
mailto:hwang9@stevens.edu
mailto:Y.Hua@qub.ac.uk
mailto:xwzhou@lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3764944.3764951&domain=pdf&date_stamp=2025-08-27


ing. The unpredictable access patterns from various levels of the
memory hierarchy impede the ability to calculate energy usage
merely as the sum of data movement and computation.
In this paper, we present AMPERE, a novel and generic method

designed to provide precise energy estimates. It is agnostic to both
the running platform and the DNN model, therefore solves the
challenges of system heterogeneity and model diversity. Based
on the observations that layer-associated operators are emitted se-
quentially and the inter-layer effects are insignificant, we present
the layer-wise energy additivity and subtractivity. The total energy
consumption of a DNN is estimated by summing the costs of its
layers, with the cost of each layer derived by subtracting the resid-
ual layers’ costs from the total. The energy consumption data for
individual layers is gathered through layer-wise subtractivity. Pre-
dictive GP models are fitted with these data, hence avoiding the
challenge associated with runtime complexity. Lastly, the total en-
ergy consumption of the entire model can be obtained from sum-
mation through layer-wise additivity. Gaussian Process (GP) mod-
els are fitted using the observed energy consumption of individual
layers. This fitting process is a one-time endeavor as the resulted
models are reusable. Then, the total energy consumption can be
estimated by summing the estimated energy costs of all layers.

We deploy and evaluate AMPERE across multiple models on
five different devices. Compared to the current leading approaches,
AMPERE reduces the Mean Absolute Percentage Error (MAPE)
by up to 30%. Moreover, we use energy-conscious model pruning
to create a leaner architecture with the same performance and 50%
energy consumption, which further verifies the effectiveness and
practicality of AMPERE. The codes will be publicly released if the
paper is accepted.

Our main contributions can be summarized as follows:
• We study the energy consumption characteristics and find the

promising layer-wise additivity of energy consumption dur-
ing DNN training.

• Based on the observations above, we design AMPERE, a
generic method for accurate estimations of energy consump-
tion for training of DNN models.

• We implement AMPERE and conduct tests on various AI
systems. The results indicate a reduction in MAPE by up
to 30%. Moreover, we apply it to guide model pruning and
successfully reduce 50% energy consumption.

2. BACKGROUND AND MOTIVATION

2.1 Modeling Deep Learning’s Energy Con-
sumption

DNN training fundamentally encompasses two primary stages:
forward propagation and backward propagation. During the pro-
cess of forward propagation, the model takes the input data and
calculates the output for each layer. On the other hand, back-
ward propagation involves evaluating the difference between the
model’s output and the target label using a loss function. Subse-
quently, derivatives are computed in a backward manner, leverag-
ing the chain rule, to guide the update of model parameters. Each
of the aforementioned processes necessitates computational opera-
tions, thereby consuming a corresponding amount of energy.

Modeling deep learning energy consumption is a widely studied
topic. Energy consumption essentially stems from computation and
data movement, hence the majority of existing studies primarily
focus on estimating this consumption by considering the number
of FLOPs inferred from a DNN’s framework [9, 10] . In these
methods, the Floating Point Operation per Second (FLOPS) and
FLOPS per watt serve as indicators for computational performance

Estimation
Observation

En
er

gy
 (J

)

0

10

20

Layer Number
2 4 6 8 10 12

Figure 2: Energy consumption from NeuralPower estimation
and from observation for a CNN.
and energy efficiency, respectively. we refer to our Appendix Sec.
A2 for more thorough exploration of this literature.

2.2 Existing Methods’ Limitations
Existing methods fall into three categories: Proxy-based meth-

ods estimate energy costs by a model’s FLOPs, parameter size, and
number of layers, with FLOPs-based estimation being the most
common . While adaptable to any model, these methods over-
look device heterogeneity and runtime optimizations, assuming sta-
ble computation performance and performance-per-watt. However,
when the model structure changes, the system utilization will un-
dergo significant changes. The kernel configure tends to launch
fewer threads for pruned models [7]. Upon compilation, the frame-
work generates both forward and backward computational graphs
and fuse operations into a single CUDA kernel. This approach
enhances computation for activation functions, optimizers, custom
RNN cells, etc. Some in-place optimizations, such as
Convolution-BatchNorm-ReLU fusion, are also implemented
and make the execution more like a black box [3] . These factors
contribute to inaccuracies in Proxy-based estimations. Simulation-
based methods simulate the full computation and data movement
process [5, 9] . They require detailed knowledge about the algo-
rithm implementations as well as the energy cont of each hardware
component. These methods allow for the identification of the hard-
ware that incurs the highest energy consumption and help in locat-
ing performance bottlenecks caused by memory stalls. However,
this type of approach loses its generality and is only applicable to
specific devices, models, and Machine Learning (ML) frameworks.
Architecture-based methods utilize framework-provided profilers
during the inference phase to obtain the execution time for specific
layers or kernels, significantly improving the accuracy of energy
prediction [10, 2, 6] . Nevertheless, this type of approach relies on
specific framework and still faces challenges in obtaining energy
costs. As a validation, we extend the forward pass to the whole
training process like NeuralPower [2] and adapt it to the training
phase as shown in Fig. 2. We conduct profiling on the operators in-
volved in each of these stages separately and obtain the final energy
by summing them up. The results show that this method tends to
overestimate the cost of each layer, which indicates the introduction
of systematic biases and verifies our analysis.

3. AMPERE’S DESIGN
3.1 A Bird’s-Eye View

Fig. 3 illustrates an overview of AMPERE. It broadly contains
three processes listed below, where the profiling and the fitting pro-
cesses are carried out in an iterative manner.
Profiling: In AMPERE, all layers are parsed into input layer, hid-
den layer, and output layer. To estimate the energy consumption
of these layers, AMPERE generates 1-layer, 2-layer, and 3-layer
variant NNs with different parameters, respectively. Initially, the
parameters of variant models are selected as the bound value, and

28 Performance Evaluation Review, Vol. 53, No. 2, September 2025







Energy

28

46

24

41

4.8
14 12 6.4

43 45
33 37

11
18

11 6.3

29

46
36 35

3.7 8.7 6.6
1.4

31
43

10 9.9

33

57

32
40

11 8.5 5.8 3.6

M
A

PE
 (%

)

0

20

40

60

80

OPPO
CNN-4 HAR LeNet5LSTM

iPhone
CNN-4 HAR LeNet5 LSTM

Xavier
CNN-4 HAR LeNet5 LSTM

TX2
CNN-4 HAR LeNet5 LSTM

Server
CNN-4 HAR LeNet5 LSTM

FLOPs-based
AMPERE

34 37

14 11

Figure 8: End-to-end energy estimation for five devices.

70

5

M
A

PE
 (%

)

0

20

40

60

80

Energy
Server Xavier

FLOPs-based 
AMPERE

23

5.1

Figure 9: Energy estimation of Transformer.

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1.0

MAPE
0 0.5

Energy of Server

ResNet-20
ResNet-56
ResNet-110

Pr
ob

ab
ili

ty

0

0.2

0.6

0.8

1.0

MAPE
0 0.5

Energy of Xavier

THOR
FLOPs-based
AMPERE

Figure 10: ResNet evaluation on Server and Xavier.

We conduct an evaluation of AMPERE using multiple represen-
tative models on five distinct, realistic devices, including OPPO,
iPhone, Xavier, TX2, and Server. Details about the data, model ar-
chitectures, devices, and implementation are provided in Appendix
Sec. A5. AMPERE significantly decreases the relative errors, with
reductions of up to 30% when compared to previous studies. We
also apply AMPERE in a case study focusing on energy-aware
model pruning, where it demonstrates a remarkable ability to re-
duce energy consumption by 50% without compromising the level
of accuracy.

4.1 End-to-End Estimation Evaluation
In real-world scenarios, the estimation should be capable of han-

dling unseen models, such as new architectures and parameters. To
comprehensively evaluate the performance of AMPERE, we ran-
domly sample the DNN architectures across channels ranging from
1 to the original channel. For the Transformer model, we randomly
sample the number of encoder layers and hidden dimensions.
Intuitive Comparison. To visualize the strengths of AMPERE
compared to the FLOPs-based method, we illustrate the energy
consumption for a 5-layer CNN in Fig. 7. In the experiment, we
generate 100 models with different channels using random sam-
pling. Alignment with the line indicates an accurate result. This
reveals that the FLOPs-based method neglects system utilization
changes; hence, it tends to overestimate when FLOPs are lower and
underestimate otherwise. In contrast, AMPERE maintains high ac-
curacy across all ranges.
Quantitative Comparison. As illustrated in Fig. 8, our approach
has successfully reduced the MAPE from an average of approxi-

Table 1: Time cost (sec) of profiling and fitting.

LeNet5 5-layer CNN HAR LSTM

OPPO 694 1688 2188 1615
iPhone 1201 1012 2446 1168
Xavier 184 421 740 1145
TX2 285 1211 4433 422

Server 235 268 562 436

mately 40% to around 10%. This significant decrease in MAPE
suggests that our method provides more accurate and stable results.
The performance of the final estimations varies across devices be-
cause of their inherent heterogeneity. Among the tested devices, the
Jetson series, which allows for a fixed frequency, exhibits the most
favorable results. The estimations for various models on smart-
phones show a degree of disparity, with some cases, like the HAR
model, demonstrating larger errors. This might be due to the influ-
ence of Dynamic Voltage and Frequency Scaling (DVFS) policies
and power throttling effects. On the Server, predictions for differ-
ent models are relatively consistent, though they have higher error
rates compared to other devices.
Time Costs. Tab. 1 presents the time costs for AMPERE profiling
and fitting for various DNNs. Most of these tasks are completed
within 20 minutes, demonstrating both the efficiency and practical
feasibility of the AMPERE method.
More Results on Transformers. To further demonstrate the su-
periority of AMPERE, we present the energy estimation results
for the Transformer architecture using both AMPERE and FLOPs-
based methods in Fig. 9. Due to memory restrictions, only the
Xavier and Server platforms can fully execute the Transformer model.
AMPERE consistently outperforms FLOPs-based methods in en-
ergy estimation of the Transformer, further underscoring the effec-
tiveness and generality of AMPERE.
CDF Plot of ResNets. To further assess the scalability of AM-
PERE, we conduct experiments on the ResNet family of models.
Due to memory constraints, we can only execute these experiments
on the Xavier and Server devices. During the profiling phase, we
sample ten different layers based on existing rules in Sec. 3.2. The
resultant Cumulative Distribution Function (CDF) plot is shown in
Fig. 10. A step curve closer to the top-left corner indicates higher
prediction accuracy. The results from both the Xavier and Server
devices show improved performance compared to the FLOPs-based
approach. Moreover, as the number of layers increases, the predic-
tion accuracy does not appear to decrease.

4.2 Layer Characteristics
We present the energy consumption of Conv2d layers in the

5-layer CNN model, as they account for the majority of computa-
tional costs. The relevant sampling and estimation results across
different devices are illustrated in Fig. 11, where H and W repre-
sent height and width, respectively, and Cin and Cout denote the
input and output channels. The batch size is set as 10. We use
additional random points to test the estimation results, and the dif-

Performance Evaluation Review, Vol. 53, No. 2, September 2025 31




