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DICE: fast and accurate distance-based reconstruction of
single-cell copy number phylogenies
Samson Weiner1, Mukul S Bansal1,2

Somatic copy number alterations (sCNAs) are valuable phylo-
genetic markers for inferring evolutionary relationships among
tumor cell subpopulations. Advances in single-cell DNA se-
quencing technologies are making it possible to obtain such
sCNAs datasets at ever-larger scales. However, existing methods
for reconstructing phylogenies from sCNAs are often too slow for
large datasets. We propose two new distance-based methods,
DICE-bar and DICE-star, for reconstructing single-cell tumor
phylogenies from sCNA data. Using carefully simulated datasets,
we find that DICE-bar matches or exceeds the accuracies of all
other methods on noise-free datasets and that DICE-star shows
exceptional robustness to noise and outperforms all other
methods on noisy datasets. Both methods are also orders of
magnitude faster than many existing methods. Our experimental
analysis also reveals how noise/error in copy number inference,
as expected for real datasets, can drastically impact the accu-
racies of most methods. We apply DICE-star, the most accurate
method on error-prone datasets, to several real single-cell breast
and ovarian cancer datasets and find that it rapidly produces
phylogenies of equivalent or greater reliability compared with
existing methods.

DOI 10.26508/lsa.202402923 | Received 2 July 2024 | Revised 29 November
2024 | Accepted 2 December 2024 | Published online 12 December 2024

Introduction

Cancer progression is an evolutionary process driven by the ac-
cumulation of somatic mutations (Nowell, 1976). Within tumors,
there exist divergent subpopulations of cells characterized by
distinct sets of somatic mutations, a phenomenon in cancer called
intra-tumor heterogeneity (ITH) (Lawson et al, 2018). ITH is a primary
obstacle in cancer prognosis, treatment, and prevention, and a
better understanding of ITH is thought to be crucial for clinical
success (Turajlic et al, 2019). One approach to studying ITH is
through elucidating the evolutionary relationships between dif-
ferent cells in the tumor. Typically, the evolutionary history of a
tumor is described by a cell lineage tree, where the leaves of
the tree represent observed cells in the sample, and internal nodes

represent ancestral cells (Beerenwinkel et al, 2014; Schwartz &
Schaffer, 2017). Rapid advances in high-throughput next-
generation sequencing technologies have made it possible to
infer such phylogenies (i.e., cell lineage trees) from a tumor’s
mutational landscape. In particular, the recent development of
single-cell DNA-sequencing (scDNA-seq) technologies has enabled
the identification of individual cancer cell mutations at increasing
scale and resolution. Such single-cell resolution data, despite
technological limitations such as high error and dropout rates,
shows great promise for inferring cell lineage trees and under-
standing ITH.

Somatic copy number alterations (sCNAs or simply CNAs) are the
largest source of genetic heterogeneity in cancer genomes
(Beroukhim et al, 2010; Bignell et al, 2010; Zack et al, 2013), making
them valuable phylogenetic markers for reconstructing evolu-
tionary trees. However, the properties of CNAs make tree inference
challenging; for instance, there is a strong statistical dependence
between adjacent genomic loci, and multiple events can overlap
the same genomic region. Moreover, there is poor understanding of
the distributions that govern CNA rates, sizes, and types
(Beerenwinkel et al, 2014; Navin, 2014). Several pioneering studies
that leveraged single-cell CNA profiles to build tumor cell lineage
trees used traditional correlation distances, such as Euclidean,
combined with standard phylogeny inference algorithms (Navin
et al, 2011; Wang et al, 2014; Schwartz & Schaffer, 2017; Minussi et al,
2021). Such approaches, however, are thought to be ill-suited for
copy number profiles (CNPs) because they make a number of
simplifying assumptions and lack a more nuanced probabilistic
model of evolutionary distance (Beerenwinkel et al, 2014; Schwartz
& Schaffer, 2017), although no systematic evaluation has been
performed.

More recently, a number of studies have approached this
problem using a framework that explicitly models copy number
evolution based on a minimum evolution criterion. These frame-
works typically involve finding the minimum event distance (MED),
defined as the minimum number of segmental amplifications or
deletions needed to transform one genome into another. The
MEDICC algorithm was the first method that uses the MED to both
phase allele-specific copy numbers and reconstruct a phylogenetic
tree from the CNPs (Schwarz et al, 2014). Since then, the MED model
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has been the focus of numerous other studies. The problem of
finding the minimum number of events needed to transform one
CNP into another, with certain restrictions, was shown to be
solvable in linear time (Zeira et al, 2017), but the original problem
approached by MEDICC, which aims to find a tree that minimizes the
MED distance globally, was shown to be NP-hard (El-Kebir et al,
2017). There have also been some recent generalizations of the MED
model. In the work of Cordonnier and Lafond (2020), individual
events can alter copy numbers by any amount and are assigned a
positive cost, with the resulting problem being to find a minimum-
cost sequence. Zeira and Raphael (2020) proposed weighting events
based on their length, event, and type. The MEDALT algorithm (Wang
et al, 2021) uses the MED to infer an aneuploidy lineage tree which
describes the sequence of events required to evolve one genome
into the next, and uses a statistical test to identify CNAs associated
with lineage expansion. The MEDICC2 algorithm (Kaufmann et al,
2022) builds upon its predecessor, MEDICC, by explicitly modeling
whole-genome duplication (WGD) events and implementing
strategies to improve performance. Finally, the Lazac algorithm
(Schmidt et al, 2023) solves a relaxation of the small parsimony
problem under an approximation of the MED model that allows for
the amplification of zero-copy regions.

One of the primary challenges in modeling copy number evo-
lution under the MED framework is its underlying computational
complexity. Current MED-based methods do not scale to large
datasets, such as those that can be generated by modern scDNA-
seq technologies, with many thousands of cells. A few approaches
have sidestepped this concern by considering only breakpoints, the
genomic locations joining adjacent segments with differing copy
numbers. This idea was first developed in the context of bulk-
sequencing data to compute clonal relationships between tumor
samples of the same patient (Letouze et al, 2010). Breakpoints have
also been used in the Bayesian inference procedure of sitka (Salehi
et al, 2023), and in an efficient approximation algorithm for the MED
problem (Cordonnier & Lafond, 2020). Overall, despite their chal-
lenges with scalability, MED-based approaches are currently the
gold standard for reconstructing tumor cell lineage trees from
single-cell CNA data.

In this work, we introduce two new methods, DICE-bar and DICE-
star, based on novel, easy-to-compute distance measures that
improve upon the current state-of-the-art in terms of accuracy and
scalability. DICE-bar (short for “Distance-based Inference of Copy-
number Evolution using breakpoint-root distance”) is a “CNA
aware” approach that uses breakpoints between adjacent copy
number bins to estimate the number of CNA events. In contrast,
DICE-star (short for “Distance-based Inference of Copy-number
Evolution using standard-root distance”) uses a simple penalized
Manhattan distance between the CNPs themselves. Both methods
then use the well-established balanced minimum evolution cri-
terion (Desper & Gascuel, 2002) to reconstruct the final tumor cell
lineage tree. Using a large number of realistically simulated
datasets, we find that both DICE-bar and DICE-star show strong
performance across a wide range of experimental conditions, in-
cluding different scales, resolutions, noise models, and error rates,
while being orders of magnitude faster and more scalable than
MED-based methods. Specifically, we find that (i) DICE-bar matches
or improves upon the accuracies of all MED-based methods across

nearly all tested experimental conditions on both noise-free and
noisy data, and (ii) DICE-star further substantially improves upon
the accuracies of all existing methods (including DICE-bar),
resulting in up to 40% reduction in reconstruction error, on
datasets with noise/error levels similar to those observed in real
CNPs. Overall, DICE-bar generally matches or exceeds the accu-
racies of all other methods on noise-free datasets, while DICE-star
shows the highest accuracy on datasets with noise/error. These
findings hold true even for datasets generated using older, simpler
simulators used by existing MED-based methods in their own
evaluations.

Our comprehensive experimental analysis identifies DICE-star,
given its tolerance to noise, as the most accurate tumor cell lineage
tree inference approach for real scDNA-seq-based datasets. Re-
markably, DICE-star’s improvements in accuracy over MED-based
and other competing methods become even more pronounced as
more realistic rates are used for key simulation parameters. Our
results also show that DICE-bar, while not as accurate as DICE-star
on noisy/error-prone data, provides the best overall performance
among all CNA-aware methods, matching or exceeding the accu-
racies of more complicated MED-based methods. These findings
are surprising and significant given the simplicity and scalability of
DICE-bar and DICE-star, and since distance-based phylogenetic
approaches have traditionally been thought to be ill-suited for
CNPs because they do not account for the specific mechanisms of
copy number evolution (Beerenwinkel et al, 2014). Our results also
clearly demonstrate the effect that noise in CNPs has on the ability
of MED-based methods, based on nuanced models of copy number
evolution, to effectively reconstruct the underlying phylogeny.

To assess its impact in practice, we applied DICE-star to a number
of real scDNA-seq datasets, including 35 breast and ovarian cancer
datasets from Funnell et al (2022) and an additional two breast
cancer datasets from Navin et al (2011). On the most of these
datasets, our analysis reveals that, under multiple metrics, the cell
lineage trees computed with DICE-star are either consistent with or
more plausible than those of existing methods. These findings
highlight the potential real-world impact of the proposed methods.
DICE, an umbrella program implementing DICE-star, DICE-bar, and
several other distance-based variants, is freely available open-
source from https://github.com/samsonweiner/DICE.

Results

Overview of DICE-bar and DICE-star

Consistent with other methods, we assume that the evolutionary
history of a sampled population of cells can be described by a
binary phylogenetic tree, where leaf nodes correspond to the
observed single-cell genomes, and internal nodes represent
the genomes of ancestral cells. This tree can be rooted along the
branch leading to normal (non-cancer) cells or can be left
unrooted.

Cells that diverge later during tumor evolution are expected to
have many shared alterations present in their genomes, while cells
that diverge earlier will have comparatively fewer alterations in
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common. Thus, the evolutionary relationships among a set of
sampled cells can be estimated by comparing the alterations
present in their genomes. Given two genomes s and t, we can define
a distance function d over their CNPs or breakpoint profiles, such
that d(s,t) provides an estimate of the relative evolutionary distance
between s and t. Briefly, a CNP is a vector of nonnegative integers
describing the copy number of contiguous regions across the
genome, and a breakpoint profile is the set of breakpoints for a CNP
where a breakpoint is the difference between adjacent copy
numbers. DICE-bar and DICE-star are both based on simple, easy-
to-compute distance measures to estimate relative evolutionary
distances between sampled cells and use an off-the-shelf
distance-based phylogeny reconstruction method to reconstruct
the final tumor cell lineage tree based on the computed pairwise
distances between sampled cells. Fig 1 provides an overview of
DICE-bar and DICE-star and shows the key steps in their workflow.
As the figure shows, both methods use the same novel distance
function but DICE-bar applies this distance function to breakpoint
profiles while DICE-star applies it directly to the input CNPs (see the
Materials and Methods section for technical details).

Experimental setup and evaluation metrics

We evaluate the performance of DICE-bar and DICE-star along with
eight existing methods, MEDICC2 (Kaufmann et al, 2022), MEDALT
(Wang et al, 2021), cnp2cnp (Cordonnier & Lafond, 2020), Lazac
(Schmidt et al, 2023), sitka (Salehi et al, 2023), WCND (Zeira &
Raphael, 2020), and the distance based approaches of Navin
et al (2011) and Minussi et al (2021), using an extensive simula-
tion study encompassing a wide variety of dataset types and
conditions. The most of our simulated datasets, consisting of
simulated CNPs, were generated using the simulator CNAsim
(Weiner & Bansal, 2023a). CNAsim is among the most advanced
simulators currently available for simulating single-cell CNPs and
implements a broad range of possible CNA mechanisms including
WGD, whole-chromosomal CNAs, and chromosome-arm CNAs.
CNAsim can also simulate clonal population structure through the

accumulation of chromosomal CNAs and implements a realistic
error-model that (i) accounts for specific biases of single-cell se-
quencing that cause fluctuation in read counts, and (ii) models
error patterns expected of existing CNA detection algorithms. For
additional thoroughness, we also use datasets generated using
simpler simulators developed and used by the authors of MEDICC2
(Kaufmann et al, 2022) and cnp2cnp (Cordonnier & Lafond, 2020) to
evaluate their own methods. To assess its accuracy and impact in
practice, we also apply the best-performing method for noisy
datasets, DICE-star, to a number of real breast and ovarian cancer
datasets from Funnell et al (2022) and Navin et al (2011). Further
details on the simulated and real datasets are available in the
Materials and Methods section.

Overall experimental setup
We first evaluate DICE-bar, DICE-star, and the eight existing
methods using CNAsim datasets simulated under wide range of
parameter settings encompassing different experimental condi-
tions, including different numbers of cells, numbers and lengths of
chromosomes, CNA rates, copy number bin sizes, WGDs, noise
models, and error rates. Second, we use specially generated
datasets to assess eachmethod’s ability to accurately detect clones
(sometimes also referred to as “subclones” in the literature), i.e., to
group cells belonging to the same clone together on the recon-
structed cell lineage tree. These special datasets were simulated to
contain variable numbers of clones. Third, we evaluate DICE-star,
DICE-bar, and the eight other methods on datasets simulated using
two previous simulators developed and used in their own evalu-
ation studies by the authors of MEDICC2 (Kaufmann et al, 2022) and
cnp2cnp (Cordonnier & Lafond, 2020). We use the same parameter
settings used in the original studies to generate these additional
datasets, enabling an “apples-to-apples” comparison of the
methods, and also explore the impact of using practicable ranges
for key simulation parameters. Finally, we apply the best performing
method, DICE-star, to publicly available real scDNA-seq datasets
from previous studies, analyze the resulting cell lineage trees, and
contrast the results against previously reported findings.

Figure 1. DICE-bar and DICE-star.
DICE-bar and DICE-star both reconstruct tumor cell lineages from single-cell copy number profiles provided as input. Bothmethods employ the “root” distance function
as shown, with DICE-star applying it to the CNPs directly (standard variant; shown in blue), and DICE-bar applying it to the relative change in copy number at the
breakpoints between adjacent genomic bins (breakpoint variant; shown in red). Once the pairwise distance matrix between cells has been computed, both DICE-star and
DICE-bar use the “balanced minimum evolution” criteria to reconstruct a cell lineage tree.
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Evaluation metrics
To evaluate the accuracies of different methods on the simulated
datasets, we compare the cell lineage tree reconstructed by each
method when applied to a simulated CNP against the known
ground truth cell lineage tree used by the simulator for generating
that CNP. Specifically, we use the well-known Robinson-Foulds (RF)
distance (Robinson & Foulds, 1981) between the reconstructed tree
and the corresponding ground truth tree, assuming both trees to be
unrooted. Briefly, the RF distance measures the number of bi-
partitions (or splits) that differ between the two phylogenetic trees
being compared. Following standard practice, we normalize the RF
distance to be between 0 and 1 by dividing the raw RF distance by
the total number of nontrivial bipartitions in the two trees. Thus, a
Normalized RF distance (NRFD) of 0 indicates the two trees are
identical while an NRFD of 1 indicates that the two trees are
maximally different (differing in all of their nontrivial bipartitions).

To assess the accuracy of clone detection, we measure how well
a reconstructed cell lineage tree identifies each clone (i.e., how well
the cells belonging to that clone are grouped together in the
reconstructed tree). Specifically, for a given ground truth clone,
represented by a subset of cells, we identify the clade/bipartition in
the reconstructed tree that shows maximum F1-score with respect
to that ground truth clone. We then average these F1-scores across
all clones present in the ground truth cell lineage tree. Accordingly,
a reported F1 score of 1 implies that all clones were detected with
full accuracy. Further information on how ground truth clones are
determined appears in the Materials and Methods section.

Running existing methods
Of the eight existing methods included in our benchmark, MEDICC2,
cnp2cnp, Lazac, and WCND all output binary cell lineage trees with
observed cells as leaves. MEDICC2 is also capable of reconstructing
ancestral copy number states, in addition to the cell lineage tree;
this feature was disabled to enable a fair comparison of running
times. For MEDALT and sitka, the output is a nonbinary tree. The
MEDALT tree has observed cells as both internal and leaf nodes. To
enable an apt comparison, we apply a transformation to the
MEDALT tree that ensures each observed sample is represented as
a leaf node. The sitka tree outputs observed cells as leaves, so the
evaluation metrics can be computed as-is. In addition, because
MEDALT, sitka, and cnp2cnp all expect a single copy number at any
one locus, allele-specific CNPs were summed together before being
passed to them as input. All other methods received allele-specific
CNPs as input, whenever available. Finally, the methods of Navin
et al (2011) and Minussi et al (2021) do not have associated software
implementations and we implemented them ourselves in the DICE
software package. Further details on parameter settings and how
each method was run appear in the Materials and Methods section.

DICE-star and DICE-bar outperform other methods

We first used our baseline datasets, simulated using CNAsim with
the default parameter values and three different noise levels (no
noise, low noise, and high noise; see the Materials and Methods
section for details), and additional datasets aimed at assessing the
ability of the different methods to accurately detect clones, to
assess all 10 methods. The error-rates for low-noise and high-noise

datasets were selected to match the breakpoint detection accuracy
of existing CNA detection algorithms (Mallory et al, 2020a), with low-
noise datasets corresponding to the higher end of observed pre-
cision and recall values and high-noise datasets corresponding to
the middle of observed ranges for precision and recall. Further
details on error rates and noise parameters appear in the Materials
and Methods section. No-noise datasets represent the ideal case
when all copy number alterations are inferred without any error.

Cell lineage reconstruction accuracy
Fig 2 shows the accuracies of cell lineage reconstruction for all 10
methods on the baseline datasets. For each of the three noise
levels, reported accuracies are averaged over 20 datasets, where
each dataset consists of 250 cells and uses 22 chromosomes with
lengths based on the human reference genome hg38 (and default
values for all other simulation parameters). As expected, we find
that the presence of noise results in higher mean reconstruction
error and overall variance for all methods. This analysis reveals
important insights into the relative performance (accuracies) of the
different methods. In particular, we find that (i) DICE-barmatches or
improves upon the accuracies of all existing methods on the noise-
free datasets, and improves upon the accuracies of the more so-
phisticated methods MEDICC2, MEDALT, cnp2cnp, Lazac, and WCND
even on the noisy datasets, and (ii) DICE-star shows exceptional
robustness to noise and improves upon the accuracies of all
existing methods, and of DICE-bar, on all noisy datasets. For ex-
ample, on the high-noise datasets, DICE-star and DICE-bar show
NRFDs of 0.353 and 0.507, respectively, while the existing methods
MEDICC2, MEDALT, cnp2cnp, Lazac, Sitka, WCND, Navin et al, and
Minussi et al show NRFDs of 0.584, 0.861, 0.57, 0.763, 0.808, 0.588,
0.662, and 0.384, respectively. Remarkably, DICE-star improves upon
the NRFDs of the top performing MED-based methods MEDICC2 and
cnp2cnp by an average of 43% and 39.3%, respectively, for the noisy
datasets.

More generally, these results suggest that methods based on
MED or breakpoint distances, though accurate on noise-free data,
can be highly sensitive to error and noise in inferred CNPs. Likewise,
these results also show that methods based on appropriately
designed distance measures between CNPs, such as DICE-star and
the method of Minussi et al (which uses standard Manhattan
distance between CNPs), though not as accurate as the best MED or
breakpoint methods on noise-free data, are far more robust to
realistic levels of noise and error in CNPs. These findings have
important implications for the application of these methods to real
datasets.

For completeness, we also investigated if the improved cell
lineage tree reconstruction accuracies of DICE-bar and DICE-star
are a result of the distance measures used or of the specific
distance-based phylogenetic reconstruction algorithm employed
(balanced minimum evolution). Accordingly, we applied balanced
minimum evolution to distance matrices computed under
the respective models of MEDICC2, cnp2cnp, and Lazac. These re-
sults are shown in Fig S1. We find that using balanced minimum
evolution leads to a slight improvement in accuracy for each
method compared with their respective built-in approaches.
However, as Fig S1 shows, DICE-bar continues to generally match or
outperform all methods for all noise levels and DICE-star continues
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to substantially outperform all methods on the noisy datasets. This
shows that the improvements offered by DICE-bar and DICE-star
result primarily from the distance measure themselves.

Clone detection accuracy
To evaluate clone detection, we generated datasets containing a
variable number of clones in the ground truth tree, with all other
parameters kept at default values. Fig 3 shows the results of
DICE-bar, DICE-star, and existing methods on trees containing
exactly four clones. On noise-free data, we find that most
methods perform very well at capturing clonal populations. In
particular, both DICE-bar and DICE-star and MEDICC2 and the
method of Minussi et al obtain perfect or near-perfect scores. On
noisy data, most methods show a decrease in performance, with
DICE-bar and the MED-based methods MEDICC2, MEDALT,
cnp2cnp, Lazac, and WCND all showing at least a slight drop in
clone detection accuracy. However, DICE-star and the method of

Minussi et al show greater robustness to noise, yielding higher F1
scores than the other methods at both low and high levels of
noise. For example, both DICE-star and the method of Minussi
et al show an F1 score of 1.0 on the high-noise datasets, while
MEDICC2, MEDALT, cnp2cnp, Lazac, sitka, WCND, Navin et al, and
DICE-bar show F1 scores of 0.963, 0.63, 0.924, 0.851, 0.851, 0.93,
0.957, and 0.949, respectively. Among CNA-aware methods,
MEDICC2 shows greater robustness to noise than the other MED-
or breakpoint-based methods. Sitka also appears to be robust to
noise, likely due to its loci preprocessing step, but has an overall
poor baseline performance compared with the other methods.
Overall, these results further support the suitability of DICE-star
for real datasets.

Importantly, we found that clone detection performance remains
virtually unchanged when varying the number of clones (Fig S2). We
also note that the presence of clones has little to no effect on
overall cell lineage reconstruction accuracy (Fig S3).

Figure 2. Cell lineage tree reconstruction accuracies.
Box and whisker plots are shown for DICE-bar, DICE-star, and eight existingmethods on simulated datasets with 250 cells and varying levels of noise. (A, B, C) Results are
shown for datasets with: (A) no noise; (B) low noise; (C) high noise. Lower normalized RF Distances imply greater reconstruction accuracy. Data were generated using
CNAsim and default simulation settings, and error rates for low and high noise levels were selected to match the precision and recall characteristics of breakpoint
detection from existing CNA detection algorithms. Observe that DICE-bar matches or improves upon the accuracies of all other methods on noise-free datasets and
DICE-star improves upon the accuracies of all other methods on the noisy datasets.

Figure 3. Clone detection accuracies.
Box and whisker plots of F1 scores are shown for DICE-bar, DICE-star, and eight existing methods on simulated datasets with 250 cells and varying levels of noise. Scores
are averaged over 20 datasets, each with exactly four clones. (A, B, C) Results are shown for datasets with: (A) no noise; (B) low noise; (C) high noise. Higher F1 scores are
better. As the plot shows, DICE-bar, DICE-star, MEDICC2, and Minussi et al show perfect or near-perfect F1 scores on noise-free data, while DICE-star, Minussi et al, and
MEDICC2 exceed the F1 scores of all other methods on the noisy datasets.
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DICE-star and DICE-bar are robust to evolutionary and
experimental conditions

Next, we evaluated the methods on datasets representing
different evolutionary and experimental conditions such as
different numbers of cells, genome/chromosome sizes, CNA
rates, bin sizes, etc. For each condition, we varied the relevant
simulation parameter, keeping other parameters at their
default values, and generated no-noise and high-noise
datasets.

Number of cells
We evaluated the impact of number of cells (i.e., tree size) using
datasets with 10, 25, 50, 100, 250, and 500 cells. Figs S4 and S5 show
the results of this analysis. Consistent with previous results, we
find that DICE-bar generally matches or exceeds the accuracies of
all other methods on all noise-free datasets except for the one
with 25 cells where, unexpectedly, DICE-star becomes the best
performing method. MEDICC2, cnp2cnp, and WCND also perform
well on the noise-free datasets, generally matching the accuracy
of DICE-bar on several of these datasets. For the noisy datasets,
we again find that DICE-star outperforms the other methods,
including DICE-bar. Overall, we find that the accuracy of most
methods is only slightly affected by the number of cells but that
variance across replicates consistently decreases with increasing
numbers of cells. The one exception to this is sitka, which achieves
competitive performance on small trees only and, interestingly,
shows robustness to noise, even slightly outperforming DICE-star
in the 25-cell setting. This is likely due to the highly selective loci
filtering step employed by sitka, which greatly restricts the
number of loci used for phylogenetic reconstruction. The small
number of filtered loci is only sufficient for reconstructing trees
for small numbers of cells.

Genome size
We next evaluated the impact of genome size by generating
datasets with varying number of chromosomes, each with a
length of 100 Mbp, and keeping all other parameters at default
values. Fig S6 shows the results of this analysis. On the noise-
free datasets, we find that all methods perform worse with fewer
chromosomes and that DICE-bar outperforms all other methods.
On the noisy datasets, DICE-star outperforms all other methods
for all numbers of chromosomes. We also find that the perfor-
mance of all methods slightly worsens as the number of chro-
mosomes increases from 5 to 10 for the noisy datasets. This may
be an artifact of the error model used in CNAsim, or because the
methods see no additional benefit from additional error-prone
CNPs beyond five chromosomes given that the number of cells in
these datasets is only 250. For completeness, we also performed
an equivalent experiment where the number of chromosomes
was fixed at 1 but chromosome length varied; for example, five
chromosomes with length 100 Mbp would correspond to 1
chromosome with length 500 Mbp. We found nearly identical
results across the two sets of experiments (Fig S7), suggesting
that the total amount of available genomic information is the
more impactful factor, regardless of how it is distributed across
chromosomes.

Presence of WGD
We find that the presence of WGD has little impact on recon-
struction accuracy in the noise-free setting, but that all methods
show worse performance with WGD (than without WGD) on the
noisy datasets (Fig S8). In addition, as the figure shows, most
methods appear to improve slightly if the WGD is followed by
chromosomal CNAs. Overall, DICE-star remains the best performing
method on the noisy datasets, while DICE-bar, WCND, cnp2cnp, and
MEDICC2 generally match or exceed the accuracies of the other
methods on noise-free datasets. Interestingly, MEDICC2 becomes
the best performing method if there is no noise and the WGD is
introduced as the sole large-scale copy number event, likely be-
cause MEDICC2 is the only method that makes an explicit attempt to
model WGD. Still, DICE-star outperforms MEDICC2 on all noisy
datasets, cutting its reconstruction error almost in half.

Number of CNA events
We varied the mean number of segmental CNAs per edge (pa-
rameter λ) in the range 0.5–5 and found it to be among the most
impactful parameters for cell lineage reconstruction accuracy. As
Figs S9 and S10 show, increasing CNA event rates lead to significant
improvements in reconstruction accuracies for all methods. On
noise-free datasets, MEDICC2, cnp2cnp, WCND, Minussi et al, DICE-
star, and DICE-bar all achieve near-perfect reconstruction accuracy
when λ is set to 5 (Fig S9). This is likely because the abundance of
mutations along each edge substantially reduces the uncertainty of
evolutionary relationships. On noise-free datasets, MEDICC2 out-
performs all other methods for the two lowest values of λ, with
DICE-bar matching or exceeding the accuracies of other methods
on all other noise-free datasets. This indicates that the MED model
is best suited for low mutation rates. However, as expected, the
performance of MEDICC2 falls sharply on noisy datasets, and DICE-
star again shows the best performance across all CNA event rates
on noisy datasets (Fig S10).

Number of bins and bin size
Finally, we evaluated the impact of bin size (or, equivalently,
number of bins) by considering four different bin sizes in the range
0.5–10 Mbp. Results are shown in Fig S11. On the noise-free datasets,
we find that accuracy steadily decreases with increasing bin size.
This is expected because smaller bin sizes (which leads to a greater
number of total bins) provide more information for phylogenetic
reconstruction. However, we see mixed results on the noisy
datasets, with only DICE-star and Minussi et al clearly benefiting
from smaller bin sizes. This suggests that the other methods, which
are all more susceptible to noise, may be unable to benefit from
smaller bin sizes on real, error-prone datasets. DICE-star remains
the best method on noisy datasets across all bin sizes, and DICE-bar
matches or slightly outperforms the existingmethods on noise-free
datasets for three of the four bin-sizes. On the noise-free dataset
with largest bin-size, MEDICC2 shows slightly better accuracy than
DICE-bar.

Overall, the above results demonstrate the robustness of DICE-
star and DICE-bar to different evolutionary and experimental
conditions and further establish DICE-bar as among the best
methods to use for noise-free data and DICE-star as the best
method to use for noisy data. These results also suggest that
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MEDICC2 does well in scenarios where there is limited information
in the CNPs, e.g., when the rate of events is low or when bin sizes are
very large, as long as the CNPs are noise-free.

DICE-star is robust to CNA estimation error

To better understand the effect of CNA estimation error (i.e., noise in
input CNPs) on cell lineage reconstruction accuracy, we generated
datasets using several additional combinations of the noise pa-
rameters. Specifically, we fixed the jitter error rate at two values,
0.05 and 0.15, representing a low and high baseline rate, and varied
the boundary error rate from a low of 0.02 to a high of 0.14 at
intervals of 0.02. For reference, Table S1 shows how these error rates
affect the precision and recall of ground truth CNPs.

Fig 4 shows the results of applying all 10 methods to these
datasets. As the figure show, the performance of all methods de-
grades rapidly as the boundary error-rate increases. More im-
portantly, regardless of the source of noise (i.e., the boundary
model or jitter model), DICE-star outperforms all other methods at
all noise levels. This improvement over other methods is greatest
when the rate of jitter error is high, but the magnitude of
improvement decreases with increasing boundary error rate. In-
terestingly, while MEDICC2, MEDALT, cnp2cnp, Lazac, WCND, and
DICE-bar are all substantially negatively impacted by increased
jitter, this is not the case for DICE-star and the method of Minussi
et al (2021). We also note that DICE-bar matches or improves upon
the accuracies of MEDICC2, MEDALT, cnp2cnp, Lazac, sitka, and
WCND across all error rates.

Other simulators support strong performance of DICE-bar and
DICE-star

MEDICC2 simulator
We generated datasets of various sizes using the MEDICC2 simulator
with its default parameters and with their most frequently used
mutation rate of 0.05 (Kaufmann et al, 2022). These datasets consist
of three sizes (100, 250, and 500 cells), and for each size includes
datasets with no WGD and a high rate of WGD. We note that the

MEDICC2 simulator cannot simulate noisy CNPs, and therefore all
MEDICC2 datasets are noise-free. Fig S12 shows the results of ap-
plying all 10 methods to these datasets. Consistent with our pre-
vious results on noise-free datasets, DICE-bar shows higher
accuracy than all other methods on both the no-WGD and high-
WGD datasets. WCND and MEDICC2 also perform well on both the
no-WGD and high-WGD datasets, while DICE-star and the method of
Minussi et al (2021) perform well on the no-WGD datasets. Inter-
estingly, the presence of WGD appears to have a substantial
negative impact on the performance of all methods, although
MEDICC2, WCND, and DICE-bar appear to be less affected than other
methods. We also note that sitka performs extremely poorly on
these datasets, likely due to its strict loci filtering step. Overall,
these results identify DICE-bar as the most accurate method on
noise-free data.

For greater realism, we also used the MEDICC2 simulator to
generate datasets with additional bins per chromosome. At 22
chromosomes, the MEDICC2 simulator by default only uses 10 bins
per chromosome for a total of 2 × 22 × 10 = 440, which may not be
realistic for whole-genome datasets. For reference, the default
CNAsim parameters of using 1 Mbp bin sizes over the 22 autosome
lengths derived from hg38 equates to over 5,700 bins. Because the
MEDICC2 simulator uses a number of mutations that scales linearly
with the total number of bins, we used a scaled mutation rate to
maintain consistency with default settings; however, for compari-
son we also show results using a fixed mutation rate. Results are
shown in Fig S13. We find that DICE-bar continues to be the best
performing method, improving upon the accuracy of the nearest
competitor, WCND, by at least 15%. Interestingly, while MEDICC2,
cnp2cnp, sitka, and DICE-bar all show a steady improvement in
performance as the number of bins increases with scaled mutation
rates, the performance of the remainingmethods remains relatively
unchanged or slightly worsens. In contrast, genome size strongly
correlated with performance across all methods in the CNAsim
datasets (Figs S6 and S7). When keeping the mutation rate fixed,
which effectively increases the number of mutations, DICE-bar
achieves near perfect reconstruction accuracy; however, the
other methods either show similar results to the scaled setting or

Figure 4. Impact of CNA estimation error on
the different methods.
The plots show how the individual error
models (boundary and jitter) and their error
rates affect cell lineage reconstruction
accuracy. The parameter of the jitter model
was fixed and various parameters were
evaluated for the boundary model (y-axis).
(A, B) The jitter model was fixed at a “low” error
rate with rj = 0.05 (A) and a “high” error rate with
rj = 0.15 (B). For each jitter error rate, the
plots show reconstruction accuracy results for
seven different boundary error rates. Observe
that DICE-star outperforms all other
methods for all error-rates, and that even
DICE-bar matches or outperforms the more
sophisticated methods MEDICC2, MEDALT,
cnp2cnp, Lazac, sitka, and WCND across all
error-rates.
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become worse. This result is unexpected, as other methods do
benefit from an increasedmutation rate in the CNAsim datasets (Fig
S9E and F). This discrepancy can likely be attributed to the many
types of mutations outside of segmental duplications and deletions
implemented in the MEDICC2 simulator.

cnp2cnp simulator
Next, we evaluated the different methods on 100-cell datasets
generated with the cnp2cnp simulator using its default parameter
values. This cnp2cnp simulator implements a simple error model to
generate noisy CNPs, and Fig S14 shows results on datasets with
increasing levels of noise. As the figure shows, DICE-bar outper-
forms all other methods on the two lowest noise datasets, while
DICE-star begins to significantly outperform all other methods for
the remaining three datasets with higher noise levels. These results
are fully consistent with our previous findings. We also find that the
performance of all methods is worse on the cnp2cnp datasets than
on the baseline CNAsim datasets. This is likely due to the very low
default number of bins, set to 100 on a single chromosome, in the
cnp2cnp simulator.

We also used the cnp2cnp simulator to generate more realistic
datasets with additional bins. Unlike the other two simulators,
cnp2cnp uses genomes consisting of a single haploid chromosome,
though there is a parameter controlling the number of bins (default
100). As Fig S15 shows, the performance of all methods improves
as the number of bins increases, with mean performances
approaching those observed on the CNAsim datasets. Interestingly,

at the two highest bin settings (1,000 and 2,000) and the lowest
noise levels (0, 0.1), Lazac becomes the best performing method,
very slightly outperforming DICE-bar. Otherwise, the relative per-
formance of the methods remains mostly unchanged, with either
DICE-bar or DICE-star outperforming the other methods depending
on the level of noise in the dataset. We also find that, at the highest
bin setting of 2,000, the method of Minussi et al (2021) matches the
performance of DICE-star at all noise levels. This is likely an artifact
of the mutation model of the cnp2cnp simulator being limited in
how copy numbers change in individual events.

DICE-bar and DICE-star are highly scalable

In addition to their accuracy, DICE-bar and DICE-star are also highly
scalable and computationally efficient, handling thousands of cells
in a matter of minutes. Fig 5 reports running times of the different
methods on noise-free datasets with varying numbers of cells (and
generated using default values for other parameters). All methods
were run on a single core of an Intel Xeon 2.1 GHz processor with 64
GB of RAM. As the figure shows, both DICE-bar and DICE-star, are
much faster and more scalable than all MED-based methods. For
example, DICE-bar and DICE-star are both over 1,000 times faster
than MEDICC2 on the 500-cell datasets. The methods of Navin et al
and Minussi et al, being similarly distance-based, have nearly
identical running times as DICE-bar and DICE-star. Observe that sitka
becomes the fastest method for 5,000 cells; however, this result is
misleading because the running time of sitka depends on the number
of steps used in its Markov chain Monte Carlo search heuristic, which
was kept constant across all runs. We also assessed the impact of CNA
estimation error (i.e., noise) on running times and found that all
methods report a slight increase in running time (Fig S16).

Application to large-scale scDNA-seq cancer datasets

Given the robustness of DICE-star to error-prone data, we applied
the method to 35 previously published whole-genome scDNA-seq
datasets from human triple-negative breast cancer or high-grade
serous ovarian cancer samples (Funnell et al, 2022). The median
sequencing coverage was ≈. Th per cell, and the number of cells
per dataset varied between a minimum of 65 and a maximum of
6,033 with a mean and median of 1,232 and 631, respectively. As we
describe below, our analysis demonstrates that DICE-star pro-
duces cell lineages trees with greater concordance to previously
reported clonal structures, and with a higher degree of similarity
between the CNPs of closely related cells, compared with existing
approaches.

To study copy number evolution, the original study generated
allele-specific CNPs with 500 kbp bins using the SIGNALS method.
Cells were then clustered by their CNPs to identify the major clonal
populations of each tumor, and copy number evolution was studied
by constructing phylogenetic trees using sitka (Salehi et al, 2023). In
a later study, cell lineage trees constructed using Lazac on the same
CNPs were shown to be more concordant with the originally
identified clonal populations (Schmidt et al, 2023).

Using the same CNPs, we used DICE-star to generate cell lineage
trees for all 35 tumors. This required 24.7 h using a single core of an
Intel Xeon 2.1 GHz processor. Lazac required 166.5 h to compute

Figure 5. Running time and scalability.
Running times are shown for MEDICC2, MEDALT, cnp2cnp, Lazac, sitka, WCND,
Navin et al, Minussi et al, DICE-bar, and DICE-star on noise-free datasets with
varying numbers of cells. Running times for DICE-bar, DICE-star, and themethod of
Minussi et al (2021) are identical and are shown together. The x-axis is the log-
scaled number of cells in the dataset, and the y-axis is the log-scaled runtime in
seconds. Observe that DICE-star and DICE-bar are orders of magnitude faster and
more scalable than the best MED-based methods. All reported times are
averaged over 20 runs executed using a single core of an Intel Xeon 2.1 GHz
processor.
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the trees, and we obtained the sitka trees directly from Funnell
et al (2022). We find that the trees inferred by each method on the
same dataset differ considerably from one another, with mean
NRFDs of 0.95, 0.984, and 0.984 for DICE-star w/Lazac, DICE-star w/
sitka, and Lazac w/sitka, respectively. However, because the
NRFDs may be skewed by the considerable number of cells in
these datasets, we also compute normalized Quartet distances
between each pair. This results in mean values of 0.421, 0.524, and
0.512 between the respective pairs, indicating that the DICE-star
and Lazac phylogenies are the most similar. Following Schmidt
et al (2023), we conduct two distinct evaluations to quantitatively
evaluate the cell lineage tree computed by DICE-star, Lazac, and
sitka.

First, we use the sibling dissimilarity metric of Schmidt et al
(2023) to evaluate the cell lineage trees. This metric, defined as the
mean normalized Hamming distance between pairs of siblings in
the respective phylogenies, was used by Schmidt et al (2023) to
show that the increased resolution of Lazac trees (which, like
DICE-star trees, are fully resolved) over sitka trees (which are
often unresolved/multifurcated) was meaningful. Using the same
metric, we find that DICE-star has lower (better) sibling dissimi-
larity than Lazac and sitka in 31/35 datasets, with means of 0.155,
0.2, and 0.282 for DICE-star, Lazac, and sitka, respectively (Fig 6A).
This highlights the higher degree of similarity between the CNPs of
closely related cells in the DICE-star trees compared with Lazac
and sitka trees.

And second, we investigate the degree of concordance between
the computed cell lineage trees and the clonal populations re-
ported in the original publication (Funnell et al, 2022). As with the
simulation study, we compute the maximal F1 scores between
clades in the trees and cell assignments given by the clones. We
find that the DICE-star trees show greater F1 score than those of
Lazac and sitka for 24/35 tumors, with means of 0.73, 0.656, and
0.609 for DICE-star, Lazac, and sitka, respectively, across the 35
datasets (Fig 6B). Thus, the phylogenies produced by DICE-star are
more congruent with previously identified clone assignments
compared with the other methods.

Application to two breast cancer datasets

We further apply DICE-star to two previously published scDNA-seq
datasets of triple-negative breast cancer patients (Navin et al, 2011),

referred to as T10 and T16, and perform a qualitative assessment of
the resulting cell lineage trees. The mean coverage for T10 and T16
was ≈0.08 and ≈0.13, respectively, and raw sequencing data were
obtained for both patients using the SRA toolkit (Leinonen et al,
2011) in the form of fastq files for each cell. Following standard
practices, sequencing reads were aligned to the hg38 human ref-
erence genome using BWA (Li, 2013 Preprint) and filtered for quality
using Samtools (Li et al, 2009).

In the previous study of Navin et al (2011), FACS was used to study
the distribution of ploidy across the single-cell populations, re-
vealing a majority diploid fraction and smaller aneuploid fractions
for both tumors, and a hypodiploid fraction in T10. Using this in-
formation, Navin et al (2011) selected 100 flow-sorted single cells
each from T10 and T16, taking care to include representatives from
the various ploidy fractions and anatomical sectors. For T16, this
included 48 cells from a paired metastatic liver carcinoma, while all
100 cells from T10 were sampled from the primary site. To inves-
tigate population structure, Navin et al (2011) constructed evolu-
tionary trees using Neighbor Joining based on pairwise Euclidean
distances between CNPs derived in situ (referred to as the method
of Navin et al throughout this work), revealing large well-defined
clades in both tumors. In particular, the subpopulations induced by
the four major clades of their T10 tree map perfectly to the rep-
resented ploidy fractions, namely a diploid, hypodiploid, and two
aneuploid populations. Similarly, in their T16 tree, two major clades
clearly separate the diploid and aneuploid populations, and the
aneuploid clade is further subdivided into two smaller subpopu-
lations, representing cells from the primary and metastatic sites.

In our reanalysis of these datasets, we used SCOPE (Wang et al,
2020) to generate CNPs from the aligned and processed sequencing
reads. We initially set the fixed bin size to 100 kbp as we deemed this
value to be large enough to overcome most fluctuations given the
coverage while remaining close to the median variable bin size
used in the original study of 54 kbp. After quality control and
normalization, the resulting CNPs totaled 24,779 and 24,534 bins
for T10 and T16, respectively. Cell lineage inference using DICE-star
took only a few seconds for both tumors on a personal laptop
computer, while MEDICC2 took ~5 h on each dataset. To root the
trees, a “dummy” true diploid was included into the population and
subsequently set as the outgroup. Figs 7 and S17 show DICE-star
trees over 100 kbp bins for T10 and T16, respectively. For com-
parison, we also generated trees using MEDICC2 and reapplied the

Figure 6. Summary statistics of
inferred cell lineage trees on large
single-cell datasets.
Summary statistics are shown for trees
inferred by DICE-star, Lazac, and Sitka
on the 12 single-cell datasets of breast
and ovarian tumors from Funnell et al
(2022) with more than 1,000 cells. (A)
Mean sibling dissimilarity, defined as
the mean normalized hamming distance
between siblings in the inferred trees.
(B) Clone F1 score, defined as the
maximal F1 score between clades in the
inferred trees and existing clone
assignments of Funnell et al (2022).
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method of Navin et al on the SCOPE CNPs (Figs S18, S19, S20, and
S21).

On both datasets, we find that all three trees depict a near-
identical partitioning of the cells into four and three analogous
divergent clades in T10 and T16, respectively, with equivalent
macro-evolutionary relationships. When classified by ploidy, the
clones induced by the divergent clades align with the known
population fractions from the original analysis and are referred to
as such. Ignoring variations within the major clades, the differences
between the trees pertain to the placement of a small number of
contentious cells in each dataset. In T10, both the DICE-star and
MEDICC2 trees describe a visually distinct four-cell cluster in close
proximity to the hypodiploid clade (labelled aneuploid C in the
figures), appearing as ancestral in the former and descendent in
the latter. In contrast, these cells cluster poorly in the Navin et al
tree. The heatmap (Fig 7) reveals a number of shared large-scale
aberrations unique to the four cells, including amplifications on
chromosomes 2p, 11, 12, and 18, and may therefore indicate a

potential unreported clonal population. In T16, the DICE-star and
Navin et al trees describe a three-cell cluster ancestral to the two
main divergent clades (labelled primary aneuploid A in the figures),
while these cells appear within the normal diploid clade in the
MEDICC2 tree. Upon closer inspection, we find that while one of the
cells contains numerous unique gains and losses, the other two
have a stable triploid state across the genome. While potentially
representing poorly sampled populations, the latter two cells are
likely artifacts caused by doublets or abnormally high number of
reads across the genome.

To further validate these findings, we identified clones inde-
pendently from the phylogenies by applying k-means clustering to
the CNPs of each cell. To determine the optimal number of clusters,
we enumerated over all values 3,..., 10 and found that using the
number of clusters k = 6 and k = 5 resulted in the highest Silhouette
Coefficient (Rousseeuw, 1987) for T10 and T16, respectively. In each
dataset, the contentious set of cells is grouped together within a
distinct cluster, with the remaining clusters corresponding to the

Figure 7. DICE-star tree of T10 aligned to a heatmap of whole-genome single-cell CNPs.
Leaf nodes are shaded to match their corresponding clones derived by applying k-means clustering to the CNPs. The main clonal populations shown are defined by
their ploidy: diploid (blue), hypodiploid (yellow), aneuploid A (red), and aneuploid B (green). Further increasing the number of clusters reveals an additional aneuploid
clonal population (purple) from which the main hypodiploid population diverged, and a high-ploidy outlier cell (orange) placed in between aneuploid populations A and
B.
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consensus major divergent clades and a single outlier cluster. To
quantify concordance with the trees, we computed the adjusted
rand index (ARI) between the k-means clusters and clusters in-
duced by clades in the tree (see theMaterials andMethods section).
In T10, the ARI values were 1.0, 0.991, and 0.937 for DICE-star,
MEDICC2, and Navin et al, respectively, and for T16 the values
were 1.0, 0.945, and 1.0. Overall, the k-means clusters substantiate
both the separation of the contentious sets of cells from the other
populations and their close-relatedness in the trees; however, this
consistency may also reflect artifacts in the CNPs.

As a final qualitative assessment, we investigate the impact of bin
size by exploring changes in the DICE-star trees generated with CNPs
with larger bins. The difference in read count fluctuations due to bin
size means that SCOPE, which estimates ploidy statistically, may
produce CNPs which differ substantially for separate sizes. While
consistency in the placement of cells across bin size likely indicates
reliability, differences are also useful in identifying potentially prob-
lematic cells or regions. In addition to 100 kbp, we generated CNPswith
SCOPE using bin sizes 250, 500 kbp, and 1 Mbp. The DICE-star trees and
heatmaps over the 1 Mbp CNPs are shown in Figs S22 and S23 (250 and
500 bkp CNPs not shown). In T10, we find that the four main clades
remain consistent across bin sizes. However, the contentious four-cell
cluster becomes less distinctive as bin size increases, and becomes
fully integrated into the hypodiploid clade by 1 Mbp. This is reflected in
the 1 Mbp CNPs, which no longer show the same unique large-scale
aberrations as those in the 100 kbp CNPs. In T16, we similarly find
consistency in the three main clades across bin sizes but no longer
observe the contentious three-cell cluster, which using 1 Mbp corre-
spond to one outlier and two diploid cells. Interestingly, for >100 kbp
bins, we observe a new well-separated clade composed of six cells
previously found in the metastatic aneuploid clade. This new clade is
ancestral to the existing aneuploid cells and uniquely lacks the large-
scale aberrations on chromosomes 1p, 3p, 6, and 15. These findings
highlight the importance of considering the effect of bin size on
downstream interpretation of cell lineage trees.

Overall, this analysis further demonstrates how DICE-star can
reconstruct high-quality cell lineage trees for real datasets and can
do so thousands of times faster than existing gold-standard MED-
based methods like MEDICC2.

Discussion

In this work, we introduced two new methods, DICE-bar and DICE-
star, for reconstructing tumor cell lineage trees from single-cell
copy-number data. Both methods are based on novel, easy-to-
compute distance measures, and outperform the current state-of-
the-art in terms of accuracy and scalability. Using an extensive
simulation study, we showed that DICE-bar matches or improves
upon the accuracies of existing methods across nearly all exper-
imental conditions on noise-free data, and that DICE-star sub-
stantially improves upon all methods, including DICE-bar, on nearly
all datasets with noise/error levels similar to those observed in
inferred CNPs on real sequence data. Remarkably, we also found
that DICE-bar matches or exceeds the accuracies of MED-based
methods across nearly all conditions and noise levels. Importantly,

DICE-bar and DICE-star are also much faster and more scalable
than MED-based methods.

The results of our simulation study also demonstrate the drastic
effect that noise in CNPs has on the ability of MED-based methods,
based on nuanced models of copy number evolution, to effectively
reconstruct the underlying phylogeny. At the same time, we find that
DICE-star remains highly tolerant to noise/error in the input CNPs,
and outperforms those othermethods for both low andhigh levels of
noise. The lack of robustness to noise observed in MED-based
methods is not entirely unexpected. Current limitations in scDNA-
seq coverage necessitate the use of large bins to overcome poor
resolution, and this can lead to single-cell CNPs that differ by only a
small number of events. Consequently, even low levels of noise can
disproportionately affect MED distance, particularly between cells
that are closely related. This may explain why some MED-based
methods, notably MEDICC2, appear to be more robust to noise when
considering clone detection but show high sensitivity to noise when
considering tree reconstruction accuracy. Still, the fact that DICE-bar,
which is based on breakpoints and therefore similarly affected by
noisy CNPs, generally matches or outperforms existing MED-based
methods on both noise-free and noisy datasets is surprising.

One of the most important findings of this work is that relatively
simple distance-based methods, such as DICE-star or the method
of Minussi et al (2021), can produce more accurate tumor cell
lineage trees on real scDNA-seq datasets than even the best
existing MED-based or breakpoint-based methods. Our analysis of
real scDNA-seq cancer datasets highlights the utility of DICE-star in
practice, where it was shown to produce results of comparable or
greater reliability than those of existing methods. Overall, our
findings clearly identify DICE-star, given its robustness to noise, as
the method of choice for analyzing real datasets.

Our results suggest several important directions for future
research on this problem. We found that the levels of noise typically
observed in inferred CNPs on real single-cell datasets can greatly
decrease the accuracy of all tumor cell lineage inference methods.
Our analysis suggests that DICE-star works very well overall on
datasets across a wide range of noise levels. However, DICE-bar can
deliver significant improvements over DICE-star when the data is
relatively noise free. It may be possible to combine the distance
functions of DICE-star and DICE-bar to design a new method that
combines the strengths of both approaches. Likewise, it may be
possible to adjust how breakpoints are computed to make DICE-bar
more robust to noise. We also found that the MED-based method
MEDICC2 performs very well when there are only a small number of
bins or when the mutation rate is very low, as long as the data is
noise free. It would thus be valuable to develop improved MED-
based frameworks that are robust to noise, as more robust
MED-based methods should, in principle, be able to exceed the
accuracies of much simpler methods like DICE-bar and DICE-star.
We also note that the use of explicit evolutionary models (such
as the MED framework) offers inherent advantages over methods
such as DICE-bar or DICE-star in that they enable not only
cell lineage tree inference but also detection and placement
of individual events along the cell lineage tree. For example,
under the MED framework, MEDICC2 can perform ancestral re-
construction, pseudo-ordering of CNAs along edges of the
phylogeny, and direct detection of WGDs. Another promising
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direction is to apply a denoising and/or filtering step to the CNPs
before computing distances, which was shown by sitka to be
effective at handling noise under certain conditions.

Despite the accuracy and scalability of DICE-bar and DICE-
star, their accuracy on very large datasets with thousands of
cells may be limited by the local search heuristic used currently
for reconstructing the final tree (balME implementation pro-
vided in FastME [Lefort et al, 2015]). The tree search may get stuck
in local optima, limiting the accuracy of the methods. Improved
tree search algorithms under minimum evolution, and strategies
for escaping local optima, could therefore improve the accuracy
of these methods on large datasets. Finally, some recent ap-
proaches have combined CNAs and SNVs under a single model
(Satas et al, 2020; Chen et al, 2022; Sollier et al, 2023; Zhang et al,
2023). SNVs, while more challenging to infer accurately from low-
coverage single-cell sequencing data than CNAs (Rozhonova
et al, 2022), could provide additional information and lead to
more accurate tumor cell lineage trees.

Materials and Methods

Basic definitions

We assume a reference genome consists of K chromosomes where
each chromosome k is partitioned into nk ordered bins labelled
1,...,nk. Here, each bin label corresponds to a unique contiguous
subsequence from the reference. Any sampled genomes are
aligned to the reference such that all genomes have the same
number and sizes of bins for each chromosome. We refer to the
number of times a bin appears in a sampled genome as that bin’s
copy number, the values of which can be estimated across all
samples and bins using methods for detecting CNAs from scDNA-
seq data (Mallory et al, 2020a; Wang et al, 2020). The CNP for the k
th chromosome is a vector Ck = ðc1; :::; cnkÞ of non-negative integers,
where ci denotes the copy number of bin i from that chromosome.
A whole genome s can be described by a set of CNPs
Cs = fC1

s; C2
s ; :::; CK

s g. When considering whole human genomes
without allosomes, K = 22 for total copy numbers and K = 44 for
allele-specific copy numbers.

We define a breakpoint to be the difference between two con-
secutive copy numbers in a CNP C. More specifically, the breakpoint
bi = ci+1-ci, where 1 ≤ i ≤ n-1 and n is the number of bins in CNP C. A
breakpoint profile is a vector Bk = ðb1; :::bnk−1Þ obtained from a CNP
Ck that encodes the breakpoints of all consecutive bins from
chromosome k.

Description of DICE-bar and DICE-star

DICE-star distance function
Given two genomes s and t with K chromosomes each, DICE-star
uses the following distance function:

dRootðs; tÞ = �
K

k = 1
�
nk

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���cks;i − ckt;i
���

r
:

Note that this distance function is naive to the particularities of
copy number evolution. Nonetheless, standard Euclidean and
Manhattan distances between CNPs have been used previously for
tree reconstruction of real tumor samples by Navin et al (2011) and
Minussi et al (2021), respectively. Our novel “Root” distance function
above essentially applies the square root to each term of the
Manhattan distance. This root distance function is motivated by the
following insight: CNAs can amplify a region by multiple copies in a
single event, and thus larger changes in copy number do not
necessarily imply greater evolutionary distances. Under the stan-
dard Manhattan distance, large changes are weighted equivalently
to a number of events equal to its magnitude, potentially resulting
in misleading evolutionary scenarios. At the same time, it is be-
lieved that the probability of a copy number amplification occurring
scales inversely with its magnitude (Liu et al, 2009; Lauer et al, 2018).
Accordingly, the Root distance attempts to better balance the effect
of many low-magnitude CNA events versus few high-magnitude
CNA events.

DICE-bar distance function
CNAs induce a strong statistical dependence among adjacent loci
and multiple events may overlap. This suggests a number of pitfalls
with using CNPs directly. First, the length of a CNA determines how
many bins will be altered, essentially acting as a weight. Consider
the scenario where two genomes differ by a single long event
spanning many bins versus if they differed by many small events. It
is more likely that the genomes are more closely related if they
differ by a single event versus many; however, if the long event
exceeds the combined length of the small events, this will not be
reflected in their computed distance. Second, independent events
that overlap may be weighted less or nearly canceled out. This
could occur if a region experiences a gain followed by a deletion
event.

DICE-bar addresses this limitation by considering breakpoints
rather than the copy numbers themselves. The use of breakpoints
enables a more tailored metric for copy number evolution while
still allowing for each site to be treated independently, and thus
retaining the efficiency of a naive distance measure. In particular,
DICE-bar uses the same novel Root distance function used by DICE-
star but applies it to breakpoint profiles instead, as defined below:

d9
Rootðs; tÞ = �

K

k = 1
�
nk − 1

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���bks;i −bkt;i
���

r
:

We note that the choice of distance function used by DICE-bar
and DICE-star was based on a preliminary evaluation of several
novel and existing alternatives; the results of that preliminary
evaluation, based on a small subset of our simulated datasets,
appear below.

Reconstructing final tumor cell lineage tree
Once all pairwise distances have been computed using the
chosen distance function, the next step is to use a distance-
based phylogenetic reconstruction approach to obtain the final
cell lineage tree. Both DICE-star and DICE-bar use balanced
minimum evolution (Desper & Gascuel, 2002), as implemented in
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the FastME software package (Lefort et al, 2015) to reconstruct
the final cell lineage tree. This choice of using balanced mini-
mum evolution was based on a preliminary assessment, where
we evaluated four possible distance-based phylogenetic re-
construction algorithms. Further details on the results of that
assessment appear below.

Alternative distance functions and phylogenetic reconstruction
methods

Selection of appropriate distance functions
We explored the use of four simple and closely related distance
functions: Euclidean (dEuclidean), Manhattan (dManhattan), Root (dRoot),
and Log (dLog).

Standard distances When applied to CNPs, we refer to these
distances as “standard” distances. Given two genomes s and twith K
chromosomes each, these standard distances are defined as
follows:

dEuclideanðs; tÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
K

k = 1
�
nk

i = 1

�
cks;i − ckt;i

�2

vuut
;

dManhattanðs; tÞ = �
K

k = 1
�
nk

i = 1

��cks;i − ckt;i��;

dRootðs; tÞ = �
K

k = 1
�
nk

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��cks;i − ckt;i��
q

;

dLogðs; tÞ = �
K

k = 1
�
nk

i = 1
log

��cks;i − ckt;i��:

Breakpoint distances To address the limitations of standard
distances, we proposed new distances functions that consider
breakpoints rather than the copy numbers themselves. These
breakpoint distances are defined analogously to their standard
distance counterparts and their formal definitions appear below.

d9
Euclideanðs; tÞ =
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d9
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log
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Of the eight distinct distance functions defined above, six are, to
the best of our knowledge, novel (proposed and evaluated for the
first time in this work). The other two, standard Euclidean and

standard Manhattan, have previously been used to analyze real
tumor samples (Navin et al, 2011; Minussi et al, 2021). The DICE
software package implements all eight of these distance functions,
and DICE-star and DICE-bar correspond to standard-Root (dRoot),
and breakpoint-Root (d9

Root), respectively.

Distance-based phylogeny reconstruction
We evaluated four possible distance-based phylogenetic recon-
struction algorithms. These are Neighbor Joining (Saitou & Nei,
1987), unweighted Neighbor Joining (Gascuel, 1997), balanced
Minimum Evolution (Desper & Gascuel, 2002), and ordinary least-
squares Minimum Evolution (Rzhetsky & Nei, 1993), and are referred
to as NJ, uNJ, balME, and olsME, respectively. DICE uses the FastME
software (Lefort et al, 2015), which implements all four of these
methods, to compute the final cell lineage tree. FastME uses a local
search heuristic for balME and olsME; an initial tree is built using an
additive taxon procedure, and then an SPR tree search is used
to find a topology minimizing the balME or olsME criteria. DICE-
bar and DICE-star both use balME to reconstruct the final cell
lineage tree.

Evaluation of all 32 DICE variants
We evaluated the 32 DICE variants (eight distance functions times
four phylogeny reconstruction methods) using a subset of our
simulated datasets. Specifically, we used our baseline datasets,
simulated using CNAsim with the default parameter values and
three different noise levels (no noise, low noise, and high noise) to
assess the 32 DICE variants. We used these initial results to identify
the best standard-distance method (DICE-star) and the best
breakpoint-distance method (DICE-bar) for more thorough evalu-
ation as described in the Results section.

Fig S24 shows the results of this analysis. These results reveal
interesting insights into the relative accuracies of the different DICE
variants. First, we find that all Euclidean DICE variants, both standard
and breakpoint, are among the worst performing methods at all
noise levels. This includes the method of Navin et al (2011), with
corresponds to the standard-Euclidean-NJ variant of DICE. Second,
we find that all non-Euclidean standard DICE variants show far
greater accuracy than all other methods (including all breakpoint
DICE variants) on noisy datasets. In contrast, on noise-free data, the
non-Euclidean breakpoint DICE variants generally match or out-
perform all other methods. Third, among DICE variants, we find that
the root and log distances show a slight advantage in performance
over Manhattan distance, which includes the method of Minussi et al
(2021), and that balME- and olsME-based variants perform better
than the NJ- or uNJ-based ones across all noise levels. Based on
these results, we selected the standard-root-balME variant of DICE as
the best standard method DICE-star and the breakpoint-root-balME
variant of DICE as the best breakpoint method DICE-bar.

We note that some other DICE variants, such as breakpoint-log-
balME and standard-root-olsME, show nearly identical perfor-
mance as DICE-bar and DICE-star, respectively. Among these
equally strong variants, we chose root-balME as the basis for DICE-
bar and DICE-star because the root distance function is slightly
more interpretable than the log distance function, and since
balanced minimum evolution (balME) has been observed to per-
form favorably compared with ordinary least-squares minimum
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evolution (olsME) in previous phylogenetic studies (Desper &
Gascuel, 2002, 2004).

Description of datasets

In the following, we first describe the extensive datasets simulated
using CNAsim, then describe datasets simulated using the two older
simulators, and finally describe the real cancer datasets used in
this work.

Datasets simulated using CNAsim
The most of our datasets were simulated using the recently de-
veloped simulator CNAsim (Weiner & Bansal, 2023a), which simu-
lates single-cell genomes along a ground truth cell lineage tree and
can directly generate both noise-free and noisy CNPs. Next, we
briefly describe the five key steps in the CNAsim simulation
framework, discuss key simulation parameters, and justify our
default values for these parameters.

Generation of ground truth cell lineage tree Following standard
practice, a ground truth cell lineage tree is simulated from an
exponentially growing population under neutral coalescence
(Hudson, 2002; Beerenwinkel et al, 2007; Bozic et al 2016; Williams
et al, 2016; Niida et al, 2020; Posada, 2020), the leaves of which
correspond to observed cells in the experiment.

Evolution of genome along cell lineage tree An initial diploid
genome is placed at the root of the tree and is represented by an
ordered array of uniform-sized regions ofM base-pairs each, where
M is the minimum size of a CNA. Previous reports have classified
variants as CNAs if its length exceeds 1,000 bp (Feuk et al, 2006;
Pollex & Hegele, 2007; Shlien & Malkin, 2009; Upadhyay et al, 2017),
which we use as a fixed value for M. The default number of
chromosomes and chromosome lengths is derived from the GrHg38
human reference genome; however, other custom genome sizes are
considered. We add a number of segmental CNAs to the root ge-
nomewhich represents a set of initial mutations that initiate cancer
growth (by default, 10× that of normal edges; see below) (Sottoriva
et al, 2015; Gao et al, 2016; Saito et al, 2018). Here, segmental CNAs
are defined as those smaller than a chromosome arm. In addition, a
WGD and/or chromosomal-CNAs can be introduced into the ge-
nome of the root cell (tumor founder) that is pervasive across the
entire cell population (Bielski et al, 2018). Note that the only cell
which can undergo WGD is the tumor founder cell. The genome is
evolved along the tree topology, where each node inherits the
genome of the parent node in addition to being altered by a
Poisson-distributed number of segmental CNAs. Existing estimates
place the number of CNAs in human cancers to be in the many tens
to hundreds (Gao et al, 2016; Velazquez-Villarreal et al, 2020; Minussi
et al, 2021) for a single sample. Accordingly, we use a default of λ = 2
events per edge as this results in tens of segmental CNAs globally
for small trees and hundreds for large trees. Other values for this
parameter are explored. Importantly, the total burden of events
falls within ranges reported in pan-cancer studies (Harbers et al,
2021). A wide range of possible segmental CNAs is generated by
stochastically selecting for each event property. First, the paternal
or maternal allele is selected with a draw from a Binomial

distribution (default α = 0.5). The chromosome is selected at
random with probability proportional to chromosome length. Each
segmental CNA is chosen to be either a copy number gain or de-
letion according to a draw from a Binomial distribution. Amplifi-
cations and deletions have been reported to occur in relatively
equal numbers, albeit with high variance (Zack et al, 2013; Harbers
et al, 2021). In general, these numbers tend to scale with one
another (Beroukhim et al, 2010), and so we fix the probability of an
amplification to be P = 0.5. The length of the CNA is drawn from an
exponential distribution, as multiple studies have found the
frequency of a CNA occurring scales inversely with its length
(Itsara et al, 2010; Knouse et al, 2017). We fix the mean length of a
CNA to be β = 5 Mbp based on existing estimates (Beroukhim et al,
2010; Gao et al, 2017; Harbers et al, 2021) while also allowing for
meaningful evaluation. After a length is chosen, the starting lo-
cation is selected on the chromosome uniformly among all
possible locations. Lastly, if the event is a copy number gain, the
number of additional copies is chosen with a draw from a geo-
metric distribution (Mallory et al, 2020a). The mean number of
additional copies is fixed to be δ = 2 reflecting previous obser-
vations (Liu et al, 2009; Lauer et al, 2018), and all additional copies
are inserted in tandem with the original.

Larger-scale CNAs and inclusion of clonal structures Beyond
segmental CNAs, the genomic landscape in tumors can be driven
by large-scale CNAs occurring at the chromosome-arm or whole-
chromosomal level. Chromosomal CNAs are known to be an in-
fluential factor in the expansion of diverging lineages and have
previously been used as a criteria to define distinct clonal pop-
ulations (Velazquez-Villarreal et al, 2020). Following this defini-
tion, clonal expansions can be introduced into the population by
selecting lineages which undergo a unique set of chromosomal
CNAs. In particular, ancestral nodes are selected from the tree
and, in addition to segmental CNAs, are subjected to both whole-
chromosomal and chromosome-arm CNAs, thereby significantly
separating their descending lineage from the rest of the tree
(Secrier et al, 2016; Zaccaria & Raphael, 2021). To achieve this, a
fixed number of ancestral nodes are chosen based on the size of
the clade. Note that cells within clonal lineages do not have
identical genomes as they continue to accumulate segmental
CNAs. To simulate chromosomal CNAs, we first determine if the
event affects a chromosome arm or a whole chromosome with a
Binomial distribution. We fix P = 0.75 with probability weighted
in favor of chromosome-arm CNAs, as these are thought to be
more common (Taylor et al, 2018). The specific chromosome or
chromosome-arm is selected uniformly at random. Both
chromosome-arm CNAs and whole-chromosomal CNAs can either
be a deletion or duplication event, but not an amplification
(Beroukhim et al, 2010), and is determined by a draw from a Bi-
nomial. By default, we set P = 0.5 for an even distribution of
duplications and deletions. However, in the presence of WGD, we
set P = 0.8 in favor of deletions, as the median ploidy of tumors
having undergone WGD is close to 3 (Bielski et al, 2018). We
note that clonal structures (or chromosomal CNAs) are not in-
cluded in our default simulation parameter settings; instead we
simulate additional datasets to explore the impact of varying
numbers of clones.
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Generation of noise-free CNPs Upon completing the tree traversal,
CNPs are generated for each leaf node by “mapping” regions back to
the starting diploid genome and grouping them into fixed-size bins.
On real low coverage data, bin sizes typically are in the order of 500
kbp (Garvin et al, 2015) to 5 Mbp (Zaccaria & Raphael, 2021). Ac-
cordingly, the default bin size is set to 1 Mbp, but we also evaluate
other bin sizes.

Generation of noisy CNPs In the last step, noise/error is in-
troduced into the CNPs. This is important because copy
numbers estimated from real sequencing data can be highly
error-prone (Mallory et al, 2020a). The simulator models two
primary sources of noise in real CNPs. First, the “boundary”
model adds poor resolution at the edges of contiguous seg-
ments with the same copy number, which has previously been
reported to be the main sources of error in copy number de-
tection algorithms (Garvin et al, 2015; Mallory et al, 2020a).
Second, the “jitter” model adds random fluctuations due to
biases in sequencing technologies which often affect down-
stream analysis, for example, uneven coverage (Navin, 2014). A
more complete description of the noise models appears later
in this section.

Selection of appropriate noise parameters
The benchmarking study of Mallory et al (2020a) evaluated the
breakpoint detection accuracy of several existing CNA detection
methods across a multitude of sequencing technologies and
experimental conditions, and reported precision and recall
values in the ranges of 0.4–0.75 and 0.5–0.8, respectively, for the
best performing method. Based on this benchmarking study, we
use two different noise levels, low and high, in our simulation.
For the low noise setting, we used a boundary error rate, rb of
0.02 and a jitter error rate rj of 0.1, which results in a precision
and recall of 0.710 and 0.761, respectively. For the high noise
setting, we used rb = 0.04 and rj = 0.1, which results in precision
and recall of 0.652 and 0.668, respectively. We note that
while these parameter settings result in a significant loss in
breakpoint detection accuracy, the vast most of copy numbers
remain unchanged because the number of breakpoints be-
tween contiguous segments is far less than the total number of
bins. On average, only 0.064% of bins have an altered copy
number in the low noise setting, and only 1.05% of bins have an
altered copy number in the high noise setting. Further details on
how these boundary and jitter error rates were selected and
how precision and recall values were derived for the simulated
noisy datasets appear below. In addition, we also generated
datasets with varying jitter and boundary error rates to assess
their impact on the reconstruction accuracies of different
methods.

Simulation parameter ranges and defaults
To assess the robustness of themethods on different dataset types,
scales, evolutionary conditions, error-rates, etc., we systematically
explored the impact of changing key simulation parameter values.
For each distinct combination of parameter settings, we generated
20 independent replicates and all reported results are averaged
over these 20 replicates. A list of the key simulation parameters

whose impact was systematically explored, along with their ranges
and default values, appears below.

• Number of cells: n 2 {10, 25, 50, 100, 250, 500, 1,000, 5,000, 10,000};
default 250.

• Number of chromosomes: x 2 {1, 2, 5, 10, 22}; default 22.
• Chromosome length (in Mbp): y 2 {50, 100, 200, 500, 750, 1000}.

o If x = 22, then y uses lengths from the human reference genome
hg38.

o If x ≠ 22, then the default is y = 100 for every chromosome.
• Mean number of CNAs per edge: λ 2 {0.5, 1, 2, 3, 4, 5}; default 2.
• Bin size (in kbp): b 2 {500, 1,000, 2,000, 5,000, 10,000}; default 1,000.
• Number of clones: c 2 {0, 2, 4, 6}; default 0.
• WGD: w 2 {True, False}; default false.
• Boundary error rate: rb 2 {0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.15};
default values of 0, 0.02, and 0.04 for “no noise,” “low noise,” and
“high noise” datasets, respectively.

• Jitter error rate: rj2 {0, 0.05, 0.1, 0.15}; default values of 0, 0.1, and 0.1
for “no noise,” “low noise,” and “high noise” datasets, respectively.

Noise models and selection of noise parameters
We begin by providing a brief description of the noise models used
in CNAsim. After generating the ground truth CNPs, CNAsim intro-
duces noise/error using two models. First, as part of the boundary
model, the boundaries of contiguous segments with the same copy
number are extended or shrunk such that bins at the edges of
segments are converted into their neighboring segment. This is
motivated by previous studies which have shown a concentration in
copy number error over bins near segment boundaries (Mallory
et al, 2020b). For each distinct segment, the new length of the
segment is drawn from a Gaussian distribution with mean equal to
the segment length, and a SD equal to the segment length mul-
tiplied by the error rate. Second, as part of the jitter model, random
jitter is introduced to each bin independently. The intention is to
mimic random fluctuations in read counts across the genome that
are common to scDNA-seq technologies, the primary cause being
nonuniform coverage. For each bin with copy number c, a new copy
number is assigned based on a draw from a Gaussian distribution
with mean to equal c and SD equal to c⋅r, where r is the error rate
given by the user. Further details on these noise models appear in
Weiner and Bansal (2023a).

The error rates used in CNAsim for generating noisy data were
selected to reflect the performance of existing CNA detection
methods reported in the benchmarking study of Mallory et al
(2020a). This study computed the predicted copy number break-
points of each method from sequencing data generated from
simulated genomes where the ground truth copy number break-
points are known. By comparing the genomic locations of the
predicted and ground truth breakpoints, precision and recall values
were derived for each of the evaluated methods. Across all ex-
periments, the best performing methods in the study achieved
precision and recall values in the ranges of 0.4–0.75 and 0.5–0.8,
respectively.

For the selection of appropriate error rates in CNAsim, we chose
values for the noise parameters rb and rj that result in precision and
recall values within these ranges. When running CNAsim with a
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given combination of noise parameters, we can output the “clean”
CNPs in addition to the noisy CNPs. Thus, for a given combination of
rb and rj, we can compute precision and recall values using the
clean and noisy CNPs. In particular, given a clean CNP C=(c1,...,cn) and
noisy CNP C9 = ðc91; :::; c9nÞ, we apply the following procedure:

1 Compute the breakpoint profiles B = (b1,...,bn−1) and
B9 = ðb91; :::; b9n − 1Þ.

2 Compute the sets of informative breakpoints X = {i:i 2 1...n−1 and
bi ≠ 0} and X9 = fi : i21:::n − 1 andb9i ≠ 0g.

3 Count the number of true positives (TP), false positives (FP), and
false negatives (FN) as |X\X9|, |X9−X|, and |X–X9|, respectively, and
compute precision and recall.

Table S1 details the precision and recall values of all noisy
datasets generated with CNAsim. We note that the relatively low
precision and recall values for breakpoint detection on noisy CNPs
(corresponding to those reported in Mallory et al [2020a]) are not
caused by large-scale error in inferred/noisy copy numbers. In fact,
the vast most of copy numbers do not fluctuate and are left un-
changed in the noisy CNPs. For example, in the boundary error
model, because the number of contiguous segments (and therefore
also breakpoints) is significantly less than the total number of bins,
the boundary model alters a number of bins proportional to the
number of segments. Likewise, the jitter error model works by
redrawing each bin with copy number c from a normal distribution
with a mean of c and a SD of c*rj, where rj is the jitter error rate. This
in effect means that the larger (resp. smaller) the copy number, the
higher (resp. lower) the chances of observing jitter. For reference,
an error rate of rj = 0.1will result in 9.55% of bins with copy number 3
to fluctuate, 1.24% of bins with copy number 2 to fluctuate, and a
mere 5.73 × 10−7% of bins with copy number 1 to fluctuate. On the
default high noise setting (jitter error 0.1, boundary error 0.04), on
average 1.05% of bins fluctuate compared with the noise-free
profiles. On the default low noise setting, this value is 0.064%.
These values match existing studies reporting high in-silico raw
copy number recall (Funnell et al, 2022).

Simulated datasets of existing methods
To rule out any potential bias in the CNAsim datasets, we also
created simulated datasets using the simulation frameworks of
the two existing methods MEDICC2 (Kaufmann et al, 2022) and
cnp2cnp (Cordonnier & Lafond, 2020). Both simulation frame-
works take the same general approach as CNAsim; a ground
truth tree topology is generated, CNAs are accumulated along
each edge, and observed CNPs are derived from the genomes of
the leaf nodes. However, there are several important differ-
ences between these two previous simulation frameworks and
CNAsim related to number of bins, genome resolution, event
sizes, event types, error models, etc. A description of key dif-
ferences appears below.

Using the simulation frameworks of MEDICC2 and cnp2cnp, we
generated the same datasets as those outlined in their re-
spective studies (Cordonnier & Lafond, 2020; Kaufmann et al,
2022). We also used these older simulators to create additional
datasets with more realistic parameter values for bin size and
event rates.

Key differences between the three simulation frameworks
CNAsim and the simulation frameworks of MEDICC2 and cnp2cnp all
take the same general approach: A ground truth tree topology is
generated, CNAs are accumulated along each edge, and observed
CNPs are derived from the genomes of the leaf nodes. However,
there are several important differences between the two previous
simulation frameworks and CNAsim. Some of the key differences
include the following.

Number of bins The simulation study of MEDICC2 used at most 10
bins per chromosome with 2 × 22 chromosomes, for a total of 440
bins, and the simulation study of cnp2cnp used at most 250 bins
from a single chromosome. In contrast, datasets generated by
CNAsim have a more realistic number of bins by default which, at 1
Mbp bin lengths and the 2 × 22 autosome lengths of hg38, comes out
to roughly 5,760 bins.

Resolution of genome Both MEDICC2 and cnp2cnp simulation
frameworks simulate events over the bins themselves, meaning
CNAs always start and end exactly at the boundaries between bins.
For comparison, CNAsim simulates events at the region level, which
are by default 1,000x smaller than the bins. This results in more
realistic CNAs when using CNAsim because real CNAs very rarely
start or end at bin boundaries or may be contained within a single
bin entirely. We also note that while CNAsim and MEDICC2 simulate
genomes with allele-specific copy numbers, cnp2cnp simulates a
single haploid chromosome.

Magnitudes of copy number gains Both of the older simulation
frameworks model deletions and duplications, but not copy
number amplifications of larger magnitudes. CNAsim models the
magnitude of a copy number amplification with a geometric dis-
tribution such that the higher the magnitude, the lower the
probability. This results in duplications still being the most com-
mon, but higher magnitude events are possible.

Simulation of the cell-lineage tree Both MEDICC2 and cnp2cnp
simulation frameworks construct the ground truth topology by
randomly merging cells, compared with the coalescent model used
in CNAsim.

Zero copy number While CNAsim allows the deletion of the last
copy of a region, cnp2cnp considers various rates of this occurring,
and MEDICC2 disallows it completely.

Error in CNPs The simulation framework of cnp2cnp has a simple
noise-model similar to the jitter model of CNAsim. The simulation
framework of MEDICC2 can only generate noise-free CNPs and does
not explore noisy CNPs. CNAsim has the most complex noise model
and includes both jitter error and boundary error.

Event types The simulation framework of cnp2cnp only uses a
single chromosome and is limited to segmental duplications and
deletions. The simulation framework of MEDICC2 models a variety of
events including segmental duplications and deletions, WGD, and
whole-chromosomal duplications and deletions. In addition,
MEDICC2 models several events that are not included in CNAsim,
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namely balanced and unbalanced translocations, insertions, and
inversions.

Real datasets
In addition to using simulated datasets, we also evaluate our most
robust method, DICE-star, on a total of 37 publicly available real
cancer datasets. The first 35 datasets are derived from breast and
ovarian tumors and were generated using DLP+ whole-genome
scDNA sequencing (Funnell et al, 2022). The latter two are de-
rived from two breast cancer patients, T10 and T16, and were
generated using whole-genome amplification-based SNS tech-
nology (Navin et al, 2011).

Quantifying concordance between cell lineage trees and clusters

Given a cell lineage tree and a set of clusters inferred indepen-
dently from the tree, we quantify the concordance between clades
in the tree and the clusters using the ARI. To compute the ARI, we
induce a partitioning of the cells based on the topology of the tree
as follows.

Given a tree t and a set of clusters C, for some cluster c2C we
identify the subtree s2Twhich showsmaximumF1-scorewith respect
to c. The cells in s then represent a clade-induced cluster used to
compute the ARI. Once s is selected, the clade is pruned from the tree
and this process continues until no clusters remain or until the tree is
empty. As the order in which clusters are considered affects sub-
sequent cluster selections, we enumerate over all possible orderings
and choose the ordering which maximizes the ARI.

Specific commands used for running existing methods

The specific commands and scripts used for running MEDICC2
(Kaufmann et al, 2022), MEDALT (Wang et al, 2021), cnp2cnp (Cordonnier
& Lafond, 2020), sitka (Salehi et al, 2023), and Lazac (Schmidt et al, 2023)
in our experimental analysis are available in the DICE GitHub re-
pository (https://github.com/samsonweiner/DICE). These methods
were all run in accordance to their respective software manuals or
readme files using suggested or default options. Note that MEDICC2
also provides options for reconstructing ancestors on the inferred
phylogeny. To enable a fair comparison of running times, we enabled
the –topology-only flag of MEDICC2 so as to output the tree topology
only (skips reconstructing ancestors), and also enabled the –no-plot
flag to skip generating visual plots. For WCND (Zeira & Raphael, 2020),
there does not exist a fully operable software package or user manual
and we therefore describe how we used WCND below.

The WCND code repository on GitHub provides only high-level
functions and does not include examples or a guide to defining
weight functions. Because of this, we used the “semi_directed_cnd”
function to compute unweighted MED distances over all chromo-
somal CNPs of each pair of cells, set the total distance between a
pair of cells as the sum of the chromosomal unweighted MED
distances, and reconstructed the tree from the pairwise distances
using neighbor joining.

Sitka was run as in Salehi et al (2023), using the first four steps
described in the GitHub readme file. For steps 1, 2, and 4 (jitter
correction, loci filtering, and point estimation), we run the com-
mands with the parameters exactly as they appear in the readme.

Following the approaches of (Kaufmann et al, 2022; Schmidt et al,
2023), for step 3 (tree inference), we use the same parameter values
used in the original publication on real datasets (see Table S1 from
Salehi et al [2023]).

We note that the simulated datasets generated with CNAsim and
the MEDICC2 simulator contain allele-specific CNPs, while the
datasets generated with the cnp2cnp simulator only contain total
CNPs. Thus, in the case of datasets generated with the cnp2cnp
simulator, all methods receive total CNPs as input. For datasets
simulated with CNAsim and the MEDICC2 simulator, allele-specific
CNPs are provided as input to DICE-bar, DICE-star, Navin et al,
Minussi et al, MEDICC2, Lazac, and WCND, which can all explicitly
read multiple copy numbers from different alleles at the same
genomic position. For cnp2cnp, sitka, and MEDALT, which all expect
a single copy number at any one locus, these allele-specific CNPs
are summed together and passed to those method as total CNPs.

Data Availability

Raw sequencing data for the 35 breast and ovarian cancer datasets
of Funnell et al (2022) are available from the European Genome-
Phenome under study ID EGAS00001006343. The corresponding
processed data (CNPs and read count matrices) for each dataset
was obtained fromWilliams (2022). Raw sequencing data for the two
breast cancer datasets of Navin et al (2011) are available from the
NCBI Sequence Read Archive under accession number SRA018951.
All simulated datasets are freely available from Zenodo (Weiner &
Bansal, 2023b). The software used for our analysis is freely available
open-source from https://github.com/samsonweiner/DICE and
https://compbio.engr.uconn.edu/software/dice/.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202402923.
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