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Abstract
Patient-specific mathematical modeling combined with data analytics methods
presents a promising approach for analyzing retinal hemodynamics. In this study, we
build upon previous developments in retinal blood flow modeling, integrating clinical
measurements and physiological insights to reconstruct parameters such as the central
retinal artery velocity (CRA)Doppler profile and pressurewave. By leveraging person-
alized input data, including CRA velocity profile, systemic blood pressure, heart rate,
and intraocular pressure, we evaluate the performance of our in silico approach. Our
investigation highlights the significance of methodological considerations in combin-
ing automatic image processing and mathematical modeling, particularly concerning
the selection of appropriate strategies and the inclusion of personalized supplementary
data. Through extensive validation and comparison with prior works, we demonstrate
the impact of different assessment methods on clinically meaningful quantities, par-
ticularly biomarkers related to blood flow. Furthermore, our study introduces a novel
metric based on the Wasserstein distance for monitoring temporal changes in reti-
nal blood flow dynamics, providing valuable insights into the evolution of vascular
function. Overall, our findings underscore the importance of patient-specific input
data, automatic image processing, and personalized mathematical modeling to ensure
robust and clinically relevant outcomes in retinal vasculature analysis.

Keywords Mathematical ophthalmology · Image processing · Differential systems ·
Patient-specific modeling

B Lorenzo Sala
lorenzo.sala@inrae.fr

1 Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
2 Department of Mathematics and Statistics, Washington State University, Pullman, WA, USA
3 Electrical and Computer Engineering, University of Maine, Orono, ME, USA
4 Université Paris Cité, CNRS, MAP5, 75006 Paris, France
5 Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44007-024-00137-7&domain=pdf
http://orcid.org/0000-0002-8878-0616


La Matematica

1 Introduction

The increasing interest in patient-specific mathematical models applied to biomedical
challenges has propelled innovative research in recent years. Building upon clinical
measurements and physiological insights, these models offer a promising avenue for
understanding complex biological phenomena. This endeavor aligns with the evolv-
ing landscape of computational and mathematical ophthalmology, where innovative
methodologies hold promise for enhancing diagnosis and monitoring of ocular dis-
eases amidst a backdrop of diverse and sometimes conflicting clinical data [1, 2].
Contributions include the introduction, validation, and leveraging of models to ana-
lyze parameters such as the central retinal artery (CRA) velocity Doppler profile [3, 4]
and pressure wave reconstruction. Alternative approaches, such as parametrizing the
CRA pressure wave based on systemic blood pressure, heart rate, and incorporating
intraocular pressure values, have significantly advanced our understanding of blood
flow dynamics [5]. This strategic approach was extended to a more complex model for
the lamina cribrosa, enabling virtual clinical studies [6], and has undergone extensive
validation [7]. In parallel, computer-aided image processing studies, combined with
statistical analysis [8, 9], identified novel patterns in the CRA velocity waveforms and
parameters and correlated them with clinically significant biomarkers utilized in mon-
itoring the glaucoma severity and progression. Such recent developments underscore
the importance of comprehensive waveform analysis in elucidating vascular function
and support their consideration as promising non-invasive clinical investigation tool
for personalized research in ophthalmology.

Inspired by these recent advancements, our study aims to combine a previously
validated physiologically-informed modeling strategy with the additional knowledge
brought by using personalized CRA velocity waveforms as input data, in a unifying
computational framework. Specifically, we seek to evaluate the performance of this
data-driven modeling approach in comparison to prior works and, upon validation,
extrapolate meaningful insights regarding other parts of the retinal vasculature that
are not easily accessible with standard investigation methods, such as the central reti-
nal vein (CRV) hemodynamics. By emphasizing the impact of different assessment
methods on clinicallymeaningful quantities, our holistic approach could therefore con-
tribute to the ongoing evolution of mathematical ophthalmology and provide valuable
insights into the intricacies of retinal vascular dynamics.

The paper is organized as follows: a first section describes the methodology to
automatically acquire from imaging data patient-specific CRA velocity waveforms
(Sect. 2.1), the mathematical models employed to perform the simulations (Sect. 2.2)
and the clinical and literature-based data incorporated in the model (Sect. 2.3). Then,
Sect. 3 details the general framework of the numerical experiments setting. Results are
presented and discussed in Sect. 4. Finally, conclusions and perspectives are outlined
in Sect. 5.
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Fig. 1 An example of the image manipulation process used to extract the central retinal vessels waveforms
(right panel) from the original Doppler ultrasonography image (left panel)

2 Models andMethods

In this section we first present the methodology for semi-automatic digitalization of
Doppler CRA velocity profiles, we describe the mathematical models representing the
human retinal vasculature, and then we provide the details on the data employed in
this study (clinical and literature-based).

2.1 Image Processing Algorithm forWaveform extraction

We utilize a variety of data analytics tools to develop a semi-automated algorithm
for the examination of ocular blood flow and the extraction of velocity data from
Doppler ultrasonography imaging. This algorithm is designed to identify waveform
parameters, improve image quality, and capture specific data points.

In the pursuit of automatic extraction of waveform parameters from velocity pro-
files, a diverse array of Python libraries was employedwith the primary goal of refining
and analyzing ultrasound images. These libraries facilitated operations such as clari-
fication, cropping, and edge detection on the initial ultrasound images. Such libraries
are widely recognized for their utility in image analysis tasks, including edge detection
and computer vision applications. Predominantly, the OpenCV [10] and NumPy [11]
libraries were utilized for tasks involving image ingestion, cropping, and dimensional
scaling. Within the confines of the current algorithm, the image undergoes an initial
scaling to encapsulate both the graph and its corresponding units, followed by a conver-
sion to a greyscale format. The conversion of the greyscale image to a binary format,
delineating strictly black and white regions, represents the preliminary step in refining
the data for subsequent edge analysis. Efforts to attenuate noise through the appli-
cation of Gaussian and Median blur techniques [12] yielded comparable outcomes.
Noteworthy advancements in edge detection were achieved utilizing the ‘findCon-
tours’ function inherent to the OpenCV library. Despite the merits of both approaches,
the ‘findContours’ function was adjudged superior, owing to its simplicity in coding
and the flexibility it offers in adjusting parameters such as the color and thickness of
the resultant contours.

An illustrative example of the extraction process is provided in Fig. 1. Both CRA
and CRV velocity waveforms are extracted, but due to the low quality of the CRV
signal, we focused in the sequel on the information encapsulated in the CRA velocity
waveform. The CRA velocity waveform was converted to a traditional XY coordinate
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Fig. 2 Network model for the retinal vasculature. The dashed rectangle indicates the region corresponding
to the interior of the eye globe. In this region, the variable resistors experience intraocular pressure (IOP)
as external pressure, whereas in other parts of the circuit, the retrolaminar tissue pressure (RLTp) acts as
external pressure

systemusing theweb-based WebPlotDigitizer tool.1 InWebPlotDigitizer,
two points on the x-axis and y-axis must be identified to create the coordinate system.
Then the user selects one cycle by means of the “BOX” tab under the “Automatic
Extraction” section. All contours within this boxwill be delineatedwith a series of data
points. The number of points identified can be altered by changing the pixel difference
between points. Pixel differences can be altered in both the x and y dimensions to
better fit the curve. The data is exported as a 1 × 2 matrix of time and velocity.
Doppler profiles are often reported in cm/s.

2.2 Pressure and Blood Flow Computation from the Retina Model

Our study builds upon the model of the retinal vasculature introduced and validated
in [13], as depicted in Fig. 2. This model partitions the vasculature into five primary
compartments: CRA, arterioles, capillaries, venules, and CRV. Blood flow within this
network is analogously conceptualized as electrical current traversing a circuit com-
prising resistors (R) and capacitors (C), where resistors represent vascular resistance
and capacitors denote the vessel’s ability to store blood volume. Each compartment
and its segments are denoted by corresponding labels and further distinguished by
alphabetic labels. Constant resistances are adopted for arterioles and capillaries since

1 https://automeris.io/WebPlotDigitizer.
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active changes in vascular diameters due to blood flow regulation are not accounted
for in the present model. Three-element Windkessel models with constant resistances
and capacitors are implemented to model the retrobulbar region of the CRA and CRV,
subject to an external retrolaminar tissue pressure (RLTp). The expression for a generic
constant resistance is:

R = krρL
A2 , (1)

where A is the representative cross-sectional area of the compartment, L the repre-
sentative compartment length, ρ is blood density, µ is blood dynamic viscosity and
kr = 8πµ/ρ. In the case of a single vessel, A and L correspond to the vessel’s
cross-sectional area and length respectively.

The resistances of the translaminar and intraocular regions of CRA (R1c, R1d ) and
CRV (R5a, R5b), as well as the resistances in the venules segments (R4a, R4b) vary in
response to IOP passively, expressing the mechanical response of the vessel wall to
changes in transmural pressure. A hydrodynamic law describes the fluid flow through
the network. In the case of arteries, Laplace’s law [14] is used to model a pressurized
cylindrical shell and Poiseuille’s law is used to describe fluid flow through the vessel:

R = 1
k0

[
p̂ − pe
kp kL

+ 1
]−4

(2)

with

k0 =
A2

8πµL
, kL = 12

A
πh2

, kp = Eh3π3/2

12(1 − ν2)A3/2 , (3)

where h, E and ν are thickness, Young’s modulus, and Poisson ratio of the vessel wall,
respectively. The value of the transmural pressure p̂ − pe differs depending on the
particular vascular segment under consideration: in the translaminar and intraocular
regions, the pressure external to the vessel coincides with the intraocular pressure
(IOP).

For the venous part, the transmural pressure difference may become negative,
causing the vessel to collapse. This mechanism is modeled via the Starling resistor
[14]:

R =






1
k0

[
p̂ − pe
kp kL

+ 1
]−4

p̂ ≥ pe

1
k0

[
1 − p̂ − pe

kp

]4/3
p̂ < pe

(4)

Note that in the original model, the external pressure on the vessel segments cor-
responding to resistances R1c and R5b was determined by a complex fluid–structure
interaction model [15]. This pressure was derived from the effective stress exerted by
the lamina cribrosa on these vessels. However, for the sake of simplicity in our study,

123



La Matematica

we assume that this stress has a similar order of magnitude as the stress deriving from
the IOP as external pressure. This simplification allows us to clarify the modeling
approach without significantly altering the outcomes of our investigation. Previous
studies, such as those discussed in [5], have explored and confirmed the validity of
such simplifications, indicating that our findings are not substantially affected by this
assumption.

These conceptualizations are underpinned byOhm’s andKirchoff’s laws, leading to
a system of ordinary differential equations governing pressure dynamics at the circuit
nodes and flow rates within the retinal vasculature (5a)–(5b)–(5c)–(5d). Addition-
ally, in this pressure-driven model, the inlet pressure (Pin) can fluctuate temporally
across the cardiac cycle, further influencing the time-dependent nature of pressure
calculations within the model.






C1
d(Pcra,ext−RLTp)

dt = Pin−Pcra,ext
Rin+R1a

− Pcra,ext−Part
R1b+R1c+R1d+R2a

(5a)

C2
d(Part−IOP)

dt = Pcra,ext−Part
R1b+R1c+R1d+R2a

− Part−Pven
R2b+R3a+R3b+R4a

(5b)

C3
d(Pven−IOP)

dt = Part−Pven
R2b+R3a+R3b+R4a

− Pven−Pcrv,ext
R4b+R5a+R5b+R5c

(5c)

C4
d(Pcrv,ext−RLTp)

dt = Pven−Pcrv,ext
R4b+R5a+R5b+R5c

− Pcrv,ext−Pout
R5d+Rout

. (5d)

The time profile of the input pressure wave can be determined on a subject-specific
basis using different methods. The first strategy is based on a parametrization of the
reconstructed signal using the heart rate (HR), and the systemic systolic and dias-
tolic pressures (SP and DP, respectively) as input from clinical data. The CRA blood
pressure time profile is divided into 6 parts for each cardiac cycle and the pressure is
explicitly computed according to the following formula:

Pin(t) =






0.65SP − 0.475DP sin

(
2π

4 0.082 60
HR

t̂ + 2π

0.328 60
HR

0.082 60
HR

)

for t̂ ≤ 0.082 60
HR

0.65SP+ 0.9 sin

(
2π

0.03 60
HR

t̂ − 2π

0.03 60
HR

0.082 60
HR

)

for 0.082 60
HR < t̂ ≤ 0.112 60

HR

0.65SP+ 0.118SP sin

(
2π

0.572 60
HR

t̂ − 2π

0.572 60
HR

0.112 60
HR

)

for 0.112 60
HR < t̂ ≤ 0.398 60

HR

− 0.13SP

0.034 60
HR

t̂ + 0.65SP − 0.13SP

0.034 60
HR

0.398 60
HR for 0.398 60

HR < t̂ ≤ 0.432 60
HR

0.52SP − 0.8 sin

(
2π

0.05 60
HR

t̂ − 2π

0.05 60
HR

0.332 60
HR

)

for 0.432 60
HR < t̂ ≤ 0.482 60

HR

0.52SP+ (0.52SP − 0.5DP) sin

(
2π

2.072 60
HR

t̂ + 2π

2.072 60
HR

0.554 60
HR

)

for t̂ > 0.482 60
HR

(6)

where t̂ = mod (t, 60
HR ). Figure3 displays the graph of Pin when using Eq. (6) and the

baseline parameter values (IOP = 15mmHg, HR = 60beats/min, SP = 120mmHg,
DP = 80mmHg).
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Fig. 3 Graph of Pin using Eq. (6) and baseline parameter values

Alternatively, Eq.(5a) can be re-written thanks to Poiseuille’s law under the form:

C1
d

(
Pcra,ext − RLTp

)

dt
= Qin − Pcra,ext − Part

R1b + R1c + R1d + R2a
(7)

and in this case, the model is driven by the inlet flow Qin. The inlet flow can be
determined through a two-stage procedure: (i) the waveform extractionmethod of data
from Doppler ultrasonography image measurements of blood velocity in the CRA, as
explained in Sect. 2.1, followed by a processing step that computes the flow rate from
the velocity values and the vessel diameter, here DCRA = 175µm [13] and (ii) the
solving of (7)–(5b)–(5c)–(5d) taking as input data the flow rate instead of pressure.

As for the outlet pressure Pout, to mitigate the impact of the low quality of the CRV
signal and the lack of information about its temporal dynamics, we choose to utilize for
both pressure-driven and flow-driven models a constant baseline value of 14mmHg,
corresponding to a physiological order of magnitude downstream of the CRV [13]. In
what concerns the values of the other parameters involved in the description of the
retinal circuit at control state, details are provided in Sect. 3.

The numerical solving of the mathematical models previously described has been
implemented in a Python in-house solver based on the SciPy [16] library, which can
be openly shared upon request.

2.3 Clinical Data

In this section we provide details on clinical data and literature-based information that
are incorporated into the models.
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Table 1 Input data of the baseline and the five patients from IGPS

Patient SP (mmHg) DP (mmHg) HR (beats/min) IOP (mmHg)

Baseline 120 80 60 15

P1 125.73 78.27 76.91 20.27

P2 132.45 92.73 67.1 14.18

P3 120.2 72.2 88.6 11.89

P4 140.8 75.8 83.0 7.5

P5 129.5 83.7 56.4 15.91

The clinical data utilized here originate from the Indianapolis Glaucoma Progres-
sion Study (IGPS) [17] and from experimental data reported in [13]. The IGPS is a
longitudinal study that aims to investigate the relationship between ocular hemody-
namics and glaucoma progression. More precisely, 115 open-angle glaucoma patients
were assessed every 6months over a 7year period. A rich set of data was acquired,
among which IOP, SP, DP, HR, as well as structural and hemodynamic evaluations via
multiple imaging devices [17, 18]. For the present pilot investigation, we extracted a
subset of 5 patients (labeled hereafter P1, P2, P3, P4, P5) for whom we have access
to their systemic condition (SP, DP, HR) as well as the value of IOP. Additionally, we
retrieved the CRA blood flow velocity waveform measured by Doppler ultrasonogra-
phy and derived quantities, with their raw values obtained directly from the device.
Furthermore, we extracted and employed as baseline value the velocity waveform
available in [13, Fig. 3, panel (b)], together with parameter information for a healthy
subject (called in the sequel Baseline). Finally, for validation purposes, we consider
results reported in [8] from a computer-aided analysis of CRA velocity waveforms.

3 Numerical Experiments Setting

We present in this section the general framework of the three sets of numerical
experiments performed in this contribution. Specifically,we describe the list of subject-
specific inputs that we include in the model and identify meaningful outputs of our
analysis.

The first test case, numerical experiment A (Num. Exp. A) is using as inputs SP,
DP, HR, and IOP values from the IGPS. These information are passed to the pressure-
driven model, which exploits the parametrization in Eq. (6) for Pin. For the baseline
patient we directly exploit data provided in [13] where SP/DP = 120/80mmHg,
IOP = 15mmHg, and HR = 60beats/min. For the five IGPS patients, we computed
the mean over the different visits of the clinically measured values of the considered
inputs (SP, DP, IOP, HR) (see Table 1). For the second test case, numerical experiment
B (Num. Exp. B), we employ the flow-driven model using as input the CRA flow
waveform. The profile is reconstructed using the method presented in Sect. 2.1 for the
five IGPS patients and for the baseline subject from Figure 3b of [13] as explained
above. Note that as IOP we considered the baseline value for all patients (I OP =
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15mmHg). The third numerical experiment, Num. Exp. C, combines the personalized
CRA flow waveforms and the personalized IOP values from the IGPS database as
inputs of the flow-driven model. The CRA flow profile is retrieved as for Num. Exp.
B for the baseline and the five IGPS patients. The patient-specific value of IOP is
extracted from the IGPS, see Table 1, as in Num. Exp. A.

A summary of all the parameter values employed in this study is presented in
Tables 2 and 3. Table 2 lists the model parameters that remain constant across all
patients and numerical experiments, while Table 3 details the parameters that are
specific to individual patients and experiments. Additionally, Table 4 reports the initial
conditions of the ODE system for each patient and experiment.

The outputs considered in this study are the same for all the numerical experiments.
The rationale behind these specific choices is two-fold: the information pertaining to
CRA will be compared with raw data measured in the IGPS and values reported in [8]
for validation purposes, while the computations describing pressures and flows in the
CRV will enrich the predictive capabilities of the model. The simulations were run
until reaching a periodic state and then output quantities were extracted from the last
cardiac cycle. In particular, we focus on:

• the length of the cardiac cycle (Tcc);
• the CRA blood velocity and pressure time-dependent profile;
• the CRV blood velocity and pressure time-dependent profile;
• the CRA and the CRV resistivity indexes (RI);
• the CRA and the CRV systolic and diastolic perfusion pressures (sysPP, dysPP);
• the computed time-dependent resistances in the venules and in the intraocular CRV
segments.

In particular, we introduce the following notations to identify specific moments in
time during the last simulated cardiac cycle: ps as peak systole, and ed as end diastole.
Thus, the resistivity index RI is computed as

RI = vps − ved

vps
(8)

where vps and ved are the velocities at peak systole and end diastole, respectively. The
CRA and CRV perfusion pressures are computed as

CRAsysPP = CRAsys − IOP CRAdysPP = CRAdys − IOP (9)

CRVsysPP = CRVsys − IOP CRVdysPP = CRVdys − IOP (10)

where CRAsys, CRVsys, CRAdys, and CRVdys are the CRA and CRV pressures at
systole and diastole, respectively.

Finally, the overall workflow, which combines the mathematical modeling and the
subject-specific data extraction process, is depicted in Fig. 4.
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Table 2 Summary of the model parameters employed in the circuit model common to all numerical
experiments

Name Parameters Values Units References

Pout P 14.00 mmHg [13]

RLTp P 7.00 mmHg [13]

Rin R 2.25 · 104 mmHg s cm−3 [13]

R1a , R1b R 4.30 · 103 mmHg s cm−3 [13]

R1c k0 5.115 · 10−3 cm3 mmHg−1 s−1 [13]

kL 58.223 (–)

kp 23.089 mmHg

pe IOP mmHg

R1d k0 1.023 · 10−3 cm3 mmHg−1 s−1 [13]

kL 58.223 (–)

kp 23.089 mmHg

pe IOP mmHg

R2a , R2b R 6.00 · 103 mmHg s cm−3 [13]

R3a , R3b R 5.68 · 103 mmHg s cm−3 [13]

R4a , R4b k0 2.8 · 10−3 cm3 mmHg−1 s−1 [13]

kL 1.2 · 103 (–)

kp 0.054 mmHg

pe IOP mmHg

R5a k0 3.24 · 10−3 cm3 mmHg−1 s−1 [13]

kL 1.48 · 103 (–)

kp 0.359 mmHg

pe IOP mmHg

R5b k0 16.2 · 10−3 cm3 mmHg−1 s−1 [13]

kL 1.48 · 103 (–)

kp 0.359 mmHg

pe IOP mmHg

R5c , R5d R 1.35 · 103 mmHg s cm−3 [13]

Rout R 5.74 · 103 mmHg s cm−3 [13]

C1 C 7.22 · 10−7 cm3 mmHg−1 [13]

C2 C 7.53 · 10−7 cm3 mmHg−1 [13]

C3 C 1.67 · 10−5 cm3 mmHg−1 [13]

C4 C 1.07 · 10−5 cm3 mmHg−1 [13]

In particular, we report the values of the parameters necessary for computing each resistance, according to
Eqs. (1), (2) and (4)
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Table 3 Summary of the model parameters employed in the circuit model specific to each patient (first
column) and each numerical experiment (second column)

Num. Exp. Input Source IOP (mmHg)

Baseline A Pin using SP,DP, HR from Table 1 15

B Qin from reconstructed waveform 15

C Qin from reconstructed waveform 15

P1 A Pin using SP,DP, HR from Table 1 20.27

B Qin from reconstructed waveform 15

C Qin from reconstructed waveform 20.27

P2 A Pin using SP,DP, HR from Table 1 14.18

B Qin from reconstructed waveform 15

C Qin from reconstructed waveform 14.18

P3 A Pin using SP,DP, HR from Table 1 11.89

B Qin from reconstructed waveform 15

C Qin from reconstructed waveform 11.89

P4 A Pin using SP,DP, HR from Table 1 7.5

B Qin from reconstructed waveform 15

C Qin from reconstructed waveform 7.5

P5 A Pin using SP,DP, HR from Table 1 15.91

B Qin from reconstructed waveform 15

C Qin from reconstructed waveform 15.91

Specifically we give the details for the input source and the value of the IOP employed

Table 4 Pressure initial
conditions imposed at the ODE
system (5a)–(5b)–(5c)–(5d) for
each patient and each numerical
experiment

[mmHg] Num. Exp. Pcra,ext Part Pven Pcrv,ext

Baseline A 43.598 35.69 21.87 18.93

B 43.598 35.69 21.87 18.93

C 43.598 35.69 21.87 18.93

P1 A 44.43 36.87 23.42 18.71

B 43.598 35.69 21.87 18.93

C 44.43 36.87 23.42 18.71

P2 A 43.46 35.497 21.75 18.96

B 43.598 35.69 21.87 18.93

C 43.46 35.497 21.75 18.96

P3 A 43.34 35.32 21.64 18.996

B 43.598 35.69 21.87 18.93

C 43.34 35.32 21.64 18.996

P4 A 43.08 34.96 21.42 19.06

B 43.598 35.69 21.87 18.93

C 43.08 34.96 21.42 19.06

P5 A 43.598 35.69 21.87 18.93

B 43.598 35.69 21.87 18.93

C 43.598 35.69 21.87 18.93
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Fig. 4 Overview of the general workflow

4 Simulation Results

In this section, we report the findings of our combined methodology, divided in two
parts. Section4.1 focuses on a thorough validation process against experimental and
literature data. Section4.2 reports complementary results to assess the capabilities of
the different methodological strategies and their impact on the output quantities of
interest, as identified in the previous section.

4.1 Validation

Table 5 reports the validation of the numerical experiments performed in this study.
Specifically we compute the CRA peak systolic velocity (CRAvel ps), the CRA end
diastolic velocity (CRAvel ed), the CRA resistivity index (CRA RI—definition of
RI in Eq. (8)), the time of the CRA peak systolic velocity within the last cardiac
cycle (CRAvel ps time) and the length of a cardiac cycle (Tcc). The three numerical
experiments are then comparedwith the clinical data reported in the IGPS [17] andwith
the finding of the computer-aided identification method for parameters characterizing
the CRA waveform reported in [8].

For the Num. Exp. A, we can evince that the CRA velocities are overestimated—
with the exception of the CRAvel ed for patient P1, however, this fact is re-balanced
in the computation of the CRA RI (the definition of RI is in Eq. (8)). The heart
rate is directly imposed from the measured data, therefore the numerical experiment
Num. Exp. A and the IGPS data display the same values. As for CRAvel ps, the
value computed for P4 (12.69cm/s) is outside the range reported in literature (9.29±
2.54cm/s). This fact could be explained looking at the high input blood pressures for
this specific patient (Table 1). Using such pressures as only input of the model without
the specific waveforms show the limitations of the Num. Exp. A approach, where
the CRA velocities are highly dependent on systemic blood pressure (see sensitivity
analysis proposed in [5]), thus overestimated by the model for P4.
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Table 5 CRA simulation results and comparison with experimental and literature data

Baseline P1 P2 P3 P4 P5

CRAvel ps (cm/s)

Num. Exp. A 10.15 10.42 11.49 10.47 12.69 11.06

Num. Exp. B 10.00 9.95 7.89 10.05 7.73 9.74

Num. Exp. C 10.00 9.95 7.89 10.05 7.73 9.74

IGPS [17] 9.13 8.28 7.52 6.81 8.35

Carichino2020 [8] 9.29± 2.54

CRAvel ed (cm/s)

Num. Exp. A 2.89 2.40 2.96 2.30 2.49 3.09

Num. Exp. B 2.78 3.06 1.27 2.79 2.03 3.05

Num. Exp. C 2.78 3.06 1.27 2.79 2.03 3.05

IGPS [17] 2.68 2.53 1.95 2.19 2.61

Carichino2020 [8] 2.21± 0.78

CRA RI

Num. Exp. A 0.72 0.77 0.74 0.78 0.80 0.72

Num. Exp. B 0.72 0.69 0.84 0.72 0.74 0.69

Num. Exp. C 0.72 0.69 0.84 0.72 0.74 0.69

IGPS [17] 0.71 0.70 0.73 0.68 0.69

Carichino2020 [8] 0.75± 0.08

CRAvel ps time (s)

Num. Exp. A 0.24 0.17 0.21 0.15 0.16 0.25

Num. Exp. B 0.23 0.24 0.21 0.18 0.19 0.25

Num. Exp. C 0.23 0.24 0.21 0.18 0.19 0.25

IGPS [17]

Carichino2020 [8] 0.15± 0.06

Tcc (s)

Num. Exp. A 1.00 0.78 0.89 0.68 0.72 1.06

Num. Exp. B 0.98 0.92 0.96 0.84 0.87 1.12

Num. Exp. C 0.98 0.92 0.96 0.84 0.87 1.12

IGPS [17] 0.78 0.89 0.68 0.72 1.06

Carichino2020 [8] 0.97± 0.15

Underlined values are discussed in detail within the text

As for Num. Exp. B and Num. Exp. C, recall that we have the same values
reported in the table since the reconstructed CRA velocity profile used as input of
the numerical simulation is the same. On this basis, results show that the resistivity
index is in very good agreement—with the exception of patient P2—between the
reconstructed CRA velocity profile, the clinical measurements, and the literature data.
In this case, also the HR may serve as validation of the input waveforms. Thus, we
compared the length of the simulated cardiac cycles with the ones measured in the
IGPS. The values are similar—even though slightly overestimated by the proposed in
silico methodology.
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Table 6 CRV simulation results

Num. Exp. Baseline P1 P2 P3 P4 P5

CRVvel ps (cm/s) A 4.23 4.62 4.71 3.92 4.87 4.69

B 4.24 4.09 3.12 3.88 2.96 3.98

C 4.24 4.59 3.12 3.89 2.98 3.98

CRVvel ed (cm/s) A 2.07 1.82 2.54 2.20 2.54 2.21

B 2.04 2.28 1.36 2.44 1.61 2.15

C 2.04 2.00 1.36 2.43 1.59 2.15

CRV RI A 0.51 0.61 0.46 0.44 0.48 0.53

B 0.52 0.44 0.56 0.37 0.46 0.46

C 0.52 0.57 0.56 0.37 0.47 0.46

Underlined values are discussed in detail within the text

An important remark concerns CRAvel ed for all methodologies. The upper bound
of the literature data is 2.99cm/s, and for patients P1 and P5, the various numerical
experiments slightly overestimate this value. We attribute this discrepancy to the poor
accuracy of measurements for CRA at end diastole as stated also in [8], making them
less reliable than measurements taken at peak systole.

Finally, for all three numerical experiments, Table 5 illustrates the values of the
predicted time of the peak systole. These values are also in good agreement with the
reported value in literature of 0.15± 0.06s from the start of a cardiac cycle.

Overall, the computations suggest that, for all the methodologies proposed, the
results are in good agreement with clinical measurements and other numerical experi-
ments, capturing with satisfactory accuracy specific characteristics of both amplitude
and accuracy of the signal. In addition, besides the clinical data in IGPS and data
reported in [8], we compared our findings with the mean blood velocities in the CRA
measured experimentally in [4, 19, 20], 6.25, 5.28 and 4.57cm/s, respectively, equally
in good accordance with our numerical outcomes.

4.2 Prediction

In this section we investigate the predictions made employing the three different
strategies discussed in Sect. 3.

4.2.1 CRV

Table 6 gathers the simulation results concerning the CRV velocity as output.
We highlight that the measured IOP for these patients is quite high for patient P1

and below 16mmHg for all the other patients (see Table 1), and therefore the model
predictions should be interpreted in two different manners in this case. More precisely,
for patient P1, the effect of having a personalized IOP measurement as an input seems
to have amore substantial impact than the effect of having a personalized reconstructed
CRA input velocity waveform; indeed, the values computed with Num. Exp. A and
Num. Exp. C are very close, in contrast to the values obtained in the Num. Exp.
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B test case. For all the other patients the situation is the opposite. The CRV-related
biomarkers are more influenced by the reconstructed input CRA velocity profile, than
the use of a personalized IOP, as the results of Num. Exp. B and Num. Exp. C are in
agreement between them and in contrast with the numerical solution for Num. Exp.
A test case. For the considered Baseline case, the IOP is exactly 15mmHg, thus we do
not have any difference between the Num. Exp. B and the Num. Exp. C test case.

4.2.2 Resistances in the Venous Side

We analyze now the effect of these changes in the variable resistances on the venous
side (Table 7). For the purpose of presentation, we will focus on the computed values
at peak systole and end diastole.

As expected, all the resistances are directly influenced by the value of IOP used,
which explains the differences betweenNum. Exp. B andNum. Exp. C, but also the
similarities between Num. Exp. A and Num. Exp. C. The most significant result is
the very high value of CRV resistance for patient P1, which highlights the importance
of having a personalized input IOP for patients suffering from ocular hypertension.
Indeed, this clinical example shows how the high IOP affects the hemodynamics in
the retina: specifically the model suggests a collapse in the CRV region. Note that the
model is able to capture this behavior as a consequence of incorporating the Starling
resistor effect, see Eq. (4), which is a crucial requirement to retrieve clinical data,
as highlighted in [21]. Conversely, we point out patient P2. In this case, the effect
of having a personalized CRA input waveform seems to have a greater impact on
the resistances of the retinal venous system than the personalized IOP. Indeed the
predicted values in the venules and in the CRV for Num. Exp. B and Num. Exp. C
are very similar and remarkably higher than the values reported for Num. Exp. A.

4.2.3 Retinal Perfusion Pressure

We now investigate the differences between the pressures within CRA and CRV and
the IOP (Table 8) defined in Eq. (9).

It is noteworthy that the only case where this pressure is negative is for patient
P1 which indeed suffers from high IOP. This table demonstrates once again how it
is determinant to have both a personalized input blood velocity waveform and IOP
value to detect abnormalities. This is especially significant on the CRV part, which is
usually not accessible to clinical measurements, but which can be investigated thanks
to the in silicomodeling. We again took patients P1 and P2 as illustrative examples of
distinct behavior:

• patient P1, as discussed, suffers from high IOP and this is clearly highlighted
by the perfusion pressures in the CRV in the Num. Exp. A test case. Using
only the reconstructed CRA blood velocity profile (test case Num. Exp. B), it is
not possible to remark a deficit in the computed retinal hemodynamics, whereas
clearly in both Num. Exp. A and Num. Exp. C the model identifies a collapsing
behavior at the level of the veins (validated also by the values obtained in Table 7);
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Table 8 Retinal perfusion pressure, simulation results

Num. Exp. Baseline P1 P2 P3 P4 P5

CRAsysPP (mmHg) A 44.88 43.33 51.04 47.33 60.45 48.34

B 44.28 44.09 35.04 41.83 33.83 43.26

C 44.28 42.00 35.71 44.33 40.16 42.55

CRAdysPP (mmHg) A 15.66 11.11 19.76 16.73 22.28 15.95

B 15.19 17.89 8.35 17.65 11.57 17.27

C 15.19 15.16 9.10 20.36 18.39 16.49

CRVsysPP (mmHg) A 5.67 1.01 7.24 8.30 14.19 5.49

B 5.68 5.45 3.91 5.12 3.67 5.28

C 5.68 0.97 4.74 8.24 11.20 4.37

CRVdysPP (mmHg) A 2.27 −3.41 3.83 5.58 10.51 1.58

B 2.22 2.60 1.15 2.85 1.54 2.39

C 2.22 −3.13 1.96 5.95 9.01 1.48

Underlined values are discussed in detail within the text

• simulation results for patient P2 suggest that when utilizing a personalized CRA
input velocity, the computed values for the CRV perfusion pressure are notably
lower compared to those predicted for theBaseline subject using the parameterized
input pressure profile. This behaviormay indicate a possible situation of risk,which
has not been detected with the strategy adopted in Num. Exp. A.

Given the uncertainties in the measurement and the approximation in the mathe-
matical model, it is impossible at this stage to select a threshold between a situation at
risk of venous collapse. However, the different test cases display how the accuracy of
effective biomarkers such as predicted retinal perfusion pressures might be increased
by adding data to enrich personalized inputs.

4.2.4 CRA and CRVWaveforms

Finally, we explore the possibility of our simulations to predict clinical situations
such as the risk of glaucoma. A first possibility would be to compare the obtained
velocities within the CRA and the CRV two by two, as demonstrated for patients
P1 and P3 in Fig. 5 for the Num. Exp. C. In this case, we observe that these two
patients share similar hemodynamic conditions but have very different IOP values
(see input values in Table 1). The outcome of this comparison shows that, thanks to
the personalized inputs, we can distinguish between the similar CRA behavior (left
panel) and the distinctly different CRV waveforms (right panel). Specifically, patient
P1 exhibits lower velocity values in the CRV, which might indicate a risk of glaucoma
[6]. However, this comparison process is very time-consuming. Therefore, we sought
a metric that would be able to automatically consider the temporal evolution of CRA
and CRV waveforms. In order to attempt this ambitious task we consider the blood
pressure waveforms in the CRA and in the CRV computed in the three numerical
experiments. Specifically,we compare thewaveforms obtained for the healthy baseline
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Fig. 5 Comparison of CRA and CRV velocity waveforms between patient P1 and patient P3 for Num. Exp.
C

subject with the 5 predictions of the IGPS patients. Our proposal is to perform the
comparison through the Wasserstein distance [22] (see Appendix A for more details),
which quantifies the dissimilarity between two temporal sequences of blood pressure
profiles. This refined metric has the advantage of taking into account not only the
differences in the pressure values but also the temporal alignment of peaks, valleys,
and overall shapes of the waveforms.

Table 9 presents the computed distances from the baseline for the five different
subjects considered from IGPS. These values were compared to the reported IGPS
measurements of the cup-to-disc area ratio, a well-known risk factor detected in glau-
comatous patients [23, 24]. Through a preliminary analysis using Pearson’s correlation
coefficient, a strong correlation between the Wasserstein distance from the healthy
baseline and the measured cup-to-disc area ratio was observed. Specifically, for the
CRA, the correlation coefficient was 0.76 for Num. Exp. A, 0.91 for Num. Exp. B,
and Num. Exp. C. Regarding the CRV, correlation coefficients of 0.81 for Num. Exp.
A, 0.94 for Num. Exp. B, and 0.97 for Num. Exp. C were obtained. Despite the
limitations imposed by the small sample size and the simplifying assumption in the
reduced network-basedmodeling approach, these findings open the possibility to novel
biomarkers exploiting temporal waveforms and underscore the predictive capacity of
mathematical modeling. Notably, CRV waveforms, obtained numerically, exhibited
all coefficients greater than 0.8. Furthermore, the utilization of personalized inputs,
such as in Num. Exp. B and Num. Exp. C, yielded promising results (correlations
>= 0.9).

5 Conclusions and Outlooks

In conclusion, our study underscores the significance of combining automatic image
processing (Sect. 2.1) with mathematical modeling (Sect. 2.2) in the context of retinal
vasculature and hemodynamic analysis. While this integration holds great promise, it
is essential to exercise caution in selecting appropriate methodologies, as the choice
can yield markedly different results as pointed out in Sect. 4.2. Such discrepancies
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may lead to substantial variations in clinical interpretation, particularly concerning
metrics related to blood flow. Our findings emphasize the critical importance of rig-
orously evaluating and validating these methods to ensure their reliability and clinical
relevance.

Furthermore, our investigation highlights the impact of supplementary data, in this
specific case IOP, on the modeling outcomes. Comparing scenarios where IOP is
considered as a baseline value versus as a personalized input, we observed varying
effects on the modeling outcomes, particularly in specific regimes such as ocular
hypertension. This underscores the importance of carefully considering the inclusion
of supplementary data and its potential implications onmodeling outcomes, especially
in scenarios where personalized inputs may offer significant advantages over baseline
assumptions.

As an additional outcome of our study, we assessed the potential of employing a
novel metric, based on the Wasserstein distance, to monitor not only point-wise and
classical values (e.g. quantities at peak systole and end diastole) but also the time
evolution of parameters. This metric offers valuable insights into changes within the
retinal vasculature over time, providing clinicians with enhanced tools for monitoring
vascular function and potentially identifying early signs of pathology.

In summary, our study highlights the importance of methodological considerations
in combining automatic image processing and mathematical modeling approaches,
particularly in the context of retinal vasculature analysis. By critically evaluating
different methodologies and supplementary data inputs, we can ensure more robust
and clinically meaningful outcomes. Additionally, the development of a novel metric
based on the time evolution of biomarkers offers exciting opportunities for advancing
our understanding of vascular dynamics and improving clinical monitoring strategies.

This pilot work serves as a proof of concept for our cross-discipline approach of
combining patient-specific clinical and imagery data with semi-autonomous mathe-
matical modeling. This initial design was selected to serve as a test case for illustrating
the novel methodologies and allow for small adjustments to enhance future appli-
cations within larger datasets. For example, one next step will be to improve rigor
informed by these results by optimizing the image processing algorithm discussed in
Sect. 2.1 to enable faster and more efficient handling of more robust datasets. Lack
of patient diversity is another limitation of the current study. In the future we plan
to extend the analysis to a larger number of patients and explore the potential inte-
gration of artificial intelligence techniques [25], inclusive of diverse samples across
different ages, sex, race, and co-morbidities to increase the applicability of the models
across populations. Leveraging these advanced computational approaches will allow
us to further refine our mathematical framework and enhance our ability to analyze
the results from a clinical perspective [26]. Through the application of machine learn-
ing algorithms combined with physics-based modeling, we aim to uncover hidden
patterns, correlations, and predictive insights within the retinal vasculature data, ulti-
mately contributing to more accurate diagnoses and personalized treatment strategies
for ocular diseases.
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AWasserstein Distance

The Wasserstein distance, also known as the Earth Mover’s Distance, is a metric used
to quantify the distance between two probability distributions. Formally, it measures
the minimum cost of transforming one probability distribution into another, where
“cost” is defined in terms of a given ground distance between the elements of the
distributions.

Given two one-dimensional probability mass functions, u and v, the classical
Wasserstein distance between these two distributions is:

W(u, v) := inf
π∈$(u,v)

∫

R×R
|x − y|dπ(x, y). (11)

In this context, $(u, v) denotes the set of all joint probability distributions on R × R
that have u and v as their marginal distributions. Essentially, for each value x , u(x)
indicates the probability associated with u at position x , and similarly, v(x) indicates
the probability associated with v at position x . The Wasserstein distance measures the
minimum “cost” of transforming distribution u into distribution v, where the cost is
defined as the distance |x − y| for transporting probability mass from x to y.

The Wasserstein distance is a robust metric with several important properties and
applications. As a true metric, it satisfies the fundamental properties of non-negativity,
symmetry, and the triangle inequality, ensuring that the distance between distributions
is always a non-negative value, the distance from one distribution to another is the
same in either direction, and the distance between two distributions does not exceed
the sum of their distances to a third distribution. Additionally, theWasserstein distance
is continuous with respect to the weak convergence of probability measures, meaning
that as probability distributions converge weakly, their Wasserstein distance to a given
distribution also converges. This continuity property makes it a reliable tool in statis-
tical analysis. The versatility of the Wasserstein distance has led to its widespread use
across various domains, including computer vision for tasks such as image retrieval
and classification, machine learning for generative models and clustering, economics
for measuring inequality and comparing income distributions, and fluid dynamics for
tracking the evolution of fluid particles. Its ability to effectively compare distributions
underpins its broad applicability and significance in these fields.

For our application we consider that u and v are two real-valued vectors of the same
length, specifically the computed pressure waveforms lasting one cardiac cycle within
the CRA and the CRV. In this case, the Wasserstein distance between their empirical
distributions can be computed. This involves treating each element in the vectors as
a discrete point with an equal probability mass. In practice, this means treating the
elements of u and v as points in a metric space—hereR—and finding the optimal way
to “move” the points of u to match the points of v. For our purpose we employed the
library scipy.stats [16] in Python.

Unlike some metrics that only consider point-to-point differences, for instance the
L2 norm, theWasserstein distance takes into account the overall shape and distribution
of values in the time series. This makes it sensitive to the underlying distributions
and robust to outliers. Additionally, by evaluating the entire distribution of values,
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the Wasserstein distance can provide more stable and meaningful comparisons in
the presence of noisy data. This is particularly important in contexts like clinical
measurements, such as Doppler velocity measures.
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