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ABSTRACT Given GPS points on a transportation network, the goal of the Quad-tree Based Driver

Classification (QBDC) problem is to identify whether drivers have Mild Cognitive Impairment (MCI). The

QBDC problem is challenging due to the large volume and complexity of the data. This paper proposes a

quad-tree based approach to the QBDC problem by analyzing driving patterns using a real-world dataset.

We propose a geo-regional quad-tree structure to capture the spatial hierarchy of driving trajectories and

introduce new driving features representation for input into a convolutional neural network (CNN) for driver

classification. The experimental results demonstrate the effectiveness of the proposed algorithm, achieving

an F1 score of 95% that significantly outperforms the baseline models. These results highlight the potential

of geo-regional quad-tree structures to extract interpretable features and describe complex driving patterns.

This approach offers significant implications for driver classification, with the potential to improve road

safety and cognitive health monitoring.

INDEX TERMS Spatiotemporal data, GPS data, trajectory analysis, driving behavior, older driver

classification, quad-tree decomposition, convolutional neural networks.

I. INTRODUCTION

Given GPS points on a transportation network, Quad-tree

BasedDriver Classification (QBDC) aims to identify whether

drivers have Mild Cognitive Impairment (MCI). The QBDC

plays a key role in improving road safety and reducing the

risks associated with cognitive decline. MCI can result in

incorrect turns, missing intended routes or exits, going wrong

ways, and increasing the risk of accidents. This problem

is challenging because of the extensive trajectory data and

different spatial-temporal driving behaviors of populations.

Raw GPS trajectories contain only a sequence of GPS

points without meaningful correlations and explicit features

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

for feeding into a supervised model. To remedy this issue,

we propose a quad-tree based structure to obtain meaningful

features while preserving the timestamped sequence of data

points. This approach enables us to identify driving patterns

and the shape of the trips. Figure 1 shows an example input

of the problem with GPS points within a trip. Every point has

a time stamp, longitude, latitude and direction. Here, each set

of points belongs to a driver’s trip with different source and

destination locations.

This study presents an innovative geo-regional quad-tree

approach for driver classification using GPS trajectory data.

Our method decomposes GPS trajectories into hierarchical

spatial regions, enabling a multiresolution representation

of sub-regions [13] within each trip. By applying binary

encoding to quad-tree nodes, we generate location-based
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FIGURE 1. Time series GPS points partitioned within a trip.

features from trip data. These features are then processed

through a 2-dimensional Convolutional Neural Network

(2D CNN) to effectively classify drivers. The hierarchical

structure of the quad-tree organizes GPS data into nested

regions, allowing for a clear and detailed representation

of driving paths. This structure captures spatial details

and variations in driving behavior, which are essential for

identifying the shape of a trip. Extensive experimental

validation with real-world telematic data demonstrates the

efficacy of this approach in accurately distinguishing between

drivers with and without MCI. By combining location-

based features with deep learning, our framework provides

a scalable and practical solution for early cognitive health

monitoring, enhancing road safety and promoting proactive

public health measures.

A. APPLICATION DOMAIN

In recent years, researchers have identified MCI through

cognitive assessments and an individual’s medical history.1

MCI can affect daily activities such as driving behavior

and raise the likelihood of progressing to dementia, par-

ticularly Alzheimer’s disease [27]. Alzheimer’s disease is

a severe condition that progressively damages brain cells

and has substantial financial and social challenges [21],

[22]. Detecting MCI, an early indicator of Alzheimer’s

is essential for implementing timely interventions to slow

or prevent further cognitive deterioration [23]. MCI can

be related to driving performance because it impacts the

cognitive abilities necessary for safe driving 1. Individuals

with MCI can hinder their ability to make quick and accurate

decisions while driving. For instance, memory issues may

cause difficulties in following directions, resulting in missed

turns. Inattention can affect a driver’s capacity to observe

other vehicles and pedestrians, while slower reaction times

can delay responses to sudden changes on the road and

increase accident risks [27]. Identifying older drivers with

MCI is important for improving public health and road

safety. Early detection of MCI in older citizens can help

ensure the safety of these drivers and others on the road.

Furthermore, the classification of drivers with MCI can aid

1https://www.fau.edu/newsdesk/articles/older-drivers-research.php

insurance companies in better assessing risks and creating

incentive programs that encourage safer driving habits.

GDBC problem enables technological advancements by inte-

grating telematics and machine learning within the healthcare

and safety sectors. In-vehicle sensing technology represents

an innovative approach to assessing driver behavior and

monitoring cognitive decline. This technology has evolved

significantly and provides effective and affordable solutions

for diagnosing early-stage dementia in older drivers based on

their driving patterns [27], [28], [29], [30], [31].

B. PROBLEM DEFINITION

In formulating the QBDC problem, a spatiotemporal network

is represented and analyzed through the diverse trips taken by

multiple drivers. The problem is defined as follows:

Input:

• A set of trajectory data containing latitude, longitude,

direction, distance between consecutive points and

timestamps,

• A set of drivers ID,

• A set of Trip Numbers T ,

• A set of Labels L = {MCI, non-MCI},

• The minimum length of a trip α

Output:

• Classifying drivers based on their trips with varying

origin-destination locations.

Objective:

• Maximize the predictive performance to classify driving

patterns.

Constraints:

• The length of a trip > α.

C. OUR CONTRIBUTION

In this paper, we introduce a novel approach to QBDC based

on the idea of region quad-tree [3]. Our contributions are as

follows:

1) We introduce the QBDC problem, classifying older

drivers into MCI and non-MCI categories using GPS

data.

2) We propose the geo-regional quad-tree approach to

generate new location-based features and effectively

classify the driving patterns of older citizens.

3) We conduct extensive experimental evaluations of the

proposed algorithm using real-world telematic data.

D. RELATED WORK

Extensive research has been conducted on using movement

features to examine trajectory data and analyze driver

behavior. For instance, Dodge et al. used direction, speed,

and acceleration to identify trajectory similarity and detect

anomalous driving styles [1].With the advantages of machine

learning, more sophisticated models have been developed to

improve classification and detection [2], [4], [6].

Wang et al. employed Support Vector Machines (SVM)

to classify drivers based on their GPS trajectories and
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FIGURE 2. The proposed model.

demonstrate the potential of these methods in handling large

datasets [5]. Yu et al. proposed a deep learning framework

and used a variational autoencoder to identify the level of

abnormality for a set of drivers. Their proposed approach

divides the trajectory data to generate spatiotemporal units

with homogenous properties. Then, aggregate the parameters

of acceleration, speed, and direction within each spatio-

temporal unit, which aggregation may cause some informa-

tion loss [12]. Zhang et al. employed CNN to capture spatial

dependencies in GPS trajectories, effectively distinguishing

between different driving patterns [9]. In recent work,

Li et al. introduced a Transformer-based encoder-decoder

network combined with contrastive learning to represent

trajectory data without requiring summarization [14]. They

incorporated the Hilbert curve within a multi-scale spatial-

aware embedding module, which was subsequently fed into

the Transformer-based sequencemodelingmodule for further

processing. This method maps each geographical coordinate

(latitude, longitude) to a one-dimensional index along the

Hilbert curve [14].

Additionally, Huang used a higher-order Markov chain to

detect anomalous driving behaviors, such as long-distance

detours and high-density sequences of turns. The approach

employs a recursive Bayesian filter that dynamically infers

the probability of these anomalies over time. The algorithm

incorporates a threshold for heading changes to filter out

trivial movements, enabling the identification of cyclic

patterns and loops [10]. Zhang et al. detect detour behavior

in trajectory data by focusing on trajectories with the

same starting and ending points. The similarity between

these trajectories is measured using Dynamic Time Warping

(DTW), which accounts for temporal misalignments between

trajectories. DTW calculates the Euclidean distance between

corresponding points on the trajectories to determine their

similarity. The calculated similarities are then input to the Iso-

lation Forest (iForest) algorithm, which identifies anomalous

trajectories [15]. Jiang et al. defined detours as unnecessary

deviations in a route that results in increased travel time or

distance between consecutive query locations. These detours

typically occur when a route includes unintended stops that

are not alignedwith the specified query locations. The authors

use a variance-based approach that analyzes travel time

distributions between locations to address this. Trajectories

with travel times outside the normal range are flagged as

detours and excluded, ensuring the final recommended route

is both direct and efficient [17].

Integrating knowledge graphs with trajectory data has

opened new avenues for context-aware analysis and outlier

detection. Ahmed et al. propose a method for constructing

normal and outlier graphs from trajectory data, representing

these as directed weighted graphs. The normal graphs

capture typical trajectories, while outlier graphs are based

on significant deviations. The method involves comparing

input trajectories with these target graphs through similarity

analysis of nodes and edges, which correspond to visited

points and paths. The comparison employs containment sim-

ilarity and maximum common subgraph similarity, allowing

for the effective classification of trajectories as either normal

or outliers [11]. With the advent of increasingly available

GPS trajectory data and Convolutional Neural Networks,

researchers proposed a Deep Convolutional Neural Network

for Vehicle Classification (CNN-VC) to identify the types

of vehicles from their trajectory [16]. Huang et al. used

a quad-tree based method to simplify GPS trajectories by

integrating geographic context and adjusting the level of

detail across trajectory segments. The approach focuses on
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preserving finer details in critical areas like road intersections

and landmarks [19]. Data is aggregated within each quad-tree

node to reduce the number of points, which may result in

some information loss. Park proposed a hierarchical binary

quad-tree index for efficiently managing and querying spatial

data [18]. The quad-tree is used to represent the locations of

objects in a hierarchical grid structure. The grid is recursively

divided until each cell contains only one object, ensuring that

every single object has its unique representation within the

grid [18].

In the realm of disease detection, numerous approaches

have been developed, ranging from medical tests [20] to gait

tests [23], [24], balance test scores [25], and reinforcement

learning for predicting response to medications [26]. How-

ever, our research takes a novel quad-tree based approach

by leveraging trajectory data, specifically driving behaviors,

to detect MCI.

E. SCOPE AND OUTLINE

The rest of the paper is organized as follows: Section II

describes our proposed approaches to QBDC.We provide the

experimental setups and corresponding results in Section IV

followed by a detailed discussion in Section V. Finally,

Section VI concludes the paper.

II. PROPOSED METHODOLOGY FOR QBDC

In this section, we introduce the benefit of the region quad-

tree approach [3] in extracting useful location-based features

from trajectory data and accommodating trips with varying

shapes, start points, and endpoints. Summarizing data can

cause inaccurate estimation due to the difficulty of limiting

the loss of information [12]. Unlike existing methods [12],

[13], [14], [15], [16], [17], [18], [19] that rely on aggregated

features, we introduce a quad-tree based approach that

utilizes all GPS points of a trip.

Figure 2 depicts the pipeline of our proposed geo-

regional quad-tree approach for QBDC problem. The process

begins with raw GPS trip data, which includes times-

tamps, latitudes, longitude, and direction. The geo-regional

quad-tree approach decomposes the trip into subregions

while preserving the timestamped sequence and topological

connectivity of the GPS points. Each subregion is then

represented in meaningful binary format, with unique binary

codes assigned to each. Using a geo-regional quad-tree

enables us to identify the hierarchical structure of the trips

with various driving patterns, such as cyclic patterns and

road repetitions. In this simple example, the binary codes

are represented as bit1 through bit4. These binary-encoded

features are subsequently input into a 2D CNN for further

processing and classification.

A. BASIC CONCEPT

The shape of driving patterns depends on changes in

the path and the sequence of visited regions, which can

provide insights into how the journey unfolds over time

and space. Analyzing the shape of the trips can reveal

valuable information about driver behavior. Figure 3 shows

potentially abnormal driving styles such as repeated path

selections, cyclic patterns, and long-distance U-turns [29].

These kinds of driving behavior may suggest difficulty

navigating new areas, confusion or a need to revisit places and

going the wrong way. To uncover abnormal driving behavior,

it is essential to analyze directional deviation changes and

measure the lengths of these deviations. By decomposing

the trip into meaningful regions, we can further examine

direction changes and distances covered. This decomposition

helps focus on specific parts of the journey, making it easier

to analyze how direction changes occur within each region

and how far the driver travels in those segments.

B. QUAD-TREE STRUCTURE AND OPERATIONS

1) GEO-REGIONAL QUAD-TREE STRUCTURE FOR TRIP

DECOMPOSITION

Region quad-tree recursively divides a 2-dimensional space

into four quadrants of the same size [3] (Figure 4). Quad-tree

structures have many applications in image processing and

spatial indexing [13]. We extend the region quad-tree concept

[3] by introducing the geo-regional quad-tree to identify

various trip shapes.

The decomposition process starts with a root node

representing the whole trip. When the attributes of points

within the root node do not meet a specified threshold, the

geo-regional quad-tree subdivides the root into four child

nodes. Each node also follows a threshold; if it does not

satisfy the criteria, the process further subdivides it into four

smaller regions and creates new child nodes (Figure 4). This

recursive decomposition continues until all regions meet the

predefined criteria.

Leaf nodes at the edges of the quad-tree’s spatial bound-

aries do not have children and represent the smallest regions

in the quad-tree. They store the data points, ensuring each

region contains a manageable feature of points and has a

parent node (Figure 4).

Let R represent the root node of the quad-tree, which

corresponds to the entire spatial region of a trip. The

region R is defined by its minimum and maximum latitude

(latmin, latmax) and longitude (lonmin, lonmax) values. The

minimum and maximum latitude and longitude values of all

the points within a region determine the boundary of a node

in the quad-tree and define the spatial region it covers. The

quad-tree recursively partitions R into four quadrants (child

nodes) until a stopping criterion is met. Each quadrant Qi
(where i ∈ {1, 2, 3, 4}) is defined by its spatial boundaries:

Qi =

[

latimin, lat
i
max

]

×

[

lonimin, lon
i
max

]

where latimin, lat
i
max, lon

i
min, lon

i
max are the latitude and lon-

gitude boundaries of the i-th quadrant. To construct a

quadtree, each of the n points is inserted individually by

traversing the hierarchical structure to locate its appropriate

quadrant. Since the depth of a balanced quadtree is at most

O(log n), each insertion takes O(log n) time. Consequently,
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FIGURE 3. Visual representation snapshot of potentially abnormal trips from the real-world dataset utilized in this study [29].

FIGURE 4. Spatial decomposition and hierarchical structure of a quad-tree with binary
encoding.

the total time complexity for constructing the quadtree is

O(n log n).

2) BINARY ENCODING OF QUAD-TREE NODES

After decomposing a trip using the geo-regional quad-

tree, the sub-regions have unique representations based on

their topological connectivity and the information of their

GPS points. Figure 4 illustrates the quad-tree’s hierarchical

structure and spatial decomposition process for dividing

a two-dimensional grid into smaller regions for spatial

indexing. Each node in the quad-tree represents a distinct

region and receives a unique binary code based on its position.

Beginning with the root node, the four child nodes can be

encoded as follows:

• Top-left = 00

• Top-right = 01

• Bottom-left = 10

• Bottom-right = 11
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FIGURE 5. Real-world examples of the built quad-tree with the same splitting threshold.

3) THRESHOLDS CRITERIA

The essential parameter of the geo-regional quad-tree decom-

position is stopping criteria. The threshold criteria can be

defined as follows:

• Direction consistency: We represent the direction of

GPS points using rounded values of 0◦, 90◦, 180◦, and

270◦ to manage data complexity while preserving essential

directional information. To obtain these values, we calculated

the azimuth (or bearing) between consecutive GPS points,

providing the angle from true north to the line connecting

each point. Each azimuth was then rounded to the nearest

cardinal direction. Trip shape analysis involves examining

these directions to identify patterns. In a geo-regional

quadtree, each node has a value representing the direction

of the GPS points within its region. If all points within a

node share the same rounded direction, the node will not

subdivide. This approach is simplifying the structure and

ensuring efficient data handling without loss of critical spatial

information.

• Sum of distances: Besides the direction consistency,

we check if the sum of the distances between the GPS points

in a node is less than a threshold; the node will not be

subdivided. This criterion enables us to skip unnecessary

information while maintaining acceptable resolution in

more detailed, heterogeneous areas. We used the Haversine

formula to calculate the shortest distance between two points

on the surface of a sphere.

• Maximum points per Node: To avoid excessive subdivi-

sions, we applied an additional criterion based on the density

of GPS points, ensuring that each node holds more than a

predefined number of points.

Figure 5 illustrates examples of the constructed quad-tree

with the same splitting threshold, demonstrating how the

decomposition process subdivides the space into smaller

regions based on predefined stopping criteria. A larger

threshold results in fewer subdivisions and larger boundary

leaf nodes in the quad-tree decomposition. Figure 6 and 7

depict examples of this effect. Figure 6 shows the quad-tree

partitioning of vehicle trajectories with a 50-meter sum of

distance threshold between every consecutive GPS point,

leading to more detailed divisions. Figure 7 demonstrates the

same process with a 500-meter threshold, resulting in a larger

resolution. Both figures use a maximum of 10 points per node

to regulate the partitioning.

4) TREE STRUCTURE OF TRIP DECOMPOSITION

The binary code helps identify the region of each point within

the overall trip. Figure 8 shows how the geo-regional quad-

tree works by giving each point in a trip a region binary code.

The quad-tree recursively divides the space into quadrants,

with each region receiving a unique binary identifier. This

approach facilitates critical spatial operations such as finding

adjacent region sequences and resolution representation.

• Adjacent Region Sequences: By analyzing the sequence

of node names in adjacent regions, it is possible to detect

whether a driver revisits the same area over time. In the

geo-regional quad-tree structure, nodes that share the same

parent are considered part of the same region and are

adjacent. Sibling nodes with a common parent represent

nearby geographic areas. Figure 9 illustrates how cyclic

patterns in a vehicle’s trajectory can be identified using the

geo-regional quad-tree. A cyclic pattern emerges when the

vehicle revisits the same regions during its trip. This occurs

when GPS points pass through a series of regions (nodes) and

eventually return to a previously visited larger region or its

parent node.

• Resolution representation: The density of GPS points

within a region can reveal directional deviations and

potential cyclic driving patterns in specific areas. Figure 9

demonstrates how effectively the quad-tree decomposition

captures driving patterns on both local roads and highways.

It highlights the diversity in predefined region sizes, enabling

variable-resolution representation of geographic areas. The

hierarchical structure of the quad-tree helps to subdivide

regions with high GPS point density into smaller boundary

nodes, typically corresponding to local roads. In contrast,

regions with a lower density of points are divided into larger

areas, likely representing highways.
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FIGURE 6. Quad-tree partitioning GPS point in a real-world trip with the 50-meter sum of distance
threshold.

FIGURE 7. Quad-tree partitioning GPS point in a real-world trip with a 500-meter sum of distance
threshold.

By encoding trajectory data in binary format, we can lever-

age data-driven techniques like deep learning to efficiently

process and analyze the hierarchical data.

5) DATA SEGMENTATION

We employ a non-overlapping sliding window technique

to address the challenge of variable-length sequences in

trajectory data 2. This method involves breaking down the

trajectory data into smaller, fixed-length segments consistent

in size, essential for 2D CNN processing.

C. LEARNING WITH 2D CONVOLUTIONAL NEURAL

NETWORK

A 2D CNN is a deep learning model designed for analyzing

structured data, such as images and time series data [32].

It uses convolutional layers to detect features and patterns

within the data, pooling layers to reduce dimensionality while

retaining important information, and fully connected layers

for final predictions [32]. While commonly used for image

recognition, 2D CNNs can be applied to time series data by

transforming it into 2D representations, enabling applications

like speech recognition and audio classification [32]. Based

on our knowledge, there have been few efforts to apply deep

learning, specifically 2D CNNs, to trajectory data analysis.

Our model (Figure 2) consists of two convolutional layers

with 32 and 64 filters, using 3 × 3 kernels and ReLU

activation. Each convolutional layer is followed by a 2 ×

2 max-pooling layer with a stride of 2, which reduces spatial

dimensions while preserving essential features. The output

is then flattened and passed through three fully connected

layers with 256, 64, and 16 units, all activated by ReLU.

To improve training stability, batch normalization is applied

after the convolutional layers and the second fully connected

layer. A dropout layer is placed before the final output to

prevent overfitting and promote better model generalization.

The final fully connected layer outputs two classes: MCI

and non-MCI. The model uses the Adam optimizer with a

learning rate of 0.001 and is trained with a batch size of 64 for

100 epochs. Early stopping is used to prevent overfitting

by halting training if the validation performance does not

improve for a specified number of epochs. Table 1 provides

an overview of the 2D CNN architecture.
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FIGURE 8. Tree structure of trip decomposition and binary encoding of quad-tree nodes.

FIGURE 9. Cyclic pattern in real-world vehicle trajectory data showing
GPS points revisiting adjacent regions with common parent nodes.

III. DATA COLLECTION

The dataset we utilized in this research was sourced from

an extensive five-year study conducted at Florida Atlantic

University and the University of Central Florida. This

study utilizes real-world trajectory datasets from a five-

year NIH-funded project involving 236 older drivers aged

65 to 91 years, providing a robust and diverse dataset for

analyzing driving behaviors. Over four years, we collected

TABLE 1. 2D CNN architecture overview.

and stored more than 72000000 real-time trajectories, pre-

processing them to eliminate errors and noise while ensuring

data accuracy by comparing RPM, speed, direction, and

engine load. The nursing College initially evaluated older

drivers using the Montreal Cognitive Assessment (MoCA) to

determine eligibility for the study, with participants scoring

19 or higher included to ensure a baseline level of cognitive

function [28]. To ensure accurate ground truth labels for

MCI, we performed detection using clinical evaluations, psy-

chometric tests, and behavioral data analysis [28]. Clinical

Dementia Rating (CDR) scores and neuropsychological tests

evaluate cognitive function. We tracked cognitive changes

through assessments performed every 3 months for 4 years,
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FIGURE 10. Overview of the Raspberry-based TMU [27].

using a double baseline design to minimize practice effects.

Statistical adjustments, such as Reliable Change Indices

(RCIs), are applied to ensure the accuracy of detecting true

cognitive decline [28].

The in-vehicle sensing system, which includes telematic

was installed on participants’ vehicles to collect driving

behavior datasets over four years.

Telematics Monitoring Units (TMUs) are built on the

Raspberry Pi 4 Model B and developed by AutoPi

(Figure 10). TMU includes a GPS sensor, an Inertial

Measurement Unit (IMU), an onboard diagnostics (OBD)

connector, a 4G/LTE cellular modem, an SD card, and a

USB flash drive. The IMU records the vehicle’s movements

and orientations, providing data on acceleration, braking, and

angular motion. The GPS sensor tracks the vehicle’s location,

including timestamp, latitude, longitude, and altitude, helping

to analyze travel distance. The Course Over Ground (COG)

data from the GPS helps determine the vehicle’s direction.

The OBD connector provides engine RPM, Speed over

Ground(SOG), and fuel system status.

This dataset encompasses additional driving behavior and

statistical features obtained from in-vehicle sensing systems.

The features are trip duration, distance, acceleration, speed,

engine load, and temperature metrics. To gain more insights

into driving behavior, we also analyzed the time of day

for a subset of participants, categorizing trips into four

periods [27]. Figure 11 shows the distribution of trips across

morning, afternoon, evening, and night. Results indicate

that 50% of trips occur in the afternoon and 34.9% in the

morning, suggesting a preference for driving during daylight

hours [27]. The utilized dataset is comprehensively detailed

in our previous publications [27], [28], [29], [30], [31].

In our work here, each trip is divided into fixed-length

segments of 1 kilometer (km). Every segment inherits the

label of the driver who made the trip. For instance, if a

driver has MCI, all segments of that driver’s trips are labeled

as 1.

FIGURE 11. Distribution of trips across different times of the day [27].

IV. EXPERIMENTAL EVALUATION

We conducted a series of experiments to evaluate the effec-

tiveness of our proposed feature engineering approach for

extracting additional location-based features, in comparison

to existing telematics features that are already available

in our dataset and commonly used in vehicle trajectory

analysis [12], [13], [14], [15], [16], [17], [18], [19] and grid-

based approach [33].

• Location-Based Features: we employed longitude,

latitude, and binary indicators bit1 to bit8. In this study,

the geo-regional quad-tree had predefined 4 levels, and

each level added 2 bits, which ended in an 8-bit binary

code.

• Telematics features: includes distance (kilometers),

speed (kph), speed over ground (SOG) (kph), and

direction (azimuth).

• Grid-Based features: are spatial-temporal patterns

extracted by mapping segmented trajectories onto a

spatial grid and augmenting them through rotation

techniques [33].

A. EXPERIMENT LAYOUT

To mitigate potential biases and enhance the model’s

robustness, we employ down-sampling techniques to balance

the dataset between MCI and non-MCI drivers. To assess

the generalizability of the proposed model, we conducted

experiments on datasets of varying sizes (4 months, 1 year,

and 2 years) to improve key performance metrics such as

recall, F1 score, and AUC. The layout of our experiments is

designed as follows:

B. EVALUATION METRICS

The QBDC problem is fundamentally a binary classification

task. According to the real labels provided by the nursing

college and predicted data labels, the possible outcomes

are categorized as True Positive(TP), True Negative(TN),

False Positive(FP), and False Negative(FN). To evaluate

the model’s performance, we used recall, which measures

the ability to identify all actual positive cases; precision,

which assesses the accuracy of positive predictions; and

the F1-score, which combines both metrics to provide a
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FIGURE 12. Experimental layout.

balanced measure of the model’s overall effectiveness. The

performance of the model was evaluated using the following

metrics:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2 ·
Precision · Recall

Precision + Recall

C. EXPERIMENT RESULTS

We evaluated the proposed approach by comparing it to a

baseline method. In the baseline model, we used a Simple

Neural Network (SNN) to process telematics features, which

includes three fully connected layers with 128, 64, and

32 nodes, respectively. The comparative analysis focused on

assessing the impact of (1) dataset size, (2) the number of

nodes in the fully connected layers, and (3) the number of

layers on the SNN and 2D CNN model performance.

1) EFFECT OF DATA SIZE

We conducted experiments using datasets spanning 4months,

1 year, and 2 years to assess how varying data sizes

influenced the performance of both approaches with telem-

atics, grid-based and location-based features. Figure 13

illustrates the results for Recall, F1-Scores, and AUC across

the telematics,grid-based and location-based features with

different data sizes.

With increasing dataset sizes (from 4 months to 2 years),

themodel achieved progressively higher recall, F1-Score, and

AUC. A dataset spanning 2 years yielded the highest metrics,

demonstrating the model’s improved ability to distinguish

between MCI and non-MCI drivers. Location-based features

consistently achieved superior results compared to telematics

and grid-based features, showing that the geo-regional quad-

tree structure captures critical spatial information, leading to

more accurate MCI detection.

2) EFFECT OF NUMBER OF NODES IN 2D CNN

We also examined the impact of reducing the number of

nodes in the fully connected (FC) layers of both the 2D CNN

and SNN architectures. Table 2 illustrates the original node

configurations for the 2D CNN, which used location-based

FIGURE 13. Effect of datasets within 4 months, 1 year, and 2 years for
F1-Score, AUC, and Recall across telematics, grid-based, and
location-based features.

TABLE 2. Number of nodes in the FC layers.

features, and the SNN, which employed telematics features,

with two modified setups labeled Configurations 1 and 2.

The variation in the number of nodes in the fully

connected layers did not lead to a significant change in

performance metrics, including recall, F1-Score, and AUC.

The results remained relatively consistent across different

configurations, suggesting that reducing or increasing the

number of nodes had minimal impact on the model’s ability

to classify MCI and non-MCI drivers.

3) EFFECT OF NUMBER OF HIDDEN LAYERS IN 2D CNN

We performed experiments with 1, 2, and 3 hidden layers.

Figure 16 presents the Recall, F1-Scores, and AUC for

the telematics,grid-based and location-based features across
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FIGURE 14. Effect of the number of nodes for F1-Score, AUC, and Recall
across telematics, grid-based and Location-based features.

different hidden layer configurations. The results showed that

adding more hidden layers to the 2D CNN resulted in only

minor improvements, with no significant performance gains

beyond two layers. This suggests that increasing the model’s

depth further does not noticeably enhance its classification

performance.

To ensure robust evaluation, we incorporated 5-fold cross-

validation into the experimental setup. Figure 16 illustrates

the mean F1-scores (± standard deviation) for different con-

figurations, highlighting that location-based features derived

from the quad-tree consistently outperform telematics and

grid-based features. Larger datasets significantly enhance

performance, while increasing the number of nodes or hidden

layers has minimal impact, indicating that the model is both

efficient and effective in leveraging spatial-temporal patterns

for MCI detection.

In addition, to compare the performance of the

location-based and telematics features in terms of F1 scores,

we conducted a paired t-test across 5-fold cross-validation.

The location-based features achieved a mean F1 score of

0.9213 (±0.0188), while the telematics features achieved a

mean F1 score of 0.7225 (±0.0259). The mean difference

between the two methods was 0.1986 (SD = 0.0188). The

FIGURE 15. Effect of number of Layers on 2D CNN for F1-Score, AUC, and
Recall across telematics, grid-based and Location-based features.

paired t-test revealed a statistically significant difference

in F1 scores between the two methods (t = 23.61, p =

1.91 × 10−5), indicating that the location-based features

significantly outperformed the telematics features.

To better illustrate the computational demands of the

proposed method, Figure 17 compares the time complexity

of geo-regional quad-tree construction and CNN training

across different numbers of trips. The results indicate that

while quad-tree feature engineering adds preprocessing time,

the overall computational complexity remains low due

to the O(n log n) time complexity of quad-tree construction.

The approach efficiently scales with data size, making it

both computationally feasible and effective in improving

classification performance.

V. DISCUSSION

The results of this study highlight the effectiveness of the

proposed QBDC approach in detectingMCI in elderly drivers

through an analysis of their driving patterns. The hierarchical

partitioning of GPS data into regions facilitates extracting

meaningful spatial features that significantly enhance model

performance in identifying abnormal driving behaviors.
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FIGURE 16. Comparison of mean F1-scores (± standard deviation) for
different experimental layouts across 5-fold cross-validation.

The results demonstrate that increasing the dataset size

significantly enhances model performance, improving recall,

F1-Score, and AUC. Larger datasets allow the model to

capture more diverse driving patterns, leading to better

classification of MCI and non-MCI drivers. Location-

based features derived from the geo-regional quad-tree

proved more effective than telematics and grid-based fea-

tures, emphasizing the importance of spatial information

in detecting cognitive impairment. Retaining spatial detail

while simplifying the trajectory data helps the model

effectively capture potentially abnormal driving patterns,

such as road repetitions, long-distance U-turns, or abnormal

cyclic patterns. In contrast, variations in the number of

nodes and hidden layers in the 2D CNN architecture had

minimal impact on performance. Themodel achieved optimal

results with three hidden layers, but increasing complexity

FIGURE 17. Computational time comparison.

beyond this did not yield significant improvements. These

findings suggest that focusing on data quality and effective

feature engineering ismore important than adding complexity

to the network. Using binary-encoded features from the

quad-tree enhanced the interpretability of the model, provid-

ing more nuanced insights into driving behaviors. Compared

to telematics and grid-based features, the location-based

features derived from the geo-regional quad-tree approach

consistently demonstrated superior performance, achieving

higher recall, F1 scores, and AUC, highlighting their ability

to capture critical spatial details essential for distinguishing

MCI-related driving behaviors.

VI. CONCLUSION AND FUTURE WORK

This work introduces an innovative method for QBDC

to MCI in elderly drivers using quad-tree structures and

deep learning techniques. Leveraging the hierarchical spatial

partitioning capabilities of geo-regional quad-trees, our

approach effectively captures and analyzes both the spatial

and temporal dimensions of driving trajectories. Integrating

binary encoding for trajectory data with CNNs significantly

enhances feature extraction and classification accuracy.

The experimental results validate the effectiveness of our

quad-tree based method in identifying abnormal driving

patterns associated with MCI. Our study found that MCI

drivers exhibit abnormal driving behaviors such as long-

distance U-turns, cyclic driving patterns, and road repetition.

The quad-tree structure provides a detailed and scalable

representation of driving data, addressing the complexities

of large-scale spatiotemporal data analysis. This method

offers a robust framework for real-time monitoring and early

detection of cognitive impairments, contributing to improved

road safety and cognitive health monitoring for elderly

populations. We are currently collecting video datasets from

windshield-mounted cameras to gain deeper insights into

driver behavior. In future work, we plan to integrate spatial

information with video data to enhance the classification

model. Additionally, we aim to incorporate external data

sources, such as openweather and road traffic data, to account

for factors like traffic conditions, weather, and vehicle type,

further improving the model’s accuracy.
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