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ABSTRACT Given GPS points on a transportation network, the goal of the Quad-tree Based Driver
Classification (QBDC) problem is to identify whether drivers have Mild Cognitive Impairment (MCI). The
QBDC problem is challenging due to the large volume and complexity of the data. This paper proposes a
quad-tree based approach to the QBDC problem by analyzing driving patterns using a real-world dataset.
We propose a geo-regional quad-tree structure to capture the spatial hierarchy of driving trajectories and
introduce new driving features representation for input into a convolutional neural network (CNN) for driver
classification. The experimental results demonstrate the effectiveness of the proposed algorithm, achieving
an F1 score of 95% that significantly outperforms the baseline models. These results highlight the potential
of geo-regional quad-tree structures to extract interpretable features and describe complex driving patterns.
This approach offers significant implications for driver classification, with the potential to improve road
safety and cognitive health monitoring.

INDEX TERMS Spatiotemporal data, GPS data, trajectory analysis, driving behavior, older driver
classification, quad-tree decomposition, convolutional neural networks.

I. INTRODUCTION

Given GPS points on a transportation network, Quad-tree
Based Driver Classification (QBDC) aims to identify whether
drivers have Mild Cognitive Impairment (MCI). The QBDC
plays a key role in improving road safety and reducing the
risks associated with cognitive decline. MCI can result in
incorrect turns, missing intended routes or exits, going wrong
ways, and increasing the risk of accidents. This problem
is challenging because of the extensive trajectory data and
different spatial-temporal driving behaviors of populations.
Raw GPS trajectories contain only a sequence of GPS
points without meaningful correlations and explicit features

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen

for feeding into a supervised model. To remedy this issue,
we propose a quad-tree based structure to obtain meaningful
features while preserving the timestamped sequence of data
points. This approach enables us to identify driving patterns
and the shape of the trips. Figure 1 shows an example input
of the problem with GPS points within a trip. Every point has
a time stamp, longitude, latitude and direction. Here, each set
of points belongs to a driver’s trip with different source and
destination locations.

This study presents an innovative geo-regional quad-tree
approach for driver classification using GPS trajectory data.
Our method decomposes GPS trajectories into hierarchical
spatial regions, enabling a multiresolution representation
of sub-regions [13] within each trip. By applying binary
encoding to quad-tree nodes, we generate location-based
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FIGURE 1. Time series GPS points partitioned within a trip.

features from trip data. These features are then processed
through a 2-dimensional Convolutional Neural Network
(2D CNN) to effectively classify drivers. The hierarchical
structure of the quad-tree organizes GPS data into nested
regions, allowing for a clear and detailed representation
of driving paths. This structure captures spatial details
and variations in driving behavior, which are essential for
identifying the shape of a trip. Extensive experimental
validation with real-world telematic data demonstrates the
efficacy of this approach in accurately distinguishing between
drivers with and without MCI. By combining location-
based features with deep learning, our framework provides
a scalable and practical solution for early cognitive health
monitoring, enhancing road safety and promoting proactive
public health measures.

A. APPLICATION DOMAIN

In recent years, researchers have identified MCI through
cognitive assessments and an individual’s medical history.!
MCI can affect daily activities such as driving behavior
and raise the likelihood of progressing to dementia, par-
ticularly Alzheimer’s disease [27]. Alzheimer’s disease is
a severe condition that progressively damages brain cells
and has substantial financial and social challenges [21],
[22]. Detecting MCI, an early indicator of Alzheimer’s
is essential for implementing timely interventions to slow
or prevent further cognitive deterioration [23]. MCI can
be related to driving performance because it impacts the
cognitive abilities necessary for safe driving 1. Individuals
with MCI can hinder their ability to make quick and accurate
decisions while driving. For instance, memory issues may
cause difficulties in following directions, resulting in missed
turns. Inattention can affect a driver’s capacity to observe
other vehicles and pedestrians, while slower reaction times
can delay responses to sudden changes on the road and
increase accident risks [27]. Identifying older drivers with
MCI is important for improving public health and road
safety. Early detection of MCI in older citizens can help
ensure the safety of these drivers and others on the road.
Furthermore, the classification of drivers with MCI can aid

1 https://www.fau.edu/newsdesk/articles/older-drivers-research.php
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insurance companies in better assessing risks and creating
incentive programs that encourage safer driving habits.
GDBC problem enables technological advancements by inte-
grating telematics and machine learning within the healthcare
and safety sectors. In-vehicle sensing technology represents
an innovative approach to assessing driver behavior and
monitoring cognitive decline. This technology has evolved
significantly and provides effective and affordable solutions
for diagnosing early-stage dementia in older drivers based on
their driving patterns [27], [28], [29], [30], [31].

B. PROBLEM DEFINITION

In formulating the QBDC problem, a spatiotemporal network
is represented and analyzed through the diverse trips taken by
multiple drivers. The problem is defined as follows:

Input:

o A set of trajectory data containing latitude, longitude,
direction, distance between consecutive points and
timestamps,

e A set of drivers ID,

o A set of Trip Numbers 7,

o A set of Labels L = {MCI, non-MCI},

o The minimum length of a trip «

Output:

o Classifying drivers based on their trips with varying
origin-destination locations.

Objective:

o Maximize the predictive performance to classify driving

patterns.
Constraints:
o The length of a trip > «.

C. OUR CONTRIBUTION

In this paper, we introduce a novel approach to QBDC based
on the idea of region quad-tree [3]. Our contributions are as
follows:

1) We introduce the QBDC problem, classifying older
drivers into MCI and non-MCI categories using GPS
data.

2) We propose the geo-regional quad-tree approach to
generate new location-based features and effectively
classify the driving patterns of older citizens.

3) We conduct extensive experimental evaluations of the
proposed algorithm using real-world telematic data.

D. RELATED WORK
Extensive research has been conducted on using movement
features to examine trajectory data and analyze driver
behavior. For instance, Dodge et al. used direction, speed,
and acceleration to identify trajectory similarity and detect
anomalous driving styles [1]. With the advantages of machine
learning, more sophisticated models have been developed to
improve classification and detection [2], [4], [6].

Wang et al. employed Support Vector Machines (SVM)
to classify drivers based on their GPS trajectories and
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FIGURE 2. The proposed model.

demonstrate the potential of these methods in handling large
datasets [5]. Yu et al. proposed a deep learning framework
and used a variational autoencoder to identify the level of
abnormality for a set of drivers. Their proposed approach
divides the trajectory data to generate spatiotemporal units
with homogenous properties. Then, aggregate the parameters
of acceleration, speed, and direction within each spatio-
temporal unit, which aggregation may cause some informa-
tion loss [12]. Zhang et al. employed CNN to capture spatial
dependencies in GPS trajectories, effectively distinguishing
between different driving patterns [9]. In recent work,
Li et al. introduced a Transformer-based encoder-decoder
network combined with contrastive learning to represent
trajectory data without requiring summarization [14]. They
incorporated the Hilbert curve within a multi-scale spatial-
aware embedding module, which was subsequently fed into
the Transformer-based sequence modeling module for further
processing. This method maps each geographical coordinate
(latitude, longitude) to a one-dimensional index along the
Hilbert curve [14].

Additionally, Huang used a higher-order Markov chain to
detect anomalous driving behaviors, such as long-distance
detours and high-density sequences of turns. The approach
employs a recursive Bayesian filter that dynamically infers
the probability of these anomalies over time. The algorithm
incorporates a threshold for heading changes to filter out
trivial movements, enabling the identification of cyclic
patterns and loops [10]. Zhang et al. detect detour behavior
in trajectory data by focusing on trajectories with the
same starting and ending points. The similarity between
these trajectories is measured using Dynamic Time Warping
(DTW), which accounts for temporal misalignments between
trajectories. DTW calculates the Euclidean distance between
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corresponding points on the trajectories to determine their
similarity. The calculated similarities are then input to the Iso-
lation Forest (iForest) algorithm, which identifies anomalous
trajectories [15]. Jiang et al. defined detours as unnecessary
deviations in a route that results in increased travel time or
distance between consecutive query locations. These detours
typically occur when a route includes unintended stops that
are not aligned with the specified query locations. The authors
use a variance-based approach that analyzes travel time
distributions between locations to address this. Trajectories
with travel times outside the normal range are flagged as
detours and excluded, ensuring the final recommended route
is both direct and efficient [17].

Integrating knowledge graphs with trajectory data has
opened new avenues for context-aware analysis and outlier
detection. Ahmed et al. propose a method for constructing
normal and outlier graphs from trajectory data, representing
these as directed weighted graphs. The normal graphs
capture typical trajectories, while outlier graphs are based
on significant deviations. The method involves comparing
input trajectories with these target graphs through similarity
analysis of nodes and edges, which correspond to visited
points and paths. The comparison employs containment sim-
ilarity and maximum common subgraph similarity, allowing
for the effective classification of trajectories as either normal
or outliers [11]. With the advent of increasingly available
GPS trajectory data and Convolutional Neural Networks,
researchers proposed a Deep Convolutional Neural Network
for Vehicle Classification (CNN-VC) to identify the types
of vehicles from their trajectory [16]. Huang et al. used
a quad-tree based method to simplify GPS trajectories by
integrating geographic context and adjusting the level of
detail across trajectory segments. The approach focuses on
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preserving finer details in critical areas like road intersections
and landmarks [19]. Data is aggregated within each quad-tree
node to reduce the number of points, which may result in
some information loss. Park proposed a hierarchical binary
quad-tree index for efficiently managing and querying spatial
data [18]. The quad-tree is used to represent the locations of
objects in a hierarchical grid structure. The grid is recursively
divided until each cell contains only one object, ensuring that
every single object has its unique representation within the
grid [18].

In the realm of disease detection, numerous approaches
have been developed, ranging from medical tests [20] to gait
tests [23], [24], balance test scores [25], and reinforcement
learning for predicting response to medications [26]. How-
ever, our research takes a novel quad-tree based approach
by leveraging trajectory data, specifically driving behaviors,
to detect MCL

E. SCOPE AND OUTLINE

The rest of the paper is organized as follows: Section II
describes our proposed approaches to QBDC. We provide the
experimental setups and corresponding results in Section IV
followed by a detailed discussion in Section V. Finally,
Section VI concludes the paper.

Il. PROPOSED METHODOLOGY FOR QBDC

In this section, we introduce the benefit of the region quad-
tree approach [3] in extracting useful location-based features
from trajectory data and accommodating trips with varying
shapes, start points, and endpoints. Summarizing data can
cause inaccurate estimation due to the difficulty of limiting
the loss of information [12]. Unlike existing methods [12],
[13], [14], [15], [16], [17], [18], [19] that rely on aggregated
features, we introduce a quad-tree based approach that
utilizes all GPS points of a trip.

Figure 2 depicts the pipeline of our proposed geo-
regional quad-tree approach for QBDC problem. The process
begins with raw GPS trip data, which includes times-
tamps, latitudes, longitude, and direction. The geo-regional
quad-tree approach decomposes the trip into subregions
while preserving the timestamped sequence and topological
connectivity of the GPS points. Each subregion is then
represented in meaningful binary format, with unique binary
codes assigned to each. Using a geo-regional quad-tree
enables us to identify the hierarchical structure of the trips
with various driving patterns, such as cyclic patterns and
road repetitions. In this simple example, the binary codes
are represented as bitl through bit4. These binary-encoded
features are subsequently input into a 2D CNN for further
processing and classification.

A. BASIC CONCEPT

The shape of driving patterns depends on changes in
the path and the sequence of visited regions, which can
provide insights into how the journey unfolds over time
and space. Analyzing the shape of the trips can reveal
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valuable information about driver behavior. Figure 3 shows
potentially abnormal driving styles such as repeated path
selections, cyclic patterns, and long-distance U-turns [29].
These kinds of driving behavior may suggest difficulty
navigating new areas, confusion or a need to revisit places and
going the wrong way. To uncover abnormal driving behavior,
it is essential to analyze directional deviation changes and
measure the lengths of these deviations. By decomposing
the trip into meaningful regions, we can further examine
direction changes and distances covered. This decomposition
helps focus on specific parts of the journey, making it easier
to analyze how direction changes occur within each region
and how far the driver travels in those segments.

B. QUAD-TREE STRUCTURE AND OPERATIONS

1) GEO-REGIONAL QUAD-TREE STRUCTURE FOR TRIP
DECOMPOSITION

Region quad-tree recursively divides a 2-dimensional space
into four quadrants of the same size [3] (Figure 4). Quad-tree
structures have many applications in image processing and
spatial indexing [13]. We extend the region quad-tree concept
[3] by introducing the geo-regional quad-tree to identify
various trip shapes.

The decomposition process starts with a root node
representing the whole trip. When the attributes of points
within the root node do not meet a specified threshold, the
geo-regional quad-tree subdivides the root into four child
nodes. Each node also follows a threshold; if it does not
satisfy the criteria, the process further subdivides it into four
smaller regions and creates new child nodes (Figure 4). This
recursive decomposition continues until all regions meet the
predefined criteria.

Leaf nodes at the edges of the quad-tree’s spatial bound-
aries do not have children and represent the smallest regions
in the quad-tree. They store the data points, ensuring each
region contains a manageable feature of points and has a
parent node (Figure 4).

Let R represent the root node of the quad-tree, which
corresponds to the entire spatial region of a trip. The
region R is defined by its minimum and maximum latitude
(latmin, latmax) and longitude (lonpyp, lonpax) values. The
minimum and maximum latitude and longitude values of all
the points within a region determine the boundary of a node
in the quad-tree and define the spatial region it covers. The
quad-tree recursively partitions R into four quadrants (child
nodes) until a stopping criterion is met. Each quadrant Q;
(where i € {1, 2, 3, 4}) is defined by its spatial boundaries:

0 = [latinin, latfnax] X [lonimn, loninax]
where latinin, lati lonfnin, lon _ are the latitude and lon-
gitude boundaries of the i-th quadrant. To construct a
quadtree, each of the n points is inserted individually by
traversing the hierarchical structure to locate its appropriate
quadrant. Since the depth of a balanced quadtree is at most
O(logn), each insertion takes O(logn) time. Consequently,
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FIGURE 3. Visual representation snapshot of potentially abnormal trips from the real-world dataset utilized in this study [29].
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encoding.

the total time complexity for constructing the quadtree is
O(nlogn).

2) BINARY ENCODING OF QUAD-TREE NODES

After decomposing a trip using the geo-regional quad-
tree, the sub-regions have unique representations based on
their topological connectivity and the information of their
GPS points. Figure 4 illustrates the quad-tree’s hierarchical
structure and spatial decomposition process for dividing

VOLUME 13, 2025

a two-dimensional grid into smaller regions for spatial
indexing. Each node in the quad-tree represents a distinct
region and receives a unique binary code based on its position.

Beginning with the root node, the four child nodes can be
encoded as follows:

Top-left = 00

o Top-right =01
Bottom-left = 10
o Bottom-right=11
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3) THRESHOLDS CRITERIA

The essential parameter of the geo-regional quad-tree decom-
position is stopping criteria. The threshold criteria can be
defined as follows:

e Direction consistency: We represent the direction of
GPS points using rounded values of 0°, 90°, 180°, and
270° to manage data complexity while preserving essential
directional information. To obtain these values, we calculated
the azimuth (or bearing) between consecutive GPS points,
providing the angle from true north to the line connecting
each point. Each azimuth was then rounded to the nearest
cardinal direction. Trip shape analysis involves examining
these directions to identify patterns. In a geo-regional
quadtree, each node has a value representing the direction
of the GPS points within its region. If all points within a
node share the same rounded direction, the node will not
subdivide. This approach is simplifying the structure and
ensuring efficient data handling without loss of critical spatial
information.

e Sum of distances: Besides the direction consistency,
we check if the sum of the distances between the GPS points
in a node is less than a threshold; the node will not be
subdivided. This criterion enables us to skip unnecessary
information while maintaining acceptable resolution in
more detailed, heterogeneous areas. We used the Haversine
formula to calculate the shortest distance between two points
on the surface of a sphere.

e Maximum points per Node: To avoid excessive subdivi-
sions, we applied an additional criterion based on the density
of GPS points, ensuring that each node holds more than a
predefined number of points.

Figure 5 illustrates examples of the constructed quad-tree
with the same splitting threshold, demonstrating how the
decomposition process subdivides the space into smaller
regions based on predefined stopping criteria. A larger
threshold results in fewer subdivisions and larger boundary
leaf nodes in the quad-tree decomposition. Figure 6 and 7
depict examples of this effect. Figure 6 shows the quad-tree
partitioning of vehicle trajectories with a 50-meter sum of
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distance threshold between every consecutive GPS point,
leading to more detailed divisions. Figure 7 demonstrates the
same process with a 500-meter threshold, resulting in a larger
resolution. Both figures use a maximum of 10 points per node
to regulate the partitioning.

4) TREE STRUCTURE OF TRIP DECOMPOSITION

The binary code helps identify the region of each point within
the overall trip. Figure 8 shows how the geo-regional quad-
tree works by giving each point in a trip a region binary code.
The quad-tree recursively divides the space into quadrants,
with each region receiving a unique binary identifier. This
approach facilitates critical spatial operations such as finding
adjacent region sequences and resolution representation.

e Adjacent Region Sequences: By analyzing the sequence
of node names in adjacent regions, it is possible to detect
whether a driver revisits the same area over time. In the
geo-regional quad-tree structure, nodes that share the same
parent are considered part of the same region and are
adjacent. Sibling nodes with a common parent represent
nearby geographic areas. Figure 9 illustrates how cyclic
patterns in a vehicle’s trajectory can be identified using the
geo-regional quad-tree. A cyclic pattern emerges when the
vehicle revisits the same regions during its trip. This occurs
when GPS points pass through a series of regions (nodes) and
eventually return to a previously visited larger region or its
parent node.

e Resolution representation: The density of GPS points
within a region can reveal directional deviations and
potential cyclic driving patterns in specific areas. Figure 9
demonstrates how effectively the quad-tree decomposition
captures driving patterns on both local roads and highways.
It highlights the diversity in predefined region sizes, enabling
variable-resolution representation of geographic areas. The
hierarchical structure of the quad-tree helps to subdivide
regions with high GPS point density into smaller boundary
nodes, typically corresponding to local roads. In contrast,
regions with a lower density of points are divided into larger
areas, likely representing highways.
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threshold.

By encoding trajectory data in binary format, we can lever-
age data-driven techniques like deep learning to efficiently
process and analyze the hierarchical data.

5) DATA SEGMENTATION

We employ a non-overlapping sliding window technique
to address the challenge of variable-length sequences in
trajectory data 2. This method involves breaking down the
trajectory data into smaller, fixed-length segments consistent
in size, essential for 2D CNN processing.

C. LEARNING WITH 2D CONVOLUTIONAL NEURAL
NETWORK

A 2D CNN is a deep learning model designed for analyzing
structured data, such as images and time series data [32].
It uses convolutional layers to detect features and patterns
within the data, pooling layers to reduce dimensionality while
retaining important information, and fully connected layers
for final predictions [32]. While commonly used for image
recognition, 2D CNNs can be applied to time series data by
transforming it into 2D representations, enabling applications

VOLUME 13, 2025

like speech recognition and audio classification [32]. Based
on our knowledge, there have been few efforts to apply deep
learning, specifically 2D CNN:s, to trajectory data analysis.

Our model (Figure 2) consists of two convolutional layers
with 32 and 64 filters, using 3 x 3 kernels and ReLU
activation. Each convolutional layer is followed by a 2 x
2 max-pooling layer with a stride of 2, which reduces spatial
dimensions while preserving essential features. The output
is then flattened and passed through three fully connected
layers with 256, 64, and 16 units, all activated by ReLU.
To improve training stability, batch normalization is applied
after the convolutional layers and the second fully connected
layer. A dropout layer is placed before the final output to
prevent overfitting and promote better model generalization.
The final fully connected layer outputs two classes: MCI
and non-MCI. The model uses the Adam optimizer with a
learning rate of 0.001 and is trained with a batch size of 64 for
100 epochs. Early stopping is used to prevent overfitting
by halting training if the validation performance does not
improve for a specified number of epochs. Table 1 provides
an overview of the 2D CNN architecture.
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lll. DATA COLLECTION

The dataset we utilized in this research was sourced from
an extensive five-year study conducted at Florida Atlantic
University and the University of Central Florida. This
study utilizes real-world trajectory datasets from a five-
year NIH-funded project involving 236 older drivers aged
65 to 91 years, providing a robust and diverse dataset for
analyzing driving behaviors. Over four years, we collected
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TABLE 1. 2D CNN architecture overview.

Layer Type Filters/Units Kernel/Pool Size Activation
Conv. Layer 1 32 3x3 ReLU
Batch Norm 1 - - -
Max-Pooling 1 - 2x2 -
Conv. Layer 2 64 3x3 ReLU
Batch Norm 2 - - -
Max-Pooling 2 - 2x2 -
Flatten - - -
Dense Layer 1 256 - ReLU
Dense Layer 2 64 - ReLU
Batch Norm 3 - - -
Dense Layer 3 16 - ReLU
Dropout - - -

and stored more than 72000000 real-time trajectories, pre-
processing them to eliminate errors and noise while ensuring
data accuracy by comparing RPM, speed, direction, and
engine load. The nursing College initially evaluated older
drivers using the Montreal Cognitive Assessment (MoCA) to
determine eligibility for the study, with participants scoring
19 or higher included to ensure a baseline level of cognitive
function [28]. To ensure accurate ground truth labels for
MCI, we performed detection using clinical evaluations, psy-
chometric tests, and behavioral data analysis [28]. Clinical
Dementia Rating (CDR) scores and neuropsychological tests
evaluate cognitive function. We tracked cognitive changes
through assessments performed every 3 months for 4 years,
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FIGURE 10. Overview of the Raspberry-based TMU [27].

using a double baseline design to minimize practice effects.
Statistical adjustments, such as Reliable Change Indices
(RClIs), are applied to ensure the accuracy of detecting true
cognitive decline [28].

The in-vehicle sensing system, which includes telematic
was installed on participants’ vehicles to collect driving
behavior datasets over four years.

Telematics Monitoring Units (TMUs) are built on the
Raspberry Pi 4 Model B and developed by AutoPi
(Figure 10). TMU includes a GPS sensor, an Inertial
Measurement Unit (IMU), an onboard diagnostics (OBD)
connector, a 4G/LTE cellular modem, an SD card, and a
USB flash drive. The IMU records the vehicle’s movements
and orientations, providing data on acceleration, braking, and
angular motion. The GPS sensor tracks the vehicle’s location,
including timestamp, latitude, longitude, and altitude, helping
to analyze travel distance. The Course Over Ground (COG)
data from the GPS helps determine the vehicle’s direction.
The OBD connector provides engine RPM, Speed over
Ground(SOG), and fuel system status.

This dataset encompasses additional driving behavior and
statistical features obtained from in-vehicle sensing systems.
The features are trip duration, distance, acceleration, speed,
engine load, and temperature metrics. To gain more insights
into driving behavior, we also analyzed the time of day
for a subset of participants, categorizing trips into four
periods [27]. Figure 11 shows the distribution of trips across
morning, afternoon, evening, and night. Results indicate
that 50% of trips occur in the afternoon and 34.9% in the
morning, suggesting a preference for driving during daylight
hours [27]. The utilized dataset is comprehensively detailed
in our previous publications [27], [28], [29], [30], [31].

In our work here, each trip is divided into fixed-length
segments of 1 kilometer (km). Every segment inherits the
label of the driver who made the trip. For instance, if a
driver has MCI, all segments of that driver’s trips are labeled
as 1.
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FIGURE 11. Distribution of trips across different times of the day [27].

IV. EXPERIMENTAL EVALUATION

We conducted a series of experiments to evaluate the effec-
tiveness of our proposed feature engineering approach for
extracting additional location-based features, in comparison
to existing telematics features that are already available
in our dataset and commonly used in vehicle trajectory
analysis [12], [13], [14], [15], [16], [17], [18], [19] and grid-
based approach [33].

o Location-Based Features: we employed longitude,
latitude, and binary indicators bitl to bit8. In this study,
the geo-regional quad-tree had predefined 4 levels, and
each level added 2 bits, which ended in an 8-bit binary
code.

o Telematics features: includes distance (kilometers),
speed (kph), speed over ground (SOG) (kph), and
direction (azimuth).

o Grid-Based features: are spatial-temporal patterns
extracted by mapping segmented trajectories onto a
spatial grid and augmenting them through rotation
techniques [33].

A. EXPERIMENT LAYOUT

To mitigate potential biases and enhance the model’s
robustness, we employ down-sampling techniques to balance
the dataset between MCI and non-MCI drivers. To assess
the generalizability of the proposed model, we conducted
experiments on datasets of varying sizes (4 months, 1 year,
and 2 years) to improve key performance metrics such as
recall, F1 score, and AUC. The layout of our experiments is
designed as follows:

B. EVALUATION METRICS

The QBDC problem is fundamentally a binary classification
task. According to the real labels provided by the nursing
college and predicted data labels, the possible outcomes
are categorized as True Positive(TP), True Negative(TN),
False Positive(FP), and False Negative(FN). To evaluate
the model’s performance, we used recall, which measures
the ability to identify all actual positive cases; precision,
which assesses the accuracy of positive predictions; and
the Fl-score, which combines both metrics to provide a

63137



IEEE Access

S. G. A. Ghoreishi et al.: QBDC Using Deep Learning for Mild Cognitive Impairment Detection

Number of Nodes Data Size

Number of Hidden Layers

v
[ Dataset |
I

v v
[ Telematics | | Grid-Based | [ Eocation-Based |

F1-score
AUC
Recall

Comparative Analysis

FIGURE 12. Experimental layout.

balanced measure of the model’s overall effectiveness. The
performance of the model was evaluated using the following
metrics:

.. TP
Precision = ———
TP + FP
TP
Recall = ——
TP + FN
Precision - Recall
F1-Score =2 -

Precision + Recall

C. EXPERIMENT RESULTS

We evaluated the proposed approach by comparing it to a
baseline method. In the baseline model, we used a Simple
Neural Network (SNN) to process telematics features, which
includes three fully connected layers with 128, 64, and
32 nodes, respectively. The comparative analysis focused on
assessing the impact of (1) dataset size, (2) the number of
nodes in the fully connected layers, and (3) the number of
layers on the SNN and 2D CNN model performance.

1) EFFECT OF DATA SIZE

We conducted experiments using datasets spanning 4 months,
1 year, and 2 years to assess how varying data sizes
influenced the performance of both approaches with telem-
atics, grid-based and location-based features. Figure 13
illustrates the results for Recall, F1-Scores, and AUC across
the telematics,grid-based and location-based features with
different data sizes.

With increasing dataset sizes (from 4 months to 2 years),
the model achieved progressively higher recall, F1-Score, and
AUC. A dataset spanning 2 years yielded the highest metrics,
demonstrating the model’s improved ability to distinguish
between MCI and non-MCI drivers. Location-based features
consistently achieved superior results compared to telematics
and grid-based features, showing that the geo-regional quad-
tree structure captures critical spatial information, leading to
more accurate MCI detection.

2) EFFECT OF NUMBER OF NODES IN 2D CNN

We also examined the impact of reducing the number of
nodes in the fully connected (FC) layers of both the 2D CNN
and SNN architectures. Table 2 illustrates the original node
configurations for the 2D CNN, which used location-based
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FIGURE 13. Effect of datasets within 4 months, 1 year, and 2 years for
F1-Score, AUC, and Recall across telematics, grid-based, and
location-based features.

TABLE 2. Number of nodes in the FC layers.

Configuration FCLayer1 FCLayer2 FC Layer3
Original 2D CNN 256 64 16
Original SNN 128 64 32
Configuration 1 128 32 8
Configuration 2 64 16 4

features, and the SNN, which employed telematics features,
with two modified setups labeled Configurations 1 and 2.

The variation in the number of nodes in the fully
connected layers did not lead to a significant change in
performance metrics, including recall, F1-Score, and AUC.
The results remained relatively consistent across different
configurations, suggesting that reducing or increasing the
number of nodes had minimal impact on the model’s ability
to classify MCI and non-MCI drivers.

3) EFFECT OF NUMBER OF HIDDEN LAYERS IN 2D CNN

We performed experiments with 1, 2, and 3 hidden layers.
Figure 16 presents the Recall, F1-Scores, and AUC for
the telematics,grid-based and location-based features across
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FIGURE 14. Effect of the number of nodes for F1-Score, AUC, and Recall
across telematics, grid-based and Location-based features.

different hidden layer configurations. The results showed that
adding more hidden layers to the 2D CNN resulted in only
minor improvements, with no significant performance gains
beyond two layers. This suggests that increasing the model’s
depth further does not noticeably enhance its classification
performance.

To ensure robust evaluation, we incorporated 5-fold cross-
validation into the experimental setup. Figure 16 illustrates
the mean F1-scores (& standard deviation) for different con-
figurations, highlighting that location-based features derived
from the quad-tree consistently outperform telematics and
grid-based features. Larger datasets significantly enhance
performance, while increasing the number of nodes or hidden
layers has minimal impact, indicating that the model is both
efficient and effective in leveraging spatial-temporal patterns
for MCI detection.

In addition, to compare the performance of the
location-based and telematics features in terms of F1 scores,
we conducted a paired t-test across 5-fold cross-validation.
The location-based features achieved a mean F1 score of
0.9213 (4+0.0188), while the telematics features achieved a
mean F1 score of 0.7225 (£0.0259). The mean difference
between the two methods was 0.1986 (SD = 0.0188). The
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FIGURE 15. Effect of number of Layers on 2D CNN for F1-Score, AUC, and
Recall across telematics, grid-based and Location-based features.

paired t-test revealed a statistically significant difference
in F1 scores between the two methods (+ = 23.61, p =
1.91 x 10_5), indicating that the location-based features
significantly outperformed the telematics features.

To better illustrate the computational demands of the
proposed method, Figure 17 compares the time complexity
of geo-regional quad-tree construction and CNN training
across different numbers of trips. The results indicate that
while quad-tree feature engineering adds preprocessing time,
the overall computational complexity remains low due
to the O(nlog n) time complexity of quad-tree construction.
The approach efficiently scales with data size, making it
both computationally feasible and effective in improving
classification performance.

V. DISCUSSION

The results of this study highlight the effectiveness of the
proposed QBDC approach in detecting MCI in elderly drivers
through an analysis of their driving patterns. The hierarchical
partitioning of GPS data into regions facilitates extracting
meaningful spatial features that significantly enhance model
performance in identifying abnormal driving behaviors.
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FIGURE 16. Comparison of mean F1-scores (+ standard deviation) for
different experimental layouts across 5-fold cross-validation.

The results demonstrate that increasing the dataset size
significantly enhances model performance, improving recall,
F1-Score, and AUC. Larger datasets allow the model to
capture more diverse driving patterns, leading to better
classification of MCI and non-MCI drivers. Location-
based features derived from the geo-regional quad-tree
proved more effective than telematics and grid-based fea-
tures, emphasizing the importance of spatial information
in detecting cognitive impairment. Retaining spatial detail
while simplifying the trajectory data helps the model
effectively capture potentially abnormal driving patterns,
such as road repetitions, long-distance U-turns, or abnormal
cyclic patterns. In contrast, variations in the number of
nodes and hidden layers in the 2D CNN architecture had
minimal impact on performance. The model achieved optimal
results with three hidden layers, but increasing complexity
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beyond this did not yield significant improvements. These
findings suggest that focusing on data quality and effective
feature engineering is more important than adding complexity
to the network. Using binary-encoded features from the
quad-tree enhanced the interpretability of the model, provid-
ing more nuanced insights into driving behaviors. Compared
to telematics and grid-based features, the location-based
features derived from the geo-regional quad-tree approach
consistently demonstrated superior performance, achieving
higher recall, F1 scores, and AUC, highlighting their ability
to capture critical spatial details essential for distinguishing
MCl-related driving behaviors.

VI. CONCLUSION AND FUTURE WORK

This work introduces an innovative method for QBDC
to MCI in elderly drivers using quad-tree structures and
deep learning techniques. Leveraging the hierarchical spatial
partitioning capabilities of geo-regional quad-trees, our
approach effectively captures and analyzes both the spatial
and temporal dimensions of driving trajectories. Integrating
binary encoding for trajectory data with CNNs significantly
enhances feature extraction and classification accuracy.

The experimental results validate the effectiveness of our
quad-tree based method in identifying abnormal driving
patterns associated with MCIL. Our study found that MCI
drivers exhibit abnormal driving behaviors such as long-
distance U-turns, cyclic driving patterns, and road repetition.
The quad-tree structure provides a detailed and scalable
representation of driving data, addressing the complexities
of large-scale spatiotemporal data analysis. This method
offers a robust framework for real-time monitoring and early
detection of cognitive impairments, contributing to improved
road safety and cognitive health monitoring for elderly
populations. We are currently collecting video datasets from
windshield-mounted cameras to gain deeper insights into
driver behavior. In future work, we plan to integrate spatial
information with video data to enhance the classification
model. Additionally, we aim to incorporate external data
sources, such as open weather and road traffic data, to account
for factors like traffic conditions, weather, and vehicle type,
further improving the model’s accuracy.
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