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Abstract—This paper presents a low-cost network architecture
for training large language models (LLMs) at hyperscale. We
study the optimal parallelization strategy of LLMs and propose
a novel datacenter network design tailored to LLM’s unique
communication pattern. We show that LLM training generates
sparse communication patterns in the network and, therefore,
does not require any-to-any full-bisection network to complete
efficiently. As a result, our design eliminates the spine layer
in traditional GPU clusters. We name this design a Rail-only
network and demonstrate that it achieves the same training
performance while reducing the network cost by 38% to 77 %
and network power consumption by 37% to 75% compared to
a conventional GPU datacenter. Our architecture also supports
Mixture-of-Expert (MoE) models with all-to-all communication
through forwarding, with only 8.2% to 11.2% completion time
overhead for all-to-all traffic. We study the failure robustness of
Rail-only networks and provide insights into the performance
impact of different network and training parameters.

I. INTRODUCTION

Large Language Models (LLMs) are among the most com-
plex and computationally intensive Deep Neural Networks
(DNNs). The GPT3 model from 2020 already requires 355
GPU-years on Nvidia’s V100 GPUs [1], [2], while the recent
GPT4 model is estimated to have trillions of parameters and
takes months to train [3], [4]. As Moore’s law slows down,
the growth rate of LLM size and computation requirement
exceeds the advancement of accelerators, making hyper-scale
GPU datacenters inevitable. Our conversations with lead ma-
chine learning architects in the industry indicate that the
next-generation LLMs likely require over 30,000 GPUs of
computing power to finish training within a reasonable time.

GPU manufacturers have invested in high-bandwidth
platforms, such as NVLink [5] and Infinity Fabric [6], to
enable efficient multi-GPU training. These platforms provide
several Tbps of bandwidth within a few GPUs but are not
scalable. To connect multiple GPU platforms, state-of-the-art
approaches rely on traditional lossless network solutions, such
as RDMA over converged ethernet (RoCE) or Infiniband. In
particular, today’s GPU clusters employ an architecture called
a “Rail-optimized” network. This architecture is derived
from the classical Clos network [7] to provide any-to-any
connectivity to all GPUs in a training cluster.

However, scaling a Clos network to tens of thousands of
GPUs is challenging. Previous work demonstrated that large-
scale lossless networks are prone to deadlocking and PFC
storms [8]-[12], degrading the performance. Furthermore, as

the scale increases, Clos architectures become prohibitively
costly [13]. For instance, today, a full-bisection Clos fabric
interconnecting 30,000 GPUs with 400 Gbps network capacity
costs $200 million. At the same time, deploying such a
network requires provisioning for ~4.6 megawatts of peak
power consumption. Consequently, datacenter providers resort
to over-subscription to tame costs and energy consumption,
worsening deadlocking and degraded performance problems.

In this paper, we show that efficiently training LLMs does
not require any-to-any connectivity across all GPUs in the
network, even for DNNs with sparsely gated Mixture-of-
Expert (MoE) layers, which generate all-to-all communication
(S§II-C). As a result, we propose an immediately deployable
solution to lower the cost and energy consumption of LLM
datacenters with commodity electrical switches. To do so, we
make two primary contributions. First, we analyze the traffic
pattern of training LLMs (§III). We demonstrate that with
an optimal parallelization strategy, an LLM training workload
requires high-bandwidth any-to-any connectivity only within
a small subset of GPUs, and each subset fits within a single
GPU platform, such as an Nvidia DGX server. Across the
platforms, most communication occurs between a few GPU
pairs with the same rank throughout the cluster. As a result, the
conventional any-to-any approach for building Clos networks
adds unnecessary complexity, cost, and power consumption
for distributed LLM training.

Motivated by the above observations, we then propose a
low-cost network architecture that accurately reflects LLM
communication requirements, called Rail-only (§1V). Instead
of forming a Clos to support any-to-any communication, as
advocated by major GPU manufacturers [14], our architecture
removes the spine layer of switches and only connects sets
of GPUs with significant network traffic. Hence, compared
to the state-of-the-art Rail-optimized design, our network
architecture removes the network equipment that does not
carry significant traffic and achieves the same performance as
a Rail-optimized network. We provide routing strategies that
impose minimal performance overhead for all-to-all communi-
cation. We also analyze our design’s fault-tolerance properties
and provide recovery methods from failure cases (§1V-C).

We evaluate the performance of our Rail-only network
architecture using an analytical formulation and provide
insights into the performance impact of different network
and training parameters. We compare the cost and power



consumption of a Rail-only network to a full-bisection
bandwidth any-to-any Clos network and show that our
LLM-centric network architecture reduces the network cost
and power by 38%—-76% and 37%-75%, respectively (§V-E).
Moreover, we show that a Rail-only network achieves the
same performance as a Rail-optimized cluster for LLMs
without MoE layers. Finally, we demonstrate that a Rail-only
interconnect only incurs 8.2%-11.2% throughput overhead
for LLMs with MoEs that require all-to-all traffic.

II. BACKGROUND
A. Intra-platform Connectivity: High-bandwidth Domain

The rise of resource-intensive ML workloads led to the
dominance of GPU-centric platforms optimized for multi-GPU
workloads. To accommodate the communication demand,
these platforms use high-bandwidth local interconnects within
a local domain of GPUs. Depending on the manufacturer, these
GPU-centric platforms differ in computing FLOPs, GPU and
CPU architectures, or even physical interconnect technology.
However, these platforms all share a unifying property: they
provision several Tbps of internal bandwidth across GPUs.

For instance, Nvidia’s DGX H100 server [14] consists of
eight H100 GPUs interconnected with NVSwitches, providing
3.6 Tbps of non-blocking bandwidth internally. The GB200
NVL72 computer announced recently connects 36 GB200
Superchips with fifth-generation NVLink within a rack at
7.2 Tbps per GPU [15]. The AMD MI300X platform, on
the other hand, employs AMD’s Infinity Fabric to connect
eight MI300X accelerators in a full-mesh topology with
3.6 Tbps of bandwidth per GPU [6]. Similar platforms such
as Nvidia’s DGX GH200 Super Computer have utilized multi-
tiered NVSwich topologies to scale the platform’s size up to
256 GPUs while maintaining 3.6 Tbps full-bisection intra-
GPU bandwidth [16]. This paper refers to a platform with
Tbps internal bandwidth connectivity as a “high-bandwidth
(HB) domain”, and the corresponding interconnect as HB
interconnects (HBI).

B. Inter-platform Connectivity: NIC Domain

While GPU-centric platforms provide high internal band-
width using NVLink or Infinity Fabric technologies, they
can only scale to a limited number of GPUs. To expand
beyond a single platform, operators rely on traditional network
technologies, such as Ethernet or Infiniband, to connect the
NICs of different platforms. This paper refers to the inter-
platform network as the “NIC domain.”

The state-of-the-art interconnection in the NIC domain
is based on a well-known network architecture called a
Rail-optimized network [17]. This architecture is ubiquitously
used for high-performance computing (HPC) workloads.
As we discuss next, Rail-optimized networks are better
suited for DNNs than conventional CPU-centric datacenter
networks. However, given that Rail-optimized networks are
primarily designed for HPC workloads, they miss a significant
opportunity to further leverage the unique traffic patterns of
LLM training workloads (§III).

First, let us consider a conventional datacenter design
specialized to serve unpredictable and bursty CPU-heavy
workloads. This architecture, known as a Clos network [7],
[18], provides any-to-any connectivity between server pairs.
Clos networks are well-studied in the system and networking
community and are the de facto infrastructure for storage,
cloud, and map-reduce workloads.

The Rail-optimized network for GPU training clusters
evolves from the datacenter Clos network [17], [19], illustrated
in Figure 1. For a GPU platform with an HB domain of
size K, there are K total rails, where a rail comprises
GPUs with the same local rank that belong to different HB
domains [20]. A Rail-optimized network places these GPUs
under the same set of switches, which we denote as rail
switches. Figure 1 highlights rail one and rail K in red and
yellow colors, respectively. Connecting same-rank GPUs to the
same rail switches ensures the lowest possible latency across
them. Such connectivity is desirable because an optimal DNN
parallelization strategy concentrates its NIC domain traffic
between GPUs with the same local rank [17].

Rail-optimized architectures enjoy low latency between
GPUs in the same rail. The rest of the network employs
layers of spine switches to connect the rail switches to form a
full-bisection any-to-any Clos network topology. This network
ensures that any pair of GPUs in different HB domains can
still communicate at the network line rate of hundreds of Gbps.
For instance, traffic between GPU 1, Domain 1 and GPU
1, Domain 2 traverses through Rail Switch 1 only, while
traffic between GPU 1, Domain 1 and GPU 2, Domain
2 goes through the respective rails and the spine switches.

While the Rail-optimized network architecture takes ad-
vantage of the strong locality of DNN training traffic by
connecting the same-rank GPUs with the same ToR switch,
it overlooks a fundamental question: Are the spine switches
necessary? In the next section, we analyze LLM training traffic
in greater detail to explore the potential for a spineless network
architecture design.

III. LLM TRAFFIC PATTERN ANALYSIS
A. Traffic Pattern of MegatronLM

We now analyze the traffic pattern generated by LLMs with
hybrid data, tensor, and pipeline parallelism by computing the
network transfer sizes from the model hyperparameters and
the parallelization strategy. We first look at a series of GPT
models with 145.6 billion, 310.1 billion, 539.6 billion, and 1
trillion parameters described in Table 1 of MegatronLM [21]
paper, distributed across up to 3072 GPUs. The models are
distributed in a cluster of up to 384 DGX AI100 servers
with an HB domain of size eight. Our analysis uses the
same parallelization strategy from MegatronLM to ensure
optimal GPU utilization. We use the ring-based collective
communication since it is bandwidth-optimal and the default
algorithm in NCCL.

There are three primary types of communication: AllGather
and ReduceScatter traffic from tensor parallelism (TP), AllRe-
duce traffic from data parallelism (DP), and point-to-point
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Fig. 1. A GPU datacenter with Rail-optimized, any-to-any Clos networks [19].
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Fig. 2. (a) The traffic volume from different parallelization dimensions; (b)
The communication type across all GPU pairs.

traffic from pipeline parallelism (PP). Figure 2a illustrates the
volume percentage for each type of communication for one
training iteration. Figure 2b shows the communication type
distribution across all GPU pairs.

The TP traffic happens within GPUs participating in a TP
rank, which occupies an HB domain. The DP and PP traffic
happen in the NIC domain, and their volume is significantly
smaller than TP traffic, as illustrated by Figure 2a. While
traffic from different parallelism does not overlap between
different pairs of GPUs, Figure 2b indicates that over 99% of
GPU pairs carry no traffic and less than 0.04% of GPU pairs
carry TP traffic. Simultaneously, Figure 2a suggests TP traffic
accounts for over 75% of the total transmitted data. Recall
that TP traffic stays within HB domains, suggesting efficient
usage of HB domain bandwidth and low demand in the NIC
domain. This pattern is consistent across all GPT models we
studied, indicating that building a GPU datacenter with any-
to-any connectivity on top of HB domains for LLM models is
excessive.

B. Traffic in the NIC Domain for LLMs

The parallelization strategy employed in MegatronLM
induces an insignificant amount of traffic in the NIC domain
compared to the HB domains. Figure 3 shows the traffic
heatmap for training the GPT-1T model. In this plot, every
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Fig. 3. Traffic heatmaps for GPT-1T in MegatronLM [21]. Highlights show
GPUs in the same HB domains and rails.

consecutive set of eight GPUs resides within the same HB
domain (highlighted in orange), and GPUs with a distance of
8 between them belong to the same rail (highlighted in pink).
Figure 3a demonstrates the traffic pattern within one pipeline
stage, while Figure 3b shows the traffic across the first four
pipeline stages. The traffic volume is significant (~300 GB
across GPU pairs) in an HB domain, while the communication
drops to only about 6 GB in the NIC domain. Furthermore, the
transfers in the NIC domain never traverse through the spine
switches — these network transfers only happen within a rail.

We argue that all LLMs without sparse MoE layers dis-
tributed with an optimal parallelization strategy always induce
sparse, low-volume traffic in within the rails. By design, the
only traffic exiting the HB domains is point-to-point traffic
from pipeline parallelism or collective communication traffic
(AllGather, ReduceScatter, and AllReduce) from TP and DP.

For PP, due to the symmetry of LLM parallelization, each
pipeline stage contains the same number of GPUs. As a result,
the pipeline stages can always be placed such that traffic across
stages traverses the GPUs of the same rank in the NIC domain
only, hence staying within the same rail.

TP and DP can induce collective communication traffic in
both the HB and the NIC domains. The examples from Mega-
tronLM always have TP and DP contained within HB and NIC
domains only, respectively. While such a partition is common
for LLMs, it is not ubiquitous. For example, training a smaller
model using only DP causes all GPUs to participate in the
same DP rank and, thus, the same AllReduce operation across
both HB and NIC domains. In these cases, the training cluster
could use hierarchical collective communication algorithms
that achieve near-optimal performance. Below, we introduce
these algorithms, analyze their performance, and illustrate that
their traffic in the NIC domain stays within rails.

Hierarchical collective communication algorithms are de-
signed for a multi-tiered network topology. We introduce the
hierarchical AllGather algorithm here and note that for the
other collectives happening in LLM training, ReduceScatter
achieves the same performance by inverting the schedule of
AllGather, and AllReduce is equivalent to a ReduceScatter
followed by an AllGather. We focus on the bandwidth per-
formance and ignore the latency, as the data transmission
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Fig. 4. Traffic distribution and heatmaps for GPT-1T, distributed on 16 DGX GH200s. Note that DP (NIC) accounts for 0.8% of the total traffic
percentage. The "Same-Rail” legend on Figure 4 appears for GPUs whose ranks are 256 apart.

is significant during LLM training; thus, the communication
runtime is bandwidth-dominated. Table I lists the variables
used in this section. We assume the GPUs conducting an
AllGather operation are arranged into an x X y grid, where
each  GPU belongs to the same HB domain and across y
total HB domains. The basic hierarchical AllGather executes
in two phases: first, the algorithm collects partial data for each
rail of GPUs without transferring data in the HB domain. If the
total data to run AllGather is of size D, then the amount of data
exchanged in the network by all GPUs is D(y — 1)/x. This
operation effectively creates larger data shards for the GPUs to
rerun AllGather within each HB domain. Therefore, each HB
domain conducts an AllGather in the second phase, inducing a
total transfer of D(x — 1). Assume the 2 GPUs within an HB
domain have bandwidth capacity Cr and y GPUs in the NIC
domain have bandwidth C'g, then the total AllGather runtime is

(y—1)D n (x—1)D
zyCs x2Cp

Like PP communication, by appropriately mapping the logical
z X y GPUs to the GPU cluster, this algorithm only induces
traffic for GPUs within the same rail.

Figure 2a shows the traffic pattern of training GPT-1T
with hierarchical collective communication spanning both NIC
and HB domains, differing from the MegatronLM cases. We
compute and analyze the traffic pattern of training the GPT-
1T model, with a batch size of 4096, distributed in a cluster
composed of 16 Nvidia DGX GH200 supercomputers [16]
(4096 GPUs). Each DGX GH200 supercomputer comprises a
two-tier NVSwitch architecture, facilitating 3.6 Tbps GPU-
to-GPU bandwidth across 256 H100 GPUs. Additionally,
each GPU has a Connect-X7 HCA Infiniband network inter-
face [16], which provides 400 Gbps network bandwidth in/out
of each GPU. In this setup, each DGX GH200 supercomputer
forms an HB domain. Figure 4 illustrates the traffic volume
percentage and heatmap in this setting. The parallelization
strategy has a total data parallel degree of 64, which spans
32 GPUs in each HB domain and two HB domains across the
network. Figures 2b and 2c illustrate the traffic heatmap of the
hierarchical AllReduce algorithm, which splits the AllReduce

AGtime(D,z,y,Cp,Cg) =

)

traffic among each DP group. Note that the network traffic
stays within a rail (GPUs with a distance of 256 apart). The
hierarchical algorithm efficiently utilized the bandwidth in the
HB domain to carry 98% of the AllReduce traffic, while the
network domain carries the other 2%.

C. All-to-All Traffic for Mixture-of-Expert Models

LLMs with sparsely gated Mixture-of-Expert (MoE) layers
exhibit a different traffic pattern than the models described
above. MoE layers provide an alternative way to increase
the size of LLMs without introducing significant additional
computational requirements. With MoEs, part of the model
is replaced by a set of “expert” neural networks, where a
gating network routes each token to different experts, thereby
only activating part of the model. The typical parallelization
strategy for MoEs is expert parallelism, where each expert is
distributed to a different GPU in the cluster.

Unlike traditional LLMs, MoEs with expert parallelism
require each expert to communicate with the rest of the
model, creating a dense communication pattern. The exact
traffic heatmap depends on the gating network and the token
distribution. In this section, we assume a uniform token
distribution for simplicity. Figure 5 shows the traffic matrix
of training the MoE-1.3B model from DeepSpeedMoE [22],
with 16 DGX A100 servers. The model contains 128 experts.
The static part of the model uses DP, while the MoE part
uses expert parallelism. Since each GPU contains a different
expert, a uniform token distribution generates a uniform all-
to-all traffic pattern across the network. At first glance, such
traffic patterns make the spine switch in the rail-optimized
network crucial, as the traffic across GPUs on different rails
will traverse through spine switches. However, as we show in
the next section, we do not have to rely on the spine switches:
using the HB domain as a forwarding step achieves near-
optimal performance.

IV. RAIL-ONLY NETWORK DESIGN

Based on the observations above, this section proposes Rail-
only, a novel network architecture that diverts from the any-
to-any GPU connectivity paradigm. We first introduce the



TABLE I
VARIABLES USED IN SECTION III AND IV-B.

T GPU grid dimension in HB domains.
Y GPU grid dimension in NIC domains.
Cp Bandwidth of HB domains.
Cp Bandwidth of NIC domains.
D Data transfer size between a pair of GPUs.
Ttg‘;”*op g All-to-all traffic completion time for Rail-optimized networks.
T(f;‘yl*o"w All-to-all traffic completion time for Rail-only networks.
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Fig. 5. Traffic volume distribution and heatmap for the MoE-1.3B model in
DeepSpeedMoE [22], assuming uniform token distribution.

architecture design of a Rail-only network. We then discuss
routing policy and fault-tolerance properties of Rail-only in-
terconnects.

A. Architecture Design

Figure 6 illustrates our Rail-only network architecture.
Compared to a conventional Rail-optimized GPU cluster,
shown in Figure 1, our network keeps the HB domains and
rail switches but omits the spine switches. Hence, a Rail-only
network provides network connectivity only within the same
rail, without changing the bandwidth across GPU pairs.

A straightforward way to realize our proposed architecture
is to remove the spine switches from Figure 1 and re-purpose
all the uplinks connecting rail switches to the spine as down-
links to GPUs. Hence, a dedicated but separate Clos network
connects each rail. Since more ports of the switches in the rail
are available as down-links to GPUs, compared to the Rail-
optimized network, the Rail-only design saves the number of
switches in the network by both removing the spine switches
and reducing the number of switches needed per rail. In the
rest of this paper, we base our analysis on this realization of
the Rail-only network.

B. Routing in Rail-only Networks

Our Rail-only network architecture removes network
connectivity across GPUs with different ranks in different
rails. Such communication is still possible by forwarding the
data through HB domains. For instance, a message from GPU
1, Domain 1 to GPU 2, Domain 2 in Figure 6 can
first route through the first HB domain to GPU 2, Domain
1 and then be transmitted to the final destination through the
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Fig. 6. Our proposal: remove the spine layer to form a Rail-only connection.

network. Previous work has shown that such a routing scheme
induces a bandwdith-tax [13], [23], [24], where the physical
traffic increases in the network due to forwarding. However,
in this section, we show that due to the bandwidth asymmetry
between the HB and the NIC domain, the performance
degradation caused by bandwidth tax is negligible.

We use LLMs with MoE layers described in Section III-C as
an example, as it generates a challenging all-to-all communi-
cation pattern. At first glance, this traffic pattern is challenging
for the Rail-only network. Most of the all-to-all traffic requires
forwarding. However, since the HB domain is much faster than
the NIC domain, forwarding network traffic on the HB domain
incurs a slight overhead. Below, we derive the slow-down
factor for uniform all-to-all traffic using a two-step forwarding
routing algorithm for the Rail-only network. Note that this
strategy has already been implemented in NCCL as “PCle x
NVLink” (PXN) to avoid congestion in cases where the spine
layer of the Rail-optimized network is oversubscribed [17].

We use the same variables defined in Table I in the following
derivation. Consider a grid of x x y GPUs where x GPUs are
placed in an HB domain, and a Rail-only or Rail-optimized
network connects y HB domains. Recall that the HB domain
has bandwidth C'r while the NIC domain has bandwidth
Cg per GPU pair. For a Rail-optimized network, every GPU
sends traffic directly to its destinations through the HB and
full-bisection NIC domains. Assuming each pair of GPU
communicates traffic of size D, the total all-to-all completion
time is:

(zr—1)D z(y—1)D

Crp '’ Cs

z(y—1)D

C
e
For the Rail-only network, the two-step algorithm first runs an
all-to-all within each rail, preparing each GPU to have all data
to send on its rail. Then, within each rail, each GPU runs a
second all-to-all in the HB domain to finish the transfers with
an effective shard size of xD. Note that the second step here
contains the bandwidth-tax. The total transmission time is

TRailfonly — y(l‘ — 1)D + x(y — l)D

a2a CF CS

The two terms differ by y(z — 1)D/Cp, which is the cost of
forwarding within HB domains. When y(x — 1) =~ z(y — 1),
the slow-down factor is approximately Cs/Cr, which equals
to 8.2% and 11.2% for the DGX A100 and DGX HI100
generations of GPU platforms, respectively. This factor is low
because of the bandwidth asymmetry between the two do-
mains. Furthermore, this slow-down only applies to the all-to-
all communication, which accounts for 27% of the total traffic
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as shown in Figure 5. Therefore, this small overhead is negli-
gible by Amdah’s law. We note that such properties also make
our network design suitable for other classes of DNN models.

C. Fault Tolerance Properties of Rail-only Networks

Fault tolerance is crucial for large GPU clusters with
long-lasting LLM training jobs. This section investigates the
fault tolerance properties of Rail-only networks compared to
traditional Rail-optimized networks.

Link and switch failures. Suppose a rail switch or a link
fails. GPUs connected to the failed switch or link become
unavailable for both Rail-optimized and Rail-only network
architectures, rendering the two designs identical regarding
fault tolerance on switches and links. However, our design
requires fewer switches, which naturally reduces the points
of failure. Datacenter operators can add redundant capacity
by including extra rail switches, and our design remains more
cost-effective than the any-to-any network design.

GPU platform failure. For a GPU cluster composed of
DGX-like servers, each server is an HB domain. When a
server fails, the network operator migrates the task to another
healthy server. The Rail-only connectivity remains the same
for the new server. For a GB200-like cluster, a super-chip
module is analogous to a server; thus, the failure mode is the
same as a single GPU failure, which we will discuss next.

Single GPU failures with idle GPU in the HB domain.
We discuss two distinct scenarios separately for single GPU
failures. The first case is when another idle GPU presents
the same HB domain as the failed one. In this case, a Rail-
optimized network directly replaces the failed GPU with the
idle one without breaking the HB domain integrity. One
possible solution is to leverage optical reconfigurable switches
for the Rail-only network. To improve robustness, we add
a small number of optical switches between the GPU and
rail switches to allow the dynamic reconfiguration of rails.
When a GPU fails, the optical switch reconfigures to bring a
healthy, idle GPU to replace the failed one. This approach
is conceptually similar to the failure recovery mechanism
of network designs that primarily uses optical-reconfigurable
switches [13], [25], [26]. We leave an in-depth analysis of
rail-only with optical switch to future work.

Single GPU failure in fully occupied HB domains. An-
other failure mode occurs when a GPU fails in a fully occupied
HB domain and requires a substitute GPU from different HB
domains. In this case, the Rail-only design prevents migrating
the task on the failed GPU to another idle one in the cluster,
which is possible in a Rail-optimized network. However, such
a solution is undesirable even with the Rail-optimized network.
The new GPU no longer belongs to the same HB domain as
the failed one, creating a bottleneck that slows the HB domain
into a NIC domain. Instead, we propose two solutions. For
platforms with small HB domains, we migrate the tasks on
the entire HB domain with the failed GPU to a new one. For
larger HB domains (e.g., DGX GH200 supercomputers with
K = 256), these HB domains comprise a multi-tiered topology
with an optical core-layer [16]. One potential approach is to

Ground Truth B Our Model

100

80 r
60

40 |
20
0

(22B,8)  (175B,64) (530B,280) (530B,2240) (1T, 512)
(GPT Size, #GPUs)

Hardware FLOPs Utilization (%)

Fig. 7. HFU comparison between the ground truth [28] and our formulation.

add optical switches, like in the previous failure case. When a
GPU failure occurs, the optical switch reconfigures, replacing
a small set of GPUs (including the failed one) with healthy
ones, thus maintaining the integrity of an HB domain.

V. EVALUATION
A. Iteration Time Modeling

We evaluate our Rail-only network design’s performance
through an analytical model of the training iteration time. Our
analytical model considers the critical path for LLM training
with TP, DP, and PP, similar to the approach in Calculon [27].

We demonstrate the accuracy of our analytical model by
comparing its estimation of hardware FLOPs utilization (HFU)
to that of published results in the literature. The HFU refers
to the hardware’s floating point operation performed in an
iteration over the peak floating point operations. Prior work
provided the full set of hyperparameters in their evaluation
setup, enabling us to compare the estimated HFUs from our
analytical model to the ground truth [28]. In our evaluations,
we assume a cluster of 1 to 280 DGX A100 servers. To
compute the total required FLOPs for training per iteration of a
DNN model, we use the same formula proposed by Korthikanti
et al. [28].

Figure 7 compares the HFUs approximated by our analytical
model with the ground truth for different GPT models and
cluster scales. For GPT-1T, our computed HFU only differs
from the ground truth by 1.8%. The discrepancy between
our analytical model and the ground truth comes from our
idealistic modeling of GPU computation and communication,
assumptions on how computation and communication overlap,
and underestimation of memory overhead. Such discrepancy
goes up as the model size decreases. For the GPT-22B model,
our estimation error is 10.8% compared to ground truth MFU.
The rest of this section utilizes our analytical model to estimate
the training iteration time of Rail-only interconnects.

B. What is the Optimal Size of an HB domain?

Intuitively, increasing HB domain size reduces the inter-
platform network overhead during training. This section
answers the following question: what is the optimal size of
an HB domain in a Rail-only interconnect? In Figure 8, we
vary the HB domain size (K) and plot the training iteration
time for GPT-1T and GPT-146B MegatronLMs for clusters
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Fig. 8. Iteration time as HB domain size changes.

with 16384, 32768, and 65536 H100 GPUs. The global
batch size in this evaluation is 4096 and 1024 for GPT-IT
and GPT-146B, respectively. We enumerate all possible
parallelization strategies for each cluster size and use the
optimal parallelization strategy found in our analytical model,
using the bandwidth and computational ability parameters of
DGX GH200. In addition, to capture the ideal iteration time,
we also compute training iteration time where a full-bisection
monolithic NVLink fabric connects every GPU (i.e., the case
where K = N, where N is the total GPU count).

As depicted in Figure 8, iteration times decrease as the
HB domain size increases, indicating that larger HB domains
reduce the network overhead during training. In both GPT
models, the iteration time achieved with an HB domain size
of 256 is nearly optimal. Compared to the ideal case (all GPUs
are under a monolithic HB domain), GPT-146B with an HB
domain of 256 is 4.1% slower, while GPT-1T is 0.9% slower.
However, the marginal gain decreases as the HB domain size
increases. For the larger GPT-1T model, the train iteration time
plateaus above 32 GPUs due to Amdhahl’s law, suggesting
diminishing returns from the increased cost of bigger HB
domains.

For a smaller GPT-146B model, shown in Figure 9b, the
marginal gain of increasing HB domain size is higher than
that of GPT-1T. Providing an HB domain of size eight reduces
the iteration time by 43.3% compared to the HB domain of
size one, while increasing the HB domain size from 8 to
256 further achieves a 30.6% reduction in iteration time. The
more significant marginal gain for smaller LLMs incurs more
communication overhead when distributed to the same cluster
than larger models. This effect arises from how computation
and communication costs scale as LLM grows. The communi-
cation requirement increases linearly with the model’s hidden
size and sequence length. On the other hand, the model FLOPs
increase quadratically with these two parameters, as indicated
by previous work [21]. Therefore, we conclude that the optimal
HB domain size depends on the size of the GPT model.

C. Impact of HB domain and Network Bandwidth

The available bandwidth of HB and NIC domains
determines the communication time during training. We
analyze the impact of these bandwidths on the iteration time
of a GPT model with one trillion parameters. Figure 9a and 9b
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show the iteration time variation for different HB domain
bandwidths (different lines) and network bandwidths in the
rails (on the z-axis) for HB domain size K = 8 and 256,
respectively. As expected, the iteration time decreases when
either bandwidth increases. However, the K = 8 case is less
sensitive to the HB domain bandwidth. Increasing per-GPU
bandwidth by a factor of four (from 2.4 Tbps to 9.6 Tbps) only
improves the iteration time by 8.0% on average for K = 8,
compared to the improvement of 13.3% for K = 256. On the
other hand, larger HB domain sizes are more pronounced on
network bandwidth improvement. Increasing the bandwidth
from 100 Gbps to 400 Gbps, results in 35.9% improvement
for K = 8 but only 8.0% for K = 256. Hence, improving the
HB domain bandwidth is more beneficial than the network
bandwidth for LLMs as future HB domain size increases.

D. Impact of Batch Size on Network Design

While the batch size is typically an ML-centric metric for
optimization, our analysis indicates that the impact of batch
size on the total training time goes beyond the total number
of iterations required for convergence. To further understand
such impact, we analyze the iteration time of a GPT-1T model
on a 32768 GPU cluster while changing the HB domain size
from K = 8 to 32768. In this study, we vary the global
batch size from 256 to 4096. Figure 10a plots the change
in iteration time as the batch size varies. The iteration time
exhibits a similar trajectory for all HB domain sizes; however,
the relative performance (the ratio of the iteration time for
an HB domain size to that of the ideal case) improves as the
batch size increases. Figure 10b represents this trend. When
K = 256, the relative performance increases from 95% to 99%



as the batch size increases from 256 to 4096 sequences. The
iteration time advantage is prominent when the HB domain
size is small. For K = 8, increasing the batch size from 256
to 4096 improves the relative performance from 65% to 85%,
suggesting a larger batch size is preferable for a cluster with a
smaller HB domain. Prior studies have shown that LLM train-
ing benefits from a larger batch size [1], [29], especially for
bigger models, making it a perfect fit for our Rail-only design.

E. Network Cost and Power Analysis

Our Rail-only network architecture judiciously reduces the
network resources for LLM training by eliminating unused
network hardware. This section compares our proposed ap-
proach’s network cost and power with the state-of-the-art Rail-
optimized GPU clusters. We calculate the number of switches
(Nsw) and transceivers (Nrpg) required for each network
design and derive the network equipment cost and peak power
consumption based on numbers reported in prior work and
by vendors [13], [30], [31].! We enumerate the number of
switches and transceivers required to build the state-of-the-art
network architecture and our proposed architecture in Table II,
accounting for variable cluster sizes and network switch radix.
For each architecture, we build a minimum layer Clos network
with the provided switch radix and calculate the minimum
number of required switches and transceivers to achieve the
desired connectivity. The total cost of each architecture is

Total cost = Pricesw X Ngw + Pricergp X Npp  (4)
while the power is
Total power = Pwrgw X Ngw + Pwrrr X Nrg (@)

The last two columns of Table II provide the cost and power
savings of a Rail-only interconnect over the state-of-the-art.
Our Rail-only design notably reduces the network cost by 38%
to 77% (117 to 234 million dollars) and power consumption by
37% to 75% (1.7 to 6.9 megawatts) compared to the state-of-
the-art design while achieving equivalent performance. This
reduction stems from eliminating spine layer switches and
decreasing the number of switch tiers within each rail. Sur-
prisingly, switches with a radix of 64 provide the worst-case
cost and power reduction in both cluster sizes. In this case,
the state-of-the-art design requires a three-tier Clos network,
while the Rail-only design requires two tiers for each rail. Still,
our design only requires three-quarters of the total number of
switches while achieving the same performance as the state-
of-the-art design.

VI. RELATED WORK

LLM trend. The current growth rate of LLM computational
and speed requirement outpaces the advancements in Al
accelerators and network speed as Moore’s law slows down,
necessitating hyper-scale clusters and more efficient intercon-
nects [32], [33]. The MegatornLM line of work pioneers

ICost: Pricerr = $199 per transceiver, Pricegyy = $694 per switch
port for 400 Gbps; Power: Powerrr = 9W per transceiver, Powergy =
18W per switch port

TABLE II
NUMBER OF SWITCHES AND TRANSCEIVERS FOR DIFFERENT CLUSTERS.
#GPUs SWit_Ch #Switches (Nsw ) #Transceivers (NTR) Savings
°| Radix [ SOTA | Rail-only SOTA Rail-only Cost | Pwr
64 2560 1536 196608 131072 38% 37%
32768 128 1280 256 196608 65536 77% | 5%
256 384 128 131072 65536 62% 60%
64 5120 3072 393216 262144 38% 37%
65536 128 2560 1536 393216 262144 38% 37%
256 1280 256 393216 131072 77% 75%

LLM parallelization [21], [28], [34]. Our position to remove
any-to-any network connectivity complements MegatronLM.
We also acknowledge ongoing efforts to reduce language
models’ size and resource requirements without compromising
performance [35]. These works complement our design as our
design reduces network resources and maintains performance
even for smaller language models and clusters. Similarly,
research directions that aim to directly reduce the amount
of communication through quantization and compression, like
DeepSpeed Zero++, also complement our approach [36].

LLM Inference. This paper explores the training workload
of LLMs, yet inference represents another significant part of
the LLM product cycle. Inference demands fewer resources
as it involves moving less data through the LLM and
only computes the forward pass and multiple passes to
generate response tokens [37]. Pope et al. developed specific
parallelism for inference on TPU-v4 architecture [38]. For
our design, each HB domain becomes an inference-serving
domain with low latency, and the Rail-only connections help
load-balance multiple inference domains. We leave a detailed
investigation of LLM inference to future work.

Multi-job training. It is common for a GPU cluster to
train multiple smaller jobs simultaneously. Existing works
focus on Clos-based GPU clusters and provide techniques
for better fairness and shorter job-completion time [39]-[42].
While this paper focuses on training a single LLM on a
large cluster, the Rail-only network design is also suitable
for a multi-job setting. The entire cluster can be arbitrarily
partitioned by tiling into smaller rectangular partitions, similar
to the case of TPU-v4 [25]. Each partition then independently
executes a smaller training job.

ML infrastructures and other ML workloads. Prior
works illustrated the benefits of co-designing hardware and
software for ML models. For instance, Google’s TPU cluster
is optimized for training large models with 3D parallelism
on TPUs [25], while Meta’s Neo focuses on training
recommendation models with large embedding tables [43].
Our work focuses on designing a cost-efficient network to
train LLMs efficiently. Although our proposed Rail-only
architecture focuses on network design specifically for LLMs,
our design is efficient for many other DNN workloads when
combined with other efforts, as the forwarding overhead is
low (§IV-B). Recent works attempt to make the parallelization
strategy and collective communication algorithms bandwidth-
aware for any DNN model [44]-[46], producing traffic
patterns ideal for the Rail-only network.



VII. CONCLUSION

In this paper, we examine and analyze the traffic pattern
of LLM training with hybrid parallelism. We propose a
novel Rail-only architecture that aligns with LLMs’ distinct
characteristics and demands. Our architecture leads to 38% to
77% cost reductions and 37% to 75% power savings while
maintaining identical performance to the state-of-the-art GPU
networks.
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