
Rail-only: A Low-Cost High-Performance Network
for Training LLMs with Trillion Parameters

Weiyang Wang
MIT CSAIL

weiyangw@mit.edu

Manya Ghobadi
MIT CSAIL

ghobadi@mit.edu

Kayvon Shakeri
Meta

kvon@meta.com

Ying Zhang
Meta

zhangying@meta.com

Naader Hasani
Meta

naaderh@yahoo.com

Abstract—This paper presents a low-cost network architecture
for training large language models (LLMs) at hyperscale. We
study the optimal parallelization strategy of LLMs and propose
a novel datacenter network design tailored to LLM’s unique
communication pattern. We show that LLM training generates
sparse communication patterns in the network and, therefore,
does not require any-to-any full-bisection network to complete
efficiently. As a result, our design eliminates the spine layer
in traditional GPU clusters. We name this design a Rail-only
network and demonstrate that it achieves the same training
performance while reducing the network cost by 38% to 77%
and network power consumption by 37% to 75% compared to
a conventional GPU datacenter. Our architecture also supports
Mixture-of-Expert (MoE) models with all-to-all communication
through forwarding, with only 8.2% to 11.2% completion time
overhead for all-to-all traffic. We study the failure robustness of
Rail-only networks and provide insights into the performance
impact of different network and training parameters.

I. INTRODUCTION

Large Language Models (LLMs) are among the most com-

plex and computationally intensive Deep Neural Networks

(DNNs). The GPT3 model from 2020 already requires 355

GPU-years on Nvidia’s V100 GPUs [1], [2], while the recent

GPT4 model is estimated to have trillions of parameters and

takes months to train [3], [4]. As Moore’s law slows down,

the growth rate of LLM size and computation requirement

exceeds the advancement of accelerators, making hyper-scale

GPU datacenters inevitable. Our conversations with lead ma-

chine learning architects in the industry indicate that the

next-generation LLMs likely require over 30,000 GPUs of

computing power to finish training within a reasonable time.

GPU manufacturers have invested in high-bandwidth

platforms, such as NVLink [5] and Infinity Fabric [6], to

enable efficient multi-GPU training. These platforms provide

several Tbps of bandwidth within a few GPUs but are not

scalable. To connect multiple GPU platforms, state-of-the-art

approaches rely on traditional lossless network solutions, such

as RDMA over converged ethernet (RoCE) or Infiniband. In

particular, today’s GPU clusters employ an architecture called

a “Rail-optimized” network. This architecture is derived

from the classical Clos network [7] to provide any-to-any

connectivity to all GPUs in a training cluster.

However, scaling a Clos network to tens of thousands of

GPUs is challenging. Previous work demonstrated that large-

scale lossless networks are prone to deadlocking and PFC

storms [8]–[12], degrading the performance. Furthermore, as

the scale increases, Clos architectures become prohibitively

costly [13]. For instance, today, a full-bisection Clos fabric

interconnecting 30,000 GPUs with 400 Gbps network capacity

costs $200 million. At the same time, deploying such a

network requires provisioning for ∼4.6 megawatts of peak

power consumption. Consequently, datacenter providers resort

to over-subscription to tame costs and energy consumption,

worsening deadlocking and degraded performance problems.

In this paper, we show that efficiently training LLMs does

not require any-to-any connectivity across all GPUs in the

network, even for DNNs with sparsely gated Mixture-of-

Expert (MoE) layers, which generate all-to-all communication

(§III-C). As a result, we propose an immediately deployable

solution to lower the cost and energy consumption of LLM

datacenters with commodity electrical switches. To do so, we

make two primary contributions. First, we analyze the traffic

pattern of training LLMs (§III). We demonstrate that with

an optimal parallelization strategy, an LLM training workload

requires high-bandwidth any-to-any connectivity only within

a small subset of GPUs, and each subset fits within a single

GPU platform, such as an Nvidia DGX server. Across the

platforms, most communication occurs between a few GPU

pairs with the same rank throughout the cluster. As a result, the

conventional any-to-any approach for building Clos networks

adds unnecessary complexity, cost, and power consumption

for distributed LLM training.

Motivated by the above observations, we then propose a

low-cost network architecture that accurately reflects LLM

communication requirements, called Rail-only (§IV). Instead

of forming a Clos to support any-to-any communication, as

advocated by major GPU manufacturers [14], our architecture

removes the spine layer of switches and only connects sets

of GPUs with significant network traffic. Hence, compared

to the state-of-the-art Rail-optimized design, our network

architecture removes the network equipment that does not

carry significant traffic and achieves the same performance as

a Rail-optimized network. We provide routing strategies that

impose minimal performance overhead for all-to-all communi-

cation. We also analyze our design’s fault-tolerance properties

and provide recovery methods from failure cases (§IV-C).

We evaluate the performance of our Rail-only network

architecture using an analytical formulation and provide

insights into the performance impact of different network

and training parameters. We compare the cost and power

consumption of a Rail-only network to a full-bisection

bandwidth any-to-any Clos network and show that our

LLM-centric network architecture reduces the network cost

and power by 38%–76% and 37%–75%, respectively (§V-E).

Moreover, we show that a Rail-only network achieves the

same performance as a Rail-optimized cluster for LLMs

without MoE layers. Finally, we demonstrate that a Rail-only

interconnect only incurs 8.2%–11.2% throughput overhead

for LLMs with MoEs that require all-to-all traffic.

II. BACKGROUND

A. Intra-platform Connectivity: High-bandwidth Domain

The rise of resource-intensive ML workloads led to the

dominance of GPU-centric platforms optimized for multi-GPU

workloads. To accommodate the communication demand,

these platforms use high-bandwidth local interconnects within

a local domain of GPUs. Depending on the manufacturer, these

GPU-centric platforms differ in computing FLOPs, GPU and

CPU architectures, or even physical interconnect technology.

However, these platforms all share a unifying property: they

provision several Tbps of internal bandwidth across GPUs.

For instance, Nvidia’s DGX H100 server [14] consists of

eight H100 GPUs interconnected with NVSwitches, providing

3.6 Tbps of non-blocking bandwidth internally. The GB200

NVL72 computer announced recently connects 36 GB200

Superchips with fifth-generation NVLink within a rack at

7.2 Tbps per GPU [15]. The AMD MI300X platform, on

the other hand, employs AMD’s Infinity Fabric to connect

eight MI300X accelerators in a full-mesh topology with

3.6 Tbps of bandwidth per GPU [6]. Similar platforms such

as Nvidia’s DGX GH200 Super Computer have utilized multi-

tiered NVSwich topologies to scale the platform’s size up to

256 GPUs while maintaining 3.6 Tbps full-bisection intra-

GPU bandwidth [16]. This paper refers to a platform with

Tbps internal bandwidth connectivity as a “high-bandwidth

(HB) domain”, and the corresponding interconnect as HB

interconnects (HBI).

B. Inter-platform Connectivity: NIC Domain

While GPU-centric platforms provide high internal band-

width using NVLink or Infinity Fabric technologies, they

can only scale to a limited number of GPUs. To expand

beyond a single platform, operators rely on traditional network

technologies, such as Ethernet or Infiniband, to connect the

NICs of different platforms. This paper refers to the inter-

platform network as the “NIC domain.”

The state-of-the-art interconnection in the NIC domain

is based on a well-known network architecture called a

Rail-optimized network [17]. This architecture is ubiquitously

used for high-performance computing (HPC) workloads.

As we discuss next, Rail-optimized networks are better

suited for DNNs than conventional CPU-centric datacenter

networks. However, given that Rail-optimized networks are

primarily designed for HPC workloads, they miss a significant

opportunity to further leverage the unique traffic patterns of

LLM training workloads (§III).

First, let us consider a conventional datacenter design

specialized to serve unpredictable and bursty CPU-heavy

workloads. This architecture, known as a Clos network [7],

[18], provides any-to-any connectivity between server pairs.

Clos networks are well-studied in the system and networking

community and are the de facto infrastructure for storage,

cloud, and map-reduce workloads.

The Rail-optimized network for GPU training clusters

evolves from the datacenter Clos network [17], [19], illustrated

in Figure 1. For a GPU platform with an HB domain of

size K, there are K total rails, where a rail comprises

GPUs with the same local rank that belong to different HB

domains [20]. A Rail-optimized network places these GPUs

under the same set of switches, which we denote as rail

switches. Figure 1 highlights rail one and rail K in red and

yellow colors, respectively. Connecting same-rank GPUs to the

same rail switches ensures the lowest possible latency across

them. Such connectivity is desirable because an optimal DNN

parallelization strategy concentrates its NIC domain traffic

between GPUs with the same local rank [17].

Rail-optimized architectures enjoy low latency between

GPUs in the same rail. The rest of the network employs

layers of spine switches to connect the rail switches to form a

full-bisection any-to-any Clos network topology. This network

ensures that any pair of GPUs in different HB domains can

still communicate at the network line rate of hundreds of Gbps.

For instance, traffic between GPU 1, Domain 1 and GPU

1, Domain 2 traverses through Rail Switch 1 only, while

traffic between GPU 1, Domain 1 and GPU 2, Domain

2 goes through the respective rails and the spine switches.

While the Rail-optimized network architecture takes ad-

vantage of the strong locality of DNN training traffic by

connecting the same-rank GPUs with the same ToR switch,

it overlooks a fundamental question: Are the spine switches

necessary? In the next section, we analyze LLM training traffic

in greater detail to explore the potential for a spineless network

architecture design.

III. LLM TRAFFIC PATTERN ANALYSIS

A. Traffic Pattern of MegatronLM

We now analyze the traffic pattern generated by LLMs with

hybrid data, tensor, and pipeline parallelism by computing the

network transfer sizes from the model hyperparameters and

the parallelization strategy. We first look at a series of GPT

models with 145.6 billion, 310.1 billion, 539.6 billion, and 1

trillion parameters described in Table 1 of MegatronLM [21]

paper, distributed across up to 3072 GPUs. The models are

distributed in a cluster of up to 384 DGX A100 servers

with an HB domain of size eight. Our analysis uses the

same parallelization strategy from MegatronLM to ensure

optimal GPU utilization. We use the ring-based collective

communication since it is bandwidth-optimal and the default

algorithm in NCCL.

There are three primary types of communication: AllGather

and ReduceScatter traffic from tensor parallelism (TP), AllRe-

duce traffic from data parallelism (DP), and point-to-point

2

as the batch size increases from 256 to 4096 sequences. The

iteration time advantage is prominent when the HB domain

size is small. For K = 8, increasing the batch size from 256

to 4096 improves the relative performance from 65% to 85%,

suggesting a larger batch size is preferable for a cluster with a

smaller HB domain. Prior studies have shown that LLM train-

ing benefits from a larger batch size [1], [29], especially for

bigger models, making it a perfect fit for our Rail-only design.

E. Network Cost and Power Analysis

Our Rail-only network architecture judiciously reduces the

network resources for LLM training by eliminating unused

network hardware. This section compares our proposed ap-

proach’s network cost and power with the state-of-the-art Rail-

optimized GPU clusters. We calculate the number of switches

(NSW) and transceivers (NTR) required for each network

design and derive the network equipment cost and peak power

consumption based on numbers reported in prior work and

by vendors [13], [30], [31].1 We enumerate the number of

switches and transceivers required to build the state-of-the-art

network architecture and our proposed architecture in Table II,

accounting for variable cluster sizes and network switch radix.

For each architecture, we build a minimum layer Clos network

with the provided switch radix and calculate the minimum

number of required switches and transceivers to achieve the

desired connectivity. The total cost of each architecture is

Total cost = PriceSW ×NSW + PriceTR ×NTR (4)

while the power is

Total power = PwrSW ×NSW + PwrTR ×NTR (5)

The last two columns of Table II provide the cost and power

savings of a Rail-only interconnect over the state-of-the-art.

Our Rail-only design notably reduces the network cost by 38%

to 77% (117 to 234 million dollars) and power consumption by

37% to 75% (1.7 to 6.9 megawatts) compared to the state-of-

the-art design while achieving equivalent performance. This

reduction stems from eliminating spine layer switches and

decreasing the number of switch tiers within each rail. Sur-

prisingly, switches with a radix of 64 provide the worst-case

cost and power reduction in both cluster sizes. In this case,

the state-of-the-art design requires a three-tier Clos network,

while the Rail-only design requires two tiers for each rail. Still,

our design only requires three-quarters of the total number of

switches while achieving the same performance as the state-

of-the-art design.

VI. RELATED WORK

LLM trend. The current growth rate of LLM computational

and speed requirement outpaces the advancements in AI

accelerators and network speed as Moore’s law slows down,

necessitating hyper-scale clusters and more efficient intercon-

nects [32], [33]. The MegatornLM line of work pioneers

1Cost: PriceTR = $199 per transceiver, PriceSW = $694 per switch
port for 400 Gbps; Power: PowerTR = 9W per transceiver, PowerSW =

18W per switch port

TABLE II
NUMBER OF SWITCHES AND TRANSCEIVERS FOR DIFFERENT CLUSTERS.

#GPUs
Switch
Radix

#Switches (NSW) #Transceivers (NTR) Savings

SOTA Rail-only SOTA Rail-only Cost Pwr

32768

64 2560 1536 196608 131072 38% 37%

128 1280 256 196608 65536 77% 75%

256 384 128 131072 65536 62% 60%

65536

64 5120 3072 393216 262144 38% 37%

128 2560 1536 393216 262144 38% 37%

256 1280 256 393216 131072 77% 75%

LLM parallelization [21], [28], [34]. Our position to remove

any-to-any network connectivity complements MegatronLM.

We also acknowledge ongoing efforts to reduce language

models’ size and resource requirements without compromising

performance [35]. These works complement our design as our

design reduces network resources and maintains performance

even for smaller language models and clusters. Similarly,

research directions that aim to directly reduce the amount

of communication through quantization and compression, like

DeepSpeed Zero++, also complement our approach [36].

LLM Inference. This paper explores the training workload

of LLMs, yet inference represents another significant part of

the LLM product cycle. Inference demands fewer resources

as it involves moving less data through the LLM and

only computes the forward pass and multiple passes to

generate response tokens [37]. Pope et al. developed specific

parallelism for inference on TPU-v4 architecture [38]. For

our design, each HB domain becomes an inference-serving

domain with low latency, and the Rail-only connections help

load-balance multiple inference domains. We leave a detailed

investigation of LLM inference to future work.

Multi-job training. It is common for a GPU cluster to

train multiple smaller jobs simultaneously. Existing works

focus on Clos-based GPU clusters and provide techniques

for better fairness and shorter job-completion time [39]–[42].

While this paper focuses on training a single LLM on a

large cluster, the Rail-only network design is also suitable

for a multi-job setting. The entire cluster can be arbitrarily

partitioned by tiling into smaller rectangular partitions, similar

to the case of TPU-v4 [25]. Each partition then independently

executes a smaller training job.

ML infrastructures and other ML workloads. Prior

works illustrated the benefits of co-designing hardware and

software for ML models. For instance, Google’s TPU cluster

is optimized for training large models with 3D parallelism

on TPUs [25], while Meta’s Neo focuses on training

recommendation models with large embedding tables [43].

Our work focuses on designing a cost-efficient network to

train LLMs efficiently. Although our proposed Rail-only

architecture focuses on network design specifically for LLMs,

our design is efficient for many other DNN workloads when

combined with other efforts, as the forwarding overhead is

low (§IV-B). Recent works attempt to make the parallelization

strategy and collective communication algorithms bandwidth-

aware for any DNN model [44]–[46], producing traffic

patterns ideal for the Rail-only network.

8

VII. CONCLUSION

In this paper, we examine and analyze the traffic pattern

of LLM training with hybrid parallelism. We propose a

novel Rail-only architecture that aligns with LLMs’ distinct

characteristics and demands. Our architecture leads to 38% to

77% cost reductions and 37% to 75% power savings while

maintaining identical performance to the state-of-the-art GPU

networks.

ACKNOWLEDGMENTS

We thank anonymous Hot Interconnects reviewers for their

feedback. The MIT-affiliated authors are supported by DARPA

FastNICs 4202290027, NSF SHF-2107244, NSF CAREER-

2144766, NSF PPoSS-2217099, NSF CNS-2211382, NSF

FuSe-TG-2235466, Sloan fellowship FG-2022-18504, ACE

and CUbiC centers sponsored by Semiconductor Research

Corporation (SRC) and DARPA under the JUMP 2.0 program.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[2] L. Labs, “Openai’s gpt-3 language model: A technical overview,” 2020.
[Online]. Available: https://lambdalabs.com/blog/demystifying-gpt-3

[3] OpenAI, “Gpt-4 technical report,” 2023.

[4] The-Decoder, “Gpt-4 has a trillion parameters - report,” 2023. [Online].
Available: https://the-decoder.com/gpt-4-has-a-trillion-parameters/

[5] Nvidia, “Nvlink and nvswitch: The building blocks of advanced multi-
gpu communication—within and between servers.” 2023. [Online].
Available: https://www.nvidia.com/en-us/data-center/nvlink/

[6] AMD, “Amd instinct mi300x platform,” 2023. [Online]. Available: https:
//www.amd.com/en/products/accelerators/instinct/mi300/platform.html

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM

2008 Conference on Data Communication, ser. SIGCOMM ’08. New
York, NY, USA: Association for Computing Machinery, 2008, p.
63–74. [Online]. Available: https://doi.org/10.1145/1402958.1402967

[8] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Proceedings of the

2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 202–215.
[Online]. Available: https://doi.org/10.1145/2934872.2934908

[9] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl, A. Bhagat,
G. Bhaskara, T. Brokhman, L. Cao, A. Cheema, R. Chow, J. Cohen,
M. Elhaddad, V. Ette, I. Figlin, D. Firestone, M. George, I. German,
L. Ghai, E. Green, A. Greenberg, M. Gupta, R. Haagens, M. Hendel,
R. Howlader, N. John, J. Johnstone, T. Jolly, G. Kramer, D. Kruse,
A. Kumar, E. Lan, I. Lee, A. Levy, M. Lipshteyn, X. Liu, C. Liu,
G. Lu, Y. Lu, X. Lu, V. Makhervaks, U. Malashanka, D. A.
Maltz, I. Marinos, R. Mehta, S. Murthi, A. Namdhari, A. Ogus,
J. Padhye, M. Pandya, D. Phillips, A. Power, S. Puri, S. Raindel,
J. Rhee, A. Russo, M. Sah, A. Sheriff, C. Sparacino, A. Srivastava,
W. Sun, N. Swanson, F. Tian, L. Tomczyk, V. Vadlamuri, A. Wolman,
Y. Xie, J. Yom, L. Yuan, Y. Zhang, and B. Zill, “Empowering azure
storage with RDMA,” in 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23). Boston, MA:
USENIX Association, Apr. 2023, pp. 49–67. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/bai

[10] T. Schneider, O. Bibartiu, and T. Hoefler, “Ensuring deadlock-freedom
in low-diameter infiniband networks,” in 2016 IEEE 24th Annual Sym-

posium on High-Performance Interconnects (HOTI), 2016, pp. 1–8.

[11] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and T. E.
Anderson, “Backpressure flow control,” in 19th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 22). Renton,
WA: USENIX Association, Apr. 2022, pp. 779–805. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/goyal

[12] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen,
“Deadlocks in datacenter networks: Why do they form, and how
to avoid them,” in Proceedings of the 15th ACM Workshop on

Hot Topics in Networks, ser. HotNets ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 92–98. [Online].
Available: https://doi.org/10.1145/3005745.3005760

[13] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia, D. Mudigere,
Y. Zhang, and A. Kewitsch, “TopoOpt: Co-optimizing network
topology and parallelization strategy for distributed training jobs,”
in 20th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 23). Boston, MA: USENIX Association,
Apr. 2023, pp. 739–767. [Online]. Available: https://www.usenix.org/
conference/nsdi23/presentation/wang-weiyang

[14] NVIDIA, “Dgx h100 computer,” 2023. [Online]. Available: https:
//www.nvidia.com/en-us/data-center/dgx-h100/

[15] ——, “Gb200 nvl72 computer,” 2024. [Online]. Available: https:
//www.nvidia.com/en-us/data-center/gb200-nvl72/

[16] Nvidia, “Nvidia dgx gh200,” 2023. [Online]. Available: https:
//www.nvidia.com/en-us/data-center/dgx-gh200/

[17] ——, “Doubling all2all performance with nvidia collec-
tive communication library 2.12,” 2022. [Online]. Avail-
able: https://developer.nvidia.com/blog/doubling-all2all-performance-
with-nvidia-collective-communication-library-2-12/

[18] Meta, “Introducing data center fabric, the next-generation
facebook data center network,” 2014. [Online]. Available: https:
//engineering.fb.com/2014/11/14/production-engineering/introducing-
data-center-fabric-the-next-generation-facebook-data-center-network/

[19] Nvidia, “Nvidia dgx superpod: Next generation scalable infrastructure
for ai leadership, reference architecture,” 2023. [Online].
Available: https://docs.nvidia.com/dgx-superpod-reference-architecture-
with-dgx-h100-systems.pdf

[20] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L. Gurvits, “Using
multirail networks in high-performance clusters,” in Proceedings 2001

IEEE International Conference on Cluster Computing, 2001, pp. 15–24.
[21] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A.

Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language model
training on gpu clusters using megatron-lm,” 2021.

[22] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A. Awan,
J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale,” 2022.

[23] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proceedings of the Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
267–280. [Online]. Available: https://doi.org/10.1145/3098822.3098838

[24] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren,
and G. Porter, “Expanding across time to deliver bandwidth efficiency
and low latency,” in 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 1–18. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/mellette

[25] N. P. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou,
and D. Patterson, “Tpu v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings,” 2023.

[26] L. Poutievski, O. Mashayekhi, J. Ong, A. Singh, M. Tariq, R. Wang,
J. Zhang, V. Beauregard, P. Conner, S. Gribble, R. Kapoor, S. Kratzer,
N. Li, H. Liu, K. Nagaraj, J. Ornstein, S. Sawhney, R. Urata,
L. Vicisano, K. Yasumura, S. Zhang, J. Zhou, and A. Vahdat, “Jupiter
evolving: Transforming google’s datacenter network via optical circuit
switches and software-defined networking,” in Proceedings of the ACM

SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 66–85. [Online].
Available: https://doi.org/10.1145/3544216.3544265

[27] M. Isaev, N. Mcdonald, L. Dennison, and R. Vuduc, “Calculon: a
methodology and tool for high-level co-design of systems and large
language models,” in Proceedings of the International Conference for

9

High Performance Computing, Networking, Storage and Analysis, ser.
SC ’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3581784.3607102

[28] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi,
and B. Catanzaro, “Reducing activation recomputation in large trans-
former models,” 2022.

[29] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” 2020.

[30] Nvidia, “Nvidia docs hub: Mma4z00-ns400 400gb/s single-port osfp
400gb/s multimode sr4 50m connectivity scenarios,” 2023. [Online].
Available: https://docs.nvidia.com/networking/display/mma4z00ns400/
connectivity+scenarios#:∼:text=The%20400Gb%2Fs%20transceiver%
20has,maximum%20or%208%20Watts%20typical.

[31] ——, “Nvidia docs hub: Qm9700/qm9790 1u ndr 400gb/s infiniband
switch systems user manual specifications,” 2023. [Online]. Available:
https://docs.nvidia.com/networking/display/qm97x0pub/specifications

[32] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, K. Shi, B. Thomsen, and H. Williams, “Sirius:
A flat datacenter network with nanosecond optical switching,” in
Proceedings of the Annual Conference of the ACM Special Interest

Group on Data Communication on the Applications, Technologies,

Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 782–797. [Online]. Available: https://doi.org/
10.1145/3387514.3406221

[33] OpenAI, “Openai: Ai and compute,” 2023. [Online]. Available:
https://openai.com/research/ai-and-compute

[34] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

[35] Databricks, “Hello dolly: Democratizing the magic
of chatgpt with open models,” 2023. [Online].
Available: https://www.databricks.com/blog/2023/03/24/hello-dolly-
democratizing-magic-chatgpt-open-models.html

[36] Microsoft, “Deepspeed zero++: A leap in speed for llm and chat model
training with 4x less communication,” 2023. [Online]. Available: https:
//www.microsoft.com/en-us/research/blog/deepspeed-zero-a-leap-in-
speed-for-llm-and-chat-model-training-with-4x-less-communication/

[37] Z. Li, L. Zheng, Y. Zhong, V. Liu, Y. Sheng, X. Jin, Y. Huang, Z. Chen,
H. Zhang, J. E. Gonzalez, and I. Stoica, “AlpaServe: Statistical
multiplexing with model parallelism for deep learning serving,”
in 17th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 23). Boston, MA: USENIX Association, Jul.
2023. [Online]. Available: https://www.usenix.org/conference/osdi23/
presentation/li-zhouhan

[38] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Lev-
skaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling
transformer inference,” 2022.

[39] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang,
and L. Zhou, “Gandiva: Introspective cluster scheduling for deep
learning,” in 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 595–610. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/xiao

[40] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. Liu, and C. Guo, “Tiresias: A GPU cluster manager for
distributed deep learning,” in 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 485–500. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/gu

[41] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in Proceedings of the ACM

SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 428–440.
[Online]. Available: https://doi.org/10.1145/3544216.3544224

[42] S. Rajasekaran, M. Ghobadi, and A. Akella, “Cassini: Network-aware
job scheduling in machine learning clusters,” 2023.

[43] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park, L. Luo, J. A. Yang, L. Gao, D. Ivchenko,
A. Basant, Y. Hu, J. Yang, E. K. Ardestani, X. Wang, R. Komuravelli,
C.-H. Chu, S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang,
E. Wen, H. Li, L. Yang, C. Sun, W. Zhao, D. Melts, K. Dhulipala,

K. Kishore, T. Graf, A. Eisenman, K. K. Matam, A. Gangidi, G. J.
Chen, M. Krishnan, A. Nayak, K. Nair, B. Muthiah, M. khorashadi,
P. Bhattacharya, P. Lapukhov, M. Naumov, A. Mathews, L. Qiao,
M. Smelyanskiy, B. Jia, and V. Rao, “Software-hardware co-design for
fast and scalable training of deep learning recommendation models,”
2023.

[44] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang,
Y. Wang, Y. Xu, D. Zhuo, E. P. Xing, J. E. Gonzalez, and
I. Stoica, “Alpa: Automating inter- and Intra-Operator parallelism for
distributed deep learning,” in 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22). Carlsbad, CA:
USENIX Association, Jul. 2022, pp. 559–578. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

[45] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q. Narvaez,
V. Ramakrishnaiah, N. Prajapati, P. McCormick, J. Mohd-Yusof,
X. Luo, D. Mudigere, J. Park, M. Smelyanskiy, and A. Aiken, “Unity:
Accelerating DNN training through joint optimization of algebraic
transformations and parallelization,” in 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 22). Carlsbad,
CA: USENIX Association, Jul. 2022, pp. 267–284. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/unger

[46] L. Zhao and A. Krishnamurthy, “Bandwidth optimal pipeline schedule
for collective communication,” 2023.

10

	Introduction
	Background
	Intra-platform Connectivity: High-bandwidth Domain
	Inter-platform Connectivity: NIC Domain

	LLM Traffic Pattern Analysis
	Traffic Pattern of MegatronLM
	Traffic in the NIC Domain for LLMs
	All-to-All Traffic for Mixture-of-Expert Models

	Rail-only Network Design
	Architecture Design
	Routing in Rail-only Networks
	Fault Tolerance Properties of Rail-only Networks

	Evaluation
	Iteration Time Modeling
	What is the Optimal Size of an HB domain?
	Impact of HB domain and Network Bandwidth
	Impact of Batch Size on Network Design
	Network Cost and Power Analysis

	Related Work
	Conclusion
	References

