⁺, and Ni²⁺ by K_{2x}Mg_xSn_{3-x}S₆ (x = 0.5–1) (KMS-2) Relevant to Nuclear
435 Waste Remediation. *Chem. Mater.* **2013**, *25* (10), 2116–2127.
436 <https://doi.org/10.1021/cm400699r>.

437 (17) Sarma, D.; Malliakas, C. D.; Subrahmanyam, K. S.; Islam, S. M.; Kanatzidis, M. G. K_{2x}Sn_{4-x}S_{8-x} (x = 0.65–1): A New Metal Sulfide for Rapid and Selective Removal of Cs⁺,
438 Sr²⁺ and UO₂²⁺ Ions. *Chem. Sci.* **2016**, *7* (2), 1121–1132.
439 <https://doi.org/10.1039/C5SC03040D>.

440 (18) Alam, R.; Roy, S. C.; Islam, T.; Feng, R.; Zhu, X.; Donley, C. L.; Islam, S. M. Molybdenum-
441 Oxysulfide-Functionalized MgAl-Layered Double Hydroxides—A Sorbent for Selenium
442 Oxoanions. *Inorg. Chem.* **2024**, *63* (24), 10997–11005.
443 <https://doi.org/10.1021/acs.inorgchem.4c00307>.

444 (19) Ali Khan, M.; Wen, J. Evaluation of Physicochemical and Heavy Metals Characteristics in
445 Surface Water under Anthropogenic Activities Using Multivariate Statistical Methods, Garra
446 River, Ganges Basin, India. *Environmental Engineering Research* **2020**, *26* (6), 200280–0.
447 <https://doi.org/10.4491/eer.2020.280>.

448 (20) Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means
449 of Natural Zeolites. *Water Research* **1984**, *18* (12), 1501–1507. [https://doi.org/10.1016/0043-1354\(84\)90124-6](https://doi.org/10.1016/0043-1354(84)90124-6).

450 (21) Jiménez-Castañeda, M.; Medina, D. Use of Surfactant-Modified Zeolites and Clays for the
451

453 Removal of Heavy Metals from Water. *Water* **2017**, *9* (4), 235.
454 <https://doi.org/10.3390/w9040235>.

455 (22) Uchimiya, M.; Lima, I. M.; Thomas Klasson, K.; Chang, S.; Wartelle, L. H.; Rodgers, J. E.
456 Immobilization of Heavy Metal Ions (Cu^{II} , Cd^{II} , Ni^{II} , and Pb^{II}) by Broiler Litter-Derived
457 Biochars in Water and Soil. *J. Agric. Food Chem.* **2010**, *58* (9), 5538–5544.
458 <https://doi.org/10.1021/jf9044217>.

459 (23) Maneechakr, P.; Mongkollertlop, S. Investigation on Adsorption Behaviors of Heavy Metal
460 Ions (Cd^{2+} , Cr^{3+} , Hg^{2+} and Pb^{2+}) through Low-Cost/Active Manganese Dioxide-Modified
461 Magnetic Biochar Derived from Palm Kernel Cake Residue. *Journal of Environmental
462 Chemical Engineering* **2020**, *8* (6), 104467. <https://doi.org/10.1016/j.jece.2020.104467>.

463 (24) Lezzi, A.; Cobianco, S.; Roggero, A. Synthesis of Thiol Chelating Resins and Their
464 Adsorption Properties toward Heavy Metal Ions. *J. Polym. Sci. A Polym. Chem.* **1994**, *32*
465 (10), 1877–1883. <https://doi.org/10.1002/pola.1994.080321008>.

466 (25) Mahmoud, M. E.; Kenawy, I. M. M.; Hafez, Mm. A. H.; Lashein, R. R. Removal,
467 Preconcentration and Determination of Trace Heavy Metal Ions in Water Samples by AAS
468 via Chemically Modified Silica Gel N-(1-Carboxy-6-Hydroxy) Benzylidenepropylamine Ion
469 Exchanger. *Desalination* **2010**, *250* (1), 62–70. <https://doi.org/10.1016/j.desal.2009.09.009>.

470 (26) Blanton, A.; Islam, T.; Roy, S. C.; Celik, A.; Nie, J.; Baker, D. R.; Li, D.; Taylor-Pashow, K.;
471 Zhu, X.; Pramanik, A.; Amin, R.; Feng, R.; Chernikov, R.; Islam, S. M. Porous
472 Semiconducting K-Sn-Mo-S Aerogel: Synthesis, Local Structure, and Ion-Exchange
473 Properties. *Chem. Mater.* **2023**, *35* (24), 10446–10456.
474 <https://doi.org/10.1021/acs.chemmater.3c01675>.

475 (27) Pearson, R. G. **Hard and Soft Acids and Bases**. *J. Am. Chem. Soc.* **1963**, *85* (22), 3533–
476 3539. <https://doi.org/10.1021/ja00905a001>.

477 (28) Manos, M. J.; Kanatzidis, M. G. Sequestration of Heavy Metals from Water with Layered
478 Metal Sulfides. *Chemistry A European J* **2009**, *15* (19), 4779–4784.
479 <https://doi.org/10.1002/chem.200900353>.

480 (29) Manos, M. J.; Petkov, V. G.; Kanatzidis, M. G. $\text{H}_{2x}\text{Mn}_x\text{Sn}_{3-x}\text{S}_6$ ($x = 0.11\text{--}0.25$): A Novel
481 Reusable Sorbent for Highly Specific Mercury Capture Under Extreme pH Conditions. *Adv
482 Funct Materials* **2009**, *19* (7), 1087–1092. <https://doi.org/10.1002/adfm.200801563>.

483 (30) Manos, M. J.; Chrissafis, K.; Kanatzidis, M. G. Unique Pore Selectivity for Cs^+ and
484 Exceptionally High NH_4^+ Exchange Capacity of the Chalcogenide Material
485 $\text{K}_6\text{Sn}[\text{Zn}_4\text{Sn}_4\text{S}_{17}]$. *J. Am. Chem. Soc.* **2006**, *128* (27), 8875–8883.
486 <https://doi.org/10.1021/ja061342t>.

487 (31) Wang, K.-Y.; Feng, M.-L.; Huang, X.-Y.; Li, J. Organically Directed Heterometallic
488 Chalcogenidometalates Containing Group 12(II)/13(III)/14(IV) Metal Ions and
489 Antimony(III). *Coordination Chemistry Reviews* **2016**, *322*, 41–68.
490 <https://doi.org/10.1016/j.ccr.2016.04.021>.

491 (32) Oh, Y.; Bag, S.; Malliakas, C. D.; Kanatzidis, M. G. Selective Surfaces: High-Surface-Area
492 Zinc Tin Sulfide Chalcogels. *Chem. Mater.* **2011**, *23* (9), 2447–2456.
493 <https://doi.org/10.1021/cm2003462>.

494 (33) Pala, I. R.; Brock, S. L. ZnS Nanoparticle Gels for Remediation of Pb^{2+} and Hg^{2+} Polluted

495 Water. *ACS Appl. Mater. Interfaces* **2012**, *4* (4), 2160–2167.
496 <https://doi.org/10.1021/am3001538>.

497 (34) Gacoin, T.; Malier, L.; Counio, G.; Boilot, J.-P. CdS Nanoparticles and the Sol-Gel Process;
498 Dunn, B. S., Mackenzie, J. D., Pope, E. J. A., Schmidt, H. K., Yamane, M., Eds.; San Diego,
499 CA, 1997; pp 358–365. <https://doi.org/10.1111/12.284132>.

500 (35) Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous Semiconductor Chalcogenide
501 Aerogels. *Science* **2005**, *307* (5708), 397–400. <https://doi.org/10.1126/science.1106525>.

502 (36) Bag, S.; Kanatzidis, M. G. Chalcogels: Porous Metal–Chalcogenide Networks from Main-
503 Group Metal Ions. Effect of Surface Polarizability on Selectivity in Gas Separation. *J. Am.*
504 *Chem. Soc.* **2010**, *132* (42), 14951–14959. <https://doi.org/10.1021/ja1059284>.

505 (37) Manos, M. J.; Kanatzidis, M. G. Metal Sulfide Ion Exchangers: Superior Sorbents for the
506 Capture of Toxic and Nuclear Waste-Related Metal Ions. *Chem. Sci.* **2016**, *7* (8), 4804–4824.
507 <https://doi.org/10.1039/C6SC01039C>.

508 (38) Nie, J.; Islam, T.; Roy, S. C.; Li, D.; Amin, R.; Taylor-Pashow, K.; Zhu, X.; Feng, R.;
509 Chernikov, R.; Pramanik, A.; Han, F. X.; Kumbhar, A. S.; Islam, S. M. Amorphous K–Co–
510 Mo–S_x Chalcogel: A Synergy of Surface Sorption and Ion-Exchange. *Small* **2024**, *24* 00679.
511 <https://doi.org/10.1002/smll.202400679>.

512 (39) Celik, A.; Baker, D. R.; Arslan, Z.; Zhu, X.; Blanton, A.; Nie, J.; Yang, S.; Ma, S.; Han, F. X.;
513 Islam, S. M. Highly Efficient, Rapid, and Concurrent Removal of Toxic Heavy Metals by the
514 Novel 2D Hybrid LDH-[Sn₂S₆]. *Chemical Engineering Journal* **2021**, *426*, 131696.
515 <https://doi.org/10.1016/j.cej.2021.131696>.

516 (40) Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. Highly Selective and
517 Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the
518 MoS₄²⁻ Ion. *J. Am. Chem. Soc.* **2016**, *138* (8), 2858–2866.
519 <https://doi.org/10.1021/jacs.6b00110>.

520 (41) US EPA, O. *National Primary Drinking Water Regulations*. [https://www.epa.gov/ground-
522 water-and-drinking-water/national-primary-drinking-water-regulations](https://www.epa.gov/ground-
521 water-and-drinking-water/national-primary-drinking-water-regulations) (accessed 2023-11-
523 20).

524 (42) CPCB | Central Pollution Control Board. [https://cpcb.nic.in/who-guidelines-for-drinking-
526 water-quality/](https://cpcb.nic.in/who-guidelines-for-drinking-
525 water-quality/) (accessed 2023-11-20).

527 (43) Freundlich, H. Über Die Adsorption in Lösungen. *Zeitschrift für Physikalische Chemie* **1907**,
528 *57U* (1), 385–470. <https://doi.org/10.1515/zpch-1907-5723>.

529 (44) Langmuir, I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA
530 AND PLATINUM. *J. Am. Chem. Soc.* **1918**, *40* (9), 1361–1403.
531 <https://doi.org/10.1021/ja02242a004>.

532 (45) Yang, L.; Xie, L.; Chu, M.; Wang, H.; Yuan, M.; Yu, Z.; Wang, C.; Yao, H.; Islam, S. M.; Shi,
533 K.; Yan, D.; Ma, S.; Kanatzidis, M. G. Mo₃S₁₃²⁻ Intercalated Layered Double Hydroxide:
534 Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag⁺ Ions to
535 Metallic Ag⁰ Ribbons. *Angew. Chem. Int. Ed.* **2022**, *61* (1), e202112511.
536 <https://doi.org/10.1002/anie.202112511>.

537 (46) Shao, P.; Chang, Z.; Li, M.; Lu, X.; Jiang, W.; Zhang, K.; Luo, X.; Yang, L. Mixed-Valence
538 Molybdenum Oxide as a Recyclable Sorbent for Silver Removal and Recovery from

537 Wastewater. *Nat Commun* **2023**, *14* (1), 1365. <https://doi.org/10.1038/s41467-023-37143-2>.

538 (47) *MoS₄2– intercalated NiFeTi LDH as an efficient and selective adsorbent for elimination of*
 539 *heavy metals - RSC Advances (RSC Publishing)* DOI:10.1039/D0RA02766A.
 540 <https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra02766a> (accessed 2020-11-01).

541 (48) Ali, J.; Wang, H.; Ifthikar, J.; Khan, A.; Wang, T.; Zhan, K.; Shahzad, A.; Chen, Z.; Chen, Z.
 542 Efficient, Stable and Selective Adsorption of Heavy Metals by Thio-Functionalized Layered
 543 Double Hydroxide in Diverse Types of Water. *Chemical Engineering Journal* **2018**, *332*,
 544 387–397. <https://doi.org/10.1016/j.cej.2017.09.080>.

545 (49) Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. Highly Selective and
 546 Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the
 547 MoS_{42–} Ion. *J. Am. Chem. Soc.* **2016**, *138* (8), 2858–2866.
 548 <https://doi.org/10.1021/jacs.6b00110>.

549 (50) Xie, L.; Yu, Z.; Islam, S. M.; Shi, K.; Cheng, Y.; Yuan, M.; Zhao, J.; Sun, G.; Li, H.; Ma, S.;
 550 Kanatzidis, M. G. Remarkable Acid Stability of Polypyrrole-MoS₄: A Highly Selective and
 551 Efficient Scavenger of Heavy Metals Over a Wide pH Range. *Advanced Functional Materials*
 552 **2018**, *28* (20), 1800502. <https://doi.org/10.1002/adfm.201800502>.

553 (51) Yuan, M.; Yao, H.; Xie, L.; Liu, X.; Wang, H.; Islam, S. M.; Shi, K.; Yu, Z.; Sun, G.; Li, H.;
 554 Ma, S.; Kanatzidis, M. G. Polypyrrole–Mo₃S₁₃: An Efficient Sorbent for the Capture of
 555 Hg²⁺ and Highly Selective Extraction of Ag⁺ over Cu²⁺. *J. Am. Chem. Soc.* **2020**, *142* (3),
 556 1574–1583. <https://doi.org/10.1021/jacs.9b12196>.

557 (52) Jawad, A.; Liao, Z.; Zhou, Z.; Khan, A.; Wang, T.; Ifthikar, J.; Shahzad, A.; Chen, Z.; Chen,
 558 Z. Fe-MoS₄: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy
 559 Metals. *ACS Appl. Mater. Interfaces* **2017**, *9* (34), 28451–28463.
 560 <https://doi.org/10.1021/acsami.7b07208>.

561 (53) *High and fast adsorption of Cd(II) and Pb(II) ions from aqueous solutions by a waste biomass*
 562 *based hydrogel* - *ProQuest*.
 563 <https://search.proquest.com/openview/5d999bad25cbeb28e244fc17e02ebdb3/1?pq-origsite=gscholar&cbl=2041939> (accessed 2020-11-01).

564 (54) Ogawa, M.; Saito, F. Easily Oxidizable Polysulfide Anion Occluded in the Interlayer Space
 565 of Mg/Al Layered Double Hydroxide. *Chem. Lett.* **2004**, *33* (8), 1030–1031.
 566 <https://doi.org/10.1246/cl.2004.1030>.

567 (55) *Efficient Removal of Heavy Metal Ions with An EDTA Functionalized Chitosan/Polyacrylamide Double Network Hydrogel* | *ACS Sustainable Chemistry & Engineering*. <https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.6b02181> (accessed 2020-11-01).

568 (56) Huang, G.; Wang, D.; Ma, S.; Chen, J.; Jiang, L.; Wang, P. A New, Low-Cost Adsorbent:
 569 Preparation, Characterization, and Adsorption Behavior of Pb(II) and Cu(II). *Journal of*
 570 *Colloid and Interface Science* **2015**, *445*, 294–302.
 571 <https://doi.org/10.1016/j.jcis.2014.12.099>.

572 (57) *Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic*
 573 *Metal Contaminants from Water* | *ACS Applied Materials & Interfaces*.
 574 <https://pubs.acs.org/doi/abs/10.1021/acsami.5b08287> (accessed 2020-11-01).

579 (58) Hassanzadeh Fard, Z.; Malliakas, C. D.; Mertz, J. L.; Kanatzidis, M. G. Direct Extraction of
580 Ag^+ and Hg^{2+} from Cyanide Complexes and Mode of Binding by the Layered $\text{K}_2\text{MgSn}_2\text{S}_6$
581 (KMS-2). *Chem. Mater.* **2015**, *27* (6), 1925–1928.
582 <https://doi.org/10.1021/acs.chemmater.5b00374>.

583 (59) Li, F.; Wang, X.; Yuan, T.; Sun, R. A Lignosulfonate-Modified Graphene Hydrogel with
584 Ultrahigh Adsorption Capacity for $\text{Pb}(\text{II})$ Removal. *J. Mater. Chem. A* **2016**, *4* (30), 11888–
585 11896. <https://doi.org/10.1039/C6TA03779H>.

586 (60) Bao, J.; Fu, Y.; Bao, Z. Thiol-Functionalized Magnetite/Graphene Oxide Hybrid as a
587 Reusable Adsorbent for Hg^{2+} Removal. *Nanoscale Research Letters* **2013**, *8* (1), 486.
588 <https://doi.org/10.1186/1556-276X-8-486>.

589 (61) Subrahmanyam, K. S.; Malliakas, C. D.; Sarma, D.; Armatas, G. S.; Wu, J.; Kanatzidis, M.
590 G. Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture
591 of Iodine and Mercury. *J. Am. Chem. Soc.* **2015**, *137* (43), 13943–13948.
592 <https://doi.org/10.1021/jacs.5b09110>.

593 (62) *X-ray Photoelectron Spectroscopy (XPS) Reference Pages Potassium*.
594 <https://www.xpsfitting.com/2020/02/potassium.html>.

595 (63) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. *Handbook of X-Ray Photoelectron*
596 *Spectroscopy*; Perkin-Elmer Corporation, 1992.

597 (64) Roy, S. C.; Asaduzzaman, A.; May, B.; Beals, A. M.; Chen, X.; Zhu, X.; Islam, S. M.
598 Oxidative Immobilization of Gaseous Mercury by $[\text{Mo}_3\text{S}(\text{S}_2)_6]^{2-}$ -Functionalized Layered
599 Double Hydroxide. *Chem. Mater.* **2024**, *36* (11), 5826–5835.
600 <https://doi.org/10.1021/acs.chemmater.4c01098>.

601 (65) Trung, T. N.; Kim, D.-O.; Kim, E.-T. Direct and Self-Selective Synthesis of Ag Nanowires
602 on Patterned Graphene. *RSC Adv.* **2017**, *7* (28), 17325–17331.
603 <https://doi.org/10.1039/C6RA28389F>.

604