
Cascade: A Dependency-Aware E�cient Training
Framework for Temporal Graph Neural Networks

Yue Dai
University of Pittsburgh

Department of Computer Science

Pittsburgh, PA, USA

yud42@pi�.edu

Xulong Tang
University of Pittsburgh

Department of Computer Science

Pittsburgh, PA, USA

tax6@pi�.edu

Youtao Zhang
University of Pittsburgh

Department of Computer Science

Pittsburgh, PA, USA

youtao@pi�.edu

Abstract

Temporal graph neural networks (TGNN) have gained signif-

icant momentum in many real-world dynamic graph tasks.

These models use graph changes (i.e., events) as inputs to

update nodes’ status vectors (i.e., memories), which are then

exploited to assist predictions. Despite their improved accu-

racies, the e�ciency of TGNN training is signi�cantly limited

due to the inherent temporal relationship between the input

events. Although larger training batches can improve paral-

lelism and speed up TGNN training, they lead to infrequent

memory updates, which cause outdated information and re-

duced accuracy. This trade-o� forces current methods to use

small batches, resulting in high latency and underutilized

hardware. To address this, we propose an e�cient TGNN

training framework, Cascade, to adaptively boost TGNN

training parallelism based on nodes’ spatial and temporal de-

pendencies. Cascade adopts a topology-aware scheduler that

includes as many spatial-independent events in the same

batches. Moreover, it leverages node memories’ similarities

to break temporal dependencies on stabilized nodes, enabling

it to pack more temporal-independent events in the same

batches. Additionally, Cascade adaptively decides nodes’ up-

date frequencies based on runtime feedback. Compared to

prior state-of-the-art TGNN training frameworks, our ap-

proach can averagely achieve 2.3× (up to 5.1×) speed up

without jeopardizing the resulted models’ accuracy.

CCSConcepts: •Computingmethodologies→Arti�cial

intelligence; Learning paradigms; Parallel algorithms.

Keywords: Temporal GraphNeural Network, Dynamic Graph,

E�cient Deep Learning, Parallel Computing

ACM Reference Format:

YueDai, Xulong Tang, and Youtao Zhang. 2025. Cascade: ADependency-

Aware E�cient Training Framework for Temporal Graph Neural

Networks. In Proceedings of the 30th ACM International Conference

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/2025/03.

h�ps://doi.org/10.1145/3676641.3716250

on Architectural Support for Programming Languages and Operat-

ing Systems, Volume 2 (ASPLOS ’25), March 30-April 3, 2025, Rot-

terdam, Netherlands. ACM, New York, NY, USA, 16 pages. h�ps:

//doi.org/10.1145/3676641.3716250

1 Introduction

Dynamic graphs are widespread across various domains,

such as social media networks [20], knowledge graphs [22],

autonomous systems [24], and tra�c networks [29]. Un-

like static graphs, whose nodes and edges remain constant,

dynamic graphs evolve over time, introducing challenging

tasks [1, 3, 6, 16, 20, 21, 31]. Inspired by the successes of

Graph Neural Networks (GNNs) [8, 9, 15, 19, 39, 48], Tempo-

ral graph neural networks (TGNNs) have attracted growing

attention for their improved accuracies in many real-world

dynamic graph tasks [17, 21, 31, 33, 38, 43, 45, 47, 50, 52, 55].

On top of native GNNs, recent TGNN models keep a state

vector for each node, called node memory, to encode the tem-

poral dynamics and spatial relationships around the node.

These memory vectors are continually updated and serve as

the basis for making predictions, allowing TGNNs to achieve

extraordinary prediction accuracy. With growing demands

and interests in TGNN-based models, there is an escalating

demand for developing training schemes that can swiftly

adapt TGNNs to the ever-changing landscapes of dynamic

graphs, ensuring that these models can be deployed quickly

and e�ectively in real-world scenarios.

However, TGNN training faces signi�cant challenges due

to the sequential dependencies of input events, which sub-

stantially limit throughput. Recent studies utilize Continuous-

Time Dynamic Graphs (CTDGs) to model the evolving dy-

namics of graphs by viewing them as sequences of event

updates, such as changes to nodes or edges. These events

are typically represented as edges connecting one node to

another and are chronologically ordered by their timestamps.

Existing TGNN training approaches segment these event se-

quences into batches for parallel processing [31, 45, 55, 56].

The computation within a single batch generally involves

three steps: First, TGNNs predict edge presence or node

classes based on the latest node memories, then compare

these predictions to events within the batch (as the ground

truth) to calculate losses and update model weights. Sec-

ond, the model uses events within the batch to generate

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

messages for updating node memories. Lastly, it uses these

messages to update nodes’ memories for future usage. How-

ever, this batching process often overlooks the sequential

occurrence order of events within the same batch. Conse-

quently, larger batches may speed up processing but rely

on potentially outdated node memories, thus compromis-

ing prediction accuracy. To maintain high accuracy, smaller

batches are preferred to ensure updates incorporate the most

recent memories. Nonetheless, these smaller batches lead

to more training iterations and under-utilize the underlying

hardware resources, leading to ine�ciencies. For example,

while training the Temporal Graph Network [31] on the

Wikipedia [20] dataset, a batch size of 900 results in a 25%

better validation loss compared to a batch size of 6000 but

slows training on a Nvidia A100 GPU by 3.5×.

Fortunately, there exist signi�cant opportunities to strate-

gically increase the size of training batches in TGNNs with-

out compromising the freshness of the nodes’ memories.

Speci�cally, the potential stems from two key observations:

First, input events tend to occur sparsely across di�erent

parts of the dynamic graph. In particular, while speci�c nodes

may experience frequent incoming and outgoing events, lead-

ing to quickly outdated memories, others may see much

fewer events and retain their memory up-to-date over time.

Consequently, when events impact distinct areas of the graph,

they will have weak dependencies, presenting an opportu-

nity to process them in parallel without losing accuracy.

Second, memories within speci�c nodes could remain stabi-

lized within a period. In particular, some nodes’ memories

may not change much by their outgoing or incoming events

and, therefore, can be updated less frequently. For example,

a consistently popular product in an e-commerce graph may

have stable states (e.g., rating) despite frequent purchases.

Events related to such stable nodes possess low dependen-

cies between each other, hence allowing for their parallel

processing. These insights suggest a pathway to optimizing

TGNN training: By recognizing and leveraging the spatial

relationship of events and the temporal stability of node

memories, it’s feasible to expand batch sizes adaptively.

Inspired by these observations, we propose a TGNN train-

ing framework, Cascade, to adaptively boost TGNN training

parallelism based on input events’ spatial and temporal de-

pendencies. Cascade adaptively increases batch size during

TGNN training in three folds: First, it uses a topology-aware

batching algorithm to pack as many spatially independent

events as possible into single batches, maximizing parallel

processing while maintaining memory freshness. Second, it

identi�es stabilized nodes with minimal memory variations

and excludes their updates from batching decisions, bypass-

ing their temporal dependencies for more �exible batch con-

�gurations. Third, it dynamically adjusts the frequency of

node memory updates based on runtime feedback during the

training. We summarize our contribution as follows,

• We investigate the trade-o� between parallelism and ac-

curacy in TGNN training and recognize the potential of

boosting parallelism of TGNN training by batching spatial

and temporal independent events adaptively.

• We propose a TGNN training framework, Cascade, to dy-

namically identify the spatial and temporal dependencies

between input events and pack as many events as possible

without worsening node memories’ freshness.

• We evaluate our approach on various real-world bench-

marks. The experimental results show that our proposed

training framework can achieve up to 5.1× speedup (2.3×

on average) over the state-of-the-art TGNN training frame-

work without increasing model losses.

2 Background

2.1 Dynamic Graphs

In contrast to static graphs, which are characterized by a

constant set of nodes and edges � = (+ , �), dynamic graphs

embody nodes and edges that evolve over time. There are two

primary representations of dynamic graphs: Discrete-time

dynamic Graphs (DTDGs) describe them as a sequence of

static graph snapshots taken periodically, while Continuous-

Time Dynamic Graphs (CTDGs) view them as a sequence of

events, each detailing updates like edge changes. Recent stud-

ies have shown a preference for CTDGs due to their superior

capacity for capturing detailed temporal variations over the

static time frames inherent to DTDGs [17, 31, 54, 55]. In fact,

DTDGs are often considered speci�c instances of CTDGs,

distinguished by the segmentation of events into uniform

time intervals [55]. In the CTDGs, dynamic graphs are de-

noted as dynamic graphs as� = {4 (C1), 4 (C2), ...}, where each

4 (Cğ) indicates an event happened at timestamp Cğ , typically

represented as an edge with a timestamp. The prediction

tasks for CTDGs can be depicted in Equation 1.

~ğ = 5Ă (�
−
ğ , Cğ) = 5Ă ({4 (C1), 4 (C2), ...4 (Cğ−1)}, Cğ) (1)

At the prediction time Cğ , the model 5Ă (·) takes all previous

events �−
ğ

= {4 (C1), 4 (C2), ...4 (Cğ−1)} as inputs and predicts

the testing nodes’ classes or the presence of future edges.

2.2 Temporal Graph Neural Networks

The Temporal Graph Neural Networks (TGNNs) are widely

studied and achieve state-of-the-art accuracies in CTDG

tasks [17, 21, 31, 33, 38, 43, 47, 50, 52]. In addition to embed-

ding nodes’ neighborhood information like Graph Neural

Networks (GNNs) [8, 9, 15, 19, 39, 48], TGNNs maintain a

state vector, usually referred as node memory, for each node.

This memory encodes the node’s history and is used for pre-

dictions. The node memory is updated once the node is the

destination or the source of a new event. Speci�cally, TGNNs

produce node embedding for the predictions in three steps:

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

First, if an event 4 (C) adds an edge 4īĬ from =>34ī to =>34Ĭ
(i.e., 4 (C) = 4īĬ), themessage generating step will be trig-

gered, in which two messages are generated as Equation 2.

For simplicity, we only present the updating and following

operations of =>34ī , which is the same for =>34Ĭ .

<Ĭī =<B6(B−Ĭ , B
−
ī ,�), 4īĬ) (2)

The<B6(·) is a learnable module such as Multi-Layer Percep-

tions (MLPs). The B−ī and B−Ĭ denote the memories of =>34ī
and =>34Ĭ at their last updated times, 4īĬ denotes the edge

features, and �) is the di�erence between the event’s occur-

ring timestamp and =>34ī ’s last updated time.

Second, when TGNN models trigger a memory updat-

ing step, nodes D and E aggregate messages generated by

previous events, then update their memories as Equation 3.

B+ī = *%�) (B−ī , ���'(<
−
ġī
|: ∈ # (D)), (3)

The # (D) denotes neighbors of =>34ī . The ���'(·) is usu-

ally implemented by a<40= (i.e., averaging sampled mes-

sages),<>BC_A424=C (i.e., directly using the latest message)

function to aggregatemessages from the node’s neighbors [21,

31, 42]. The*%�) (·) uses aggregated results to update the

node’s memory, which is usually implemented by a recurrent

neural network such as Gated-Recurrent-Unit (GRU) [7].

Lastly, when TGNNsmake a prediction that involves=>34ī ,

the node embedding step is triggered, in which TGNNs use

a GNNmodule, such as Graph Attention Network (GAT) [39],

to embed the node’s and its neighbors’ memories into its

�nal node embedding, as depicted in Equation 4.

ℎī = �## (Bī, Bġ |: ∈ # (D)), (4)

The resulting node embedding ℎī is fed into a �nal MLP

module to get the prediction results.

Time

ÿ(þă): Add Edge ÿāĂ

ÿ(þă+Ā): Add Edge ÿĂă

ÿ(þă+ā): Add Edge ÿĀă

ÿ(þă+Ă): Add Edge ÿāă

…ÿ(þă)ÿ(þă+Ā)ÿ(þă+ā)ÿ(þă+Ă)
…

Input Eventsÿ þă = �āĂÿ þă+Ā = �Ăă

Input Eventsÿ þă+ā = �Āăÿ(þă+Ă) = �āă

Messages�āĂ
…�Ăā�Ăă
…�ăĂBatch k

Batch k + 1

Node

MemoryýĀ2ýā2 → ýā+ýĂ2 → ýĂ+ýă2 → ýă+
…

Prediction෤ÿ þă෤ÿ þă+Ā
Step 1: Node Embedding
 & Prediction

Step 2:
Message
Generating

Step 3:
Memory
Updating

Loss

Node

Memory

Loss

Messages
Node

Memory

Prediction

Batch k - 1
Batch k - 1

Batch k

Batch k + 1

…
…

Figure 1. TGNN training steps: First start with node embed-

ding and prediction, then message generating, and �nally

memory updating.

2.3 TGNN Training on CTDG

In recent developments, training methods for TGNNs have

evolved from traditional snapshot-based approaches, which

process the dynamic graph in a snapshot-by-snapshot man-

ner (i.e., DTDG) [29, 32, 33, 40, 44, 47, 50, 52], to event-

batching training methods, which segment the input event

sequence of CTDGs into batches and then process events

within a single batch in parallel [21, 31, 43, 46, 55, 56]. Each

batch’s events serve a dual purpose: they act as the ground

truth for calculating prediction losses and the inputs for

updating node memories.

Using edge prediction task as an example, as illustrated

in Figure 1, a TGNN model takes a sequence of events (i.e.,

graph changes) as training inputs, divides the sequence into

batches, then processes each batch in three steps as follows:

(1) First, it uses the nodememories updated in the previous

batches to embed node �nal representations and use the

resulting node features to predict the events in the current

batch. The trainer will then calculate losses based on the

predictions and the input events, back-propagate losses, and

update model weights accordingly. For instance, as shown

in the �gure, if there is an event 4 (Cğ) = 423 in the batch : ,

the TGNN will use B−
2
, B−

3
from updated before the batch as

Bī, Bġ to compute ℎ2 as Equation 4 and predict the probability

of the edge 4̂ (Cğ). The trainer will then compute the Binary-

Cross-Entropy Loss to measure how much the probability

of this real edge is higher than a wrong edge, such as 428,

and use the optimizer like Adam Optimizer [18] to backward

propagate the loss and update the model weights.

(2) Second, the messages are generated based on the input

events within the batch. For instance, if there is an event

4 (Cğ) = 423 in the batch : , the model will generate<23 and

<32 based on the event 423, its timestamp Cğ , and its source

node’s current memory B−
2
, and destination node’s current

memory B−
3
following Equation 2).

(3) Lastly, for each event within the current batch, the

trainer updates its source and destination nodes’ memories.

For instance, since 4 (Cğ) = 423 in the batch : involves =>342
and =>343, the models will update B−

2
to B+

2
and B−

3
to B+

3
as

Equation 3) to ensure that they have up-to-date information.

In the batched training diagram, all the events within

the same batch will be processed in parallel to �nish the

abovementioned steps. For example, for batch : , the events

423 and 434, will be processed in parallel: First, the B−
2
, B−

3
, B−

4

will be used to compute the probability 423 and 434 (i.e., 4̂ (Cğ)

and 4̂ (Cğ+1)); next, messages <23, <32, <34 and <43 will be

generated in parallel as well; lastly, B−
2
, B−

3
, B−

4
will be updated

to B+
2
, B+

3
, B+

4
in parallel using the previous node memories.

3 Motivation

3.1 Challenge in Batched TGNN Training

While batching as many events during TGNN training en-

hances training e�ciency by parallel processing input events,

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

it risks using outdated information and neglecting the tem-

poral sequence of these events within a single batch. This

0
0.3
0.6
0.9
1.2
1.5
1.8

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

TGN JODIE TGN JODIE TGN JODIE TGN JODIE TGN JODIE

WIKI REDDIT MOOC WIKI-TALK SX-FULL

Norm Val Loss Latency

Figure 2. Normalized training latency and validation loss in

TGN and JODIE trained under di�erent batch sizes.

oversight makes TGNN models insensitive to intra-batch

graph dynamics, potentially compromising their awareness

of changes occurring within the current training batch. A

major consequence of batching too many events is the po-

tential expiration of node memories, leading to outdated em-

beddings, stale messages, and inaccurate memory updates.

Moreover, concurrent event processing may disrupt their

temporal sequence, which is crucial for capturing the graph’s

evolution. For example, a trending article’s recommendation

(as an event) may trigger rapidly increased product purchases

in follows (as following events), showcasing how the tempo-

ral order of events can signal signi�cant shifts in the graph’s

structure. As such, large batches could potentially jeopardize

model accuracies, leading to compromised training results.

However, opting for small batches to preserve the tempo-

ral integrity of events may inevitably slow down the training

process since it increases the number of training iterations

required per epoch. To explore the impact of training batch

sizes on training results and latencies, we employ a state-of-

the-art training framework, TGL [55], to train two TGNN—

Temporal Graph Network (TGN) [31] and JODIE [21]—on

the datasets listed in Table 2. More details about the models

and datasets are included in Section 5.1. Speci�cally, we train

the models in di�erent training batch sizes on a Nvidia A100

GPU and then evaluate their performance at a batch size of

900. As shown in Figure 2, while larger batches e�ectively

reduce training latency, the resulting models’ validation loss

signi�cantly increases. For instance, compared to BS=900 (us-

ing a batch size of 900), although BS=6000 reduces 71% TGN

training latency on WIKI, the corresponding valuation loss

is increased by 35%. Small batches, while helping accuracies,

could cause poor training latencies. Moreover, the hardware

utilization is signi�cantly low in small batches. For instance,

when training TGN on WIKI with BS=900, the streaming

multiprocessor and memory utilization are as low as 17.2%

and 15.2%, respectively. In contrast, BS=6000 increases these

values to 39.8% and 34.2%. To this end, �nding a solution

that balances TGNN training e�ciency and e�ectiveness is

signi�cant yet challenging.

3.2 Spatial-independence in Scattered Events

Our �rst observation is that training batch can be enlarged

without accuracy loss by adding events from different subgraph

regions. Speci�cally, events within the input sequence often

occur in distinct subgraphs and impact diverse sets of nodes.

They are independent of each other and can be added to the

same batch for two reasons: First, not all nodes will experi-

ence as many events around them during a period; thus, they

do not expire simultaneously. This staggered expiration al-

lows us to continue relying on nodes that remain una�ected

since their last updates. Second, because events in di�erent

subgraphs typically exert minimal in�uence on each other,

they can be processed in parallel without jeopardizing the

integrity of the temporal information they carry.

To assess the potential of scattered events, we segment

the training sets of datasets in Table 2 using a batch size of

900 and analyze the distribution of node degrees (i.e., the

number of events outgoing from and incoming to each node)

within these batches. As shown in Figure 3, most nodes

are involved in far fewer events than a subset of highly

connected nodes—the majority have only 0 to 25 events per

batch. Even the most connected nodes have only 140 to 175

events, far less than the batch size. Hence, by signi�cant

chance, we can pack more events into the batches if they are

spatially independent of current batched events.

0%

20%

40%

60%

80%

100%

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

WIKI REDDIT MOOC WIKI-TALK SX-FULL

N
o

d
e

 D
e

g
re

e
 D

is
tr

ib
u

ti
o

n

Figure 3. The distribution of nodes’ degree within the batch

size of 900 in di�erent datasets.

However, the �xed batching strategy used by existing ap-

proaches cannot fully exploit the opportunities from this

spatial-independent input. While large batches may poten-

tially include more spatial-independent events, they could

potentially pack too many dependent events if there are

events extensively occur around speci�c nodes; conversely,

although small batches may mitigate too aggressive batching

on those high-degree nodes, they could potentially miss the

opportunity of packing spatial-independent events. As such,

an ideal batching scheme should adaptively increase and

decrease batch sizes to include as many spatial-independent

events as possible while avoiding packing too many spatial-

dependent events on those high-degree nodes. We illustrate

an example in Figure 4, in which an original batch con-

tains events related to =>341 and its neighbors: If the fol-

lowing events continue to a�ect the same set of nodes (e.g.,

416, 415, 413 continues to a�ect =>341 and its neighbors), then

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

�Āā �ĀĆ �Āć �ĀĈ … … …

�Āā �ĀĆ �Āć �ĀĈ �Āą �ĀĄ �ĀĂ
�Āā �ĀĆ �Āć �ĀĈ �ÿā �ÿĀ �ÿĂ

Original Batch: ĀāĂăĀ extensively affected

Spatial Dependent:
Following events involve ĀāĂăĀ
Spatial Independent:
Following events not involve ĀāĂăĀ �Āā �ĀĆ �Āć �ĀĈ �Āą �ĀĄ �ĀĂĀāĂăĀ = �Ā2 ĀāĂăĀ = �Ā+ ≈ �Ā2

�Āā �ĀĆ �Āć �ĀĈ �Āą �ĀĄ �ĀĂĀāĂăĀ = �Ā2 ĀāĂăĀ = �Ā+ ≈ �Ā2

Temporal Independent:ĀāĂăĀ is stabilized

Temporal Dependent:ĀāĂăĀ is NOT

stabilized

(a) Spatial Independence (b) Temporal Independence

Figure 4. An example illustration of (a) Spatial Independence due to events scattered in di�erent subgraphs; and (b) Temporal

Independence due to stabilized node memories with their consequent potential in increasing batch sizes.

they are spatial dependent to current batch and the batch can-

not be increased. Conversely, if the following event a�ects

other nodes (e.g., 4ėę , 4ėĘ, 4ėĚ a�ect =>34ė and its neighbors

instead of =>341), we may expand the batch to include them.

3.3 Temporal-independence in Stabilized Memories

Our second observation is that training batch can also be

enlarged without accuracy loss by adding events related to

stabilized node memory. Speci�cally, during the memory up-

dating phase in TGNNs, many nodes reach a state of stability

for extended periods. These stabilized nodes provide reliable,

up-to-date memories, and their stability enables associated

events to be processed in parallel without missing impor-

tant temporal information. The intuition behind this is that

nodes in the real world may usually stabilize and show simi-

lar behaviors over a period. For instance, a Reddit user may

consistently show interest in speci�c topics, such as a par-

ticular game, and frequently engage in related discussions.

0%
20%
40%
60%
80%

100%

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

TGN JODIE TGN JODIE TGN JODIE TGN JODIE TGN JODIE

WIKI REDDIT WIKI WIKI WIKI

N
o

d
e
 S

ta
b

le
 R

a
ti

o
(%

)

Figure 5. The ratio of stable node updates in di�erent epochs

when TGN and JODIE.

As depicted in Figure 5, while training TGN [31] and

JODIE [21] (on the datasets speci�ed in Table 2), on average,

over 84% of the nodes maintain similar memory before and

after updates (i.e., with a cosine similarity higher than 0.9)

when models are trained after 20 epochs. To this end, by mea-

suring runtime information and identifying these stabilized

nodes, it is highly possible to adaptively neglect unneces-

sary temporal dependencies among events, thereby batching

more events related to the same but stabilized nodes into

a single batch without sacri�cing the integrity of temporal

data. We illustrate the cases using the same example in Fig-

ure 4: For the extensively a�ected =>341, if it is not stabilized

(i.e., it has dissimilar memories before and after the node up-

date in the original batch), then we need to update it before

conduct following computations on 416, 415, 413. Conversely,

suppose it is stabilized (i.e., it has highly similar memories

before and after the node update in the original batch). In

that case, we may expand the batch to conduct computations

on 416, 415, 413 as they can use similar input no matter with

or without updating nodes’ memories.

4 Design

4.1 Overview of Cascade

We introduce Cascade, an e�cient training framework to in-

crease batch sizes while keeping model accuracy. It consists

of three designs: First, we propose a Topology-aware Graph

Di�user (TG-Di�user) to incorporate spatial-independent

events into batches. Second, we design a Similarity-aware

Graph Filter (SG-Filter) to add temporal-independent events

into batches. Lastly, we introduce anAdaptive Batch Sensor

(ABS), a pro�le-based auto-tuner to analyze input training

data and automatically control the TG-Di�user.

Preprocess

Training Epoch

Adaptive Batch Sensor:

Analyze original batching statistics
Topology-Aware Graph Diffuser:

Build dependency table

Topology-Aware Graph Diffuser:

Parallelly increment the last event Node Embedding & Prediction

Message Generating

Memory Updating

Training Event Sequence

Training Event Sequence

Batch

Similarity-Aware Graph Filter:

Update node stable status

a b

c

1 2

3 4

5

Figure 6. The work�ow overview of Cascade.

The complete work�ow of the Cascade framework is il-

lustrated in Figure 6. We also detail it in Algorithm 1. Be-

fore training, the TG-Di�user and ABS collaboratively pre-

process the sequence of events in three steps: Initially, the

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

TG-Di�user analyzes the training events (a) to construct a

dependency table that captures both spatial and temporal

dependencies among the events (i.e., line 5 in Algorithm 1).

Subsequently, the ABS processes these events as input (b)

and pro�les the batching patterns using an originally de-

�ned sample batch size, which is small enough to ensure

the training proceeds without deteriorating the model’s per-

formance (i.e., line 6 in Algorithm 1). Based on this analy-

sis, the ABS sets the appropriate hyper-parameters for the

TG-Di�user (c) (i.e., line 7 in Algorithm 1), optimizing the

training setup. During training, the TG-Di�user collaborates

Algorithm 1: TGNN training in Cascade

Input :� : Input dynamic graph as event sequence; #

Number of input training events; �0: pre-de�ned

batch size; �: Training epochs.

1 Initialize: Topology-Aware_Graph_Di�user(TG-Di�user);

2 Initialize Adaptive_Batch_Sensor(ABS);

3 Initialize Similarity-Aware_Graph_Filter(SG-Filter);

4 Initialize TGNN model()�##);

// Preprocessing before training:

5 TG-Di�user.build_dependency_table(�);

6 l = ABS.max_endurance_pro�ling(�);

7 TG-Di�user.set_parameters(l);

8 BC_83G = 43_83G = 0;

// Training:

9 for 4 = 0, 1, · · · , � − 1 do

10 SG-Filter.reset();

11 while 43_83G < # do

12 BC_83G = 43_83G ;

// Signify stable nodes:

13 S = SG-Filter.get_stable_nodes();

// Get current batch:

14 43_83G = TG-Di�user.get_last_event_index(S);

15 ~̂ = � [BC_83G : 43_83G];

// Model Training:

16 H =)�## .Node_Embedding(~̂);

17 ~ = "!% (H);

18 L(~, ~̂).backward();

19)�## .Generate_Message(~̂);

20)�## .Update_Node_Memory(~̂);

// Update stable node flags:

21 SG-Filter.update_stable_nodes_�ags()�##);

22 return)�## ;

with the SG-Filter to dynamically increase the training batch

sizes through a �ve-step process: Initially, the TG-Di�user

sends a request to the SG-Filter (1) and retrieves (2) the

node stable �ags(i.e., line 12 in Algorithm 1), which are reset

to all-false at the start of each epoch. Then, the TG-Di�user

ignores those stable nodes and identi�es the last tolerable

events for the current batch using the previously established

dependency table (i.e., line 13 in Algorithm 1). This informa-

tion is then used to segment a new batch from the training

event sequence (3) (i.e., line 14 in Algorithm 1). Following

this, the TGNN models access the relevant events (4) and

proceed with the designated training steps (i.e., lines 15-19

in Algorithm 1). Lastly, the SG-Filter dynamically updates

the node stable �ags based on the node memories before and

after the updates within the current batch (5) (i.e., line 20

in Algorithm 1), ensuring that the node stable information

is dynamically adjusted over training.

4.2 Topology-Aware Graph Di�user

The TG-Di�user e�ciently integrates spatially independent

events into batches through a two-step process: Initially,

before training, it builds a dependency table that maps the

spatial relationships between input events and nodes. The

table re�ects all related events around nodes. Next, for each

batch, the TG-Di�user independently identi�es the last tol-

erable event on di�erent nodes, which signi�es the necessity

to update node memories, and then includes all preceding

unprocessed events up to this point into the current batch.

Build Dependency Table. Given a training dynamic

graph of # nodes, the TG-Di�user �rst builds a # -entries

Dependency Table to re�ect the spatial dependency between

the training events and their related nodes. Each entry within

the table contains two �elds: Node Idx describes a node, and

Event Idx consists of a sequence of event indices that in-

dicate the events that may a�ect the node and, conversely,

potentially may rely on the node. We illustrate the work�ow

of building the dependency table in Figure 7(a) and show the

detailed algorithm in Algorithm 2. For each node (i.e., each

table entry), the TG-Di�user �lls its Event Idx in two steps.

First, it inserts all incoming and outgoing events indices of

the current node into the Event Idx. For instance, as shown

by the Step 1, for =>341 = =1, its incoming and outgoing

events {4 (0), 4 (1), 4 (2), 4 (3), 4 (8), 4 (10)} are added into the

entry. The reason behind this is straightforward—all these

events will be directly used to update the node’s memory

as <−
:D

in Equation 3, and the prediction about them will

directly use the node’s memory as BD in Equation 4. Second,

the TG-Di�user looks up the node’s neighbors and adds

all their future events to the current node’s Event Idx. As

shown by the Step 2, where =>341 has =>343 as its neigh-

bors due to 4 (8) = 413, we add the events of =>343 after 4 (8)

into =>341’s Event Idx. These events are relevant to the

current node because they update the neighbors’ memories,

in�uencing the current node’s future memory updating and

embedding; reversely, predicting them relies on features of

the current node. It is worth mentioning that we do not in-

clude the past events in neighbors before they are connected

to the current node (e.g., do not add events of =>343 before

index 8)) since these neighbors are independent with the

current node before there is an event building a connecting

between them. We only consider events from the current

node’s 1-hop neighbors since they directly a�ect the current

node’s memories and propagate information from further

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge ăĀā ăĀĆ ăĀć ăĀĈ ăÿĀ ăÿā ăÿĂ ăÿă ăĀĂ ăĀĄ ăĀą ăĂă
Node Indices Event Indices

1 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ
Step 1. Sorted insert node’s in/out

For ĀāĂăĀ = ĀĀ:

…

Node Idx Event Idx

1 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ, ĀĀ
2 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ
3 ć, Ĉ, Āÿ, ĀĀ
4 Ć, ĀĀ
5 Ĉ, Āÿ
6 Āÿ
7 Ā, ā, Ă, ć, Ĉ, Āÿ
8 ā, Ă, ć, Ĉ, Āÿ
9 Ă, ć, Ĉ, Āÿ

a (i.e., 10) ă, Ą, ą, Ć, ĀĀ
b (i.e., 11) ă, Ą, ą, Ć
c (i.e., 12) Ą, ą, Ć
d (i.e., 13) ą, Ć

Ā ĀĀ= {ă(ÿ), ă(Ā), ă(ā), ă(Ă), ă(ć), ă(Ĉ), ă(Āÿ)}

Node Indices Event Indices

1 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ, ĀĀ
Step 2. Sorted insert node’s neighbors’ future events

Ā ĀĂ = {ă ć , ă(ĀĀ))

Node Idx Event Idx

1 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ, ĀĀ
2 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ
3 ć, Ĉ, Āÿ, ĀĀ
4 Ć, ĀĀ
5 Ĉ, Āÿ
6 Āÿ
7 Ā, ā, Ă, ć, Ĉ, Āÿ
8 ā, Ă, ć, Ĉ, Āÿ
9 Ă, ć, Ĉ, Āÿ

a (i.e., 10) ă, Ą, ą, Ć, ĀĀ
b (i.e., 11) ă, Ą, ą, Ć
c (i.e., 12) Ą, ą, Ć
d (i.e., 13) ą, Ć

Step 1. Search the last node event under Āÿýÿ=4

Step 2. Reduce to the batch last event

Node Idx 1 2 3 4 5 6 7 8 9 a b c d

Last Event 8 8 - - - - 9 10 - 11 - - -

Last Event = 8

Step 3. Get batch & Update node event pointers

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge ăĀā ăĀĆ ăĀć ăĀĈ ăÿĀ ăÿā ăÿĂăÿă ăĀĂ ăĀĄ ăĀą ăĂă
(a) (b)

Figure 7. The work�ow of TG-Di�user: (a) Building dependency Table during preprocessing and (b) Looking up the last

tolerable event during training.

Algorithm 2: Build Dependency Table

Output :� : Node-event dependency Table

Input :� : Input dynamic graph as event sequence; #

Number of nodes.

1 Initialize � = {�0, �1, · · · , �#−1};

// Loop Parallel:

2 for = = =>340, =>341, · · · , =>34#−1 do

3 for 4=@ ∈ $DC�E4=CB (=) ∪ �=�E4=CB (=) do

// 4=@: Event from node = to node @

4 �= .B>AC43_8=B4AC (4=@);

5 for 4@: ∈ $DC�E4=CB (@) ∪ �=�E4=CB (@) do

// Insert future events in @

6 if 4@: .8=34G > 4=@ .8=34G then

7 �= .B>AC43_8=B4AC (4@:);

8 return � ;

distant neighbors. For instance, if =>34G has neighbor =>34~
and =>34~ has neighbor =>34I , the updates in =>34I will not

a�ect =>34G unless =>34~ is updated; otherwise, =>34G will

always use the same version of =>34~ , even if =>34~ has an

expired neighbor =>34I . We implement the process using

OpenMP [4] to enable parallel building; to ensure that the

resulting Event Idx contains unique events sorted by their

occurrence, we use sets in C++ to implement the Event Idx

entries. The dependency table is stored in the host memory

and will not be updated once built.

Get Last Tolerable Event. During training, TG-Di�user

looks into each node and �nds the last tolerable event for the

current batch independently. Intuitively, the process includes

more events on those less a�ected nodes without introducing

more events to those mostly a�ected nodes. To quantitatively

measure the extension of being a�ected, we introduce a new

parameter, namely, Maximum Revisit Endurance ("0GA). It

de�nes the maximum number of relevant events (i.e., events

in Event Idx) for a nodewithin the batch.With higher"0GA ,

the nodes will be a�ected/used more before updating. The

Adaptive Batch Sensor will analyze and control this param-

eter, as speci�ed in Section 4.4. The TG-Di�user increases

the batch size under the limit of"0GA in three steps, as illus-

trated in Figure 7(b) and speci�ed in Algorithm 3: First, at

Algorithm 3: Lookup Last Tolerable Event

Input :� : Node-event dependency Table; % : Node’s

current latest event ptr; # Number of nodes;

"0GA maximum revisit endurance.

Output : : the last tolerable event index for current batch.

1 Initialize = "�-_�#) ;

// Loop Parallel: get last tolerable event

2 for = = =>340, =>341, · · · , =>34#−1 do

3 �= = � [=];

4 2DA_?CA = % [=]; // 2DA_?CA points to node’s

latest relevant event in its event index

5 <0G_?4A<_?CA =<8=(2DA_?CA +"0GA , �= .;4=6Cℎ − 1);

6 4= = �= [<0G_?4A<_?CA];

7 =<8=(4=,);

// Loop Parallel: update nodes’ event pointers

8 for = = =>340, =>341, · · · , =>34#−1 do

9 if � [=] [% [=]] < then

10 % [=] + +;

11 return ;

each node, the TG-Di�user begins with the node’s earliest

unprocessed events indicated by the node’s current event

pointer. It increments this pointer by"0GA to determine the

node’s last tolerable event, at which this node is involved

too excessively in the current batch and requires an update.

For instance, as shown in the �gure, for =>340, it starts from

4 (0) and gets the last event at 4 (8), meaning that the =>340
is a�ected by too many events (i.e.,"0GA = 4) and should be

updated at 4 (8). For those events that have all their events

bypassed, we set their result as"�-_�#) to indicate that

all remaining events in their entries can be processed safely.

Second, the TG-Di�user reduces the last event indices from

di�erent nodes and gets the smallest index among them. In-

tuitively, we would like to have a batch processed once a

node cannot tolerate more related events. Using the same

example, as shown in the �gure, the batch’s last event is 4 (8)

since any events after this one may use intolerably expired

information on =>341 or =>342. Lastly, the TG-Di�user re-

turns the last event index as depicted in Algorithm 3 and

updates all nodes’ last event pointers, making them point to

the next unprocessed event within the related nodes.

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

Node Idx Event Idx

1 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ, ĀĀ
2 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ
3 ć, Ĉ, Āÿ, ĀĀ
4 Ć, ĀĀ
5 Ĉ, Āÿ
6 Āÿ
7 Ā, ā, Ă, ć, Ĉ, Āÿ
8 ā, Ă, ć, Ĉ, Āÿ
9 Ă, ć, Ĉ, Āÿ

a (i.e., 10) ă, Ą, ą, Ć, ĀĀ
b (i.e., 11) ă, Ą, ą, Ć
c (i.e., 12) Ą, ą, Ć
d (i.e., 13) ą, Ć

Ignore Stable nodes, then search the last

node event under Āÿýÿ=4

Reduce to the batch last

event

Node Idx 1 2 3 4 5 6 7 8 9 a b c d

Last Event - - - - - - - 10 - 11 - - -

Last Event = 8➔10

Get batch with temporal & spatial independence

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge ăĀā ăĀĆ ăĀć ăĀĈ ăÿĀ ăÿā ăÿĂăÿă ăĀĂ ăĀĄ ăĀą ăĂă
(a) (b)

Memory UpdateĀĀ2 → ĀĀ+Āā2 → Āā+ĀĆ2 → ĀĆ+
…

Node Idx Stable Flag

1 1

2 1

3 0

4 0

5 0

6

7 1

8 0

9 0

a (i.e., 10)

b (i.e., 11) 0

c (i.e., 12) 0

d (i.e., 13) 0

Memory
Similarityÿ. Ĉÿ. Ĉÿ. Ĉ

…

Previous Batch�Āā2�ĀĆ2
…
… Step 1:

Compute similarities�ćÿ �Ā2, �Ā+�ćÿ �ā2, �ā+�ćÿ �Ć2, �Ć+
…

Step 2:

Check if node is

stable�ćÿ �Ā2, �Ā+ > �Āćÿ�ćÿ �ā2, �ā+ > �Āćÿ�ćÿ �Ć2, �Ć+ > �Āćÿ
…

Figure 8. The work�ow of SG-Filter: (a) Update node stable �ag and (b) Guide TG-Di�user to ignore stable nodes while

looking up the last tolerable event.

Chunk-based Optimization for Large-Scale Graphs.

While TG-Di�user has low overhead for moderate-sized dy-

namic graphs, its overhead can increase with larger graphs

(as we quanti�ed on large-scale graphs in Section 5.5). To ad-

dress this, we propose a chunk-based table-building strategy

to reduce the overheads and enhance scalability. For large

event sequences (e.g., billions of events) in large-scale graphs,

we apply a two-step divide-and-conquer approach: (1) We

split the sequence into smaller chunks, each containing a

subset of consecutive events; and (2) we build tables indepen-

dently for each chunk, considering only within-chunk depen-

dencies. The �nal event in each chunk serves as a boundary

to limit dependencies. Training is performed sequentially

across chunks, ensuring node memories update in the cor-

rect order. This optimization boosts TG-Di�user e�ciency

in two ways. First, processing smaller chunks improves data

locality, signi�cantly reducing cache misses and consequent

memory latencies during the table building process. Speci�-

cally, instead of repeatedly accessing large memory sections

that exceed cache capacity, processing smaller chunks allows

each thread (i.e., node) to work with data that is more likely

to remain in the cache. Second, by pipelining table building

and training, training in each chunk can start as soon as its

table is ready and training in the previous chunk has �nished.

This approach speeds up overall processing by pipelining

and overlapping table building with training tasks.

4.3 Similarity-Aware Graph Filter

As discussed in Section 3.3, if a node exhibits stable memory—

meaning its memory status changes minimally over time—–

events associated with this node will consistently retrieve

similar input memories. Consequently, we can neglect these

stabilized nodes when assessing dependencies within the in-

put sequence. The Similarity-Aware Graph Filter (SG-Filter)

is designed to identify temporal independence among node

memories, thereby mitigating unnecessary constraints im-

posed by these temporal dependencies.

The operation of the SG-Filter unfolds in two main steps,

as depicted in Figure 8. First, the SG-Filter maintains and

updates node stable �ags once the node memory is updated

in two steps: At step 1, it calculates the similarities between

nodes’ memories before/after their updates. As illustrated

in Figure 8(a), when memories in =>341, =>342, =>347 are up-

dated from B−
1
, B−

2
, B−

7
to B+

1
, B+

2
, B+

7
due to input events 4−

12
, 4−

17
,

the SG-Filter computes the similarities between B−
1
and B+

1
,

B−
2
and B+

2
, B−

7
and B+

7
, respectively. Next, at step 2, it compares

the similarities with prede�ned threshold \B8<—if the sim-

ilarity is higher than the threshold, the node is considered

stable, and vice versa—and updates the nodes’ �ags accord-

ingly. For instance, =>341, =>342, =>347 are considered sta-

ble since B8<(B−
1
, B+

1
), B8<(B−

2
, B+

2
), B8<(B−

7
, B+

7
) are higher than

\B8< = 0.9, and their �ags are updated to 1. Lastly, based on

the node stable �ag, the SG-Filter guides the TG-Di�user

to ignore the stable nodes straightforwardly: It signi�es the

stable node indices to TG-Di�user, and the TG-Di�user will

no longer look up the last event in those stable nodes’ entires.

For instance, as illustrated in Figure 8(b), the TG-Di�user

will ignore their entries if =>341, =>342, =>347 is speci�ed as

stable. Consequently, the barriers (i.e., Node last events as 8)

posed by =>341 and =>342 no longer exist, and we can further

expand batch size from 8 to 10.

4.4 Adaptive Batch Sensor

As discussed in Section 4.2, we employ the concept of Max-

imum Revisit Endurance ("0GA) to quantitatively control

how many events a node can tolerate before its updating.

A higher "0GA value allows nodes to participate in more

events per batch, increasing the risk of incorporating out-

dated information. Consequently, a high "0GA potentially

leads to more broken input dependencies. To ensure the

TG-Di�user operates within thresholds that maintain train-

ing e�ciency without sacri�cing the quality of the input

data as the originally de�ned small batch sizes, we introduce

the Adaptive Batch Sensor (ABS), a pro�le-based module, to

gather statistics on"0GA using the original batch sizes.

Maximum Endurance Pro�ling. As depicted in Fig-

ure 9, the ABS begins by segmenting the input sequence into

batches using a prede�ned small batch size. It then randomly

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge ăĀā ăĀĆ ăĀć ăĀĈ ăÿĀ ăÿā ăÿĂ ăÿă ăĀĂ ăĀĄ ăĀą ăĂă
Node Idx Event Idx

1 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ, ĀĀ
2 ÿ, Ā, ā, Ă, ć, Ĉ, Āÿ
3 ć, Ĉ, Āÿ, ĀĀ
4 Ć, ĀĀ
5 Ĉ, Āÿ
6 Āÿ
7 Ā, ā, Ă, ć, Ĉ, Āÿ
8 ā, Ă, ć, Ĉ, Āÿ
9 Ă, ć, Ĉ, Āÿ

a (i.e., 10) ă, Ą, ą, Ć, ĀĀ
b (i.e., 11) ă, Ą, ą, Ć
c (i.e., 12) Ą, ą, Ć
d (i.e., 13) ą, Ć

Sample Batch Size = 4

Batch 0
0 1 2 3ăĀā ăĀĆ ăĀć ăĀĈ

Batch 1
4 5 6 7ăÿĀ ăÿā ăÿĂ ăÿă

Batch 3
8 9 10 11ăĀĂ ăĀĄ ăĀą ăĂă

Batch Index 0 1 2

Max Endurance ă ă ăĀăÿĀ(Āÿýÿ) = ă�ÿāāĆ āĂÿĀăÿ = Ă

Count Batch

Events

Get Stats

Figure 9. The work�ow of maximum endurance pro�ling .

selects several batches to gather statistics on"ėĮA through a

two-step process. Initially, for each batch, the ABS counts the

number of relevant events for each node and identi�es the

highest count, which is termed Max Endurance. For example,

in Batch 1, nodes ĤĥĚě4, ĤĥĚě0 , ĤĥĚě1 , ĤĥĚě2 , and ĤĥĚě3 are

involved in 1, 4, 4, 3, and 2 relevant events respectively, result-

ing in a Max Endurance of 4. Subsequently, ABS compares

statistics from various batches, calculating the maximum,

mean, and minimum values of Max Endurance and counting

the batch number under the small batch settings. These sta-

tistics are then communicated to the TG-Di�user to establish

the upper limits on node involvement in each batch.

Logarithmic-Decaying Endurance. During training,

the TG-Di�user employs a logarithmic decaying strategy to

subtly tuneĉėĮA between the max and minimum values of

Max Endurance con�gured by the ABS. In particular, ABS

decays ĉýĔA once convergence halts (training loss stops

decreasing for ten batches) as smaller batches can provide

fresher node memories, aiding convergence. When triggered,

the decaying step size is decided by the batch index—To

avoid introducing errors in early timestamps, we adopt larger

reduction steps in early batches and smaller reductions in

later batches. The resulting newĉýĔA will be sent to the TG-

Di�user to control how many events one node can endure

before its update. Upon receiving the value, the TG-Di�user

will use the newly updated value to look up the last tolerable

event for each node. The adjustment ofĉėĮA occurs in three

steps: Initially, ĉėĮA is set to two times the mean value of

Max Endurance (i.e.,ģĨ<40=). We empirically set the value

for two reasons: the maximum value is too aggressive due

to potential information loss, while the mean can be too

conservative if the batch size is insu�cient. Also, we cap

ĉėĮA all the time to ensure it is within the range of the

analyzed maximum(i.e.,ģĨ<0G) and minimum(i.e.,ģĨ<8=).

Next, the ABS further monitors training loss throughout the

epoch, and periodic checks determine if there is no reduction

in loss. If the training loss does not decline, we reduceĉėĮA
toward the minimum value of Max Endurance through a

logarithmic decay, a method commonly used in the deep

learning domain [12, 27, 35]. Speci�cally, for the batch ğ , the

TG-Di�user will get theĉėĮA following Equation 5,




ĉėĮA = 2 ×ģĨ<40= − Ă × Ģĥĝ(
ğ

ÿ
+ 1)

Ă =

ģĨ<8= ×ģĨ<8=

ģĨ<0G
, ÿ =

þ

Ă

ĉėĮA =ģėĮ (ģĨ<0G ,ģğĤ(ģĨ<8=, ĉėĮA))

(5)

(6)

(7)

in whichģĨ<40=,ģĨ<8= andģĨ<0G refer to the maximum,

mean, and minimum values of the Max Endurance, respec-

tively; and þ refers to the batch numbers under preset batch

sizes.

5 Evaluation

5.1 Methodology

Models. We evaluate Cascade using �ve recent TGNN mod-

els. Speci�cally, we include the followingCTDG-based TGNN

models: (1) JODIE [21] applies a normal Recurrent-Neural-

Network(RNN) [34] to update node memories and uses a

time-decay coe�cient to scale them before classi�cation.

(2) TGN [31] uses a GRU [7] to update node memories and

uses a Graph Attention Network (GAT) [39] to embed node

memories. (3) APNN [43] adopts an asynchronous mailbox

to store and update node memories and then directly use

memories for predictions. To assess our approach’s adapt-

ability to DTDG-based models, we also include the following

two DTDG-based TGNN models: (2) DySAT [33] uses RNN

to update and combine node memories from di�erent time

graph snap-shots. (3) TGAT [47] adopts positional encoding

to abstract edge temporal information and uses an attention-

based module to collect messages from nodes’ neighbors

during memory updating. We follow the model con�gura-

tion used in TGL [55] as shown in Table 1.

Table 1. Details of TGNN models.

Sample Message Memory Update Node Embedding

JODIE
most recent

(num = 1)

RNN

(out size=100)

Identity

(out size=100)

TGN
most recent

(num = 1)

GRU

(out size=100)

GAT

(out size=100)

APAN
most recent

(num = 10)

Transformer

(out size=100)

Identity

(out size=100)

DySAT
uniform

(num = 10)

GAT

(out size=100)

RNN

(out size=100)

TGAT
uniform

(num = 10)

Identity

(out size=100)

2-layers GAT

(out size=100)

Datasets.We use the following �ve real-world datasets to

evaluate Cascade: (1) Wikipedia (WIKI), (2) Reddit (REDDIT),

(3) MOOC student drop-out (MOOC) [21] are relatively small-

scale datasets; (4) Wikipedia Talk network (WIKI-TALK) [23]

and (5) Stack over�ow temporal network (SX-FULL) [25]

are large-scale datasets with millions nodes and events. We

also include two billion-edge graph datasets to evaluate the

scalability of Cascade: (1) GDELT [55] is originated from the

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

Event Database in GDELT 2.0, containing 0.2 billion events

as news and articles. (2) MAG [55] is a paper citation graph

containing 1.3 billion events as citations between papers. The

statistics of the datasets are shown in Table 2. For datasets

with no edge features, we randomly generate edge features

following the setup in TGL [55] (denoted by *). For large-

scale graphs with millions of nodes and edges, we set the

edge feature size to 32 to avoid OOM issues on GPUs.

Table 2. Statistics of Datasets.

Nodes # Edges # Edge Features

WIKI 9,227 157,474 172
REDDIT 11,000 672,447 172
MOOC 7,047 411,749 128*
WIKI-TALK 2,394,385 5,021,410 32*
SX-FULL 2,601,977 63,497,050 32*

GDELT 16,682 191,290,882 186
MAG 121,751,665 1,297,748,926 32*

Platforms and Implementations.We run our experi-

ments on a server with an AMD EPYC 7742 64-Core Proces-

sor CPU and a Nvidia A100 40GB GPU with CUDA 11.6 [28].

Our experiment compares the following approaches:

• TGL (baseline) [55] is a state-of-the-art TGNN training

framework that achieves better training e�ciency and

accuracy than the vanilla version of the TGNN models. It

adopts a parallel sampler to speed up the sampling process

in TGNN and introduces a random batch shu�ing strategy

to improve the resulting models’ losses.

• TGLite [45] is a state-of-the-art TGNN framework that

provides core abstractions and building blocks for imple-

menting TGNN. It speeds up TGNN training by integrating

several optimization schemes and providing lightweight

implementations of TGNN models.

• Cascade. We implement TG-Di�user and ABS using C++

to parallel the table building and last event looking up. The

SG-Filter is implemented by Python to directly leverage

the parallel matrix operation in PyTorch [30].We adopt the

same sampling and model implementation as the baselines

since these components are orthogonal to our designs.

• Cascade-Lite. In this version, we equip Cascade with

optimized TGNN model implementation as the TGLite

to evaluate its e�ectiveness in collaborating with various

existing TGNN frameworks.

In addition, we compare Cascade with recent TGNN and

Dynamic-GNN training frameworks that adopt dynamic par-

allelization schemes as described below:

• NeutronStream [5] is a DGNN training framework de-

signed for windowed Dynamic Graph Neural Network

(DGNN) training. It builds a dependency graph for the

input events sequence, and then sequentially processes

dependent events and only allows parallelizing events

without dependence.

• ETC [11] is a TGNN training framework that uses an

information-loss-bounded batching scheme to enlarge

batch sizes without increasing information loss, which

quanti�es how many times nodes in the batch are ex-

pected to be updated. Additionally, it employs a pipelined

data access strategy to improve data transfer e�ciency

between the CPU and GPUs during TGNN training.

Training Setup. We train the models for the link pre-

diction tasks following setup in the baseline [55]. For WIKI,

REDDIT, and MOOC, we train TGNN models with 100 epochs.

For WIKI-TALK and SX-FULL, we train TGNNmodels with 50

epochs. We use a batch size of 900 for training the baselines,

as the preset small batch size for ABS in Cascade, and for

evaluating all resulting models. We set the similarity thresh-

old ĂB8< in SG-Filter to 0.9 (more discussion in Section 5.3)

and CPU thread numbers in TG-Di�user and ABS as 32. We

set the adaptive decaying period to be 20 for all benchmarks

(i.e., ABS makes decisions after each of the 20 batches).

5.2 Overall Performance

Speedup. To facilitate visualizing, we normalize all results

by the baseline performances. As shown in Figure 10, Cas-

cade achieves 1.3× to 5.1× (averagely 2.3×) speedups over

the baseline. Moreover, Cascade-Lite achieves 1.2× to 5.0×

(averagely 2.3×) speedups over the TGLite, indicating the po-

tential of adapting Cascade to various existing TGNN frame-

works. The acceleration is particularly notable in sparser dy-

namic graphs. Speci�cally, in WIKI, WIKI-TALK, and SX-FULL,

which have average degrees of approximately 17.5, 2.5, and

24.4 respectively, Cascade achieves average speedups of 2.5×,

2.4×, and 3.0× over TGL. In comparison, in REDDIT and MOOC,

whose average degrees are 61.1 and 58.4, Cascade achieves

1.8× and 1.7× average speedups over the baseline, respec-

tively. This is because events in sparser graphs are more

likely to be spatial independent of each other due to weaker

connectivity among nodes. Regarding the models, Cascade

demonstrates higher speedups for TGNNmodels that depend

less on neighboring nodes for node updates or computing

embeddings. Within CTDG-based models, TGN and JODIE,

which update node memories using the most recent message,

receive average speedups of 2.4× and 2.5×, respectively. In

contrast, APAN, which utilizes the ten most recent messages,

achieves a lower average speedup of 1.7×. For DTDG-based

TGNNs, DySAT, which employs a single-layer GAT, achieves

a 3.1× average speedup compared to 1.7× for TGAT, which

uses a two-layer GAT that embeds more neighborhoods.

The potential reason is that those slower models cost more

time on the neighbor sampling step. With larger batches,

the sampling step takes longer, compromising the bene�t of

higher parallelism and fewer iterations. Cascade e�ectively

increases batch sizes in diverse benchmarks—as showcased

in Figure 12(a), it increases the batch size from 900 to 4200

across WIKI, REDDIT and REDDIT-TALK.

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

0

1

2

3

4

5

6
A

P
A

N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

S
p

e
e
d

u
p

TGL TGLite Cascade Cascade-Lite

Figure 10. Training speed-ups introduced by Cascade and Cascade-Lite compared to baseline (TGL) and TGLite.

0%

20%

40%

60%

80%

100%

120%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

N
o

rm
.

V
a
l
L

o
s
s TGL TGLite Cascade Cascade-Lite

Figure 11. Validation losses (normalized to baseline) of TGNN models trained in Cascade and Cascade-Lite.

Model Losses. Unlike simply increasing batch sizes, Cas-

cade accelerates the trainingwithout worsening the resulting

models’ performances. As shown in Figure 11, on average,

models trained by Cascade and Cascade-Lite are validated to

have 99.4% and 97.9% average losses compared to the baseline

and TGLite, respectively. In those datasets with real-world

edge features (i.e., WIKI and REDDIT), Cascade decreases the

average losses of the resulting model by 5.5% (up to 15%) and

2.5% (up to 7.3%), respectively. To investigate its capabilities

to maintain model performances, we train the TGNNs with

baseline while increasing their batch sizes to the same as the

average batch size in Cascade. We compared the resulting

model losses with those in Cascade, as shown in �gure 12(b),

using larger batches (i.e., TGL-LB) causes 1% to 83% loss

increases than using batch size of 900. In contrast, Cascade

introduces 1% to 15% loss decreases than the baseline, leading

to ∼80% accuracy improvement over large batch sizes.

5.3 Optimization Analysis

To further investigate the e�ectiveness of the TG-Di�user

and SG-Filter, we evaluate the performances when Cascade

only enables the TG-Di�user and ABS without SG-Filter (re-

ferred to as Cascade-TB), on WIKI and REDDIT. As shown

in Figure 12(c), Cascade-TB achieves 1.8× speedup over the

baseline by equipping TG-Di�user and ABS. Similar to over-

all performance, it bene�ts more on relatively sparser dy-

namic graphs—the average speedup of Cascade-RB is 1.9×

on WIKI, and is lower as 1.7× on REDDIT. The speedup is

more signi�cant for those models relying less on neighbors.

For instance, on JODIE and TGN, Cascade achieves 2.3× and

2.5× average speedup than in APAN, which is 1.2×. With the

help of SG-Filter, the average speedup in Cascadeis further

boosted to 2.2×. Compared to the TG-Di�user, the SG-Filter

can further boost the performance of models that use more

neighbors for their computing. For instance, in APAN, Cas-

cade achieves 1.7× speed up compared to 1.1× in Cascade.

This is because APAN uniformly samples more messages

from the past instead of using the most recent message; there

might be more overlapping in these sampled past messages,

which leads to similar inputs for memory updating. Con-

sequently, there is a higher possibility of having temporal

independent node memories.

In terms of the model losses, as shown in Figure 12(d),

Cascade-TB is capable of maintaining validation losses and,

in some cases, even reduces more loss than the Cascade.

For instance, in JODIE, the Cascade reduces model losses

to 84% and 97%; in comparison, Cascade reduces losses to

85% and 99%. This is because the stable detecting scheme

in SG-Filter decides node stable status based on past up-

dates and may mispredict in some cases. To better under-

stand the potential impact of SG-Filter, we measure Cascade

under di�erent choices of similarity thresholds. As shown

in Figure 13(a), using lower similarity can improve laten-

cies yet harm the model accuracy. For instance, while using

ĂB8< = 0.85 achieves 2.7× average speedup, it increases loss

by 8%. Conversely, using higher similarity can help maintain

model accuracy yet achieve fewer bene�ts in latencies. For

instance, using ĂB8< = 0.95 causes no loss drops yet lowers

the speedup to 2×.

5.4 Overhead Analysis

To measure the impact of these overheads, we investigate

the time and space breakdown of Cascade under datasets

WIKI, REDDIT, and WIKI-TALK. As shown in Figure 13(b),

on average, Cascade causes 17% latency overhead in these

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

0%

50%

100%

150%

200%

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT

N
o

rm
a

li
z
e

d
 V

a
l

L
o

s
s TGL TGL-LB Cascade

75%

80%

85%

90%

95%

100%

105%

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT

N
o

rm
a

li
z
e

d
 V

a
l

L
o

s
s

TGL Cascade-TB Cascade

0
0.5

1
1.5

2
2.5

3
3.5

4

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT

S
p

e
e

d
u

p

TGL Cascade-TB Cascade

0

1000

2000

3000

4000

5000

6000
A

P
A

N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT WIKI-TALK

B
a

tc
h

 S
iz

e
s

TGL Cascade

(a) (b) (c) (d)

Figure 12. (a) Batch sizes of TGNNs in Cascade compared to the baseline. (b) Validation losses of TGNNs trained by Cascade

and TGL-LB (baselines with larger batches)—results are normalized by the losses in the baseline. (c) Speedups of Cascade-TB

and Cascade over baseline. (d) Validation losses of TGNNs trained in Cascade-TB and Cascade compared to baseline.

0%

20%

40%

60%

80%

100%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT WIKI-TALK

L
a
te

n
c
y
 B

re
a
k
d

o
w

n

Build Table Event_Lookup&Updating Model Training

0%

20%

40%

60%

80%

100%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT WIKI-TALK

S
p

a
c
e
 B

re
a
k
d

o
w

n

DT SF Graph Edge Feature Model Mailbox

0

0.4

0.8

1.2

1.6

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

APAN JODIE TGN APAN JODIE TGN APAN JODIE TGN

WIKI REDDIT WIKI-TALK

Normalized Latency Normalized Val Loss

(a) (b) (c)

Figure 13. (a) Latency and validation loss of Cascade under di�erent similarity threshold for SG-Filter (i.e., ĂB8<). (b) The

latency breakdown in Cascade. (c) The space consumption ratio in Cascade (DT as dependency Table, SF as node stable �ag).

moderate-sized graphs, which is far less than the model train-

ing time—compared to the original model training latency in

baselines, the overhead is less than 10%. Building the depen-

dency table causes ignorable overheads, which are as low

as 0.1% on average, as it is only conducted once throughout

the training process. In contrast, the batching Event_lookup

takes a heavier part of the overheads, which takes 16% la-

tency on average. This is because we need to compare the last

event for each node and then update their pointers in each

batch. The node stable �ag checking and updating causes ig-

norable overhead since similarity computing is considerably

faster on GPUs. In terms of the space overhead, as shown in

Figure 13(c), the dependency table (DF) and the node stable

�ag (SF) takes less than 3% space overhead in total—even in

large graphs such as WIKI_TALK, they consume much less

space than the edge Feature, which takes the majority of

the space consumption. Adaptive batching (ABS) introduces

two minimal overheads: (i) pro�ling costs for detecting max,

min, and average revisit limits, which are negligible (<1% in

preprocessing) as they involve sampling a few batches (50

in our implementation) and checking node-related events

without computation; and (ii) recon�guration costs for cal-

culating and assigning newĉėĮA , which are minimal (a few

cycles) as they require only a few scalar operations.

5.5 Scalability on Large-scale Graphs

We compared Cascade to the baseline on two billion-event

datasets: GDELT and MAG, and report the results in Figure 14.

For MAG dataset, APAN throws out-of-memory (OOM) errors

in both baseline and Cascade as it stores the ten most recent

neighbors for each node. From the Figure 14(a), Cascade

(second bar) achieves average speedups of 1.7× on GDELT

and 1.3× on MAG over the baseline. As shown in Figure 14(b),

the resulting models have validation losses of 97.9% and

99.0% compared to the baseline, respectively. These results

demonstrate that Cascade remains e�ective on large graphs.

However, one can observe that performance gain is lower

on large-scale graphs than moderate-sized graphs (i.e., 1.7×

on GDELT and 1.3× on MAG compared to an average of 2.3×

in moderate-sized graphs in Figure 10). The reason is that

the pre-processing overheads signi�cantly increase in large-

scale graphs.We report the latency breakdown in Figure 14(c).

As one can observe, the pro-processing overheads can ac-

count for 36.6% of the entire execution time in large graphs

(which is less than 1% in moderate-sized graphs).

To improve the scalability of Cascade on large-scale graphs,

we propose an optimization by enabling chunk-based prepro-

cessing described in detail in Section 4.2. In our experiment,

we set the chunk size as one million events. We report the

speedup, validation loss, and pre-processing overheads in

Figure 14 labeled as Cascade_EX. Speci�cally, Cascade_EX

achieves speedups of 2× on GDELT and 1.7× on MAG without

increasing validation losses. This is higher than the speedups

(i.e., 1.7× on GDELT and 1.3× on MAG) without chunk-based

preprocessing. The reason is that this optimization signif-

icantly reduces the cache misses in table building and is

able to pipeline and overlap the table building with model

training, as we elaborated in Section 4.2. Results show that

Cascade_EX reduces the preprocessing overhead by an aver-

age of 35% in two large-scale graphs.

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

0

0.5

1

1.5

2

2.5

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

GDELT MAG

S
p

e
e
d

u
p

TGL Cascade Cascade_EX

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

GDELT MAG

N
o

rm
 V

a
l
L

o
s
s

TGL Cascade Cascade_EX

0%
20%
40%
60%
80%

100%

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

APAN DySAT JODIE TGAT TGN APAN DySAT JODIE TGAT TGN

GDELT MAG

L
a
te

n
c
y
 B

re
a
k
d

o
w

n

Build Table Event_Lookup&Updating Model Training

O
O

M

O
O

M

O
O

M
O

O
M

(a) (b) (c)

Figure 14. The evaluation results on GDELT and MAG including (a) The speedup and (b) resulting TGNNs’ validation losses in

Cascade and its optimized version with chunk_based optimization Cascade_EX over the baseline. (c) The latency breakdowns.

0
1
2
3
4
5
6

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

S
p

e
e
d

u
p

TGL NeutronStream ETC Cascade

Figure 15. Training speed-ups introduced by Cascade, NeutronStream, ETC compared to baseline (TGL).

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

N
o

rm
.

V
a
l
L

o
s
s TGL NeutronStream ETC Cascade

Figure 16. Validation losses (normalized to baseline) of TGNN models trained in by Cascade, NeutronStream, ETC.

5.6 Comparison with Prior Dynamic Batching

We compare Cascade with ETC [11] and NeutronStream [5],

and report the results in Figure 15. As all compared ap-

proaches increase batch sizes from a basic batch size, we

set the basic batch size for all approaches as 900 following

the baseline (i.e., TGL [55]) con�guration in Section 5.2. This

size strikes a balance between accuracy and e�ciency under

�xed-sized batching.

Comparison with NeutronStream: We use the scheme

in NeutronStream to check if the subsequent events are in-

dependent of existing events within the batch, then batch

those independent ones into the current batch. In contrast,

Cascade also employs the same base batch size and increases

batch by batching subsequent events if they are related to

less-frequently involved nodes or stable nodes. Our results

show that Cascade achieves a 3.8× improvement over Neu-

tronStream, with better validation losses on average. The

performance gain is mainly because Cascade yields larger

batch sizes and, therefore, more parallelism than Neutron-

Stream. It is also worth mentioning that NeutronStream

generally performs worse than the baseline as they spend

a lot of time on constructing dependency graphs yet hardly

increase batch sizes. Hence, even if we start with larger ba-

sic batch sizes that are larger than 900, it can hardly bring

more parallelism than the baseline and may introduce more

signi�cant overhead.

Comparison with ETC: For each base batch, ETC ex-

pands by adding subsequent events as long as they do not

increase the information loss (i.e., the total number of ex-

pected node updates) beyond a speci�ed threshold. Specif-

ically, to achieve comparable performances as using small

batches, it automatically detects the information loss in the

pre-de�ned small batch size (i.e., batch size = 900 in our ex-

periments as the baseline). Then, it uses the upper bound of

the detected information loss as the threshold to ensure that

the information loss of the enlarged batches is not worse

than the baseline. Our results show that Cascade achieves a

1.9× improvement over ETC, with better validation losses

average on average. Similarly, the performance gains come

from larger batch sizes: While Cascade increases the average

batch size to 4255, ETC increases the batch size from 900 to

an average of 1123. The improvements in ETC are limited

since it stops expanding a batch once the information loss

(i.e., the total number of expected node updates) reaches the

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

per-batch threshold. This can lead to situations in which,

when speci�c high-degree nodes in the current batch are

expected to have frequent updates and trigger the batching

limit, subsequent events cannot be further batched since

these high-degree nodes have raised the total number of

expected updates beyond the threshold. In contrast, Cascade

tracks the endurance score for each node (i.e., look up the

last tolerable event in each node independently). Therefore,

even if some high-degree nodes are already heavily involved

in the current batch, they only raise their own endurance

scores, but not those endurance scores in other nodes. As a

result, Cascade can still include more subsequent events if

they are related to those fresher nodes since the nodes still

have low endurance scores.

6 Related Work

Although extensive studies have been conducted on accel-

erating GNN training [2, 14, 26, 36, 37, 41, 44, 49, 51, 53],

they fail short in addressing the unique challenges in TGNN

training due to their distinct computing diagrams. While

some of the recent studies on TGNN training focus on DTDG

graphs [10, 13, 32, 40], these approaches are tailored to DTDG

contexts, where graph snapshots �xedly determine batches

and whole-graph update are conducted. Noticing the unique

challenge in CTDG-based TGNN training, TGL [55] intro-

duces a parallel sampler to speed the sampling process for

CTDG and proposes a chunk scheduling approach to increase

the resulting models’ accuracy. On top of TGL, DistTGL [55]

further proposes heuristic-guided parallelism to speed up

the distributed TGNN training. More recently, TGLite [45]

provides core abstractions and building blocks for imple-

menting optimized TGNNs. Additionally, ETC [11] and Neu-

tronstream [5] explore adopting dynamic batching in CTDG-

related training. However, none of the prior methods adap-

tively quantify and leverage the spatial and temporal rela-

tionships between events to dynamically increase batch sizes,

thereby limiting their ability to enhance parallelism without

signi�cant information loss.

7 Conclusion

In this work, we proposed an e�cient TGNN training frame-

work, Cascade, to speed up temporal graph neural network

(TGNN) training by adaptively increasing training batch

sizes without breaking input dependency. Experimental re-

sults show Cascade can achieve up to 5.1× speedup over the

state-of-the-art TGNN training frameworks.

Acknowledgments

The authors would like to thank the anonymous ASPLOS re-

viewers for their constructive feedback and suggestions. This

work is supported in part by NSF grants #2154973, #2334628,

and #2312157.

References
[1] Luca Belli, So�a Ira Ktena, Alykhan Tejani, Alexandre Lung-Yut-Fon,

Frank Portman, Xiao Zhu, Yuanpu Xie, Akshay Gupta, Michael Bron-

stein, Amra Delić, et al. Privacy-preserving recommender systems

challenge on twitter’s home timeline. arXiv preprint arXiv:2004.13715,

2020.

[2] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan

Yu. Dgcl: An e�cient communication library for distributed gnn train-

ing. In Proceedings of the Sixteenth European Conference on Computer

Systems, pages 130–144, 2021.

[3] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot,

Richard Gass, and James Scott. Impact of human mobility on op-

portunistic forwarding algorithms. IEEE Transactions on Mobile Com-

puting, 6(6):606–620, 2007.

[4] Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann,

2001.

[5] Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo

Fu, Xuecang Zhang, Junhua Zhu, Yu Gu, and Ge Yu. Neutronstream:

A dynamic gnn training framework with sliding window for graph

streams. Proceedings of the VLDB Endowment, 17(3):455–468, 2023.

[6] Jinyin Chen, Jian Zhang, Xuanheng Xu, Chenbo Fu, Dan Zhang, Qing-

peng Zhang, and Qi Xuan. E-lstm-d: A deep learning framework for

dynamic network link prediction. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 51(6):3699–3712, 2019.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua

Bengio. Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[8] YueDai, Xulong Tang, and Youtao Zhang. Flexgm: An adaptive runtime

system to accelerate graph matching networks on gpus. In 2023 IEEE

41st International Conference on Computer Design (ICCD), pages 348–

356. IEEE, 2023.

[9] Yue Dai, Youtao Zhang, and Xulong Tang. Cegma: Coordinated elas-

tic graph matching acceleration for graph matching networks. In

2023 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 584–597. IEEE, 2023.

[10] Kaihua Fu, Quan Chen, Yuzhuo Yang, Jiuchen Shi, Chao Li, and Minyi

Guo. Blad: Adaptive load balanced scheduling and operator overlap

pipeline for accelerating the dynamic gnn training. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–13, 2023.

[11] Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. Etc:

E�cient training of temporal graph neural networks over large-scale

dynamic graphs. Proceedings of the VLDB Endowment, 17(5):1060–1072,

2024.

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.

Deep learning, volume 1. MIT Press, 2016.

[13] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. Dynagraph:

dynamic graph neural networks at scale. In Proceedings of the 5th ACM

SIGMOD Joint International Workshop on Graph Data Management

Experiences & Systems (GRADES) and Network Data Analytics (NDA),

pages 1–10, 2022.

[14] Deniz Gurevin, Caiwen Ding, and Omer Khan. Exploiting intrinsic

redundancies in dynamic graph neural networks for processing e�-

ciency. IEEE Computer Architecture Letters, 2023.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive represen-

tation learning on large graphs. In Advances in neural information

processing systems, pages 1024–1034, 2017.

[16] Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen,

and Gerhard Weikum. Tequila: Temporal question answering over

knowledge bases. In Proceedings of the 27th ACM international con-

ference on information and knowledge management, pages 1807–1810,

2018.

[17] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay

Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for

Cascade: A Dependency-Aware E�icient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

dynamic graphs: A survey. The Journal of Machine Learning Research,

21(1):2648–2720, 2020.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] Thomas N Kipf and Max Welling. Semi-supervised classi�cation with

graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[20] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky.

Community interaction and con�ict on the web. In Proceedings of the

2018 world wide web conference, pages 933–943, 2018.

[21] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic

embedding trajectory in temporal interaction networks. In Proceed-

ings of the 25th ACM SIGKDD international conference on knowledge

discovery & data mining, pages 1269–1278, 2019.

[22] Julien Leblay and Melisachew Wudage Chekol. Deriving validity

time in knowledge graph. In Companion Proceedings of the The Web

Conference 2018, pages 1771–1776, 2018.

[23] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed net-

works in social media. In Proceedings of the SIGCHI conference on

human factors in computing systems, pages 1361–1370, 2010.

[24] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:

densi�cation laws, shrinking diameters and possible explanations. In

Proceedings of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pages 177–187, 2005.

[25] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analy-

sis and graph-mining library. ACM Transactions on Intelligent Systems

and Technology (TIST), 8(1):1–20, 2016.

[26] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pa-

graph: Scaling gnn training on large graphs via computation-aware

caching. In Proceedings of the 11th ACM Symposium on Cloud Comput-

ing, pages 401–415, 2020.

[27] Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller. Neural

networks: tricks of the trade, volume 7700. springer, 2012.

[28] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable

parallel programming with cuda: Is cuda the parallel programming

model that application developers have been waiting for? Queue,

6(2):40–53, 2008.

[29] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro

Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles

Leiserson. Evolvegcn: Evolving graph convolutional networks for

dynamic graphs. In Proceedings of the AAAI conference on arti�cial

intelligence, volume 34, pages 5363–5370, 2020.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. Pytorch: An imperative style, high-performance

deep learning library. Advances in neural information processing sys-

tems, 32, 2019.

[31] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,

Federico Monti, and Michael Bronstein. Temporal graph networks

for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637,

2020.

[32] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopou-

los, Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres,

Guzman Lopez, Nicolas Collignon, et al. Pytorch geometric tempo-

ral: Spatiotemporal signal processing with neural machine learning

models. In Proceedings of the 30th ACM international conference on

information & knowledge management, pages 4564–4573, 2021.

[33] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.

Dysat: Deep neural representation learning on dynamic graphs via self-

attention networks. In Proceedings of the 13th international conference

on web search and data mining, pages 519–527, 2020.

[34] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural

networks. IEEE transactions on Signal Processing, 45(11):2673–2681,

1997.

[35] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates

with sublinear memory cost. In International Conference on Machine

Learning, pages 4596–4604. PMLR, 2018.

[36] Nishil Talati, Di Jin, Haojie Ye, Ajay Brahmakshatriya, Ganesh Dasika,

SamanAmarasinghe, TrevorMudge, Danai Koutra, and Ronald Dreslin-

ski. A deep dive into understanding the random walk-based temporal

graph learning. In 2021 IEEE International Symposium on Workload

Characterization (IISWC), pages 87–100. IEEE, 2021.

[37] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou

Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim,

et al. Dorylus: A�ordable, scalable, and accurate {GNN} training with

distributed {CPU} servers and serverless threads. In 15th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

21), pages 495–514, 2021.

[38] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan

Zha. Dyrep: Learning representations over dynamic graphs. In Inter-

national conference on learning representations, 2019.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.

arXiv preprint arXiv:1710.10903, 2017.

[40] Chunyang Wang, Desen Sun, and Yuebin Bai. Pipad: pipelined and

parallel dynamic gnn training on gpus. In Proceedings of the 28th

ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel

Programming, pages 405–418, 2023.

[41] Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan

Yu, Zihang Yao, and Jingren Zhou. Flexgraph: a �exible and e�cient

distributed framework for gnn training. In Proceedings of the Sixteenth

European Conference on Computer Systems, pages 67–82, 2021.

[42] Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix

Wu. Attack graph convolutional networks by adding fake nodes. arXiv

preprint arXiv:1810.10751, 2018.

[43] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen

Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. Apan:

Asynchronous propagation attention network for real-time temporal

graph embedding. In Proceedings of the 2021 international conference

on management of data, pages 2628–2638, 2021.

[44] Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware opti-

mizations for temporal graph attention networks. In Proceedings of

the 28th ACM SIGPLAN Annual Symposium on Principles and Practice

of Parallel Programming, pages 354–368, 2023.

[45] Yufeng Wang and Charith Mendis. Tglite: A lightweight programming

framework for continuous-time temporal graph neural networks. In

Proceedings of the 29th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 2,

pages 1183–1199, 2024.

[46] Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang, Xiaobo Zhou,

and Dazhao Cheng. Redundancy-free high-performance dynamic

gnn training with hierarchical pipeline parallelism. In Proceedings of

the 32nd International Symposium on High-Performance Parallel and

Distributed Computing, pages 17–30, 2023.

[47] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan

Achan. Inductive representation learning on temporal graphs. arXiv

preprint arXiv:2002.07962, 2020.

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How

powerful are graph neural networks? arXiv preprint arXiv:1810.00826,

2018.

[49] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong

Chen, Wenyuan Yu, and Jingren Zhou. Gnnlab: a factored system for

sample-based gnn training over gpus. In Proceedings of the Seventeenth

European Conference on Computer Systems, pages 417–434, 2022.

[50] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning

framework for dynamic graphs. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pages 2358–2366,

2022.

[51] Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and

Shuiwang Ji. Graphfm: Improving large-scale gnn training via feature

ASPLOS ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

momentum. In International Conference on Machine Learning, pages

25684–25701. PMLR, 2022.

[52] Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin,

Xuehao Zheng, and Yangyong Zhu. Tiger: Temporal interaction graph

embedding with restarts. arXiv preprint arXiv:2302.06057, 2023.

[53] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song,

Yifan Wu, Changji Li, James Cheng, Hao Yang, and Shuai Zhang.

Bytegnn: e�cient graph neural network training at large scale. Pro-

ceedings of the VLDB Endowment, 15(6):1228–1242, 2022.

[54] Ying Zhong and Chenze Huang. A dynamic graph representation

learning based on temporal graph transformer. Alexandria Engineering

Journal, 63:359–369, 2023.

[55] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang

Song, and George Karypis. Tgl: A general framework for temporal

gnn training on billion-scale graphs. arXiv preprint arXiv:2203.14883,

2022.

[56] Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor

Prasanna. Disttgl: Distributed memory-based temporal graph neural

network training. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, pages

1–12, 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Graphs
	2.2 Temporal Graph Neural Networks
	2.3 TGNN Training on CTDG

	3 Motivation
	3.1 Challenge in Batched TGNN Training
	3.2 Spatial-independence in Scattered Events
	3.3 Temporal-independence in Stabilized Memories

	4 Design
	4.1 Overview of Cascade
	4.2 Topology-Aware Graph Diffuser
	4.3 Similarity-Aware Graph Filter
	4.4 Adaptive Batch Sensor

	5 Evaluation
	5.1 Methodology
	5.2 Overall Performance
	5.3 Optimization Analysis
	5.4 Overhead Analysis
	5.5 Scalability on Large-scale Graphs
	5.6 Comparison with Prior Dynamic Batching

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

