Check for
Updates

Cascade: A Dependency-Aware Efficient Training
Framework for Temporal Graph Neural Networks

Yue Dai
University of Pittsburgh
Department of Computer Science
Pittsburgh, PA, USA
yud42@pitt.edu

Abstract

Temporal graph neural networks (TGNN) have gained signif-
icant momentum in many real-world dynamic graph tasks.
These models use graph changes (i.e., events) as inputs to
update nodes’ status vectors (i.e., memories), which are then
exploited to assist predictions. Despite their improved accu-
racies, the efficiency of TGNN training is significantly limited
due to the inherent temporal relationship between the input
events. Although larger training batches can improve paral-
lelism and speed up TGNN training, they lead to infrequent
memory updates, which cause outdated information and re-
duced accuracy. This trade-off forces current methods to use
small batches, resulting in high latency and underutilized
hardware. To address this, we propose an efficient TGNN
training framework, Cascade, to adaptively boost TGNN
training parallelism based on nodes’ spatial and temporal de-
pendencies. Cascade adopts a topology-aware scheduler that
includes as many spatial-independent events in the same
batches. Moreover, it leverages node memories’ similarities
to break temporal dependencies on stabilized nodes, enabling
it to pack more temporal-independent events in the same
batches. Additionally, Cascade adaptively decides nodes’ up-
date frequencies based on runtime feedback. Compared to
prior state-of-the-art TGNN training frameworks, our ap-
proach can averagely achieve 2.3Xx (up to 5.1X) speed up
without jeopardizing the resulted models’ accuracy.

CCS Concepts: « Computing methodologies — Artificial
intelligence; Learning paradigms; Parallel algorithms.

Keywords: Temporal Graph Neural Network, Dynamic Graph,
Efficient Deep Learning, Parallel Computing

ACM Reference Format:

Xulong Tang
University of Pittsburgh
Department of Computer Science
Pittsburgh, PA, USA
tax6@pitt.edu

Yue Dai, Xulong Tang, and Youtao Zhang. 2025. Cascade: A Dependency-

Aware Efficient Training Framework for Temporal Graph Neural
Networks. In Proceedings of the 30th ACM International Conference

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/2025/03.
https://doi.org/10.1145/3676641.3716250

95

Youtao Zhang
University of Pittsburgh
Department of Computer Science
Pittsburgh, PA, USA
youtao@pitt.edu

on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 2 (ASPLOS °25), March 30-April 3, 2025, Rot-
terdam, Netherlands. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3676641.3716250

1 Introduction

Dynamic graphs are widespread across various domains,
such as social media networks [20], knowledge graphs [22],
autonomous systems [24], and traffic networks [29]. Un-
like static graphs, whose nodes and edges remain constant,
dynamic graphs evolve over time, introducing challenging
tasks [1, 3, 6, 16, 20, 21, 31]. Inspired by the successes of
Graph Neural Networks (GNNs) [8, 9, 15, 19, 39, 48], Tempo-
ral graph neural networks (TGNNs) have attracted growing
attention for their improved accuracies in many real-world
dynamic graph tasks [17, 21, 31, 33, 38, 43, 45, 47, 50, 52, 55].
On top of native GNNs, recent TGNN models keep a state
vector for each node, called node memory, to encode the tem-
poral dynamics and spatial relationships around the node.
These memory vectors are continually updated and serve as
the basis for making predictions, allowing TGNNs to achieve
extraordinary prediction accuracy. With growing demands
and interests in TGNN-based models, there is an escalating
demand for developing training schemes that can swiftly
adapt TGNNs to the ever-changing landscapes of dynamic
graphs, ensuring that these models can be deployed quickly
and effectively in real-world scenarios.

However, TGNN training faces significant challenges due
to the sequential dependencies of input events, which sub-
stantially limit throughput. Recent studies utilize Continuous-
Time Dynamic Graphs (CTDGs) to model the evolving dy-
namics of graphs by viewing them as sequences of event
updates, such as changes to nodes or edges. These events
are typically represented as edges connecting one node to
another and are chronologically ordered by their timestamps.
Existing TGNN training approaches segment these event se-
quences into batches for parallel processing [31, 45, 55, 56].
The computation within a single batch generally involves
three steps: First, TGNNs predict edge presence or node
classes based on the latest node memories, then compare
these predictions to events within the batch (as the ground
truth) to calculate losses and update model weights. Sec-
ond, the model uses events within the batch to generate

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

messages for updating node memories. Lastly, it uses these
messages to update nodes’ memories for future usage. How-
ever, this batching process often overlooks the sequential
occurrence order of events within the same batch. Conse-
quently, larger batches may speed up processing but rely
on potentially outdated node memories, thus compromis-
ing prediction accuracy. To maintain high accuracy, smaller
batches are preferred to ensure updates incorporate the most
recent memories. Nonetheless, these smaller batches lead
to more training iterations and under-utilize the underlying
hardware resources, leading to inefficiencies. For example,
while training the Temporal Graph Network [31] on the
Wikipedia [20] dataset, a batch size of 900 results in a 25%
better validation loss compared to a batch size of 6000 but
slows training on a Nvidia A100 GPU by 3.5%.

Fortunately, there exist significant opportunities to strate-
gically increase the size of training batches in TGNNs with-
out compromising the freshness of the nodes’ memories.
Specifically, the potential stems from two key observations:
First, input events tend to occur sparsely across different
parts of the dynamic graph. In particular, while specific nodes
may experience frequent incoming and outgoing events, lead-
ing to quickly outdated memories, others may see much
fewer events and retain their memory up-to-date over time.
Consequently, when events impact distinct areas of the graph,
they will have weak dependencies, presenting an opportu-
nity to process them in parallel without losing accuracy.
Second, memories within specific nodes could remain stabi-
lized within a period. In particular, some nodes’ memories
may not change much by their outgoing or incoming events
and, therefore, can be updated less frequently. For example,
a consistently popular product in an e-commerce graph may
have stable states (e.g., rating) despite frequent purchases.
Events related to such stable nodes possess low dependen-
cies between each other, hence allowing for their parallel
processing. These insights suggest a pathway to optimizing
TGNN training: By recognizing and leveraging the spatial
relationship of events and the temporal stability of node
memories, it’s feasible to expand batch sizes adaptively.

Inspired by these observations, we propose a TGNN train-
ing framework, Cascade, to adaptively boost TGNN training
parallelism based on input events’ spatial and temporal de-
pendencies. Cascade adaptively increases batch size during
TGNN training in three folds: First, it uses a topology-aware
batching algorithm to pack as many spatially independent
events as possible into single batches, maximizing parallel
processing while maintaining memory freshness. Second, it
identifies stabilized nodes with minimal memory variations
and excludes their updates from batching decisions, bypass-
ing their temporal dependencies for more flexible batch con-
figurations. Third, it dynamically adjusts the frequency of
node memory updates based on runtime feedback during the
training. We summarize our contribution as follows,

96

Yue Dai, Xulong Tang, and Youtao Zhang

e We investigate the trade-off between parallelism and ac-
curacy in TGNN training and recognize the potential of
boosting parallelism of TGNN training by batching spatial
and temporal independent events adaptively.

e We propose a TGNN training framework, Cascade, to dy-
namically identify the spatial and temporal dependencies
between input events and pack as many events as possible
without worsening node memories’ freshness.

e We evaluate our approach on various real-world bench-
marks. The experimental results show that our proposed
training framework can achieve up to 5.1 speedup (2.3x
on average) over the state-of-the-art TGNN training frame-
work without increasing model losses.

2 Background
2.1 Dynamic Graphs

In contrast to static graphs, which are characterized by a
constant set of nodes and edges G = (V, E), dynamic graphs
embody nodes and edges that evolve over time. There are two
primary representations of dynamic graphs: Discrete-time
dynamic Graphs (DTDGs) describe them as a sequence of
static graph snapshots taken periodically, while Continuous-
Time Dynamic Graphs (CTDGs) view them as a sequence of
events, each detailing updates like edge changes. Recent stud-
ies have shown a preference for CTDGs due to their superior
capacity for capturing detailed temporal variations over the
static time frames inherent to DTDGs [17, 31, 54, 55]. In fact,
DTDGs are often considered specific instances of CTDGs,
distinguished by the segmentation of events into uniform
time intervals [55]. In the CTDGs, dynamic graphs are de-
noted as dynamic graphs as G = {e(#1), e(t2), ...}, where each
e(t;) indicates an event happened at timestamp t;, typically
represented as an edge with a timestamp. The prediction
tasks for CTDGs can be depicted in Equation 1.

yi = fo(Gi . ti) = fo({e(tr), e(t2), .e(ti) 1. i) (1)

At the prediction time ¢;, the model fy(-) takes all previous
events G; = {e(t;),e(t),...e(ti_1)} as inputs and predicts
the testing nodes’ classes or the presence of future edges.

2.2 Temporal Graph Neural Networks

The Temporal Graph Neural Networks (TGNNs) are widely
studied and achieve state-of-the-art accuracies in CTDG
tasks [17, 21, 31, 33, 38, 43, 47, 50, 52]. In addition to embed-
ding nodes’ neighborhood information like Graph Neural
Networks (GNNs) [8, 9, 15, 19, 39, 48], TGNNs maintain a
state vector, usually referred as node memory, for each node.
This memory encodes the node’s history and is used for pre-
dictions. The node memory is updated once the node is the
destination or the source of a new event. Specifically, TGNNs
produce node embedding for the predictions in three steps:

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

First, if an event e(t) adds an edge e,, from node,, to node,
(i-e., e(?) = eyp), the message generating step will be trig-
gered, in which two messages are generated as Equation 2.
For simplicity, we only present the updating and following
operations of node,, which is the same for node,,.

Moy = msg(s,, s, AT, eyp) @)

The msg(-) is a learnable module such as Multi-Layer Percep-
tions (MLPs). The s, and s, denote the memories of node,
and node, at their last updated times, e,, denotes the edge
features, and AT is the difference between the event’s occur-
ring timestamp and node,,’s last updated time.

Second, when TGNN models trigger a memory updat-
ing step, nodes u and v aggregate messages generated by
previous events, then update their memories as Equation 3.

st = UPDT(s;, AGGR(mp, |k € N(u)), 3)

The N(u) denotes neighbors of node,. The AGGR(-) is usu-
ally implemented by a mean (i.e., averaging sampled mes-
sages), most_recent (i.e., directly using the latest message)
function to aggregate messages from the node’s neighbors [21,
31, 42]. The UPDT(-) uses aggregated results to update the
node’s memory, which is usually implemented by a recurrent
neural network such as Gated-Recurrent-Unit (GRU) [7].

Lastly, when TGNNs make a prediction that involves node,,,
the node embedding step is triggered, in which TGNNs use
a GNN module, such as Graph Attention Network (GAT) [39],
to embed the node’s and its neighbors’ memories into its
final node embedding, as depicted in Equation 4.

h, = GNN(sy, sx|k € N(u)), (4)

The resulting node embedding h,, is fed into a final MLP
module to get the prediction results.

Batch k - 1

Step 1: Node Embedding
& Prediction

—e(t;,1): Add Edge es, rle(t) = ey
o e(tiy1) = e3q
@& ® ==
® et [}
Batchk __ __ __jle(tiq]! ms, -
Batch k + 1 o .S‘tep 2 — Step 3: S5 s!
-re(tisz): Add Edge exy |Z 1420 ge Memory ———
O : e(tisal) Generating Updating |—4—=
0.0 == | Batch k M43 —I-
® Batch k + 1
> e(tiy3): Add Edge e, [input Events |

> e(tivz) = exq
e(tiy3) = €4
|

Figure 1. TGNN training steps: First start with node embed-
ding and prediction, then message generating, and finally
memory updating.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

2.3 TGNN Training on CTDG

In recent developments, training methods for TGNNs have
evolved from traditional snapshot-based approaches, which
process the dynamic graph in a snapshot-by-snapshot man-
ner (i.e., DTDG) [29, 32, 33, 40, 44, 47, 50, 52], to event-
batching training methods, which segment the input event
sequence of CTDGs into batches and then process events
within a single batch in parallel [21, 31, 43, 46, 55, 56]. Each
batch’s events serve a dual purpose: they act as the ground
truth for calculating prediction losses and the inputs for
updating node memories.

Using edge prediction task as an example, as illustrated
in Figure 1, a TGNN model takes a sequence of events (i.e.,
graph changes) as training inputs, divides the sequence into
batches, then processes each batch in three steps as follows:

(1) First, it uses the node memories updated in the previous
batches to embed node final representations and use the
resulting node features to predict the events in the current
batch. The trainer will then calculate losses based on the
predictions and the input events, back-propagate losses, and
update model weights accordingly. For instance, as shown
in the figure, if there is an event e(t;) = ey3 in the batch k,
the TGNN will use s, , s; from updated before the batch as
Su, Sk to compute hy as Equation 4 and predict the probability
of the edge é(¢;). The trainer will then compute the Binary-
Cross-Entropy Loss to measure how much the probability
of this real edge is higher than a wrong edge, such as ey,
and use the optimizer like Adam Optimizer [18] to backward
propagate the loss and update the model weights.

(2) Second, the messages are generated based on the input
events within the batch. For instance, if there is an event
e(t;) = ey3 in the batch k, the model will generate m;,3; and
ms; based on the event e,s, its timestamp ¢;, and its source
node’s current memory s, , and destination node’s current
memory s; following Equation 2).

(3) Lastly, for each event within the current batch, the
trainer updates its source and destination nodes’ memories.
For instance, since e(t;) = ey in the batch k involves node;
and nodes, the models will update s; to s, and s to s; as
Equation 3) to ensure that they have up-to-date information.

In the batched training diagram, all the events within
the same batch will be processed in parallel to finish the
abovementioned steps. For example, for batch k, the events
e»3 and es4, will be processed in parallel: First, the s, , s, s,
will be used to compute the probability e;3 and es4 (ie., é(t;)
and €é(t;41)); next, messages mys3, M3y, msq and mys will be
generated in parallel as well; lastly, s;, s, s, will be updated

to sy, s3,s; in parallel using the previous node memories.

3 Motivation
3.1 Challenge in Batched TGNN Training

While batching as many events during TGNN training en-
hances training efficiency by parallel processing input events,

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

it risks using outdated information and neglecting the tem-
poral sequence of these events within a single batch. This

}g ONorm Val Loss & Latency

1.2

0.9

0.6

0.8
oo Qoo Qoo Qoo Qoo Qoo Qoo Qoo o
00 Q00 Q00 QO0O0Q000Q00Q000Q00Q0 00000
DO Q0O QMO0 QNN QO OO OO QOO
LA I I B A A A I A A I A A P I A T i
AR AL R R T B L -l L -
TGN | JODIE | TGN | JODIE | TGN | JODIE | TGN | JODIE | TGN | JODIE

WIKI REDDIT MooC WIKI-TALK SX-FULL

Figure 2. Normalized training latency and validation loss in
TGN and JODIE trained under different batch sizes.

oversight makes TGNN models insensitive to intra-batch
graph dynamics, potentially compromising their awareness
of changes occurring within the current training batch. A
major consequence of batching too many events is the po-
tential expiration of node memories, leading to outdated em-
beddings, stale messages, and inaccurate memory updates.
Moreover, concurrent event processing may disrupt their
temporal sequence, which is crucial for capturing the graph’s
evolution. For example, a trending article’s recommendation
(as an event) may trigger rapidly increased product purchases
in follows (as following events), showcasing how the tempo-
ral order of events can signal significant shifts in the graph’s
structure. As such, large batches could potentially jeopardize
model accuracies, leading to compromised training results.

However, opting for small batches to preserve the tempo-
ral integrity of events may inevitably slow down the training
process since it increases the number of training iterations
required per epoch. To explore the impact of training batch
sizes on training results and latencies, we employ a state-of-
the-art training framework, TGL [55], to train two TGNN—
Temporal Graph Network (TGN) [31] and JODIE [21]—on
the datasets listed in Table 2. More details about the models
and datasets are included in Section 5.1. Specifically, we train
the models in different training batch sizes on a Nvidia A100
GPU and then evaluate their performance at a batch size of
900. As shown in Figure 2, while larger batches effectively
reduce training latency, the resulting models’ validation loss
significantly increases. For instance, compared to BS=900 (us-
ing a batch size of 900), although BS=6000 reduces 71% TGN
training latency on WIKI, the corresponding valuation loss
is increased by 35%. Small batches, while helping accuracies,
could cause poor training latencies. Moreover, the hardware
utilization is significantly low in small batches. For instance,
when training TGN on WIKI with BS=900, the streaming
multiprocessor and memory utilization are as low as 17.2%
and 15.2%, respectively. In contrast, BS=6000 increases these
values to 39.8% and 34.2%. To this end, finding a solution
that balances TGNN training efficiency and effectiveness is
significant yet challenging.

98

Yue Dai, Xulong Tang, and Youtao Zhang

3.2 Spatial-independence in Scattered Events

Our first observation is that training batch can be enlarged
without accuracy loss by adding events from different subgraph
regions. Specifically, events within the input sequence often
occur in distinct subgraphs and impact diverse sets of nodes.
They are independent of each other and can be added to the
same batch for two reasons: First, not all nodes will experi-
ence as many events around them during a period; thus, they
do not expire simultaneously. This staggered expiration al-
lows us to continue relying on nodes that remain unaffected
since their last updates. Second, because events in different
subgraphs typically exert minimal influence on each other,
they can be processed in parallel without jeopardizing the
integrity of the temporal information they carry.

To assess the potential of scattered events, we segment
the training sets of datasets in Table 2 using a batch size of
900 and analyze the distribution of node degrees (i.e., the
number of events outgoing from and incoming to each node)
within these batches. As shown in Figure 3, most nodes
are involved in far fewer events than a subset of highly
connected nodes—the majority have only 0 to 25 events per
batch. Even the most connected nodes have only 140 to 175
events, far less than the batch size. Hence, by significant
chance, we can pack more events into the batches if they are
spatially independent of current batched events.

100%

s

£ 80%

2

£ 60%

2

o 40%

-3

£ 20%

@

a 0% 1

Q D000 0 +H000 00 +000O00 +000Q0 +000CQ0 QO +

b4 yyereg|ygereglyigeregldgeorveg|daTeres

=] LR - AR R PR LR I CE- - -

z NFoQ S¥6Q SRR =Y ST o NF OO

© © © © ©

WIKI REDDIT MOOoC WIKI-TALK SX-FULL

Figure 3. The distribution of nodes’ degree within the batch
size of 900 in different datasets.

However, the fixed batching strategy used by existing ap-
proaches cannot fully exploit the opportunities from this
spatial-independent input. While large batches may poten-
tially include more spatial-independent events, they could
potentially pack too many dependent events if there are
events extensively occur around specific nodes; conversely,
although small batches may mitigate too aggressive batching
on those high-degree nodes, they could potentially miss the
opportunity of packing spatial-independent events. As such,
an ideal batching scheme should adaptively increase and
decrease batch sizes to include as many spatial-independent
events as possible while avoiding packing too many spatial-
dependent events on those high-degree nodes. We illustrate
an example in Figure 4, in which an original batch con-
tains events related to node; and its neighbors: If the fol-
lowing events continue to affect the same set of nodes (e.g.,
e16, €15, €13 continues to affect node; and its neighbors), then

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

Spatial Dependent:

FoIIowing events involve node;

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Temporal Dependent:
node, is NOT

[gr—gr—pr—ay———

Spatial Independent:

Fullowmg events not involve node, *t

stabilized
|node1 =57

poral P

>
‘912‘317‘918‘919‘%:“3@‘ ead‘ f’ | &

elz‘ e17‘ els‘ e19‘ 816‘ elS‘ e13‘I P node, is stabilized

|
|
|
|
node; = ST ~ S7 I
|
|
|

.\en\e”\em\elg\, o[-]

(a) Spatial Independence

(b) Temporal Independence

Figure 4. An example illustration of (a) Spatial Independence due to events scattered in different subgraphs; and (b) Temporal
Independence due to stabilized node memories with their consequent potential in increasing batch sizes.

they are spatial dependent to current batch and the batch can-
not be increased. Conversely, if the following event affects
other nodes (e.g., e4c, €qp, €aq affect node, and its neighbors
instead of node;), we may expand the batch to include them.

3.3 Temporal-independence in Stabilized Memories

Our second observation is that training batch can also be
enlarged without accuracy loss by adding events related to

stabilized node memory. Specifically, during the memory up-
dating phase in TGNNs, many nodes reach a state of stability
for extended periods. These stabilized nodes provide reliable,
up-to-date memories, and their stability enables associated
events to be processed in parallel without missing impor-
tant temporal information. The intuition behind this is that
nodes in the real world may usually stabilize and show simi-
lar behaviors over a period. For instance, a Reddit user may
consistently show interest in specific topics, such as a par-
ticular game, and frequently engage in related discussions.

100%
80%
60%
40%
20%

0%

20 [—
40 |—
0

20 Ee——
40 |—
0

20 —
40 |e—
0

20 Eee——
40 [e—
0 |—
20 [——
40 —
0 |—
20—
40—
0 |—
20 —
40 m——
0 |—

20—
40 —
0 [—
20 T—
40 Ee——
0 |—

20 m—
40 |e—

0 [

Node Stable Ratio(%)

L0 e e n e e noinje e n e none unon
DL Lo CIOL Lo SO SO 0O L|0OL S0 L C/0LC£ O
88828525858 55328823828835828323¢
Q Q Q. Q Q Q. Q Q. Q Q Q Q. Q Q. Q Q) Q. Q Q Q.
mmmmmmmmmmmmmmmmmmmmwmmmmmmmmm
TGN | JODIE | TGN | JODIE | TGN | JODIE | TGN |JODIE| TGN | JODIE
WIKI REDDIT WIKI WIKI WIKI

Figure 5. The ratio of stable node updates in different epochs
when TGN and JODIE.

As depicted in Figure 5, while training TGN [31] and
JODIE [21] (on the datasets specified in Table 2), on average,
over 84% of the nodes maintain similar memory before and
after updates (i.e., with a cosine similarity higher than 0.9)
when models are trained after 20 epochs. To this end, by mea-
suring runtime information and identifying these stabilized
nodes, it is highly possible to adaptively neglect unneces-
sary temporal dependencies among events, thereby batching
more events related to the same but stabilized nodes into
a single batch without sacrificing the integrity of temporal
data. We illustrate the cases using the same example in Fig-
ure 4: For the extensively affected node;, if it is not stabilized

99

(i.e., it has dissimilar memories before and after the node up-
date in the original batch), then we need to update it before
conduct following computations on e, €15, €13. Conversely,
suppose it is stabilized (i.e., it has highly similar memories
before and after the node update in the original batch). In
that case, we may expand the batch to conduct computations
on ey, €15, €13 as they can use similar input no matter with
or without updating nodes’ memories.

4 Design
4.1 Overview of Cascade

We introduce Cascade, an efficient training framework to in-
crease batch sizes while keeping model accuracy. It consists
of three designs: First, we propose a Topology-aware Graph
Diffuser (TG-Diffuser) to incorporate spatial-independent
events into batches. Second, we design a Similarity-aware
Graph Filter (SG-Filter) to add temporal-independent events
into batches. Lastly, we introduce an Adaptive Batch Sensor
(ABS), a profile-based auto-tuner to analyze input training
data and automatically control the TG-Diffuser.

I Preprocess

Training Event Sequence II
I[Topology-Aware Graph Diffuser: [Adaptive Batch Sensor:] I
I Build dependency table Analyze original batching statistics

I Training Epoch

Training Event Sequence
Topology-Aware G-raph Diffuser:
I Parallelly increment the last event
vO 40

rBatch I
I [Node Embedding & Prediction] I

]l|

Message Generating

Similarity-Aware Graph Filter: -
I Update node stable status — I‘ieLno_ry_Up- dla_t/rli_g_ — _]j

Figure 6. The workflow overview of Cascade.

The complete workflow of the Cascade framework is il-
lustrated in Figure 6. We also detail it in Algorithm 1. Be-
fore training, the TG-Diffuser and ABS collaboratively pre-
process the sequence of events in three steps: Initially, the

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

TG-Diffuser analyzes the training events (@) to construct a
dependency table that captures both spatial and temporal
dependencies among the events (i.e., line 5 in Algorithm 1).
Subsequently, the ABS processes these events as input ()
and profiles the batching patterns using an originally de-
fined sample batch size, which is small enough to ensure
the training proceeds without deteriorating the model’s per-
formance (i.e., line 6 in Algorithm 1). Based on this analy-
sis, the ABS sets the appropriate hyper-parameters for the
TG-Diffuser (@) (i.e., line 7 in Algorithm 1), optimizing the
training setup. During training, the TG-Diffuser collaborates

Algorithm 1: TGNN training in Cascade

Input :G: Input dynamic graph as event sequence; N
Number of input training events; By: pre-defined
batch size; E: Training epochs.

Initialize: Topology-Aware_Graph_Diffuser(TG-Diffuser);

Initialize Adaptive_Batch_Sensor(ABS);

Initialize Similarity-Aware_Graph_Filter(SG-Filter);

Initialize TGNN model(TGNN);

// Preprocessing before training:

5 TG-Diffuser.build_dependency_table(G);

6 © = ABS.max_endurance_profiling(G);

[

)

©w

'S

7 TG-Diffuser.set_parameters(w);
s st_idx = ed _idx = 0;
// Training:

9 fore=0,1,--- ,E—1do

SG-Filter.reset();

while ed_idx < N do
st_idx = ed_idx;
// Signify stable nodes:
S = SG-Filter.get_stable_nodes();
// Get current batch:
ed_idx = TG-Diffuser.get_last_event_index(S);
7 = G[st_idx : ed_idx];
// Model Training:
H = TGNN .Node_Embedding(3);
y = MLP(H);
L(y, §).backward();
TGNN.Generate_Message(7);
TGNN.Update_Node_Memory(3);
// Update stable node flags:
SG-Filter.update_stable_nodes_flags(TGNN);

22 return TGNN;

10

11
12

13

14

15

16

17

18

19

20

21

with the SG-Filter to dynamically increase the training batch
sizes through a five-step process: Initially, the TG-Diffuser
sends a request to the SG-Filter (@) and retrieves (@) the
node stable flags(i.e., line 12 in Algorithm 1), which are reset
to all-false at the start of each epoch. Then, the TG-Diffuser
ignores those stable nodes and identifies the last tolerable
events for the current batch using the previously established
dependency table (i.e., line 13 in Algorithm 1). This informa-
tion is then used to segment a new batch from the training

100

Yue Dai, Xulong Tang, and Youtao Zhang

event sequence (@) (i.e., line 14 in Algorithm 1). Following
this, the TGNN models access the relevant events (@) and
proceed with the designated training steps (i.e., lines 15-19
in Algorithm 1). Lastly, the SG-Filter dynamically updates
the node stable flags based on the node memories before and
after the updates within the current batch (@) (i.e., line 20
in Algorithm 1), ensuring that the node stable information
is dynamically adjusted over training.

4.2 Topology-Aware Graph Diffuser

The TG-Diffuser efficiently integrates spatially independent
events into batches through a two-step process: Initially,
before training, it builds a dependency table that maps the
spatial relationships between input events and nodes. The
table reflects all related events around nodes. Next, for each
batch, the TG-Diffuser independently identifies the last tol-
erable event on different nodes, which signifies the necessity
to update node memories, and then includes all preceding
unprocessed events up to this point into the current batch.
Build Dependency Table. Given a training dynamic
graph of N nodes, the TG-Diffuser first builds a N-entries
Dependency Table to reflect the spatial dependency between
the training events and their related nodes. Each entry within
the table contains two fields: Node Idx describes a node, and
Event Idx consists of a sequence of event indices that in-
dicate the events that may affect the node and, conversely,
potentially may rely on the node. We illustrate the workflow
of building the dependency table in Figure 7(a) and show the
detailed algorithm in Algorithm 2. For each node (i.e., each
table entry), the TG-Diffuser fills its Event Idx in two steps.
First, it inserts all incoming and outgoing events indices of
the current node into the Event Idx. For instance, as shown
by the Step 1, for node; = ny, its incoming and outgoing
events {e(0),e(1),e(2),e(3),e(8),e(10)} are added into the
entry. The reason behind this is straightforward—all these
events will be directly used to update the node’s memory
as m,_ in Equation 3, and the prediction about them will
directly use the node’s memory as s, in Equation 4. Second,
the TG-Diffuser looks up the node’s neighbors and adds
all their future events to the current node’s Event Idx. As
shown by the Step 2, where node; has nodes as its neigh-
bors due to e(8) = ey3, we add the events of nodes after e(8)
into node;’s Event Idx. These events are relevant to the
current node because they update the neighbors’ memories,
influencing the current node’s future memory updating and
embedding; reversely, predicting them relies on features of
the current node. It is worth mentioning that we do not in-
clude the past events in neighbors before they are connected
to the current node (e.g., do not add events of nodes before
index 8)) since these neighbors are independent with the
current node before there is an event building a connecting
between them. We only consider events from the current
node’s 1-hop neighbors since they directly affect the current
node’s memories and propagate information from further

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

[Eventidx [o[1[2[3[4[5[6[7[8[9[10[11] | .I—m
|[Event Edge |15 le17 €18 |10 [€an |€ac ad [eas le13 |e15 e16 €34 | 1 0,1,2,3,8,9,10,11 |1 I 1 0,1,2,3,8,9,10,11 | |LastEvent | 88| - |- | - | - |9]10] - [11] - [- [-
= . 2 0,1,2,38,910 I 2 0,1,2,3,8,910 W Step 1. Search the Ias(‘node event under Max,=4
or node,; = ny: 3 8,9,10,11 3 8,9,10,11
E(ny)
4 7,11 4 7,11 ast Event = 8
('; ,e(1),e(2),e(3),e(8),e(9),e(10)} 5 9,10 I 5 9,10 Step 2. Reduce tot‘he batch last event
0,1,2,3,8,9,10 g eo | & 2 @ ®
¢ L1 1012389 7 1,2,3,8,9,10 | 7 1,2,3,8,9,10 o] (V)]
Step 1. Sorted insert node’s in/out 8 2,3,89,10 | 8 2,3,89,10 @@/l\m/n @
9 3,8910 9 3,89,10
E(ny) = {e(8)-e(11
—omp)= <(11)) a(ie,10) [4,56,7,11 | [Catie.10) [4,5.67,11]
m0123891011 Bike. 1) TILA.0.7 | fRles11) 14567 Q[EEI8x o] 1] 2] 3]4]5] 6] 7 [8]8]w0]
o EEEEERNEEEE c(i.e,12) |56,7 c(ie,12) |567 Event Edge |i2le17P 1k 19 Pab Bac Padkasksslisislsa|
%tep 2. Sorted insert node’s neighbors’ future events d(i.e,13) [6,7 | d(i.e.,13) [6,7 |

(a)

Step 3. Get batch & Update node event pointers
b)

Figure 7. The workflow of TG-Diffuser: (a) Building dependency Table during preprocessing and (b) Looking up the last

tolerable event during training.

Algorithm 2: Build Dependency Table

Algorithm 3: Lookup Last Tolerable Event

Output: D: Node-event dependency Table
Input :G: Input dynamic graph as event sequence; N
Number of nodes.

1 Initialize D = {Dg, D1, ,Dn—1};
// Loop Parallel:
2 for n = nodey, nodey, - - - ,noden_1 do

3 for enq € OutEvents(n) U InEvents(n) do

// eng: Event from node n to node g
4 Dy .sorted_insert(enq);
5 for eqk € OutEvents(q) U InEvents(q) do
// Insert future events in ¢
6 if egy.index > eng.index then
7 Dp.sorted_insert(eqr);
s return D;

distant neighbors. For instance, if node, has neighbor node,
and node, has neighbor node,, the updates in node, will not
affect node, unless node, is updated; otherwise, node, will
always use the same version of node,, even if node, has an
expired neighbor node,. We implement the process using
OpenMP [4] to enable parallel building; to ensure that the
resulting Event Idx contains unique events sorted by their
occurrence, we use sets in C++ to implement the Event Idx
entries. The dependency table is stored in the host memory
and will not be updated once built.

Get Last Tolerable Event. During training, TG-Diffuser
looks into each node and finds the last tolerable event for the
current batch independently. Intuitively, the process includes
more events on those less affected nodes without introducing
more events to those mostly affected nodes. To quantitatively
measure the extension of being affected, we introduce a new
parameter, namely, Maximum Revisit Endurance (Max,). It
defines the maximum number of relevant events (i.e., events
inEvent Idx)for anode within the batch. With higher Max;.,
the nodes will be affected/used more before updating. The
Adaptive Batch Sensor will analyze and control this param-
eter, as specified in Section 4.4. The TG-Diffuser increases
the batch size under the limit of Max, in three steps, as illus-
trated in Figure 7(b) and specified in Algorithm 3: First, at

101

Input :D: Node-event dependency Table; P: Node’s
current latest event ptr; N Number of nodes;
Max, maximum revisit endurance.

Output:K: the last tolerable event index for current batch.

1 Initialize K = MAX_INT;

// Loop Parallel: get last tolerable event
2 for n = nodey, nodey, - - -

3 Dy = D[n];

,noden_1 do

4 cur_ptr = P[n]; // cur_ptr points to node’s
latest relevant event in its event index

5 max_perm_ptr = min(cur_ptr + Maxy, Dy.length — 1);

6 en = Dp[max_perm_ptr];

7 K = min(en, K);

// Loop Parallel: update nodes’
8 for n = nodegy, nodey, - - - ,noden_1 do
9 if D[n][P[n]] < K then
10 P[n] ++;
11 return K;

event pointers

each node, the TG-Diffuser begins with the node’s earliest
unprocessed events indicated by the node’s current event
pointer. It increments this pointer by Max, to determine the
node’s last tolerable event, at which this node is involved
too excessively in the current batch and requires an update.
For instance, as shown in the figure, for node,, it starts from
e(0) and gets the last event at e(8), meaning that the node,
is affected by too many events (i.e., Max, = 4) and should be
updated at e(8). For those events that have all their events
bypassed, we set their result as MAX_INT to indicate that
all remaining events in their entries can be processed safely.
Second, the TG-Diffuser reduces the last event indices from
different nodes and gets the smallest index among them. In-
tuitively, we would like to have a batch processed once a
node cannot tolerate more related events. Using the same
example, as shown in the figure, the batch’s last event is e(8)
since any events after this one may use intolerably expired
information on node; or node,. Lastly, the TG-Diffuser re-
turns the last event index as depicted in Algorithm 3 and
updates all nodes’ last event pointers, making them point to
the next unprocessed event within the related nodes.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Yue Dai, Xulong Tang, and Youtao Zhang

Node Idx [Stable Flag| | [Node Idx Event ldx [Nodeldx [1]2]3]4[5[6]7[8][9]a][b]c[d]
Previous Batch 1 1 I 1 0,1,2,3,8,9,10,11 | |LastEvent | - | - | - |- |[-[-|-[10] - [11] -] -] -]
er, 2 1 2 0,1,2,3,8,9,10 ‘ Ignore Stable nodes, then search the last
e17 T s) 3 0 I 3 8,9,10,11 node event under Max,=4
viemory. tep 2: 4 0 4 7,11
Step 1: Similarity | Check if node is 5 0 I 5 9,10
1 Compute similarities| 0.9 stable R 5 0 | 5 0 Reduce to the batch last
- - 0.9 eent @ P ©®
Memon Unaaie Sim(s7,57) sim(s5,s1) > 6, 7 1 | 7 1,2,3,8,9,10 @
lemory Updal im(S;. St 0.9 el sim 8 0 8 2,3,8,9,10
Sim(S3,53) - +) ,3,8,9, ® -©
= L 2,52 Sim(S3,53) > Ogim I @/z)
s> s sim(s;,5%) Sim(S3,S5) > Oun 9 0 9 3,8,9,10 @/
5108 a(e,10)] 0o || [a(ie,10) (456711 ® ®
5, > b (i.e., 11) 0 | L b(ie,11) |4567 Eventldx |o0[1][2[3[4][5][6]7]8]9]10[11]
c (i.e., 12) 0 c(ie,12) |56,7 rEvent Edge Fio17k 1810 Pableac Paakasrslis ksl
d(i.e., 13) 0 (e (i.e,13) [6,7 | Get batch with temporal & spatial ir
(a) (b)

Figure 8. The workflow of SG-Filter: (a) Update node stable flag and (b) Guide TG-Diffuser to ignore stable nodes while

looking up the last tolerable event.

Chunk-based Optimization for Large-Scale Graphs.
While TG-Diffuser has low overhead for moderate-sized dy-
namic graphs, its overhead can increase with larger graphs
(as we quantified on large-scale graphs in Section 5.5). To ad-
dress this, we propose a chunk-based table-building strategy
to reduce the overheads and enhance scalability. For large
event sequences (e.g., billions of events) in large-scale graphs,
we apply a two-step divide-and-conquer approach: (1) We
split the sequence into smaller chunks, each containing a
subset of consecutive events; and (2) we build tables indepen-
dently for each chunk, considering only within-chunk depen-
dencies. The final event in each chunk serves as a boundary
to limit dependencies. Training is performed sequentially
across chunks, ensuring node memories update in the cor-
rect order. This optimization boosts TG-Diffuser efficiency
in two ways. First, processing smaller chunks improves data
locality, significantly reducing cache misses and consequent
memory latencies during the table building process. Specifi-
cally, instead of repeatedly accessing large memory sections
that exceed cache capacity, processing smaller chunks allows
each thread (i.e., node) to work with data that is more likely
to remain in the cache. Second, by pipelining table building
and training, training in each chunk can start as soon as its
table is ready and training in the previous chunk has finished.
This approach speeds up overall processing by pipelining
and overlapping table building with training tasks.

4.3 Similarity-Aware Graph Filter

As discussed in Section 3.3, if a node exhibits stable memory—
meaning its memory status changes minimally over time—-
events associated with this node will consistently retrieve
similar input memories. Consequently, we can neglect these
stabilized nodes when assessing dependencies within the in-
put sequence. The Similarity-Aware Graph Filter (SG-Filter)
is designed to identify temporal independence among node
memories, thereby mitigating unnecessary constraints im-
posed by these temporal dependencies.

The operation of the SG-Filter unfolds in two main steps,
as depicted in Figure 8. First, the SG-Filter maintains and

102

updates node stable flags once the node memory is updated
in two steps: At step 1, it calculates the similarities between
nodes’ memories before/after their updates. As illustrated
in Figure 8(a), when memories in nodey, node,, node; are up-
dated from s, s;,s; tos],s;,s; due to input events e ,, e},
the SG-Filter computes the similarities between s and s,
s, and s;, s, and s;r , respectively. Next, at step 2, it compares
the similarities with predefined threshold 6;,,—if the sim-
ilarity is higher than the threshold, the node is considered
stable, and vice versa—and updates the nodes’ flags accord-
ingly. For instance, node;, node;, node; are considered sta-
ble since sim(s7, s7), sim(s;,s3), sim(s7,sT) are higher than
Osim = 0.9, and their flags are updated to 1. Lastly, based on
the node stable flag, the SG-Filter guides the TG-Diffuser
to ignore the stable nodes straightforwardly: It signifies the
stable node indices to TG-Diffuser, and the TG-Diffuser will
no longer look up the last event in those stable nodes’ entires.
For instance, as illustrated in Figure 8(b), the TG-Diffuser
will ignore their entries if node;, node;, node; is specified as
stable. Consequently, the barriers (i.e., Node last events as 8)
posed by node; and node; no longer exist, and we can further
expand batch size from 8 to 10.

4.4 Adaptive Batch Sensor

As discussed in Section 4.2, we employ the concept of Max-
imum Revisit Endurance (Max,) to quantitatively control
how many events a node can tolerate before its updating.
A higher Max, value allows nodes to participate in more
events per batch, increasing the risk of incorporating out-
dated information. Consequently, a high Max, potentially
leads to more broken input dependencies. To ensure the
TG-Diffuser operates within thresholds that maintain train-
ing efficiency without sacrificing the quality of the input
data as the originally defined small batch sizes, we introduce
the Adaptive Batch Sensor (ABS), a profile-based module, to
gather statistics on Max, using the original batch sizes.
Maximum Endurance Profiling. As depicted in Fig-
ure 9, the ABS begins by segmenting the input sequence into
batches using a predefined small batch size. It then randomly

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

[Event Idx [o]1]2[3[4[5[6[7[8]9]10]11]
|Event Edge le1z [e17 [eqs €10 [€qn [€qc |eqd [€qs le13 lens |es [eaq |
- sampleBatch Size=4 [NoaSNaX|IINEVERTIER
1 ,
|Batch0 0111213 2
1216171818 1€19 3
|4 ' 5 l 5 | -,I)
batch1 b leac Badleqs Count Batch 5 ‘
s s 910l Events 6
le1a [eqs [eqq leas | 7
8
%chlndex [o[1]2] 9)
ax Endurance] 4 | 4 | 4 I_ a(i.e,10)|4.5,6,7,
b (i.e., 11)[4,5,6,7
Mean(Max,) = 4 Get Stats c (i.e., 12)[5,6,7
Batch Number = 3 d (i.e., 13)|6,7

Figure 9. The workflow of maximum endurance profiling .

selects several batches to gather statistics on Max, through a
two-step process. Initially, for each batch, the ABS counts the
number of relevant events for each node and identifies the
highest count, which is termed Max Endurance. For example,
in Batch 1, nodes nodey, node,, nodey,, node., and nodey are
involvedin 1, 4, 4, 3, and 2 relevant events respectively, result-
ing in a Max Endurance of 4. Subsequently, ABS compares
statistics from various batches, calculating the maximum,
mean, and minimum values of Max Endurance and counting
the batch number under the small batch settings. These sta-
tistics are then communicated to the TG-Diffuser to establish
the upper limits on node involvement in each batch.
Logarithmic-Decaying Endurance. During training,
the TG-Diffuser employs a logarithmic decaying strategy to
subtly tune Max, between the max and minimum values of
Max Endurance configured by the ABS. In particular, ABS
decays MAX, once convergence halts (training loss stops
decreasing for ten batches) as smaller batches can provide
fresher node memories, aiding convergence. When triggered,
the decaying step size is decided by the batch index—To
avoid introducing errors in early timestamps, we adopt larger
reduction steps in early batches and smaller reductions in
later batches. The resulting new MAX, will be sent to the TG-
Diffuser to control how many events one node can endure
before its update. Upon receiving the value, the TG-Diffuser
will use the newly updated value to look up the last tolerable
event for each node. The adjustment of Max, occurs in three
steps: Initially, Max, is set to two times the mean value of
Max Endurance (i.e., Mryeqn). We empirically set the value
for two reasons: the maximum value is too aggressive due
to potential information loss, while the mean can be too
conservative if the batch size is insufficient. Also, we cap
Max, all the time to ensure it is within the range of the
analyzed maximum(i.e., mry,,,) and minimum(i.e., mrp,;p).
Next, the ABS further monitors training loss throughout the
epoch, and periodic checks determine if there is no reduction
in loss. If the training loss does not decline, we reduce Max,
toward the minimum value of Max Endurance through a
logarithmic decay, a method commonly used in the deep
learning domain [12, 27, 35]. Specifically, for the batch i, the

103

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

TG-Diffuser will get the Max, following Equation 5,

i
Max, = 2 X Mrmean — & X log(ﬁ +1) (5)
a:mrminxmrmin’ﬁzg (6)
MY max a
Max, = max(mrmpax, min(mryin, Max,)) (7)

in which mrpean, Mrmin and mr,q, refer to the maximum,
mean, and minimum values of the Max Endurance, respec-
tively; and B refers to the batch numbers under preset batch
sizes.

5 Evaluation
5.1 Methodology

Models. We evaluate Cascade using five recent TGNN mod-
els. Specifically, we include the following CTDG-based TGNN
models: (1) JODIE [21] applies a normal Recurrent-Neural-
Network(RNN) [34] to update node memories and uses a
time-decay coefficient to scale them before classification.
(2) TGN [31] uses a GRU [7] to update node memories and
uses a Graph Attention Network (GAT) [39] to embed node
memories. (3) APNN [43] adopts an asynchronous mailbox
to store and update node memories and then directly use
memories for predictions. To assess our approach’s adapt-
ability to DTDG-based models, we also include the following
two DTDG-based TGNN models: (2) DySAT [33] uses RNN
to update and combine node memories from different time
graph snap-shots. (3) TGAT [47] adopts positional encoding
to abstract edge temporal information and uses an attention-
based module to collect messages from nodes’ neighbors
during memory updating. We follow the model configura-
tion used in TGL [55] as shown in Table 1.

Table 1. Details of TGNN models.

Sample Message Memory Update Node Embedding
most recent RNN Identity
JODIE (num = 1) (out size=100) (out size=100)
TGN most recent GRU GAT
(num = 1) (out size=100) (out size=100)
most recent Transformer Identity
APAN (num = 10) (out size=100) (out size=100)
uniform GAT RNN
DySAT (num = 10) (out size=100) (out size=100)
uniform Identity 2-layers GAT
TGAT (num = 10) (out size=100) (out size=100)

Datasets. We use the following five real-world datasets to
evaluate Cascade: (1) Wikipedia (WIKI), (2) Reddit (REDDIT),
(3) MOOC student drop-out (MOOC) [21] are relatively small-
scale datasets; (4) Wikipedia Talk network (WIKI-TALK) [23]
and (5) Stack overflow temporal network (SX-FULL) [25]
are large-scale datasets with millions nodes and events. We
also include two billion-edge graph datasets to evaluate the
scalability of Cascade: (1) GDELT [55] is originated from the

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Event Database in GDELT 2.0, containing 0.2 billion events
as news and articles. (2) MAG [55] is a paper citation graph
containing 1.3 billion events as citations between papers. The
statistics of the datasets are shown in Table 2. For datasets
with no edge features, we randomly generate edge features
following the setup in TGL [55] (denoted by *). For large-
scale graphs with millions of nodes and edges, we set the
edge feature size to 32 to avoid OOM issues on GPUs.

Table 2. Statistics of Datasets.

Nodes # Edges # Edge Features

WIKI 9,227 157,474 172
REDDIT 11,000 672,447 172
MoocC 7,047 411,749 128*
WIKI-TALK 2,394,385 5,021,410 32*
SX-FULL 2,601,977 63,497,050 32"
GDELT 16,682 191,290,882 186
MAG 121,751,665 1,297,748,926 32

Platforms and Implementations. We run our experi-
ments on a server with an AMD EPYC 7742 64-Core Proces-
sor CPU and a Nvidia A100 40GB GPU with CUDA 11.6 [28].
Our experiment compares the following approaches:

e TGL (baseline) [55] is a state-of-the-art TGNN training
framework that achieves better training efficiency and
accuracy than the vanilla version of the TGNN models. It
adopts a parallel sampler to speed up the sampling process
in TGNN and introduces a random batch shuffling strategy
to improve the resulting models’ losses.

e TGLite [45] is a state-of-the-art TGNN framework that
provides core abstractions and building blocks for imple-
menting TGNN. It speeds up TGNN training by integrating
several optimization schemes and providing lightweight
implementations of TGNN models.

e Cascade. We implement TG-Diffuser and ABS using C++
to parallel the table building and last event looking up. The
SG-Filter is implemented by Python to directly leverage
the parallel matrix operation in PyTorch [30]. We adopt the
same sampling and model implementation as the baselines
since these components are orthogonal to our designs.

e Cascade-Lite. In this version, we equip Cascade with
optimized TGNN model implementation as the TGLite
to evaluate its effectiveness in collaborating with various
existing TGNN frameworks.

In addition, we compare Cascade with recent TGNN and
Dynamic-GNN training frameworks that adopt dynamic par-
allelization schemes as described below:

e NeutronStream [5] is a DGNN training framework de-
signed for windowed Dynamic Graph Neural Network
(DGNN) training. It builds a dependency graph for the
input events sequence, and then sequentially processes
dependent events and only allows parallelizing events
without dependence.

104

Yue Dai, Xulong Tang, and Youtao Zhang

e ETC [11] is a TGNN training framework that uses an
information-loss-bounded batching scheme to enlarge
batch sizes without increasing information loss, which
quantifies how many times nodes in the batch are ex-
pected to be updated. Additionally, it employs a pipelined
data access strategy to improve data transfer efficiency
between the CPU and GPUs during TGNN training.

Training Setup. We train the models for the link pre-
diction tasks following setup in the baseline [55]. For WIKTI,
REDDIT, and MOOC, we train TGNN models with 100 epochs.
For WIKI-TALK and SX-FULL, we train TGNN models with 50
epochs. We use a batch size of 900 for training the baselines,
as the preset small batch size for ABS in Cascade, and for
evaluating all resulting models. We set the similarity thresh-
old 8y, in SG-Filter to 0.9 (more discussion in Section 5.3)
and CPU thread numbers in TG-Diffuser and ABS as 32. We
set the adaptive decaying period to be 20 for all benchmarks
(i.e., ABS makes decisions after each of the 20 batches).

5.2 Overall Performance

Speedup. To facilitate visualizing, we normalize all results
by the baseline performances. As shown in Figure 10, Cas-
cade achieves 1.3X to 5.1x (averagely 2.3X) speedups over
the baseline. Moreover, Cascade-Lite achieves 1.2X to 5.0X
(averagely 2.3X) speedups over the TGLite, indicating the po-
tential of adapting Cascade to various existing TGNN frame-
works. The acceleration is particularly notable in sparser dy-
namic graphs. Specifically, in WIKI, WIKI-TALK, and SX-FULL,
which have average degrees of approximately 17.5, 2.5, and
24.4 respectively, Cascade achieves average speedups of 2.5,
2.4X, and 3.0x over TGL. In comparison, in REDDIT and MOOC,
whose average degrees are 61.1 and 58.4, Cascade achieves
1.8% and 1.7X average speedups over the baseline, respec-
tively. This is because events in sparser graphs are more
likely to be spatial independent of each other due to weaker
connectivity among nodes. Regarding the models, Cascade
demonstrates higher speedups for TGNN models that depend
less on neighboring nodes for node updates or computing
embeddings. Within CTDG-based models, TGN and JODIE,
which update node memories using the most recent message,
receive average speedups of 2.4X and 2.5X%, respectively. In
contrast, APAN, which utilizes the ten most recent messages,
achieves a lower average speedup of 1.7Xx. For DTDG-based
TGNNs, DySAT, which employs a single-layer GAT, achieves
a 3.1x average speedup compared to 1.7x for TGAT, which
uses a two-layer GAT that embeds more neighborhoods.
The potential reason is that those slower models cost more
time on the neighbor sampling step. With larger batches,
the sampling step takes longer, compromising the benefit of
higher parallelism and fewer iterations. Cascade effectively
increases batch sizes in diverse benchmarks—as showcased
in Figure 12(a), it increases the batch size from 900 to 4200
across WIKI, REDDIT and REDDIT-TALK.

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

g mTGL B TGLite @ Cascade B Cascade-Lite
Sa
§_3
&2
1
0 I I I I I I I I I I I I I I I I I I I 15 I I I 15 I
4 = w = = 4 = w = 4 = = w = = 4 = w = 4 = = w = 4
< < a < 0] < < a < 0] < < a < o < < a <] < < o <]
o 0 (4] o 0 (Y] o (7] (4] o 2] (O] o (7] (4]
< 2 8 F |3 2 8 F Fl3 2 9 F "]2 2 98 F Pl & 9 F ¢
WIKI REDDIT Mooc WIKI-TALK SX-FULL
Figure 10. Training speed-ups introduced by Cascade and Cascade-Lite compared to baseline (TGL) and TGLite.
120% : .
? =) =] @ Cascac "] |
£100% TGL TGLite Cascade-Lite
= 80%
< 60%
£ 40%
S 20%
0% i
= w = - w = = w - - w = = w -
Z < & ¥ 3/%2 £ B8 < %|%2 = 8 5 5| %2 5 & %2 53/%2 %2 8 1 &
o 4 o Y = o ' o S] a Q@ o © = [[o (<]] a Q@ o o =]
< 2 8 Fr <« 2 9 F < 2 8 F <« 2 9 Fr < 2 8 Fr
WIKI REDDIT Mooc WIKI-TALK SX-FULL

Figure 11. Validation losses (normalized to baseline) of TGNN models trained in Cascade and Cascade-Lite.

Model Losses. Unlike simply increasing batch sizes, Cas-
cade accelerates the training without worsening the resulting
models’ performances. As shown in Figure 11, on average,
models trained by Cascade and Cascade-Lite are validated to
have 99.4% and 97.9% average losses compared to the baseline
and TGLite, respectively. In those datasets with real-world
edge features (i.e., WIKI and REDDIT), Cascade decreases the
average losses of the resulting model by 5.5% (up to 15%) and
2.5% (up to 7.3%), respectively. To investigate its capabilities
to maintain model performances, we train the TGNNs with
baseline while increasing their batch sizes to the same as the
average batch size in Cascade. We compared the resulting
model losses with those in Cascade, as shown in figure 12(b),
using larger batches (i.e., TGL-LB) causes 1% to 83% loss
increases than using batch size of 900. In contrast, Cascade
introduces 1% to 15% loss decreases than the baseline, leading
to ~80% accuracy improvement over large batch sizes.

5.3 Optimization Analysis

To further investigate the effectiveness of the TG-Diffuser
and SG-Filter, we evaluate the performances when Cascade
only enables the TG-Diffuser and ABS without SG-Filter (re-
ferred to as Cascade-TB), on WIKI and REDDIT. As shown
in Figure 12(c), Cascade-TB achieves 1.8X speedup over the
baseline by equipping TG-Diffuser and ABS. Similar to over-
all performance, it benefits more on relatively sparser dy-
namic graphs—the average speedup of Cascade-RB is 1.9%
on WIKI, and is lower as 1.7x on REDDIT. The speedup is
more significant for those models relying less on neighbors.
For instance, on JODIE and TGN, Cascade achieves 2.3x and
2.5% average speedup than in APAN, which is 1.2x. With the
help of SG-Filter, the average speedup in Cascadeis further
boosted to 2.2x. Compared to the TG-Diffuser, the SG-Filter

105

can further boost the performance of models that use more
neighbors for their computing. For instance, in APAN, Cas-
cade achieves 1.7x speed up compared to 1.1x in Cascade.
This is because APAN uniformly samples more messages
from the past instead of using the most recent message; there
might be more overlapping in these sampled past messages,
which leads to similar inputs for memory updating. Con-
sequently, there is a higher possibility of having temporal
independent node memories.

In terms of the model losses, as shown in Figure 12(d),
Cascade-TB is capable of maintaining validation losses and,
in some cases, even reduces more loss than the Cascade.
For instance, in JODIE, the Cascade reduces model losses
to 84% and 97%; in comparison, Cascade reduces losses to
85% and 99%. This is because the stable detecting scheme
in SG-Filter decides node stable status based on past up-
dates and may mispredict in some cases. To better under-
stand the potential impact of SG-Filter, we measure Cascade
under different choices of similarity thresholds. As shown
in Figure 13(a), using lower similarity can improve laten-
cies yet harm the model accuracy. For instance, while using
Osim = 0.85 achieves 2.7x average speedup, it increases loss
by 8%. Conversely, using higher similarity can help maintain
model accuracy yet achieve fewer benefits in latencies. For
instance, using i, = 0.95 causes no loss drops yet lowers
the speedup to 2x.

5.4 Overhead Analysis

To measure the impact of these overheads, we investigate
the time and space breakdown of Cascade under datasets
WIKI, REDDIT, and WIKI-TALK. As shown in Figure 13(b),
on average, Cascade causes 17% latency overhead in these

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Yue Dai, Xulong Tang, and Youtao Zhang

4
2222 TGL TCascade P 200% OTGL BTGL-LB B Cascade. 35 OTGL mCascade-TB @ Cascade ° :gz:f O TGL m Cascade-TB mCascade
a] o 3 @ °
Sa000 o 1%0% 525 3 95%
@3000 = 100% g 2 S 90%
S 2 a5 5 85%
F2000 H H H 8 s0% [g 5%
1000 5 0.5 S 8o%
o LD U MR A A € oo 0 g 759
ZEFWEZZFWUEZZEWE 22 Z LWk zzEhwez 3
<5< 0|<<gI6<<IzLO < =} o« o [z
0 [n a 9 G Fla @ GO =
SZ9PTIREeR IS E8R" <&8F |<38F
WIKI REDDIT | WIKI-TALK WIKI REDDIT WIKI REDDIT
(@ © (@

Figure 12. (a) Batch sizes of TGNNs in Cascade compared to the baseline. (b) Validation losses of TGNNs trained by Cascade
and TGL-LB (baselines with larger batches)—results are normalized by the losses in the baseline. (c) Speedups of Cascade-TB
and Cascade over baseline. (d) Validation losses of TGNNS trained in Cascade-TB and Cascade compared to baseline.

:g W Normalized Ea!ency W Normalized Val Loss c 1 %
0.8 g 80%
0.4 %60%
0 @ 40%
0O WY O WNYOOWIWLONLWLIWYOOWIYOOWLIWLOOWIYOOWW O WV ::20%
R ARG NN G RN G RN G NN G ARG ARG RN G R F
TET e T e R e RERITETRERTERITET § 0%
EGEEGEEGEEGEEGEEGEEGEEGEEGE |
2] 0wl n 0wl n "l n 0wl n [N N7 0wl n N7 2] -
APAN | JODIE | TGN | APAN | JODIE | TGN | APAN | JODIE | TGN
WIKI REDDIT WIKI-TALK
(a)

©Build Table @ Event_Lookup&Updating & Model Training
e

BDT OSF OGraph OEdge Feature ©Model CMailbox
00%

80%
60%
40%
20%

Space Breakdown

- - | 0% [HEEHEHEEEHEHEEHEEHH
ZhbuWubEzzEbuWEZZEWE 2 ZEWEZZEWEZZEWE 2
£35385ggseEggde $55506555506)55a3568
<z8F" 4 z38F "< z8F <z8F|<z8F "< 38F

WIKI REDDIT WIKI-TALK WIKI REDDIT WIKI-TALK

(b) (c)

Figure 13. (a) Latency and validation loss of Cascade under different similarity threshold for SG-Filter (i.e., 6;;,,). (b) The
latency breakdown in Cascade. (c) The space consumption ratio in Cascade (DT as dependency Table, SF as node stable flag).

moderate-sized graphs, which is far less than the model train-
ing time—compared to the original model training latency in
baselines, the overhead is less than 10%. Building the depen-
dency table causes ignorable overheads, which are as low
as 0.1% on average, as it is only conducted once throughout
the training process. In contrast, the batching Event_lookup
takes a heavier part of the overheads, which takes 16% la-
tency on average. This is because we need to compare the last
event for each node and then update their pointers in each
batch. The node stable flag checking and updating causes ig-
norable overhead since similarity computing is considerably
faster on GPUs. In terms of the space overhead, as shown in
Figure 13(c), the dependency table (DF) and the node stable
flag (SF) takes less than 3% space overhead in total—even in
large graphs such as WIKI_TALK, they consume much less
space than the edge Feature, which takes the majority of
the space consumption. Adaptive batching (ABS) introduces
two minimal overheads: (i) profiling costs for detecting max,
min, and average revisit limits, which are negligible (<1% in
preprocessing) as they involve sampling a few batches (50
in our implementation) and checking node-related events
without computation; and (ii) reconfiguration costs for cal-
culating and assigning new Max,, which are minimal (a few
cycles) as they require only a few scalar operations.

5.5 Scalability on Large-scale Graphs

We compared Cascade to the baseline on two billion-event
datasets: GDELT and MAG, and report the results in Figure 14.
For MAG dataset, APAN throws out-of-memory (OOM) errors
in both baseline and Cascade as it stores the ten most recent

106

neighbors for each node. From the Figure 14(a), Cascade
(second bar) achieves average speedups of 1.7X on GDELT
and 1.3X on MAG over the baseline. As shown in Figure 14(b),
the resulting models have validation losses of 97.9% and
99.0% compared to the baseline, respectively. These results
demonstrate that Cascade remains effective on large graphs.

However, one can observe that performance gain is lower
on large-scale graphs than moderate-sized graphs (i.e., 1.7x
on GDELT and 1.3X on MAG compared to an average of 2.3X
in moderate-sized graphs in Figure 10). The reason is that
the pre-processing overheads significantly increase in large-
scale graphs. We report the latency breakdown in Figure 14(c).
As one can observe, the pro-processing overheads can ac-
count for 36.6% of the entire execution time in large graphs
(which is less than 1% in moderate-sized graphs).

To improve the scalability of Cascade on large-scale graphs,
we propose an optimization by enabling chunk-based prepro-
cessing described in detail in Section 4.2. In our experiment,
we set the chunk size as one million events. We report the
speedup, validation loss, and pre-processing overheads in
Figure 14 labeled as Cascade_EX. Specifically, Cascade_EX
achieves speedups of 2x on GDELT and 1.7X on MAG without
increasing validation losses. This is higher than the speedups
(i.e., 1.7X on GDELT and 1.3X on MAG) without chunk-based
preprocessing. The reason is that this optimization signif-
icantly reduces the cache misses in table building and is
able to pipeline and overlap the table building with model
training, as we elaborated in Section 4.2. Results show that
Cascade_EX reduces the preprocessing overhead by an aver-
age of 35% in two large-scale graphs.

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

120.0%

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

BTGL

DCascade HCascade EX BTGL

#100.0%
80.0%
60.0%
40.0%
20.0%

0.0%

Speedup
Norm Val Lo

(a)

mCascade OCascade EX

(b)

O Build Table @Event_Lookup&Updating C Model Training

= —

Cascade |OOM
Cascade_EX |OOM

Latency Breakdown
Cascade

Cascade [

Cascade ||

Cascade_EX
Cascade

Cascade_EX
Cascade_EX
Cascade_EX
Cascade
Cascade_EX
Cascade
Cascade_EX
Cascade
Cascade_EX
Cascade
Cascade_EX
Cascade
Cascade_EX

>
hd
>

N|DySAT|

<
o
=]
m

T

[
>
3
-
[~}
z
>
hd
>
z

DySAT|JODIE

MAG

=
[
>
3
-
[~}
z

GDELT
(c)

Figure 14. The evaluation results on GDELT and MAG including (a) The speedup and (b) resulting TGNNs’ validation losses in
Cascade and its optimized version with chunk_based optimization Cascade_EX over the baseline. (c) The latency breakdowns.

g BTGL = NeutronStream EETC mCascade
Sa
°
@3
[
Q2
P4
0
4 = w = b4 b4 = w = = -4 = w = 4 b4 = w = b4 4 = w = 4
< < o < [C) < < a < 5] < < a < [0} < < = < 5] < < a < 5}
7] 2] 7] [72] 7]
S 2 ¢ 2 7l & ¢ g Flg &£ ¢ 2 Fl|g & g & Flg & g & F
WIKI REDDIT Mooc WIKI-TALK SX-FULL
Figure 15. Training speed-ups introduced by Cascade, NeutronStream, ETC compared to baseline (TGL).
glgggg:ﬁ mTGL @ NeutronStream OETC = Cascade
= 80.00%
S 60.00%
¢ 40.00%
£ 20.00%
2 0.00% HAU L LA HURL B HE UL L Ul B LU B DR LU B HEL B T UL BUeL HHAH B LA Bl
= = w = = 4 = w = = 4 = w = b4 = = w = = 4 = w = b4
< a < < a < < a < < a < < a <
S g § s ® & s 5§ & ® s © 83 & 2|5 2 8 s 2|5 @ 8 5 ¢®
< z2 8 Fr < 2z 8 F < z2 8 < 2 8 r < z2 8 r
WIKI REDDIT Mooc WIKI-TALK SX-FULL

Figure 16. Validation losses (normalized to baseline) of TGNN models trained in by Cascade, NeutronStream, ETC.

5.6 Comparison with Prior Dynamic Batching

We compare Cascade with ETC [11] and NeutronStream [5],
and report the results in Figure 15. As all compared ap-
proaches increase batch sizes from a basic batch size, we
set the basic batch size for all approaches as 900 following
the baseline (i.e., TGL [55]) configuration in Section 5.2. This
size strikes a balance between accuracy and efficiency under
fixed-sized batching.

Comparison with NeutronStream: We use the scheme
in NeutronStream to check if the subsequent events are in-
dependent of existing events within the batch, then batch
those independent ones into the current batch. In contrast,
Cascade also employs the same base batch size and increases
batch by batching subsequent events if they are related to
less-frequently involved nodes or stable nodes. Our results
show that Cascade achieves a 3.8X improvement over Neu-
tronStream, with better validation losses on average. The
performance gain is mainly because Cascade yields larger
batch sizes and, therefore, more parallelism than Neutron-
Stream. It is also worth mentioning that NeutronStream
generally performs worse than the baseline as they spend
a lot of time on constructing dependency graphs yet hardly

107

increase batch sizes. Hence, even if we start with larger ba-
sic batch sizes that are larger than 900, it can hardly bring
more parallelism than the baseline and may introduce more
significant overhead.

Comparison with ETC: For each base batch, ETC ex-
pands by adding subsequent events as long as they do not
increase the information loss (i.e., the total number of ex-
pected node updates) beyond a specified threshold. Specif-
ically, to achieve comparable performances as using small
batches, it automatically detects the information loss in the
pre-defined small batch size (i.e., batch size = 900 in our ex-
periments as the baseline). Then, it uses the upper bound of
the detected information loss as the threshold to ensure that
the information loss of the enlarged batches is not worse
than the baseline. Our results show that Cascade achieves a
1.9% improvement over ETC, with better validation losses
average on average. Similarly, the performance gains come
from larger batch sizes: While Cascade increases the average
batch size to 4255, ETC increases the batch size from 900 to
an average of 1123. The improvements in ETC are limited
since it stops expanding a batch once the information loss
(i.e., the total number of expected node updates) reaches the

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

per-batch threshold. This can lead to situations in which,
when specific high-degree nodes in the current batch are
expected to have frequent updates and trigger the batching
limit, subsequent events cannot be further batched since
these high-degree nodes have raised the total number of
expected updates beyond the threshold. In contrast, Cascade
tracks the endurance score for each node (i.e., look up the
last tolerable event in each node independently). Therefore,
even if some high-degree nodes are already heavily involved
in the current batch, they only raise their own endurance
scores, but not those endurance scores in other nodes. As a
result, Cascade can still include more subsequent events if
they are related to those fresher nodes since the nodes still
have low endurance scores.

6 Related Work

Although extensive studies have been conducted on accel-
erating GNN training [2, 14, 26, 36, 37, 41, 44, 49, 51, 53],
they fail short in addressing the unique challenges in TGNN
training due to their distinct computing diagrams. While
some of the recent studies on TGNN training focus on DTDG
graphs [10, 13, 32, 40], these approaches are tailored to DTDG
contexts, where graph snapshots fixedly determine batches
and whole-graph update are conducted. Noticing the unique
challenge in CTDG-based TGNN training, TGL [55] intro-
duces a parallel sampler to speed the sampling process for
CTDG and proposes a chunk scheduling approach to increase
the resulting models’ accuracy. On top of TGL, DistTGL [55]
further proposes heuristic-guided parallelism to speed up
the distributed TGNN training. More recently, TGLite [45]
provides core abstractions and building blocks for imple-
menting optimized TGNNs. Additionally, ETC [11] and Neu-
tronstream [5] explore adopting dynamic batching in CTDG-
related training. However, none of the prior methods adap-
tively quantify and leverage the spatial and temporal rela-
tionships between events to dynamically increase batch sizes,
thereby limiting their ability to enhance parallelism without
significant information loss.

7 Conclusion

In this work, we proposed an efficient TGNN training frame-
work, Cascade, to speed up temporal graph neural network
(TGNN) training by adaptively increasing training batch
sizes without breaking input dependency. Experimental re-
sults show Cascade can achieve up to 5.1X speedup over the
state-of-the-art TGNN training frameworks.

Acknowledgments

The authors would like to thank the anonymous ASPLOS re-
viewers for their constructive feedback and suggestions. This
work is supported in part by NSF grants #2154973, #2334628,
and #2312157.

108

Yue Dai, Xulong Tang, and Youtao Zhang

References

[1] Luca Belli, Sofia Ira Ktena, Alykhan Tejani, Alexandre Lung-Yut-Fon,
Frank Portman, Xiao Zhu, Yuanpu Xie, Akshay Gupta, Michael Bron-
stein, Amra Deli¢, et al. Privacy-preserving recommender systems
challenge on twitter’s home timeline. arXiv preprint arXiv:2004.13715,
2020.

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan
Yu. Dgcl: An efficient communication library for distributed gnn train-
ing. In Proceedings of the Sixteenth European Conference on Computer
Systems, pages 130-144, 2021.

Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot,
Richard Gass, and James Scott. Impact of human mobility on op-
portunistic forwarding algorithms. IEEE Transactions on Mobile Com-
puting, 6(6):606-620, 2007.

Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann,
2001.

Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo
Fu, Xuecang Zhang, Junhua Zhu, Yu Gu, and Ge Yu. Neutronstream:
A dynamic gnn training framework with sliding window for graph
streams. Proceedings of the VLDB Endowment, 17(3):455-468, 2023.
Jinyin Chen, Jian Zhang, Xuanheng Xu, Chenbo Fu, Dan Zhang, Qing-
peng Zhang, and Qi Xuan. E-Istm-d: A deep learning framework for
dynamic network link prediction. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 51(6):3699-3712, 2019.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Yue Dai, Xulong Tang, and Youtao Zhang. Flexgm: An adaptive runtime
system to accelerate graph matching networks on gpus. In 2023 IEEE
41st International Conference on Computer Design (ICCD), pages 348—
356. IEEE, 2023.

Yue Dai, Youtao Zhang, and Xulong Tang. Cegma: Coordinated elas-
tic graph matching acceleration for graph matching networks. In
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 584-597. IEEE, 2023.

Kaihua Fu, Quan Chen, Yuzhuo Yang, Jiuchen Shi, Chao Li, and Minyi
Guo. Blad: Adaptive load balanced scheduling and operator overlap
pipeline for accelerating the dynamic gnn training. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-13, 2023.

Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. Etc:
Efficient training of temporal graph neural networks over large-scale
dynamic graphs. Proceedings of the VLDB Endowment, 17(5):1060-1072,
2024.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT Press, 2016.

Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. Dynagraph:
dynamic graph neural networks at scale. In Proceedings of the 5th ACM
SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA),
pages 1-10, 2022.

Deniz Gurevin, Caiwen Ding, and Omer Khan. Exploiting intrinsic
redundancies in dynamic graph neural networks for processing effi-
ciency. IEEE Computer Architecture Letters, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Advances in neural information
processing systems, pages 1024-1034, 2017.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strétgen,
and Gerhard Weikum. Tequila: Temporal question answering over
knowledge bases. In Proceedings of the 27th ACM international con-
ference on information and knowledge management, pages 1807-1810,
2018.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for

[2

—

3

—

[4

—

(5

—

(6]

8

—

[9

—

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs

[18

—

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29

[

(30]

[31

—

(33

—

[34

—

(35]

dynamic graphs: A survey. The Journal of Machine Learning Research,
21(1):2648-2720, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky.
Community interaction and conflict on the web. In Proceedings of the
2018 world wide web conference, pages 933-943, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic
embedding trajectory in temporal interaction networks. In Proceed-
ings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 1269-1278, 2019.

Julien Leblay and Melisachew Wudage Chekol. Deriving validity
time in knowledge graph. In Companion Proceedings of the The Web
Conference 2018, pages 1771-1776, 2018.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed net-
works in social media. In Proceedings of the SIGCHI conference on
human factors in computing systems, pages 1361-1370, 2010.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 177-187, 2005.

Jure Leskovec and Rok Sosi¢. Snap: A general-purpose network analy-
sis and graph-mining library. ACM Transactions on Intelligent Systems
and Technology (TIST), 8(1):1-20, 2016.

Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pa-
graph: Scaling gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on Cloud Comput-
ing, pages 401-415, 2020.

Grégoire Montavon, Geneviéve Orr, and Klaus-Robert Miiller. Neural
networks: tricks of the trade, volume 7700. springer, 2012.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda: Is cuda the parallel programming
model that application developers have been waiting for? Queue,
6(2):40-53, 2008.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles
Leiserson. Evolvegen: Evolving graph convolutional networks for
dynamic graphs. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 5363-5370, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing sys-
tems, 32, 2019.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. Temporal graph networks
for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637,
2020.

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopou-
los, Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres,
Guzman Lopez, Nicolas Collignon, et al. Pytorch geometric tempo-
ral: Spatiotemporal signal processing with neural machine learning
models. In Proceedings of the 30th ACM international conference on
information & knowledge management, pages 4564-4573, 2021.
Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
Dysat: Deep neural representation learning on dynamic graphs via self-
attention networks. In Proceedings of the 13th international conference
on web search and data mining, pages 519-527, 2020.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. IEEE transactions on Signal Processing, 45(11):2673-2681,
1997.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates
with sublinear memory cost. In International Conference on Machine

109

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Learning, pages 4596-4604. PMLR, 2018.

Nishil Talati, Di Jin, Haojie Ye, Ajay Brahmakshatriya, Ganesh Dasika,
Saman Amarasinghe, Trevor Mudge, Danai Koutra, and Ronald Dreslin-
ski. A deep dive into understanding the random walk-based temporal
graph learning. In 2021 IEEE International Symposium on Workload
Characterization (ISWC), pages 87-100. IEEE, 2021.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou
Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim,
et al. Dorylus: Affordable, scalable, and accurate {GNN} training with
distributed {CPU} servers and serverless threads. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), pages 495-514, 2021.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. Dyrep: Learning representations over dynamic graphs. In Inter-
national conference on learning representations, 2019.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

Chunyang Wang, Desen Sun, and Yuebin Bai. Pipad: pipelined and
parallel dynamic gnn training on gpus. In Proceedings of the 28th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, pages 405-418, 2023.

Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan
Yu, Zihang Yao, and Jingren Zhou. Flexgraph: a flexible and efficient
distributed framework for gnn training. In Proceedings of the Sixteenth
European Conference on Computer Systems, pages 67-82, 2021.
Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix
Wu. Attack graph convolutional networks by adding fake nodes. arXiv
preprint arXiv:1810.10751, 2018.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen
Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. Apan:
Asynchronous propagation attention network for real-time temporal
graph embedding. In Proceedings of the 2021 international conference
on management of data, pages 2628-2638, 2021.

Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware opti-
mizations for temporal graph attention networks. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, pages 354-368, 2023.

Yufeng Wang and Charith Mendis. Tglite: A lightweight programming
framework for continuous-time temporal graph neural networks. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
pages 1183-1199, 2024.

Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang, Xiaobo Zhou,
and Dazhao Cheng. Redundancy-free high-performance dynamic
gnn training with hierarchical pipeline parallelism. In Proceedings of
the 32nd International Symposium on High-Performance Parallel and
Distributed Computing, pages 17-30, 2023.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. arXiv
preprint arXiv:2002.07962, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826,
2018.

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong
Chen, Wenyuan Yu, and Jingren Zhou. Gnnlab: a factored system for
sample-based gnn training over gpus. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 417-434, 2022.
Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning
framework for dynamic graphs. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 2358-2366,
2022.

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and
Shuiwang Ji. Graphfm: Improving large-scale gnn training via feature

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

(52]

(53]

(54]

momentum. In International Conference on Machine Learning, pages
25684-25701. PMLR, 2022.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin,
Xuehao Zheng, and Yangyong Zhu. Tiger: Temporal interaction graph
embedding with restarts. arXiv preprint arXiv:2302.06057, 2023.
Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song,
Yifan Wu, Changji Li, James Cheng, Hao Yang, and Shuai Zhang.
Bytegnn: efficient graph neural network training at large scale. Pro-
ceedings of the VLDB Endowment, 15(6):1228-1242, 2022.

Ying Zhong and Chenze Huang. A dynamic graph representation
learning based on temporal graph transformer. Alexandria Engineering

110

[55]

[56]

Yue Dai, Xulong Tang, and Youtao Zhang

Journal, 63:359-369, 2023.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang
Song, and George Karypis. Tgl: A general framework for temporal
gnn training on billion-scale graphs. arXiv preprint arXiv:2203.14883,
2022.

Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor
Prasanna. Disttgl: Distributed memory-based temporal graph neural
network training. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1-12, 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Graphs
	2.2 Temporal Graph Neural Networks
	2.3 TGNN Training on CTDG

	3 Motivation
	3.1 Challenge in Batched TGNN Training
	3.2 Spatial-independence in Scattered Events
	3.3 Temporal-independence in Stabilized Memories

	4 Design
	4.1 Overview of Cascade
	4.2 Topology-Aware Graph Diffuser
	4.3 Similarity-Aware Graph Filter
	4.4 Adaptive Batch Sensor

	5 Evaluation
	5.1 Methodology
	5.2 Overall Performance
	5.3 Optimization Analysis
	5.4 Overhead Analysis
	5.5 Scalability on Large-scale Graphs
	5.6 Comparison with Prior Dynamic Batching

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

