

1 **Molybdenum-oxysulfide Functionalized MgAl Layered Double Hydroxides –**
2 **A Sorbent for Selenium Oxoanions**

4 *Robiul Alam,¹ Subrata Chandra Roy,¹ Taohedul Islam,¹ Renfei Feng², Xianchun Zhu,³ Carrie L.*
5 *Donley,⁴ Saiful M. Islam*¹*

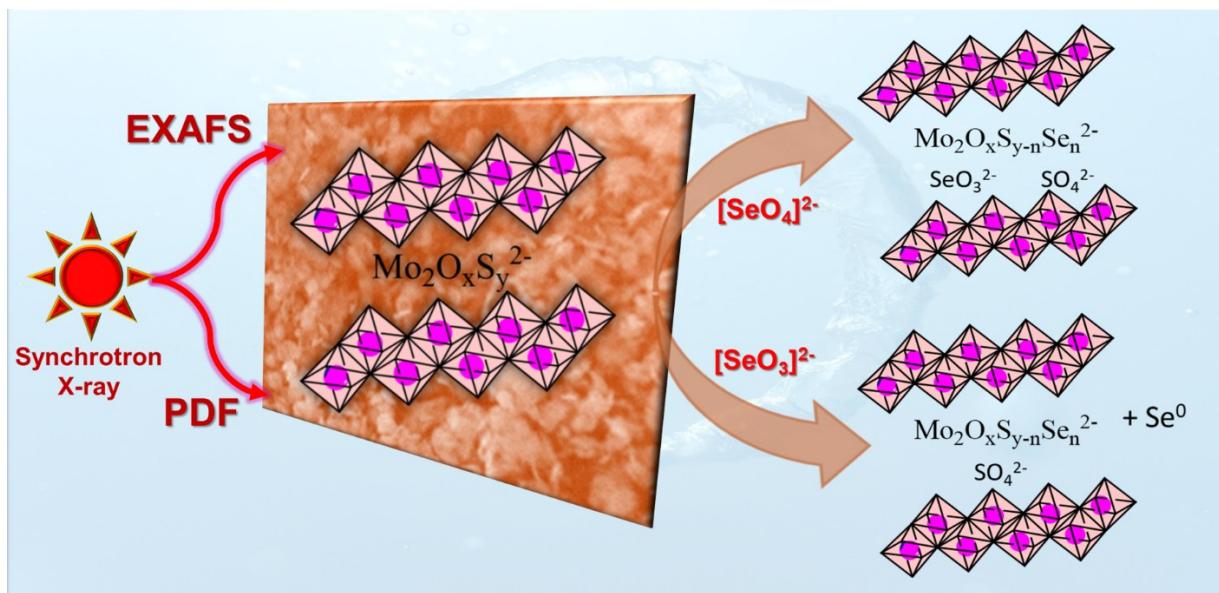
6 *¹Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson,*
7 *Mississippi 39217, United States*

8 *²Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada*

9 *³Department of Civil Engineering, Jackson State University, Jackson, Mississippi 39217, United States*

10 *⁴Department of Chemistry, and Chapel Hill Analytical and Nanofabrication Laboratory (CHANL)*
11 *University of North Carolina at Chapel Hill, North Carolina 27599, United States*

15 **ABSTRACT**


16 Effective removal of chemically toxic selenium oxoanions at high-capacity and trace levels
17 from contaminated water remains challenging in current scientific pursuits. Here, we report the
18 functionalization of the MgAl layered double hydroxide with molybdenum-oxysulfide (MoO_2S_2)
19 anion, referred to as LDH- MoO_2S_2 , and its potential to sequester $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ and $\text{Se}^{\text{IV}}\text{O}_3^{2-}$ from
20 aqueous solution. LDH- MoO_2S_2 nanosheets were synthesized by ion-exchange method in solution.
21 Synchrotron X-ray pair distribution function (PDF) and extended X-ray absorption fine structure
22 (EXAFS) revealed an unexpected transformation of the $\text{MoO}_2\text{S}_2^{2-}$ to $[\text{Mo}_2\text{O}_2\text{S}_6]^{2-}$ like species
23 during the intercalation process. LDH- MoO_2S_2 is remarkably efficient in removing SeO_4^{2-} and
24 SeO_3^{2-} ions from ppm to trace level (≤ 10 ppb), with distribution constant (K_d) ranging from 10^4 to
25 10^5 mL/g. This material showed exceptionally high sorption capacities of 237 and 358 mg/g for
26 SeO_4^{2-} and SeO_3^{2-} , respectively. Furthermore, LDH- MoO_2S_2 demonstrates a substantial affinity
27 and efficiency to remove $\text{SeO}_3^{2-}/\text{SeO}_4^{2-}$ even in the presence of competitive ions from

1 contaminated water. Hence, the removal of selenium (VI/IV) oxoanions collectively occurs
2 through reductive precipitation and ion exchange mechanisms. This work provides significant
3 insights into the chemical structure of MoO_2S_2 anion into LDH and emphasizes its exceptional
4 potential for high-capacity selenium removal and positioning it as a premier sorbent for selenium
5 oxoanions.

6 **Keywords:** layered double hydroxides, $\text{MoO}_2\text{S}_2^{2-}$, $\text{MoO}_2\text{S}_6^{2-}$, wastewater purification, reductive
7 precipitation, and ion exchange mechanisms.

8

9 **TOC Graphic:**

10

11 **Synopsis:** $\text{MoO}_2\text{S}_2^{2-}$ functionalized LDH nanosheets exhibit unpredictable structural
12 transformation from $\text{MoO}_2\text{S}_2^{2-}$ to $\text{MoO}_2\text{S}_6^{2-}$ like species during the intercalation process, enabling
13 a high-capacity removal of selenium oxoanions, followed by reductive precipitation and ion
14 exchange mechanisms.

1 INTRODUCTION

2 Selenium at trace levels is important for the correct functioning of both humans and
3 animals as it plays an integral part in various physiological processes, but in high amounts, it may
4 impose serious health problems.¹⁻³ Moreover, because of its chemical and radiological toxicity
5 selenium can cause severe environmental problems globally.^{4,5} Therefore, governments of
6 different countries have enacted stringent selenium control regulations.⁶

7 Selenium enters into the environment both by natural and human-related pathways. Natural
8 sources of selenium emissions arise from the erosion and weathering of substrates that contain
9 high-levels of selenium, such as phosphatic rocks and coal deposits.⁷ On the other hand, human-
10 related contributions to selenium contamination are mainly linked to industrial activities, such as
11 mining operations and the burning of fossil fuels.⁸ These activities enable the deposition of
12 selenium into the atmosphere and its subsequent leaching into the aquatic environment.⁹ In aquatic
13 systems, selenium mainly remains as soluble oxoanions, such as selenate ($\text{Se}^{\text{VI}}\text{O}_4^{2-}$) and selenite
14 ($\text{Se}^{\text{IV}}\text{O}_3^{2-}$), and is important to remove for the safeguard of biological systems.

15 Several materials, including metal-organic frameworks¹⁰, titanate nanotubes¹¹, carbon
16 nanotubes¹², magnesium oxide¹³, alumina oxide¹⁴, titanium oxide¹⁵, and numerous other metal
17 oxides¹⁶ have demonstrated functionalities in removing selenium from water. Despite the
18 discovery of such diverse materials, the removal of selenium oxoanions, specifically $\text{Se}^{\text{IV}}\text{O}_3^{2-}$ and
19 $\text{Se}^{\text{VI}}\text{O}_4^{2-}$, at trace-levels poses significant challenges due to numerous factors, including chemical
20 stability, high solubility in water, competition for sorption sites, limitations in kinetics,
21 complexation with other ions, and the technological limitations of existing remediation
22 methods.^{7,17-20}

1 Layered double hydroxides (LDHs) are two dimensional (2D) anionic clay, represented by
2 the formula $[M^{2+}_{1-x}M^{3+}_x(OH)_2]^{x+}(A^{n-})_{x/n} \cdot mH_2O$, where M and A denote metals and anions,
3 respectively.²¹⁻²⁵ The intriguing structure of LDH incorporates versatile sorption mechanisms,
4 including surface adsorption, interlayer anion exchange, and the reconstruction of LDH layers,
5 enabling the removal of chemically diverse oxoanions from wastewater.^{7,22,26-28} However, without
6 functionalization LDH suffers low specificity and adsorption capability for oxoanionsic species of
7 selenium. Previously, we reported metal-sulfide intercalated LDH, as referred to LDH-MoS₄, as
8 effective sorbent for toxic oxoanions of Se(IV), and Se(VI).²⁹ This finding underscores the
9 importance of functionalizing LDH with chemically diverse thioanionic species and determine
10 their effectiveness in the removing of selenium oxoanions from aqueous solutions.

11 In this work, we report the pioneering synthesis of a metal-oxysulfide intercalated LDH,
12 referred to as LDH-MoO₂S₂. With synchrotron X-ray pair distribution function (PDF) and
13 extended X-ray absorption fine structure (EXAFS), we unveiled the structural transformation of
14 the molecular MoO₂S₂²⁻ to Mo₂O₂S₆²⁻ like species during the intercalation of MoO₂S₂²⁻ into LDH-
15 NO₃. We further show its effectiveness in removing selenium oxoanions of Se^{VI}O₄²⁻ and Se^{IV}O₃²⁻
16 from ppm level to the trace-level, ≤ 10 ppb with a K_d value of $\geq 10^4$ mL/g. We also demonstrate that
17 LDH-MoO₂S₂ displays noteworthy adsorption capacities of 237 mg/g for SeO₄²⁻ and 358 mg/g for
18 SeO₃²⁻ and effectively removing them from highly contaminated water. These results showcase a
19 superior potential of LDH-MoO₂S₂ for the highly efficient removal of selenium from contaminated
20 water.

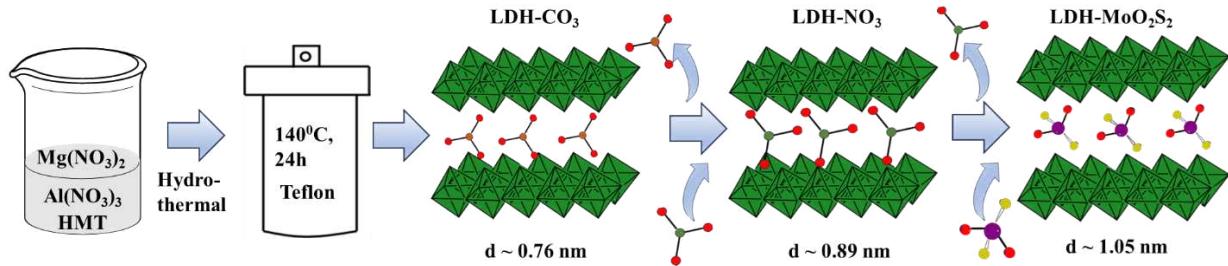
21

1 **EXPERIMENTAL SECTION**

2 **LDH Preparation:** The MgAl-LDH-CO₃ (LDH-CO₃) was synthesized according to procedures
3 described in previous work.²⁴ The MgAl-LDH-NO₃ (LDH-NO₃) was obtained by ion exchange of
4 the CO₃²⁻ ion, described in details the supporting information file (SI). The intercalation of
5 MoO₂S₂²⁻ anion into LDH-NO₃ was conducted by anion exchange. In detail, for the synthesis of
6 MgAl-LDH-MoO₂S₂, 0.3 g of MgAl-LDH-NO₃ and 0.3 g of (NH₄)₂MoO₂S₂ were dispersed in 10
7 mL formamide. The mixture was then stirred at ambient conditions for 24 h leading to the
8 formation of orange solutions with suspended particles. After the filtration, orange solids were
9 obtained, washed with ethanol, and dried under ambient conditions. The synthesis of
10 (NH₄)₂MoO₂S₂ was conducted following the procedure outlined in a prior study.³⁰ A detail on the
11 synthesis is reported in the SI.

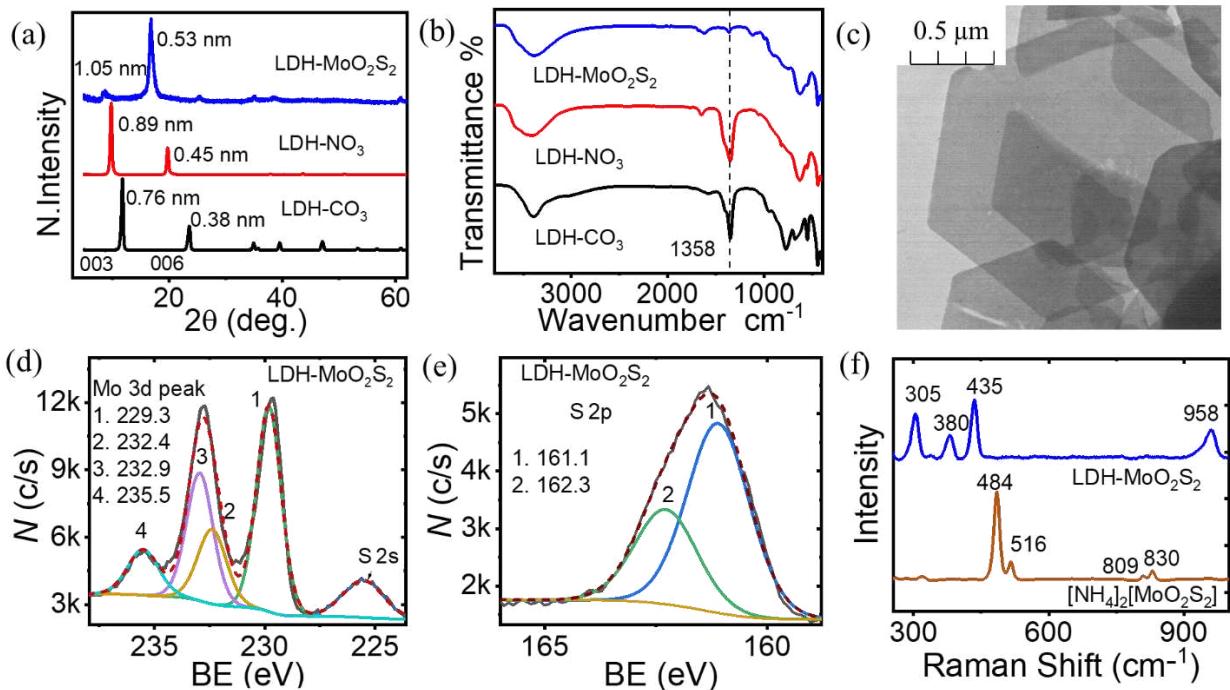
12 **Adsorption Experiments:** The adsorption experiments of Se^{IV}O₃²⁻ and Se^{VI}O₄²⁻ oxoanions by the
13 LDH-MoO₂S₂ were performed at room temperature (RT). Details on the sorption experiments,
14 investigations of sorption isotherms, kinetics, and removal efficiencies for selenium(IV/VI)
15 oxoanions are reported in the SI.

16 **Characterization:** Samples were analyzed by X-ray powder diffraction (XRD), scanning electron
17 microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy
18 (EDS), infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy
19 (XPS), inductively charged coupled mass spectroscopy (ICP-MS), synchrotron X-ray pair
20 distribution function (PDF), and extended X-ray absorption fine structure (EXAFS), please see
21 details in the SI.


22

1 **RESULTS AND DISCUSSION**

2

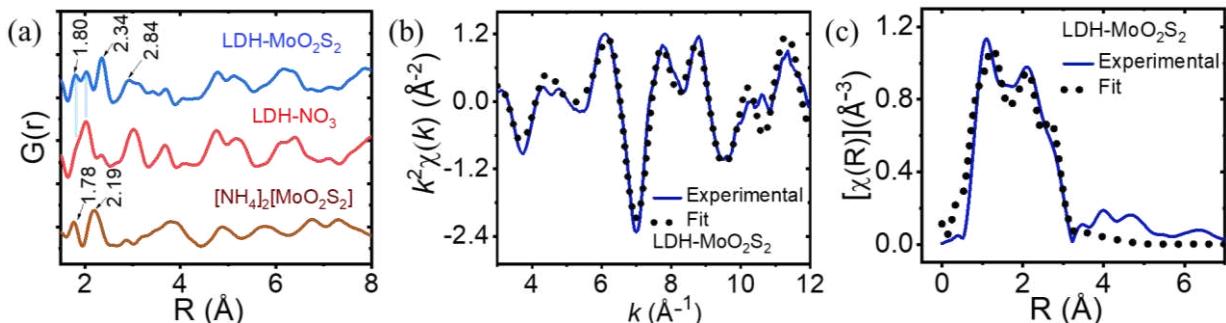

3 **Synthesis and characterizations of LDH-MoO₂S₂:** The LDH-CO₃ was synthesized by a
4 hydrothermal synthesis; subsequently, the nitrate and molybdenum oxysulfide (MoO₂S₂) anions
5 were intercalated into the positively charged lamellar of the LDH by a stepwise ion-exchange
6 reaction: LDH-CO₃ → LDH-NO₃ → LDH-MoO₂S₂ to produce the MoO₂S₂ functionalized
7 ultrathin LDH (Schematic 1). X-ray powder diffraction revealed the shift in the characteristic *d*₀₀₃
8 peak position of LDH-CO₃, LDH-NO₃, and LDH-MoO₂S₂ from 0.76 → 0.89 → 1.05 nm (Figure
9 1a) that matches the previously reported XRD pattern of the CO₃²⁻ to NO₃⁻ ion exchange.^{24,31,32}
10 This change in the *d*₀₀₃ peak position corresponds to the increase of the basal space due to the
11 accommodation of the larger anions of NO₃⁻ and MoO₂S₂²⁻ in the interlayer space of the LDH. It
12 is noteworthy that after the intercalation, the (003) reflection at 1.05 nm significantly weakens as
13 compared to the (006) reflection at 0.53 nm. In agreement with Ma *et al.*, we believe that the
14 intercalation of the heavy (MoO₂S₂)²⁻ anions and their strong scattering characteristic leads to this
15 phenomenon.³² Infrared spectrum (IR) showing the strong band centering at about 1358 cm⁻¹ for
16 the CO₃²⁻ intercalated LDH; however, after the nitrate intercalation peak position remains same
17 but their shape becomes distinctive (Figure 1b).^{24,33,34} This further demonstrates the incorporation
18 of nitrate anion, however, the presence of CO₃²⁻ along with NO₃⁻ can't be ignored. This peak was
19 almost abolished for the LDH-MoO₂S₂ (Figure 1b), which suggests the exchange of the NO₃⁻ anion
20 by the [MoO₂S₂]²⁻ species. Hence the intercalation of was achieved using a large excess of
21 [MoO₂S₂]²⁻ as specified in the experimental section.

22

1 **Schematic 1:** A schematic diagram of the synthesis of LDH-CO₃, followed by ion exchange of
 2 CO₃²⁻ with the NO₃⁻ anions for the synthesis of LDH-NO₃; subsequently by MoO₂S₂²⁻ anions to
 3 synthesize the MoO₂S₂²⁻ intercalated LDH-MoO₂S₂.

4
 5 The morphology of the LDH-NO₃ and LDH-MoO₂S₂ were examined by using scanning
 6 electron microscopic (SEM) and transmission electron microscopy (TEM). SEM revealed that
 7 both the NO₃ and the MoO₂S₂²⁻ intercalated LDHs retained a hexagonal plate-like morphology
 8 (Figure S2). The ultrathin hexagonal sheets of LDH are visible in TEM (Figure 1c). Elemental
 9 mapping of the LDH-MoO₂S₂ shows the presence and the homogeneous distribution of Mg, Al,
 10 Mo, and S (Figure S3). Energy dispersive X-ray spectroscopy (EDS) analysis of LDH-MoO₂S₂
 11 revealed an average atomic abundance of 35.04, 22.94, 12.40 and 29.62 % for Mg, Al, Mo, and S
 12 atoms, respectively (Figure S2). This finding further demonstrates the successful introduction of
 13 MoO₂S₂²⁻ species into the interlayer of MgAl-LDH. Note that oxygen was not determined by EDS
 14 due to the unreliability of its quantitative determination. Solid-state UV/vis absorption
 15 spectroscopy of the crystalline orange powder of LDH-MoO₂S₂ revealed a band gap energy of
 16 ~2.04 eV (figure S4). This finding suggests that the LDH-MoO₂S₂ is a medium band gap
 17 semiconductor.

1 **Figure 1.** Comparison of XRD patterns (a), FT-IR spectra (b) of LDH-CO₃, LDH-NO₃, and LDH-
2 MoO₂S₂; TEM image of the LDH-MoO₂S₂ showing the hexagonal morphology (c); XPS spectra
3 of LDH-MoO₂S₂ with the deconvolution of associated XPS peaks: Mo 3d (d), and S 2p (e); and
4 Raman spectra of (NH₄)₂MoO₂S₂ and LDH-MoO₂S₂ (f).


5
6 XPS analysis of the LDH-MoO₂S₂ (Figure 1 d, e) revealed the chemical state of Mo and S. The
7 binding energies (BEs) at 232.4 and 235.5 eV (Figure 1d) were assigned 3d_{5/2} and 3d_{3/2},
8 respectively of Mo⁶⁺.³⁵⁻⁴¹ Besides the Mo⁶⁺ peaks, there exists a pair of peaks at 229.3 and 232.9
9 eV, for Mo 3d orbital energies. Importantly, for the precursor (NH₄)₂MoO₂S₂ the intense peaks at
10 233.69 eV, 230.51 eV are attributed to Mo 3d orbital energy (Figure S5). Hence such a difference
11 in the BEs between the precursor and LDH-MoO₂S₂ suggests a change in the electronic structure
12 and/ coordination environment of Mo atoms after the intercalation or a change in coordination
13 environment of Mo atoms after the intercalation, which is not clear to us. Besides, XPS of LDH-
14 MoO₂S₂ shows strong bands at 161.1 and 162.3 eV, which correspond to the BEs of S 2p for S²⁻
15 .^{35,42} Raman spectrum shows strong peaks ranging from 300 - 440 cm⁻¹, which are related to Mo-
16 S modes.^{35,36,43} Besides, Raman spectrum of the (NH₄)₂MoO₂S₂ (Figure 1f) revealed two

1 distinguish peaks at 809 and 830 cm^{-1} that correspond to $\nu(\text{Mo-O})$,^{30,35,43,44} whereas after
2 intercalation, LDH- MoO_2S_2 shows a strong bands centered at 958 cm^{-1} suggesting the presence of
3 Mo=O bond.^{35,36,45} This peak was notably absent in the Raman spectrum of the precursor materials,
4 reflecting a significant structural transformation during the ion exchange process.

5 To understand the structural insights of the interlayered anion of LDH- MoO_2S_2 , we
6 conducted a comprehensive analysis, including synchrotron X-ray pair distribution function (PDF)
7 and extended X-ray absorption fine structure (EXAFS). These analyses suggest a transformation
8 from the initial $\text{MoO}_2\text{S}_2^{2-}$ species to a $[\text{Mo}_2\text{O}_x\text{S}_y]^{2-}$ like structure. The Raman spectral feature at
9 958 cm^{-1} is interpreted as a direct manifestation of the Mo=O vibrational mode within the
10 $[\text{Mo}_2\text{O}_x\text{S}_y]^{2-}$ like species, formed during the intercalation process.⁴⁶⁻⁴⁹ Moreover, to assess the
11 chemical states and bonding correlations in details, we analyzed the LDH- MoO_2S_2 by X-ray pair
12 distribution function (PDF) and compared with LDH- NO_3 and $(\text{NH}_4)_2\text{MoO}_2\text{S}_2$ (Figure 2a). PDF
13 of the $(\text{NH}_4)_2\text{MoO}_2\text{S}_2$ shows two strong correlations at ~ 1.78 and 2.19 \AA . These peaks correspond
14 to the Mo-O and Mo-S interactions as evidenced by the crystal structure of the
15 $(\text{NH}_4)_2\text{MoO}_2\text{S}_2$.^{44,46,50} Besides, the PDF of the LDH- NO_3 shows peaks at 1.83 \AA (a shoulder) and
16 2.06 \AA (strong), which can be assigned as Al-O and Mg-O bonding correlation, respectively.⁵¹ In
17 contrast, PDF of the LDH- MoO_2S_2 shows the absence of the peak at 2.19 \AA that corresponds to
18 Mo-S bonding correlation for the tetrahedral MoO_2S_2 anion. However, it shows the presence of a
19 very strong peak at about 2.34 \AA , which is consistent to Mo-S bonding correlation. Here, the
20 increase of the Mo-S bond distance from 2.19 to 2.34 \AA can be linked to an increase of the
21 coordination number of Mo, which is due to the increase in the size of molybdenum ion. This could
22 be attributed to the reduction of Mo^{6+} to a lower oxidation state followed a concurrent partial
23 oxidation of some S^{2-} , which is not clear to us. However, a structural rearrangement driven change

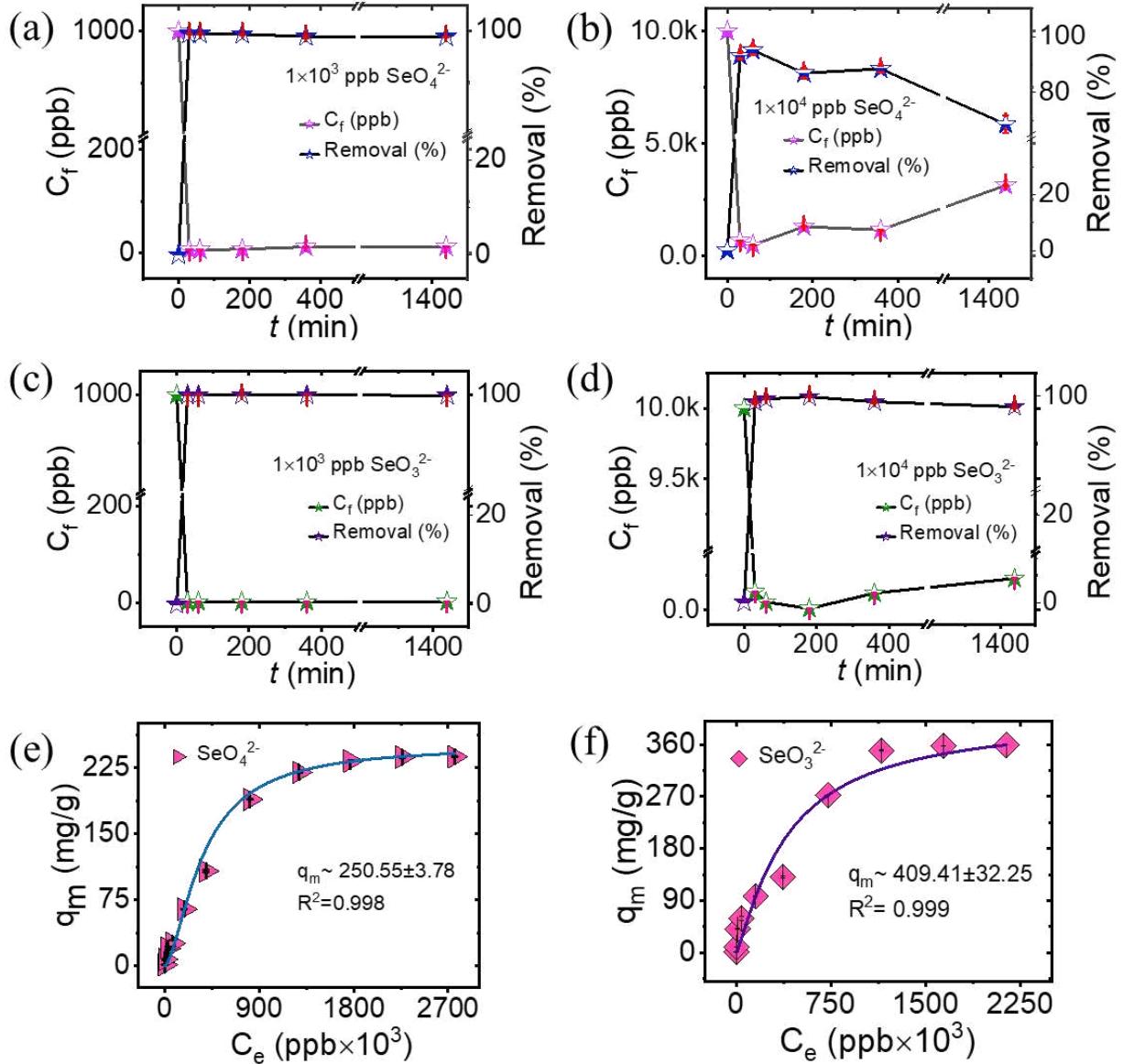
1 in interatomic distance can't be completely ruled out." Moreover, a peak centered at about 1.80 Å
 2 could be the superimposed peak for Mo=O and Al-O, while the peak at about 2.84 may be
 3 attributed to the Mo-Mo correlation as observed in the $\text{Mo}_2\text{O}_2\text{S}_6^{2-}$ anions.⁴⁷

4

5 **Figure 2:** Synchrotron X-ray pair distribution function of $(\text{NH}_4)_2\text{MoO}_2\text{S}_2$, LDH- NO_3 , and LDH-
 6 LDH- MoO_2S_2 (a); EXAFS of Mo-K-edge data for LDH- MoO_2S_2 (b), and its Fourier transforms (c).

7

8 The coordination environment of Mo was investigated using extended X-ray absorption
 9 fine structure (EXAFS) studies. Figure 2b and 2c represent the EXAFS data in k and R -space.
 10 Harnessing the structural entities obtained by PDF, XPS, and Raman, Mo K-edge EXAFS data
 11 was fitted by using multiple scattering paths, including Mo-Mo, Mo-S and Mo-O. Details on the
 12 results of the fitting are given Table S1. As expected from the PDF and XPS results, the fitting of
 13 the Mo K-edge was not converged straightforward to MoO_2S_2 anions alone, instated an additional
 14 compound, $(\text{Me}_4\text{N})_2\text{MoO}_2\text{S}_6$, was required to fit the data.⁵² The fitting of the data yielded a $d_{(\text{Mo}-$
 15 $\text{Mo})} \sim 2.92$ Å, which is close to the dimeric cluster of molybdenum, Mo_2 ($d_{(\text{Mo-Mo})} = 2.83$ Å) of the
 16 $[\text{Mo}_2\text{O}_2\text{S}_6]^{2-}$.⁴⁷ Overall, the analysis of the Mo K-edge data revealed the presence of Mo-O, Mo-
 17 S, and Mo-Mo coordination environment. Hence, Mo-Mo bonding correlation can be attributed to
 18 the dimerization of the MoO_2S_2 ion. This kind of structural rearrangement is known for MoS_4^{2-}
 19 that undergoes dimeric rearrangement to $\text{Mo}_2\text{S}_7^{2-}$.³⁹ This finding suggests that the intercalation


1 chemistry of $\text{MoO}_2\text{S}_2^{2-}$ into LDH is remarkably complex, contrasting with the straightforward
2 intercalation of the molecular precursors of metal-sulfides proposed previously for MoS_4^{2-} ,
3 $\text{Mo}_3\text{S}_{13}^{2-}$, SnS_4^{2-} and $\text{Sn}_2\text{S}_6^{2-}$ intercalated LDHs.^{24,29,33,53-56}

4 **Removal of $\text{Se}^{\text{IV}}\text{O}_3^{2-}$ and $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ from water:** The efficiency of LDH- MoO_2S_2 in
5 removing SeO_4^{2-} and SeO_3^{2-} ions from aqueous solutions was investigated at neutral, acidic, and
6 alkaline pHs (Figure S6). Our results suggest that LDH- MoO_2S_2 is more effective in removing
7 $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ at neutral pH than it is under acidic or alkaline conditions. At a neutral pH, LDH- MoO_2S_2
8 was able to remove about 99 % of $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ (Table S2) from a 10^3 ppb spiked deionized water
9 (DIW) solution leaving the final concentration of about 9 ppb with the K_d values of 8.2×10^4 mL/g.
10 Hence, such a low residual concentration of the selenium is well below the US EPA's (50 ppb) and
11 world health organization (WHO)'s tolerance limit (40 ppb).^{29,57,58} Also, it is important to note that
12 materials that possess K_d values $\geq 10^4$ mL/g are commonly regarded as outstanding sorbents.^{29,59,60}
13 Hence, such a high K_d suggests that the sorbent LDH- MoO_2S_2 has a high affinity to sorbate,
14 $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ ions and thus could be useful for the decontamination of wastewater. The removal
15 effectiveness of LDH- MoO_2S_2 for 10^4 ppb SeO_4^{2-} spiked deionized water solution shows 68.61%
16 removal, whereas in acidic and alkaline conditions it shows only $\sim 15\%$ removal (Table S2).

17 On the other hand, LDH- MoO_2S_2 shows remarkably similar effectiveness in the removal
18 of $\text{Se}^{\text{IV}}\text{O}_3^{2-}$ from acidic and pH neutral solutions. At neutral pH, LDH- MoO_2S_2 removed about
19 99.8% of SeO_3^{2-} from 10^3 ppb spiked DIW solutions and 97.7% from 10^4 ppb spiked DIW
20 solutions (Table S3). At pH ~ 2 , LDH- MoO_2S_2 can remove over 97.3% of SeO_3^{2-} from 10^3 ppb
21 and 97.1% of SeO_3^{2-} from 10^4 ppb spiked solutions. LDH- MoO_2S_2 exhibited a K_d of $\sim 4.5 \times 10^5$
22 mL/mg at neutral pH. It is noteworthy that LDH- MoO_2S_2 effectively captures SeO_3^{2-} ions,
23 decreasing the concentration from 10^3 ppb to less than 10 ppb in neutral environments and less

1 than 30 ppb in acidic conditions. This finding suggests that LDH-MoO₂S₂ can efficiently remove
2 selenium ion across a range of pHs, as demonstrated by its concertation reduction in neutral pH,
3 which exceeds the US EPA limit for selenium by approximately five times, and the reduction in
4 acidic conditions, which is about two times lower.^{57,58} These results suggest that LDH-MoO₂S₂
5 could be a useful material for the removal of SeO₃²⁻ from water at acidic and neutral conditions.
6 Control experiments involving LDH-NO₃ and (NH₄)₂MoO₂S₂ indicated that these materials
7 exhibit lower efficacy in the sorption of selenate and selenite (Table S4). This finding underscores
8 the importance of functionalizing LDH with MoO₂S₂ anions.

9 The kinetic studies of LDH-MoO₂S₂ for the removal of SeO₄²⁻ and SeO₃²⁻ were conducted
10 using initial concentrations of 10³ and 10⁴ ppb of SeO₄²⁻ and SeO₃²⁻ in DIW over a period of ½ to
11 24 h of interactions at neutral conditions (Figure 3, Table S5-S8). In the initial 1-3 hours of
12 interactions, LDH-MoO₂S₂ demonstrated a rapid and effective removal, achieving approximately
13 99 % removal for SeO₄²⁻ and SeO₃²⁻ (Table S5-S8) with K_d exceeding 10⁵ mL/g for 10³ ppb of
14 Se(VI/IV) spike solutions. In contrast, for the 10⁴ ppb spiked solutions the removal efficiency for
15 SeO₄²⁻ and SeO₃²⁻ reaches over 95 and 99 %, respectively in 3 h. In general, two different rate
16 equations, pseudo-first order and pseudo-second-order, are used to determine the sorption rates
17 and properties.³³ A linear relationship is observed from the t/q_t versus t plots for both
18 concentrations with a correlation factors of R² ~ 1 for SeO₄²⁻ and SeO₃²⁻, respectively (Figure S7).
19 The pseudo second-order rate constants were determined to be 2.835 g/mg·min⁻¹ for 1.0×10³ ppb
20 of SeO₄²⁻ solutions and 15.189 g/mg·min⁻¹ for 1.0×10³ ppb of SeO₃²⁻ solutions, respectively (Table
21 S9).

1 **Figure 3:** Time-dependent sorption experiment showing removal (%) of SeO_4^{2-} (a, b) and SeO_3^{2-} (c, d) by LDH- MoO_2S_2 spiked with 1×10^3 and 1×10^4 ppb of SeO_4^{2-} and SeO_3^{2-} ; and adsorption capacity of SeO_4^{2-} (e) and SeO_3^{2-} (f).

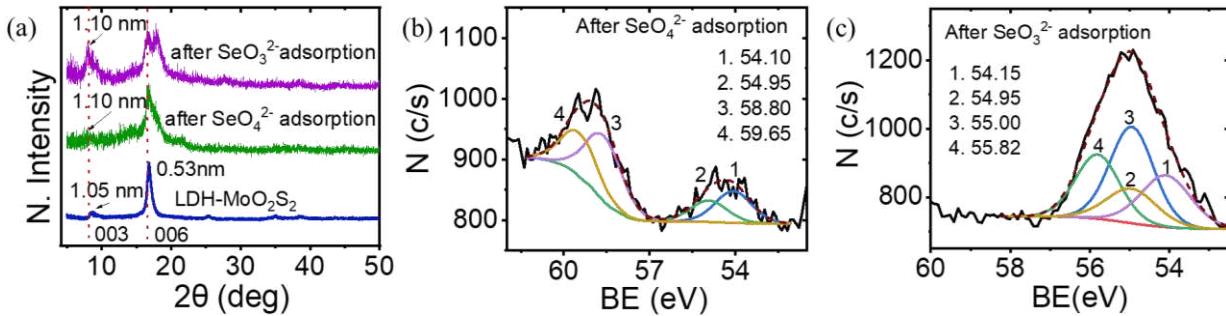
4 To determine the uptake capacity of LDH- MoO_2S_2 towards SeO_4^{2-} and SeO_3^{2-} , we
 5 investigated the sorption of SeO_4^{2-} and SeO_3^{2-} for a broad range of concentrations (Table S10 and
 6 S11). This study reveals that the sorption capacity increases with the increase of SeO_4^{2-} and SeO_3^{2-}
 7 concentrations until it reaches an equilibrium. Figure 3e and 3f display the equilibrium sorption
 8 isotherms. For SeO_4^{2-} , LDH- MoO_2S_2 achieved a maximum sorption capacity of 237 mg/g. On the

1 other hand, the maximum sorption capacity of SeO_3^{2-} reaches 358 mg/g. The data points of Figures
 2 3e and 3f were fitted to the Langmuir model, which revealed the calculated q_m values of 250.55
 3 (± 3.78) and 409.42 (± 32.26) mg/g for SeO_4^{2-} and SeO_3^{2-} , respectively. These values of the
 4 calculated capacities are close to that of the experimental values. With such high capacities, LDH-
 5 MoO_2S_2 stands out as a highly efficient sorbent for both SeO_4^{2-} and SeO_3^{2-} , demonstrating a
 6 capacity comparable to the top candidates for selenate /selenite sorption, as shown in the Table
 7 1.^{10,22,26,29,61-65}

8 **Table 1**Sorption capacities of various sorbents for selenate and selenite

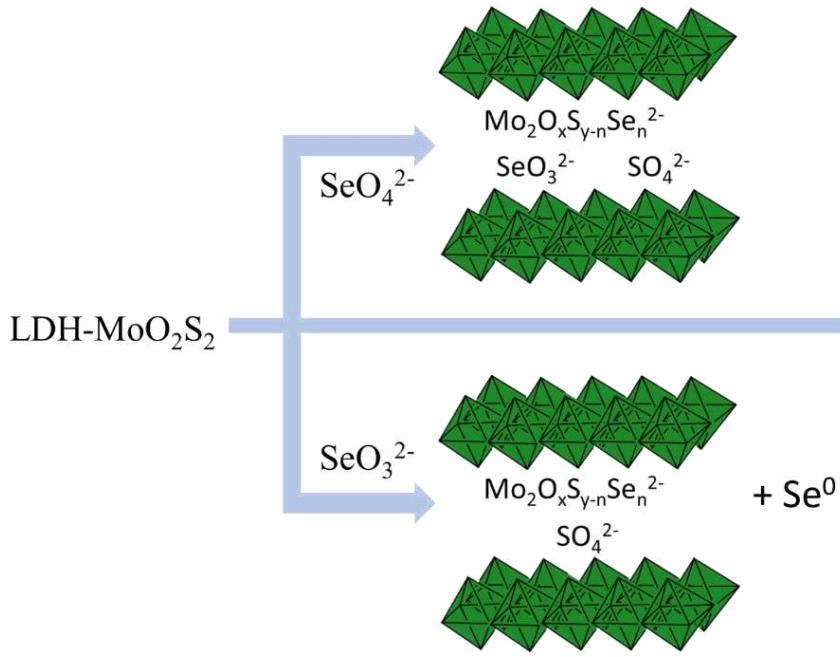
Ions	Sorbents	q_m (mg/g)	Ref.
Se(VI)	MgAl-MoO₂S₂-LDH	237	This work
	FeMgAl-MoS ₄ -LDH	167	22
	MgAl-MoS ₄ -LDH	85	29
	NU-1000	62	10
	Fe ²⁺ doped MgAl-LDH	110	61
	Y ₂ (OH) ₅ Cl _{1.5} H ₂ O	124	62
	CTFS-Cl	149	63
	JU-111	165	64
	GO/Al ₃₀ NC	156	66
	iMOF-3C	73	67
	Ca-Al-LDHs	139	68
Se(IV)	MgAl-MoO₂S₂-LDH	358	This work
	FeMgAl-MoS ₄ -LDH	484	22
	MgAl-MoS ₄ -LDH	297	29
	UPC-183-Eu	308	65
	JU-111	190	64

Y ₂ (OH) ₅ Cl _{1.5} H ₂ O	207	62
Mg/Al(Zn/Al)-LDH	119	26
nZVI/rGO	174	69


1 To determine the effectiveness of SeO₄²⁻ and SeO₃²⁻ removal in the presence of various
 2 competitive ions in purified and naturally contaminated water, we investigated selenium oxoanions
 3 removal efficiency from tap water and Mississippi River water (collected from Vidalia, Louisiana)
 4 by spiking with 1000 ppb of SeO₄²⁻ and SeO₃²⁻ (Figure S8, Table S12). This study showed that
 5 despite the presence of numerous ions, such as Ca²⁺, Mg²⁺, Na⁺, K⁺, HCO₃⁻, SO₄²⁻, and Cl⁻, and
 6 other organic or inorganic constituents, LDH-MoO₂S₂ exhibits over $\geq 99\%$ removal efficiency for
 7 SeO₃²⁻, while for SeO₄²⁻ it plunges to 33.7 and 27.5% for tap water and Mississippi river water,
 8 respectively. Hence, the difference in the removal efficiencies of SeO₄²⁻ and SeO₃²⁻ can be due to
 9 the competition from different anions found in tap and river water, which impact the selectivity of
 10 LDH-MoO₂S₂. Besides, LDH-MoO₂S₂ in general shows greater removal performance for SeO₃²⁻
 11 than SeO₄²⁻. This may be because the reduction of Se^{IV}O₃²⁻ to Se⁰/Se²⁻ is easier than Se^{VI}O₄²⁻ for a
 12 Se⁰/Se²⁻-chemical state, which is the dominant mechanism for the removal of these oxoanions, as
 13 explained later. This finding illustrates that LDH-MoO₂S₂ is highly capable in removing SeO₃²⁻
 14 and moderately effective for SeO₄²⁻ separation from contaminated water.

16

17 **Investigations of the SeO₃²⁻ and SeO₄²⁻ removal mechanisms:** To understand the
 18 selenate and selenite sorption mechanisms, post interacted solid LDH-MoO₂S₂ was analyzed by
 19 SEM, EDS, XRD, and XPS. SEM image shows that the post interacted sample maintained its
 20 hexagonal morphology suggesting the retention of the layered type phases of LDH following the
 21 adsorption process (Figure S9). XRD revealed that the d_{003} spacing of the LDH expands to about


1 1.10 nm after interactions with both SeO_4^{2-} and SeO_3^{2-} (Figure 4a). This feature indicates an
2 enlargement of the unit cell of the LDH along the crystallographic c-axis, which can be attributed
3 due to the increased size of the interlayered anions. It is possible that selenium ion has replaced
4 some sulfur in the $\text{Mo}_2\text{O}_x\text{S}_y^{2-}$ species. The bifurcates of the d_{006} peak in the XRD of post-interacted
5 LDH may point to the presence of a weak unresolved peak in the broad tail of the d_{003} peak, which
6 may be because of the phase segregation of the LDH structures, however, the formation of a
7 secondary phase non-LDH phase can't be completely ruled out. Akin to EDS, XPS shows the
8 presence of selenium in the post interacted samples (Figure S6 and Figure 4b). XPS of the $\text{Se}^{\text{VI}}\text{O}_4^{2-}$
9 interacted sample reveals strong bands at about 58.80 and 59.65 eV. These values correspond to
10 $3d_{5/2}$ and $3d_{3/2}$ orbital energy of Se^{4+} .^{29,42,70,71} In addition, XPS also shows a broad band centering
11 at about 54.5 eV. The deconvolution of this peak revealed two peaks. The peaks at about 54.10 and
12 54.95 eV can be attributed to $3d_{5/2}$ and $3d_{3/2}$ orbital energy of the selenide (Se^{2-}).⁷⁰⁻⁷² This finding
13 suggests that during the interaction of SeO_4^{2-} with LDH- MoO_2S_2 , $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ is reduced to several
14 oxidation states, Se^{4+} and Se^{2-} .^{70,72} In contrast, SeO_3^{2-} interacted LDH- MoO_2S_2 revealed a broad
15 photoelectron spectrum in the range of 53 to 57 eV. The deconvolution of this spectrum revealed
16 four bands having maxima at ~ 54.14 , 54.95, 55.00 and 55.82 eV (Figure 4c). These values of the
17 binding energies are related Se^0 and Se^{2-} oxidation states, respectively.⁷⁰⁻⁷² This finding proves
18 that SeO_4^{2-} and SeO_3^{2-} were reduced throughout the sorption process. However, the presence of
19 the $\text{Se}(\text{IV})$ ions in the $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ interacted LDH- MoO_2S_2 is indicative of the presence of $\text{Se}^{\text{IV}}\text{O}_3^{2-}$
20 like species.

21

1 **Figure 4:** XRD patterns of pre- and post- SeO₄²⁻ and SeO₃²⁻ adsorbed LDH-MoO₂S₂ (a), XPS
2 spectra showing Se 3d peaks after adsorption of SeO₄²⁻ (b) and SeO₃²⁻ (c).

3 Overall, analysis of the post-interacted LDH-MoO₂S₂ suggests that an intricate process,
4 including reduction and ion-exchange, is involved in the removal of selenate and selenite from
5 water, as shown in the schematic (Figure 5). An interaction between the Se^{VI}O₄²⁻ and LDH-
6 MoO₂S₂ leads to the formation of Se⁴⁺ and Se²⁻, while for Se^{IV}O₃²⁻ it results in Se⁰ and Se²⁻ (Figure
7 S7, Table S13). Besides, the presence of the Se²⁻ anions in the post interacted samples could be
8 attributed to the substitution of sulfide from the interlayered anions of Mo₂O_xS_y to Mo₂O_xS_{y-n}Se_n.
9 The substitution of the S²⁻ by Se²⁻ could be linked to the increase in the interlayered distance from
10 1.05 to 1.10 nm from the pristine to post-interacted LDH (Figures 4a). Also, the formation of the
11 Se⁴⁺ ions after the interaction of the Se^{VI}O₄²⁻ may result in the formation of the HSe^{IV}O₃⁻/Se^{IV}O₃²⁻
12 , settling in the interlayer of LDH, followed by a partial substitution of the molybdenum
13 oxysulfides. Hence, the reduction of selenium of Se^{VI}O₄²⁻ → Se^{IV}O₃²⁻ → Se⁰/Se²⁻ can be attributed
14 to the concurrent oxidation of some sulfides to sulfates. which remain inside the LDH structure as
15 indicated by XPS of post adsorbent materials (Figure S10, Table S13). During the process, some
16 Mo leaches into solution which may remain as MoO₄²⁻ or MoO_xS_{4-x}²⁻ ions.³²

1 **Figure 5:** Schematic shows a plausible sorption mechanism of SeO_4^{2-} and SeO_3^{2-} ions by LDH-
 2 MoO_2S_2 .

3 Finally, this work showcases the functionalization of MgAl layered double hydroxide with
 4 $\text{MoO}_2\text{S}_2^{2-}$, reveals the transformation of the interlayered anions, and evaluates its effectiveness in
 5 removing selenium oxoanions from water. Importantly, the structural rearrangement of the
 6 $\text{MoO}_2\text{S}_2^{2-}$ anions during the intercalation process into the MgAl-LDH emphasizes the importance
 7 of investigating the chemical fate of the metal-sulfide species after the intercalation into LDH
 8 layers – a phenomenon overlooked in previous studies on MoS_4^{2-} , $\text{Mo}_3\text{S}_{13}^{2-}$, SnS_4^{2-} and $\text{Sn}_2\text{S}_6^{2-}$
 9 intercalated LDHs.^{24,29,33,53–56} Apart from this, the potential of the $\text{MoO}_2\text{S}_2^{2-}$ functionalized LDH
 10 for exceedingly high-capacity and trace-level selenium removal underscores the significance of
 11 LDHs’ functionalization with versatile metal-oxysulfide, and -sulfide anions of diverse chemical
 12 compositions, and uncovering their effectiveness for the removal of selenium oxoanions from
 13 contaminated water systems.

1 **ACKNOWLEDGEMENT**

2 This work was supported by the National Science Foundation (NSF) Division of Chemistry (NSF-
3 2100790). RA is also thankful to the US Department of Energy Minority Serving Institution
4 Partnership Program (MSIPP) managed by the Savannah River National Laboratory under SRNS
5 contract (RFP No.0000542525 and 0000458357). TI acknowledges US Department of Energy's
6 Building EPSCoR-State/National Laboratory Partnerships DE-FOA-0002624. This work was
7 performed in part at the Chapel Hill Analytical and Nanofabrication Laboratory, CHANL, a
8 member of the North Carolina Research Triangle Nanotechnology Network, RTNN, which is
9 supported by the National Science Foundation, Grant ECCS-2025064, as part of the National
10 Nanotechnology Coordinated Infrastructure, NNCI. A portion of this work was performed using
11 XPS/UPS/IPES instrumentation supported by the Center for Hybrid Approaches in Solar Energy
12 to Liquid Fuels (CHASE), an Energy Innovation Hub funded by the U.S. Department of Energy,
13 Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021173. This
14 research used resources of the Advanced Photon Source; a U.S. Department of Energy (DOE)
15 Office of Science User Facility operated for the DOE Office of Science by Argonne National
16 Laboratory under Contract No. DE-AC02-06CH11357. The mail-in program at Beamline 11-ID-
17 B (and/or 17-BM, 11-BM) contributed to the data. X-ray absorption spectroscopy measurements
18 were performed at the VESPERS, Canadian Light Source, which is supported by the Canada
19 Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council
20 (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research
21 (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Any use of trade,
22 firm, or product names is for descriptive purposes only and does not imply endorsement by the
23 U.S. Government.

1 **Corresponding Author:**

2 **Saiful M. Islam** - Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State
3 University, Jackson, Mississippi 39217, United States; Orcid: <https://orcid.org/0000-0001-8518-1856>
4 Email: muhammad.s.islam@jsums.edu
5 Orchid: <http://orcid.org/0000-0001-8518-1856>

6

7 **Author Contributions:**

8 This manuscript was written through the contributions of all authors. All authors have given
9 approval to the final version of the manuscript.

10 **Associated Content**

11 Supporting Information Available:

12 Synthesis and characterization of $(\text{NH}_4)_2(\text{MoO}_2\text{S}_2)$ and LDH- MoO_2S_2 (XRD, Elemental
13 Mapping, EDS, XPS, EXAFS, UV-Vis absorption Spectra). Details on uptake study as well as
14 characterization of post adsorption LDH- MoO_2S_2 .

15 This information is available free of charge at the website: <http://pubs.acs.org/>

16 **REFERENCE**

17

18 (1) Holmes, A. B.; Gu, F. X. Emerging Nanomaterials for the Application of Selenium Removal
19 for Wastewater Treatment. *Environ. Sci. Nano* **2016**, *3* (5), 982–996.
20 <https://doi.org/10.1039/C6EN00144K>.

21 (2) Ma, B.; Fernandez-Martinez, A.; Grangeon, S.; Tournassat, C.; Findling, N.; Carrero, S.;
22 Tisserand, D.; Bureau, S.; Elkaïm, E.; Marini, C.; Aquilanti, G.; Koishi, A.; Marty, N. C. M.;
23 Charlet, L. Selenite Uptake by Ca–Al LDH: A Description of Intercalated Anion Coordination
24 Geometries. *Environ. Sci. Technol.* **2018**, *52* (3), 1624–1632.
25 <https://doi.org/10.1021/acs.est.7b04644>.

1 (3) Mayordomo, N.; Foerstendorf, H.; Lützenkirchen, J.; Heim, K.; Weiss, S.; Alonso, U.;
2 Missana, T.; Schmeide, K.; Jordan, N. Selenium(IV) Sorption Onto γ -Al₂O₃: A Consistent
3 Description of the Surface Speciation by Spectroscopy and Thermodynamic Modeling.
4 *Environ. Sci. Technol.* **2018**, 52 (2), 581–588. <https://doi.org/10.1021/acs.est.7b04546>.

5 (4) Carrero, S.; Fernandez-Martinez, A.; Pérez-López, R.; Poulain, A.; Salas-Colera, E.; Nieto, J.
6 M. Arsenate and Selenate Scavenging by Basaluminite: Insights into the Reactivity of
7 Aluminum Phases in Acid Mine Drainage. *Environ. Sci. Technol.* **2017**, 51 (1), 28–37.
8 <https://doi.org/10.1021/acs.est.6b03315>.

9 (5) Ilgen, A. G.; Kruichak, J. N.; Artyushkova, K.; Newville, M. G.; Sun, C. Redox
10 Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites:
11 Role of Structural and Adsorbed Fe(II). *Environ. Sci. Technol.* **2017**, 51 (19), 11105–11114.
12 <https://doi.org/10.1021/acs.est.7b03058>.

13 (6) Lee, C.-G.; Kim, S.-B. Removal of Arsenic and Selenium from Aqueous Solutions Using
14 Magnetic Iron Oxide Nanoparticle/Multi-Walled Carbon Nanotube Adsorbents.
15 *Desalination Water Treat.* **2016**, 57 (58), 28323–28339.
16 <https://doi.org/10.1080/19443994.2016.1185042>.

17 (7) Li, T.; Xu, H.; Zhang, Y.; Zhang, H.; Hu, X.; Sun, Y.; Gu, X.; Luo, J.; Zhou, D.; Gao, B.
18 Treatment Technologies for Selenium Contaminated Water: A Critical Review. *Environ.*
19 *Pollut.* **2022**, 299, 118858. <https://doi.org/10.1016/j.envpol.2022.118858>.

20 (8) Lichtfouse, E.; Morin-Crini, N.; Bradu, C.; Boussouga, Y.-A.; Aliaskari, M.; Schäfer, A. I.; Das,
21 S.; Wilson, L. D.; Ike, M.; Inoue, D.; Kuroda, M.; Déon, S.; Fievet, P.; Crini, G. Methods for
22 Selenium Removal from Contaminated Waters: A Review. *Environ. Chem. Lett.* **2022**, 20
23 (3), 2019–2041. <https://doi.org/10.1007/s10311-022-01419-8>.

24 (9) Ullah, H.; Lun, L.; Rashid, A.; Zada, N.; Chen, B.; Shahab, A.; Li, P.; Ali, M. U.; Lin, S.; Wong,
25 M. H. A Critical Analysis of Sources, Pollution, and Remediation of Selenium, an Emerging
26 Contaminant. *Environ. Geochem. Health* **2023**, 45 (5), 1359–1389.
27 <https://doi.org/10.1007/s10653-022-01354-1>.

28 (10) Howarth, A. J.; Katz, M. J.; Wang, T. C.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.;
29 Farha, O. K. High Efficiency Adsorption and Removal of Selenate and Selenite from Water
30 Using Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2015**, 137 (23), 7488–7494.
31 <https://doi.org/10.1021/jacs.5b03904>.

32 (11) Hu, B.; Chen, G.; Jin, C.; Hu, J.; Huang, C.; Sheng, J.; Sheng, G.; Ma, J.; Huang, Y.
33 Macroscopic and Spectroscopic Studies of the Enhanced Scavenging of Cr(VI) and Se(VI)
34 from Water by Titanate Nanotube Anchored Nanoscale Zero-Valent Iron. *J. Hazard. Mater.*
35 **2017**, 336, 214–221. <https://doi.org/10.1016/j.jhazmat.2017.04.069>.

36 (12) Xia, X.; Ling, L.; Zhang, W. Solution and Surface Chemistry of the Se(IV)-Fe(0) Reactions:
37 Effect of Initial Solution pH. *Chemosphere* **2017**, 168, 1597–1603.
38 <https://doi.org/10.1016/j.chemosphere.2016.11.150>.

39 (13) Cui, W.; Li, P.; Wang, Z.; Zheng, S.; Zhang, Y. Adsorption Study of Selenium Ions from
40 Aqueous Solutions Using MgO Nanosheets Synthesized by Ultrasonic Method. *J. Hazard.*
41 *Mater.* **2018**, 341, 268–276. <https://doi.org/10.1016/j.jhazmat.2017.07.073>.

42 (14) Yamani, J. S.; Lounsbury, A. W.; Zimmerman, J. B. Adsorption of Selenite and Selenate by
43 Nanocrystalline Aluminum Oxide, Neat and Impregnated in Chitosan Beads. *Water Res.*
44 **2014**, 50, 373–381. <https://doi.org/10.1016/j.watres.2013.10.054>.

1 (15) Jordan, N.; Müller, K.; Franzen, C.; Brendler, V. Temperature Impact on the Sorption of
2 Selenium(VI) onto Anatase. *J. Colloid Interface Sci.* **2013**, *390* (1), 170–175.
3 <https://doi.org/10.1016/j.jcis.2012.09.021>.

4 (16) Xie, W.; Liang, Q.; Qian, T.; Zhao, D. Immobilization of Selenite in Soil and Groundwater
5 Using Stabilized Fe–Mn Binary Oxide Nanoparticles. *Water Res.* **2015**, *70*, 485–494.
6 <https://doi.org/10.1016/j.watres.2014.12.028>.

7 (17) Malhotra, M.; Pal, M.; Pal, P. A Response Surface Optimized Nanofiltration-Based System
8 for Efficient Removal of Selenium from Drinking Water. *J. Water Process Eng.* **2020**, *33*,
9 101007. <https://doi.org/10.1016/j.jwpe.2019.101007>.

10 (18) Kalaitzidou, K.; Bakouros, L.; Mitrakas, M. Techno-Economic Evaluation of Iron and
11 Aluminum Coagulants on Se(IV) Removal. *Water* **2020**, *12* (3), 672.
12 <https://doi.org/10.3390/w12030672>.

13 (19) Labaran, B. A.; Vohra, M. S. Solar Photocatalytic Removal of Selenite, Selenate, and
14 Selenocyanate Species. *CLEAN – Soil Air Water* **2017**, *45* (10), 1600268.
15 <https://doi.org/10.1002/clen.201600268>.

16 (20) Trippe, R. C.; Pilon-Smits, E. A. H. Selenium Transport and Metabolism in Plants:
17 Phytoremediation and Biofortification Implications. *J. Hazard. Mater.* **2021**, *404*, 124178.
18 <https://doi.org/10.1016/j.jhazmat.2020.124178>.

19 (21) He, W.; Ai, K.; Ren, X.; Wang, S.; Lu, L. Inorganic Layered Ion-Exchangers for
20 Decontamination of Toxic Metal Ions in Aquatic Systems. *J. Mater. Chem. A* **2017**, *5* (37),
21 19593–19606. <https://doi.org/10.1039/C7TA05076C>.

22 (22) Liao, Z.; He, T.; Shi, L.; Liu, Y.; Zhou, X.; Wang, J.; Li, W.; Zhang, Y.; Wang, H.; Xu, R.
23 Selenium Oxoanions Removal from Wastewater by MoS_4^{2-} Intercalated FeMgAl LDH:
24 Catalytic Roles of Fe and Mechanism Insights. *Catalysts* **2022**, *12* (12), 1592.
25 <https://doi.org/10.3390/catal12121592>.

26 (23) Asiabi, H.; Yamini, Y.; Shamsayei, M. Highly Selective and Efficient Removal of Arsenic(V),
27 Chromium(VI) and Selenium(VI) Oxyanions by Layered Double Hydroxide Intercalated with
28 Zwitterionic Glycine. *J. Hazard. Mater.* **2017**, *339*, 239–247.
29 <https://doi.org/10.1016/j.jhazmat.2017.06.042>.

30 (24) Celik, A.; Baker, D. R.; Arslan, Z.; Zhu, X.; Blanton, A.; Nie, J.; Yang, S.; Ma, S.; Han, F. X.;
31 Islam, S. M. Highly Efficient, Rapid, and Concurrent Removal of Toxic Heavy Metals by the
32 Novel 2D Hybrid LDH– $[\text{Sn}_2\text{S}_6]$. *Chem. Eng. J.* **2021**, *426*, 131696.
33 <https://doi.org/10.1016/j.cej.2021.131696>.

34 (25) Wang, Y.; Zhang, M.; Liu, Y.; Zheng, Z.; Liu, B.; Chen, M.; Guan, G.; Yan, K. Recent Advances
35 on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic
36 Energy Conversion. *Adv. Sci.* **2023**, *10* (13), 2207519.
37 <https://doi.org/10.1002/advs.202207519>.

38 (26) Mandal, S.; Mayadevi, S.; Kulkarni, B. D. Adsorption of Aqueous Selenite [Se(IV)] Species
39 on Synthetic Layered Double Hydroxide Materials. *Ind. Eng. Chem. Res.* **2009**, *48* (17),
40 7893–7898. <https://doi.org/10.1021/ie900136s>.

41 (27) Ma, L.; Islam, S. M.; Liu, H.; Zhao, J.; Sun, G.; Li, H.; Ma, S.; Kanatzidis, M. G. Selective and
42 Efficient Removal of Toxic Oxoanions of As(III), As(V), and Cr(VI) by Layered Double
43 Hydroxide Intercalated with MoS_4^{2-} . *Chem. Mater.* **2017**, *29* (7), 3274–3284.
44 <https://doi.org/10.1021/acs.chemmater.7b00618>.

1 (28) He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L.
2 Selenium Contamination, Consequences and Remediation Techniques in Water and Soils:
3 A Review. *Environ. Res.* **2018**, *164*, 288–301.
4 <https://doi.org/10.1016/j.envres.2018.02.037>.

5 (29) Ma, L.; Islam, S. M.; Xiao, C.; Zhao, J.; Liu, H.; Yuan, M.; Sun, G.; Li, H.; Ma, S.; Kanatzidis, M.
6 G. Rapid Simultaneous Removal of Toxic Anions $[\text{HSeO}_3]^-$, $[\text{SeO}_3]^{2-}$, and $[\text{SeO}_4]^{2-}$, and
7 Metals Hg^{2+} , Cu^{2+} , and Cd^{2+} by MoS_4^{2-} Intercalated Layered Double Hydroxide. *J. Am.*
8 *Chem. Soc.* **2017**, *139* (36), 12745–12757. <https://doi.org/10.1021/jacs.7b07123>.

9 (30) McDonald, J. W.; Friesen, G. D.; Rosenhein, L. D.; Newton, W. E. Syntheses and
10 Characterization of Ammonium and Tetraalkylammonium Thiomolybdates and
11 Thiotungstates. *Inorganica Chim. Acta* **1983**, *72*, 205–210. [https://doi.org/10.1016/S0020-1693\(00\)81720-X](https://doi.org/10.1016/S0020-1693(00)81720-X).

12 (31) Ma, S.; Fan, C.; Du, L.; Huang, G.; Yang, X.; Tang, W.; Makita, Y.; Ooi, K. Intercalation of
13 Macrocyclic Crown Ether into Well-Crystallized LDH: Formation of Staging Structure and
14 Secondary Host–Guest Reaction. *Chem. Mater.* **2009**, *21* (15), 3602–3610.
15 <https://doi.org/10.1021/cm9007393>.

16 (32) Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. Highly Selective and
17 Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the
18 MoS_4^{2-} Ion. *J. Am. Chem. Soc.* **2016**, *138* (8), 2858–2866.
19 <https://doi.org/10.1021/jacs.6b00110>.

20 (33) Roy, S. C.; Rahman, M. A.; Celik, A.; Wilson, S.; Azmy, A.; Bieber, J.; Spanopoulos, I.; Islam,
21 R.; Zhu, X.; Han, F. X.; Islam, S. M. Efficient Removal of Chromium(VI) Ions by Hexagonal
22 Nanosheets of CoAl- MoS_4 Layered Double Hydroxide. *J. Coord. Chem.* **2022**, *75* (11–14),
23 1581–1595. <https://doi.org/10.1080/00958972.2022.2101103>.

24 (34) Benício, L. P. F.; Eulálio, D.; Guimarães, L. de M.; Pinto, F. G.; Costa, L. M. da; Tronto, J.
25 Layered Double Hydroxides as Hosting Matrices for Storage and Slow Release of
26 Phosphate Analyzed by Stirred-Flow Method. *Mater. Res.* **2018**, *21*, e20171004.
27 <https://doi.org/10.1590/1980-5373-MR-2017-1004>.

28 (35) Yu, Z.; Yao, H.; Yang, Y.; Yuan, M.; Li, C.; He, H.; Chan, T.-S.; Yan, D.; Ma, S.; Zapol, P.;
29 Kanatzidis, M. G. $\text{MoO}_x\text{S}_y/\text{Ni}_3\text{S}_2$ Microspheres on Ni Foam as Highly Efficient, Durable
30 Electrocatalysts for Hydrogen Evolution Reaction. *Chem. Mater.* **2022**, *34* (2), 798–808.
31 <https://doi.org/10.1021/acs.chemmater.1c03682>.

32 (36) Yang, Y.; Yao, H.; Yu, Z.; Islam, S. M.; He, H.; Yuan, M.; Yue, Y.; Xu, K.; Hao, W.; Sun, G.; Li,
33 H.; Ma, S.; Zapol, P.; Kanatzidis, M. G. Hierarchical Nanoassembly of $\text{MoS}_2/\text{Co}_9\text{S}_8/\text{Ni}_3\text{S}_2/\text{Ni}$
34 as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. *J. Am.*
35 *Chem. Soc.* **2019**, *141* (26), 10417–10430. <https://doi.org/10.1021/jacs.9b04492>.

36 (37) Cao, J.; Zhou, J.; Zhang, Y.; Wang, Y.; Liu, X. Dominating Role of Aligned $\text{MoS}_2/\text{Ni}_3\text{S}_2$
37 Nanoarrays Supported on Three-Dimensional Ni Foam with Hydrophilic Interface for
38 Highly Enhanced Hydrogen Evolution Reaction. *ACS Appl. Mater. Interfaces* **2018**, *10* (2),
39 1752–1760. <https://doi.org/10.1021/acsami.7b16407>.

40 (38) Hou, Y.; Xin, J.; Gómez-García, C. J.; Xiao, B.; Pang, H.; Ma, H.; Wang, X.; Tan, L. A Facile
41 Strategy to Create Electrocatalysts of Highly Dispersive Ni–Mo Sulfide Nanosheets on
42 Graphene by Derivation of Polyoxometalate Coordination Polymer for Advanced H_2

1 Evolution. *ACS Appl. Energy Mater.* **2021**, *4* (11), 13191–13198.
2 <https://doi.org/10.1021/acsaem.1c02800>.

3 (39) Nanda, S.; Asl, H. Y.; Bhargav, A.; Manthiram, A. Thiometallate-Mediated Polysulfide
4 Chemistry and Lithium Stabilization for Stable Anode-Free Lithium-Sulfur Batteries. *Cell*
5 *Rep. Phys. Sci.* **2022**, *3* (4), 100808. <https://doi.org/10.1016/j.xcrp.2022.100808>.

6 (40) Islam, T.; Li, M.; Blanton, A.; Pitton, K. A.; Rao, K. R.; Bayat, S.; Wiaderek, K. M.; Weret, M.
7 A.; Roy, S. C.; Feng, R.; Li, D.; Alam, R.; Nie, J.; Oketola, O.; Pramanik, A.; Guiton, B. S.;
8 Risko, C.; Belharouak, I.; Amin, R.; Islam, S. M. Chalcocarbogels as High-Capacity and Cycle-
9 Stable Electrode Materials for Lithium and Sodium Ion Batteries. *ACS Energy Lett.* **2023**, *1*–
10 <https://doi.org/10.1021/acsenergylett.3c02112>.

11 (41) Blanton, A.; Islam, T.; Roy, S. C.; Celik, A.; Nie, J.; Baker, D. R.; Li, D.; Taylor-Pashow, K.; Zhu,
12 X.; Pramanik, A.; Amin, R.; Feng, R.; Chernikov, R.; Islam, S. M. Porous Semiconducting K–
13 Sn–Mo–S Aerogel: Synthesis, Local Structure, and Ion-Exchange Properties. *Chem. Mater.*
14 **2023**. <https://doi.org/10.1021/acs.chemmater.3c01675>.

15 (42) Ma, S.; Shim, Y.; Islam, S. M.; Subrahmanyam, K. S.; Wang, P.; Li, H.; Wang, S.; Yang, X.;
16 Kanatzidis, M. G. Efficient Hg Vapor Capture with Polysulfide Intercalated Layered Double
17 Hydroxides. *Chem. Mater.* **2014**, *26* (17), 5004–5011. <https://doi.org/10.1021/cm5020477>.

18 (43) Escalera-López, D.; Lou, Z.; Rees, N. V. Benchmarking the Activity, Stability, and Inherent
19 Electrochemistry of Amorphous Molybdenum Sulfide for Hydrogen Production. *Adv.*
20 *Energy Mater.* **2019**, *9* (8), 1802614. <https://doi.org/10.1002/aenm.201802614>.

21 (44) Liu, Y.; Li, J.; Das, A.; Kim, H.; Jones, L. O.; Ma, Q.; Bedzyk, M. J.; Schatz, G. C.; Kratish, Y.;
22 Marks, T. J. Synthesis and Structure–Activity Characterization of a Single-Site MoO₂
23 Catalytic Center Anchored on Reduced Graphene Oxide. *J. Am. Chem. Soc.* **2021**, *143* (51),
24 21532–21540. <https://doi.org/10.1021/jacs.1c07236>.

25 (45) Weber, Th.; Muijsers, J. C.; Van Wolput, J. H. M. C.; Verhagen, C. P. J.; Niemantsverdriet, J.
26 W. Basic Reaction Steps in the Sulfidation of Crystalline MoO₃ to MoS₂, As Studied by X-
27 Ray Photoelectron and Infrared Emission Spectroscopy. *J. Phys. Chem.* **1996**, *100* (33),
28 14144–14150. <https://doi.org/10.1021/jp961204y>.

29 (46) Coucouvanis, D.; Koo, S. M. Rational Synthesis of Monooxo Thioanions from
30 Tetrakis(Benzenethiolato)Oxomolybdate(1-). Structural Characterization of the [Ph₄P]⁺
31 Salts of the [(Eta₂-S₂)MoO(.Mu.-S)₂MoS(.Eta₂-S₂)]²⁻, [(Eta₂-S₂)MoO(MoS₄)]²⁻,
32 [(S₄)MoX(.Mu.-S)₂MoSX(.Eta₂-S₂)]²⁻ (X = S, O), and [(S₄)MoO(MoS₄)]²⁻ Anions. *Inorg. Chem.*
33 **1989**, *28* (1), 2–5. <https://doi.org/10.1021/ic00300a002>.

34 (47) Coucouvanis, D.; Toupadakis, A.; Hadjikyriacou, A. Synthesis of Thiomolybdenyl Complexes
35 with [Mo₂(S)₂(O)₂]²⁺ Cores and Substitutionally Labile Ligands. Crystal and Molecular
36 Structure of the Tris(Dimethylformamide)Dioxotetrasulfidodimolybdenum Complex. *Inorg.*
37 *Chem.* **1988**, *27* (19), 3272–3273. <https://doi.org/10.1021/ic00292a005>.

38 (48) McAllister, J.; Bandeira, N. A. G.; McGlynn, J. C.; Ganin, A. Y.; Song, Y.-F.; Bo, C.; Miras, H.
39 N. Tuning and Mechanistic Insights of Metal Chalcogenide Molecular Catalysts for the
40 Hydrogen-Evolution Reaction. *Nat. Commun.* **2019**, *10* (1), 370.
41 <https://doi.org/10.1038/s41467-018-08208-4>.

42 (49) Pless, J. D.; Kim, H.-S.; Smit, J. P.; Wang, X.; Stair, P. C.; Poeppelmeier, K. R. Structure of Mg
43 _{2.56} V _{1.12} W _{0.88} O ₈ and Vibrational Raman Spectra of Mg _{2.5} VWO ₈ and Mg _{2.5} VMoO ₈.
44 *Inorg. Chem.* **2006**, *45* (2), 514–520. <https://doi.org/10.1021/ic051740h>.

1 (50) Allen, P. G.; Gash, A. E.; Dorhout, P. K.; Strauss, S. H. XAFS Studies of Soft-Heavy-Metal-Ion-
2 Intercalated M_xMoS_2 ($M = Hg^{2+}, Ag^+$) Solids. *Chem. Mater.* **2001**, *13* (7), 2257–2265.
3 <https://doi.org/10.1021/cm000389p>.

4 (51) Tran, N. V.; Tieu, A. K.; Zhu, H. First-Principles Molecular Dynamics Study on the Surface
5 Chemistry and Nanotribological Properties of MgAl Layered Double Hydroxides. *Nanoscale*
6 **2021**, *13* (9), 5014–5025. <https://doi.org/10.1039/D0NR08706H>.

7 (52) Clegg, W.; Mohan, N.; Mueller, A.; Neumann, A.; Rittner, W.; Sheldrick, G. M. *Crystal and*
8 *molecular structure of $[N(CH_3)_4]_2[Mo_2O_2S_2(S_2)_2]$: a compound with two S_2^{2-} ligands*. ACS
9 Publications. <https://doi.org/10.1021/ic50209a046>.

10 (53) Celik, A.; Li, D.; Quintero, M. A.; Taylor-Pashow, K. M. L.; Zhu, X.; Shakouri, M.; Roy, S. C.;
11 Kanatzidis, M. G.; Arslan, Z.; Blanton, A.; Nie, J.; Ma, S.; Han, F. X.; Islam, S. M. Removal of
12 CrO_4^{2-} , a Nonradioactive Surrogate of $^{99}TcO_4^-$, Using LDH– Mo_3S_{13} Nanosheets. *Environ. Sci.*
13 *Technol.* **2022**, *56* (12), 8590–8598. <https://doi.org/10.1021/acs.est.1c08766>.

14 (54) $Mo_3S_{13}^{2-}$ Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy
15 Metals and Simultaneous Reduction of Ag^+ Ions to Metallic Ag^0 Ribbons.
16 <https://doi.org/10.1002/anie.202112511>.

17 (55) Celik, A.; Roy, S. C.; Quintero, M. A.; Taylor-Pashow, K.; Li, D.; Kanatzidis, M. G.; Zhu, X.;
18 Islam, S. M. Unveiling the Potential of $[Sn_2S_6]^{4-}$ Functionalized Layered Double Hydroxides
19 for the Sorption of ReO_4^- as a Surrogate for $^{99}TcO_4^-$. *ACS Appl. Eng. Mater.* **2023**, *1* (7),
20 1711–1718. <https://doi.org/10.1021/acsaenm.3c00074>.

21 (56) Chen, L.; Xu, H.; Xie, J.; Liu, X.; Yuan, Y.; Liu, P.; Qu, Z.; Yan, N. $[SnS_4]^{4-}$ Clusters Modified
22 MgAl-LDH Composites for Mercury Ions Removal from Acid Wastewater. *Environ. Pollut.*
23 **2019**, *247*, 146–154. <https://doi.org/10.1016/j.envpol.2018.12.009>.

24 (57) US EPA, O. *Drinking Water Regulations*. <https://www.epa.gov/dwreginfo/drinking-water-regulations> (accessed 2023-10-09).

25 (58) Organization, W. H. *Guidelines for Drinking-Water Quality*; World Health Organization,
26 2004.

27 (59) Ma, S.; Huang, L.; Ma, L.; Shim, Y.; Islam, S. M.; Wang, P.; Zhao, L.-D.; Wang, S.; Sun, G.;
28 Yang, X.; Kanatzidis, M. G. Efficient Uranium Capture by Polysulfide/Layered Double
29 Hydroxide Composites. *J. Am. Chem. Soc.* **2015**, *137* (10), 3670–3677.
30 <https://doi.org/10.1021/jacs.5b00762>.

31 (60) Manos, M. J.; Ding, N.; Kanatzidis, M. G. Layered Metal Sulfides: Exceptionally Selective
32 Agents for Radioactive Strontium Removal. *Proc. Natl. Acad. Sci.* **2008**, *105* (10), 3696–
33 3699. <https://doi.org/10.1073/pnas.0711528105>.

34 (61) Kameda, T.; Kondo, E.; Yoshioka, T. Equilibrium and Kinetic Studies of Se(VI) Removal by
35 Mg–Al Layered Double Hydroxide Doped with Fe^{2+} . *RSC Adv.* **2014**, *4* (106), 61817–61822.
36 <https://doi.org/10.1039/C4RA11645C>.

37 (62) Zhu, L.; Zhang, L.; Li, J.; Zhang, D.; Chen, L.; Sheng, D.; Yang, S.; Xiao, C.; Wang, J.; Chai, Z.;
38 Albrecht-Schmitt, T. E.; Wang, S. Selenium Sequestration in a Cationic Layered Rare Earth
39 Hydroxide: A Combined Batch Experiments and EXAFS Investigation. *Environ. Sci. Technol.*
40 **2017**, *51* (15), 8606–8615. <https://doi.org/10.1021/acs.est.7b02006>.

41 (63) Lin, W.; Wu, P.; Li, R.; Li, J.; Cai, Y.; Yuan, L.; Feng, W. Novel Triazine-Based Cationic
42 Covalent Organic Polymers for Highly Efficient and Selective Removal of Selenate from
43

1 Contaminated Water. *J. Hazard. Mater.* **2022**, *436*, 129127.
2 <https://doi.org/10.1016/j.jhazmat.2022.129127>.

3 (64) Cai, H.; Bao, H.; Zhang, X.; Lei, L.; Xiao, C. Highly Efficient Sorption of Selenate and Selenite
4 onto a Cationic Layered Single Hydroxide via Anion Exchange and Inner-Sphere
5 Complexation. *Chem. Eng. J.* **2021**, *420*, 129726.
6 <https://doi.org/10.1016/j.cej.2021.129726>.

7 (65) Guo, B.; Liu, H.; Pang, J.; Lyu, Q.; Wang, Y.; Fan, W.; Lu, X.; Sun, D. Tunable Rare-Earth
8 Metal–organic Frameworks for Ultra-High Selenite Capture. *J. Hazard. Mater.* **2022**, *436*,
9 129094. <https://doi.org/10.1016/j.jhazmat.2022.129094>.

10 (66) Tahmasebi, E. Insights into the Adsorption Mechanism of Al30 Polyoxocations-Modified
11 Graphene Oxide Nanosheets for Efficient Removal of Phosphate, Chromate and Selenate
12 Oxyanions: A Comparative Study. *J. Mol. Liq.* **2020**, *299*, 112111.
13 <https://doi.org/10.1016/j.molliq.2019.112111>.

14 (67) Sharma, S.; Let, S.; Desai, A. V.; Dutta, S.; Karuppasamy, G.; Shirolkar, M. M.; Babarao, R.;
15 Ghosh, S. K. Rapid, Selective Capture of Toxic Oxo-Anions of Se(IV), Se(VI) and As(V) from
16 Water by an Ionic Metal–Organic Framework (iMOF). *J. Mater. Chem. A* **2021**, *9* (10),
17 6499–6507. <https://doi.org/10.1039/D0TA04898D>.

18 (68) Li, D.; Yan, W.; Guo, X.; Tian, Q.; Xu, Z.; Zhu, L. Removal of Selenium from Caustic Solution
19 by Adsorption with CaAl Layered Double Hydroxides. *Hydrometallurgy* **2020**, *191*, 105231.
20 <https://doi.org/10.1016/j.hydromet.2019.105231>.

21 (69) Sun, F.; Zhu, Y.; Liu, X.; Chi, Z. Highly Efficient Removal of Se(IV) Using Reduced Graphene
22 Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO): Selenium Removal Mechanism.
23 *Environ. Sci. Pollut. Res.* **2023**, *30* (10), 27560–27569. <https://doi.org/10.1007/s11356-022-24226-8>.

25 (70) Iwakuro, H.; Tatsuyama, C.; Ichimura, S. XPS and AES Studies on the Oxidation of Layered
26 Semiconductor GaSe. *Jpn. J. Appl. Phys.* **1982**, *21* (1R), 94.
27 <https://doi.org/10.1143/JJAP.21.94>.

28 (71) Shenasa, M.; Sainkar, S.; Lichtman, D. XPS Study of Some Selected Selenium Compounds. *J.*
29 *Electron Spectrosc. Relat. Phenom.* **1986**, *40* (4), 329–337. [https://doi.org/10.1016/0368-2048\(86\)80043-3](https://doi.org/10.1016/0368-2048(86)80043-3).

31 (72) Miyake, I.; Tanpo, T.; Tatsuyama, C. XPS Study on the Oxidation of InSe. *Jpn. J. Appl. Phys.*
32 **1984**, *23* (2R), 172. <https://doi.org/10.1143/JJAP.23.172>.

33