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Abstract. The classical universal approximation (UA) theorem for neu-
ral networks establishes mild conditions under which a feedforward neural 
network can approximate a continuous function f with arbitrary accuracy. 
A recent result shows that neural networks also enjoy a more general inter-
val universal approximation (IUA) theorem, in the sense that the abstract 
interpretation semantics of the network using the interval domain can 
approximate the direct image map of f (i.e., the result of applying f to a set  
of inputs) with arbitrary accuracy. These theorems, however, rest on the 
unrealistic assumption that the neural network computes over infinitely 
precise real numbers, whereas their software implementations in practice 
compute over finite-precision floating-point numbers. An open question is 
whether the IUA theorem still holds in the floating-point setting. 

This paper introduces the first IUA theorem for floating-point neu-
ral networks that proves their remarkable ability to perfectly capture the 
direct image map of any rounded target function f , showing no lim-
its exist on their expressiveness. Our IUA theorem in the floating-point 
setting exhibits material differences from the real-valued setting, which 
reflects the fundamental distinctions between these two computational 
models. This theorem also implies surprising corollaries, which include 
(i) the existence of provably robust floating-point neural networks; and 
(ii) the computational completeness of the class of straight-line programs 
that use only floating-point additions and multiplications for the class of 
all floating-point programs that halt. 
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G. Hwang and W. Lee—Equal contribution. 
The full version of this article is at https://doi.org/10.48550/arXiv.2506.16065. 
c© The Author(s) 2025 
R. Piskac and Z. Rakamarić (Eds.): CAV 2025, LNCS 15932, pp. 301–326, 2025. 
https://doi.org/10.1007/978-3-031-98679-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-98679-6_14&domain=pdf
http://orcid.org/0000-0001-7137-426X
http://orcid.org/0000-0003-0301-0872
http://orcid.org/0000-0002-4211-6226
http://orcid.org/0000-0003-1580-5664
http://orcid.org/0000-0002-0505-795X
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.1007/978-3-031-98679-6_14


302 G. Hwang et al.

1 Introduction 

Background. Despite the remarkable success of neural networks on diverse 
tasks, these models often lack robustness and are subject to adversarial attacks. 
Slight perturbations to the network inputs can cause the network to produce 
significantly different outputs [ 23, 63], raising serious concerns in safety-critical 
domains such as healthcare [ 18], cybersecurity [ 57], and autonomous driving [ 16]. 

These issues have brought about significant advances in new algorithms for 
robustness verification [ 2, 34, 42], which prove the robustness of a given network; 
and robust training [ 24, 48, 56, 68], which train a network to be provably robust. 
But despite these advances, provably robust networks do not yet achieve state-of-
the-art accuracy [ 38]. For example, on the CIFAR-10 image classification bench-
mark, non-robust networks achieve over 99% accuracy, whereas the best provably 
robust networks achieve less than 63% [ 37]. This performance gap has prompted 
researchers to explore whether there exists fundamental limits on the expressive-
ness of provably robust networks that restrict their accuracy [ 3]. 

Surprisingly, it has been proven that no such fundamental limit exists. Infor-
mally, for any continuous function f : Rd → R and compact set K ⊂  Rd, there  
exists a neural network g : Rd → R whose robustness properties are “sufficiently 
close” to those of f over K and easily provable using abstract interpretation [ 10] 
over the interval domain. This result, known as the interval universal approx-
imation (IUA) theorem [ 4, 66], generalizes the classical universal approxima-
tion (UA) theorem [ 12, 27] from pointwise-values to intervals, and confirms that 
provably robust networks do not suffer from a fundamental loss of expressive 
power. 

Key Challenges. The IUA theorem in [ 4, 66] overlooks a critical aspect of real-
world computation, which is the use of floating-point arithmetic instead of real 
arithmetic. It assumes that neural networks and interval analyses operate on 
arbitrary real numbers with exact operations. In reality, numerical implemen-
tations of neural networks use floating-point numbers and operations [ 22, §4.1], 
sometimes with extremely low-precision to speed-up performance [ 14, 29]. This 
discrepancy means that the existing IUA theorem does not directly apply to 
neural networks that are implemented in software and actually used in practice. 

To our knowledge, no prior work has studied the robustness and expressive-
ness properties of floating-point neural networks or established an IUA theorem 
for them. The unique complexities of floating-point arithmetic introduce daunt-
ing challenges to any such theoretical study. For example, floating-point num-
bers are discretized and bounded, and their operations have rounding errors that 
become infinite in cases of overflow. Whereas the IUA proof over reals requires 
very large real numbers for network weights or intermediate computations, these 
values cannot be represented as floats. Naively rounding reals to floats causes 
approximation errors that invalidate many steps of the IUA proofs in [ 4, 66]. 

This Work. We formally study the IUA theorem over floating point, as a step 
toward bridging the theory and practice of provably robust neural networks.
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Fig. 1. Illustration and comparison of the IUA theorems. (a) In the real-valued setting, 
the neural network abstract interpretation ν� forms a δ-approximation to the image 
map of f . (b) In the floating-point setting, ν� exactly computes the upper and lower 
points of the image map of f : ν�(B) = [min ̂f (B), max ̂f (B)] ∩ F. 

We first formulate a floating-point analog of the IUA theorem, considering 
the details of floating point. Let f : Rd → R be a target function to approximate. 
Since all floating-point neural networks are functions between floating-point val-
ues, they can at-best approximate the rounded version ̂f : Fd → F of f over 
floats, where F denotes the set of all floats. The floating-point version of the IUA 
theorem asks the following: is there a floating-point neural network ν : Fd → F 
whose interval semantics is arbitrarily close to the direct image map of the 
rounded target ̂f over [−1, 1]d? More formally, this property means that for any 
δ >  0, there exists a neural network ν such that for all boxes B ⊆  [−1, 1]d ∩ Fd,

∣

∣

∣min ν�(B) − min ̂f (B)
∣

∣

∣ ≤ δ,
∣

∣

∣max ν�(B) − max ̂f(B)
∣

∣

∣ ≤ δ. (1) 

In Eq. (1), ν�(B) is the result of abstract interpretation of B under ν (using the 
interval domain), and ̂f (B) :=

{

̂f (x) | x ∈ B
}

⊂ R is the image of B under ̂f . 
We prove that the IUA theorem holds for floating-point networks, despite all 

their numerical complexities. In particular, we show that for any target function 
f and a large class of activation functions σ, including most practical ones (e.g., 
ReLU, GELU, sigmoid), it is possible to find a floating-point network ν with σ 
whose interval semantics exactly matches the direct image map of the rounded 
target ̂f over [−1, 1]d ∩ Fd (Fig. 1). This result implies that no fundamental limit 
exists on the expressiveness of provably robust floating-point neural networks. 

Our result is considerably different from the previous IUA theorem over the 
reals in three key aspects. The previous theorem considers continuous target 
functions; requires a restricted class of so-called squashable activation functions; 
and finds networks that are arbitrarily close to target functions. In contrast, our 
result considers arbitrary target functions; allows almost all activation functions 
used in practice; and find networks that are precisely equal to (rounded) target 
functions. Our IUA theorem even holds for the identity activation function, 
which is not the case for the traditional IUA or UA theorems over real numbers, 
because any network that uses the identity activation is affine over the reals.
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As a corollary of our main theorem, we prove the following existence of prov-
ably robust floating-point neural networks: given an ideal floating-point classi-
fier ̂f (not necessarily a neural network) that is robust (not necessarily provably 
robust), we can find a floating-point neural network ν that is identical to ̂f and 
is provably robust with interval analysis. We also prove a nontrivial result about 
“floating-point completeness”, as an unexpected byproduct of the main theorem. 
Specifically, we show that the class of straight-line floating-point programs that 
use only floating-point + and × operations is floating-point interval-complete: it  
can simulate any terminating floating-point program that takes finite floats as 
input and returns arbitrary floats as output. The same statement holds under the 
interval semantics. To our knowledge, no prior work has identified such a small 
yet powerful class of floating-point programs, suggesting that this corollary is of 
significant independent interest to the extensive floating-point literature. 

Contributions. This article makes the following contributions: 

• We formalize a floating-point analog of the interval universal approximation 
(IUA) theorem, to bridge the theory and practice of provably robust neural 
networks (Sect. 2, Sect. 3). It asks if there is a floating-point network whose 
interval semantics is close to the direct image map of a given target function. 

• We prove the floating-point version of the IUA theorem does hold, for all 
target functions and a broad class of activation functions that includes most 
of the activations used in practice (Sect. 3.1, Sect. 3.2, Sect. 5). This shows no 
fundamental limit exists on the expressiveness of provably robust networks 
over floats. 

• We rigorously analyze the essential differences between the previous IUA 
theorem over reals and our IUA theorem over floats (Sect. 3.3). Unlike real-
valued networks, floating-point networks can perfectly capture the behavior 
of any rounded target function, even with the identity activation function. 

• We prove that if there exists an ideal robust floating-point classifier, then one 
can always find a provably robust floating-point network that makes exactly 
the same prediction as the classifier (Sect. 4.1). 

• We prove that the set of straight-line floating-point programs with only (+, ×) 
is floating-point interval-complete: it can simulate any terminating floating-
point programs that take finite inputs and return finite/infinite outputs, under 
the usual floating-point semantics and interval semantics (Sect. 4.2). 

2 Preliminaries 

This section introduces floating-point arithmetic (Sect. 2.1), neural networks 
that compute over floating-point numbers (Sect. 2.2), and interval analysis for 
neural networks (Sect. 2.3). Throughout the paper, we define N to be the set of 
positive integers and let [n] := {1, . . . , n} for each n ∈ N.
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2.1 Floating Point 

Floating-Point Numbers. Let E, M ∈ N. The  set of  finite floating-point 
numbers with E-bit exponent and (M +1)-bit significand is typically defined by 

F
E 
M :=

{

(−1)b × (s0.s1 . . . sM )2 × 2e
∣

∣ b, si ∈ {0, 1}, e  ∈ {emin, ..., emax}
}

, (2) 

where emin := −2E−1 + 2  and emax := 2E−1 − 1 [ 52]. The set of all floating-
point numbers, including non-finite ones, is then defined by FE 

M := F
E 
M ∪ 

{−∞, +∞, ⊥}, where  ⊥ denotes NaN (i.e., not-a-number). For brevity, we call 
a floating-point number simply a float, and write FE 

M and FE 
M simply as F and 

F. In this paper, we assume  E ≥ 5 and 2E−1 ≥ M ≥ 3, which hold for nearly 
all practical floating-point formats, including bfloat16 [ 1] and all the formats 
defined in the IEEE-754 standard [ 31] such as float16, float32, and float64. 

We introduce several notations and terms related to finite floats. First, we 
define three key constants: the smallest positive float ω := 2emin−M , the  largest 
positive float Ω := 2emax(2 − 2−M ), and  the  machine epsilon ε := 2−M −1. Next,  
consider a finite float x ∈ F. We call  x a subnormal number if 0 < |x| < 2emin , and  
a normal number otherwise. The exponent and significand of x are defined by 
ex := max {�log2 |x|
, emin} ∈  [emin, emax] and sx := |x| /2ex ∈ [0, 2). We use  
sx,0, . . . ,  sx,M to denote the binary expansion of sx, i.e., (sx,0. sx,1 . . .  sx,M )2 = 
sx with sx,i ∈ {0, 1}. The  predecessor and successor of x in F are written as 
x− := max

{

y ∈ F \ {⊥} | x > y
}

and x+ := min
{

y ∈ F \ {⊥} | x < y
}

. 

Floating-Point Operations. We define the rounding function rnd : R ∪ 
{−∞, +∞} → F as follows: rnd(x) := −∞ if x ∈ [−∞, −Ω − c], rnd(x) := 
arg miny∈F 

|y − x| if x ∈ (−Ω − c, Ω + c), and  rnd(x) := +∞ if x ∈ [Ω + c, +∞], 
where c := 2emaxε and arg min breaks ties by choosing a float y with sy,M = 0. 
This function corresponds to the rounding mode “round to nearest (ties to even)”, 
which is the default rounding mode in the IEEE-754 standard [ 31]. 

The floating-point arithmetic operations ⊕,�, ⊗ : F × F → F are defined 
via the rounding function: for finite floats x, y ∈ F, x ⊕ y := rnd(x + y), x �
y := rnd(x − y), and  x ⊗ y := rnd(x × y). We omit the definition for non-finite 
operands because they are unimportant in this paper, except that x ⊕ 0 =  
x � 0 =  x for all x ∈ {−∞, +∞}. For the full definition, refer to the IEEE-754 
standard [ 31]. 

We introduce two more floating-point operations: affW,b and rnd(f). 
First, we define the floating-point affine transformation: for a matrix W = 
(wi,j)i∈[m],j∈[n] ∈ Fm×n and a vector b = (b1, . . . , bm) ∈ Fm, affW,b : Fn → Fm 

is defined by 

affW,b(x1, . . . , xn) := 

⎛ 

⎝ 

⎛ 

⎝ 
n ◦∑

j=1 

xj ⊗ w1,j 

⎞ 

⎠ ⊕ b1,  . . . ,  

⎛ 

⎝ 
n ◦∑

j=1 

xj ⊗ wm,j 

⎞ 

⎠ ⊕ bm 

⎞ 

⎠ . (3) 

Here, ◦∑ denotes the floating-point summation defined in the left-associative 
way: ◦∑n 

i=1 yi := (· · ·  ((y1 ⊕ y2) ⊕ y3) · · ·  )⊕ yn, where the order of ⊕ is important
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Fig. 2. Illustrations of a network ν1 without the last affine layer (left), a network ν2 

without the first affine layer (middle), and their composition ν2 ◦ ν1 (right). Note that 
affW ′

1,b′
1 

◦ affWL,bL = affW ′
1,b′

1 
is a floating-point affine transformation. 

because ⊕ is not associative. Next, we define the correctly rounded version of a 
real-valued function. For f : R → R, the function rnd(f) :  F → F is defined by 

rnd(f )(x) := 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

rnd(f (x)) if x ∈ (−∞, +∞) 

rnd

(
lim 
t→x 

f (t)

)
if x ∈ {−∞, +∞} ∧ lim 

t→x 
f (t) ∈ R ∪ {−∞, +∞} 

⊥ otherwise. 

(4) 

2.2 Neural Networks 

A neural network typically refers to a composition of affine transformations and 
activation functions. Formally, for L ∈ N and σ : F → F, we call a function ν a 
depth-L σ-neural network (or a neural network) if  ν is defined by 

ν : Fd0 → FdL , ν  := affWL,bL ◦ σ̃dL−1 ◦ affWL−1,bL−1 ◦  · · ·  ◦  ̃σd1 ◦ affW1,b1 (5) 

for some d� ∈ N, W� ∈ Fd�×d�−1 , and  b� ∈ Fd� , where  ̃σn : Fn → Fn is the 
coordinatewise application of σ. Here, L denotes the number of layers, σ the 
floating-point activation function, d0 and dL the input and output dimensions, 
d� the number of hidden neurons in the �-th layer (� ∈ [L−1]), and W� and b� the 
parameters of the floating-point affine transformation in the �-th layer (� ∈ [L]). 
We emphasize that a neural network in this paper is a function over floating-point 
values, defined in terms of floating-point activation function and arithmetic. For 
instance, a depth-1 neural network is a floating-point affine transformation. 

Let ν be a neural network defined as Eq. (5). We say ν is without the last 
affine layer if dL = dL−1, WL is the identity matrix, and bL = 0. Similarly, we 
say ν is without the first affine layer if d1 ≥ d0, W1 is a rectangular diagonal 
matrix whose diagonal entries are all 1, and  b1,i = 0  for all i ∈ [d0]. The  two  
definitions are not perfectly symmetric due to some technical details arising in 
our proofs. We note that a neural network can be constructed by composing
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networks without the first/last affine layer(s) and arbitrary networks (Fig. 2). 
For example, consider arbitrary networks ν1 : Fn0 → Fn1 and ν4 : Fn3 → Fn4 , a  
network without the first affine layer ν2 : Fn1 → Fn2 , and a network without the 
first and last affine layers ν3 : Fn2 → Fn3 . It is easily verified that the function 
ν : Fn0 → Fn4 specified by ν(x) = (ν4 ◦  · · ·  ◦  ν1)(x) denotes a network, whose 
definition in the form of Eq. (5) can be obtained by “merging” the last layer of 
ν1 and the first layer of ν2, etc.  

2.3 Interval Semantics 

Interval analysis [ 11, 50] is a technique for analyzing the behavior of numerical 
programs soundly and efficiently, based on abstract interpretation [ 10]. It uses 
intervals to overapproximate the ranges of inputs and expressions, and prop-
agates them through a program to overapproximate the output range. Inter-
val analysis has been used to establish the robustness of practical neural net-
works [ 19, 24, 33, 43]. It can overapproximate the output range of a network over 
perturbed inputs, which is required to prove robustness; and it runs efficiently 
by performing only simple computations, which is required to analyze large-scale 
networks. 
Interval Domain and Operations. We formalize interval analysis for neural 
networks as follows. We first define the interval domain 

I :=
{

〈a, b〉
∣

∣ a, b ∈ F \ {⊥}  with a ≤ b
}

∪ {�}  , (6) 

on which interval analysis operates. Here, 〈a, b〉 abstracts the floating-point 
interval [a, b] ∩ F, and � abstracts the entire floating-point set F including 
⊥. The concrete semantics of an abstract interval I ∈  I and an abstract box 
B = (I1, . . . ,  Id) ∈ Id are defined through the concretization function γ, where  

γ : ∪∞ 
d=1I

d → ∪∞ 
d=12

F
d 
, γ  (I) :=

{

[a, b] ∩ F if I = 〈a, b〉
F if I = �

, γ  (B) := 
d

∏

i=1 

γ (Ii) . 

(7) 

We say that an abstract box B ∈  Id is in a set  S ⊆  Rd if γ(B) ⊆ S. 
For any function φ : Fd → F over floats (which is not a neural network or a 

floating-point affine transformation), the interval operation φ� : Id → I extends 
φ to the interval domain as follows: 

φ�(B) :=

{

〈min S, max S〉 if ⊥ /∈ S
� if ⊥ ∈ S  

, where S := φ(γ (B)). (8) 

In the special case that φ = � ∈ {⊕,�, ⊗} is a floating-point arithmetic opera-
tion, the above definition (using infix notation) is equivalent to the following:

〈a, b〉 �� 〈c, d〉 :=

{

〈min S, max S〉 if ⊥ /∈ S
� if ⊥ ∈ S  

, where S :=

{

a � c, a � d, 
b � c, b � d

}

, 

(9)
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and �� returns � if at least one of its operands is �. 1 We remark that ��

can be efficiently computed, and so can φ� when φ : F → F is piecewise-
monotone with finitely many pieces, which holds for the correctly rounded 
versions of widely-used activation functions (e.g., ReLU, GELU, sigmoid). 
We then define the interval affine transformation aff�

W,b : In → Im, which  
extends its floating-point counterpart affW,b : Fn → Fm: aff�

W,b(I1, . . . ,  In) :=
((

◦∑n 
j=1

� Ij ⊗� 〈wi,j , wi,j〉
)

⊕� 〈bi, bi〉
)m 

i=1 
, where ◦∑� is the interval summation 

which uses ⊕� instead of ⊕. 

Interval Semantics. The interval semantics ν� : Id0 → IdL of a neural network 
ν : Fd0 → FdL is defined as the result of interval analysis on ν: 

ν� := aff�
WL,bL 

◦ σ̃�
dL−1 

◦ aff�
WL−1,bL−1 

◦  · · ·  ◦  ̃σ�
d1 

◦ aff�
W1,b1 

, (10) 

where ν is  assumed to be defined as Eq.  (5) and  ̃σ�
n : In → In is the coordinate-

wise application of σ� : I → I. It is easily verified that the interval semantics is 
sound with respect to the floating-point semantics: 

ν (γ (B)) ⊆ γ
(

ν�(B)
)

(B ∈  Id0 ). (11) 

That is, the result of interval analysis ν�(B) ∈ IdL subsumes the set of all possible 
outputs of the network ν when the input is in the concrete box γ (B) ⊆ Fd0 . 

3 Interval Universal Approximation Over Floats 

This section presents our main result on interval universal approximation (IUA) 
for floating-point neural networks. We first introduce conditions on activation 
functions for our result (Sect. 3.1), and then formally describe our result under 
these conditions (Sect. 3.2). We then compare our IUA theorem over floats 
with existing IUA theorems over reals, highlighting several nontrivial differences 
(Sect. 3.3). 

3.1 Conditions on Activation Functions 

Our IUA theorem is for floating-point neural networks that use activation func-
tions satisfying the following conditions (Fig. 3). 

Condition 1. An activation function σ : F → F satisfies the following condi-
tions:

1 This definition of �� differs slightly from the standard definition, as �� uses “round 
to nearest” mode (implicit in �), whereas the more common mode is “round down-
ward/upward” (e.g., 〈a, b〉 ⊕� 〈c, d〉 := 〈a ⊕↓ c, b ⊕↑ d〉) [  26, Section 5]. This choice 
is due to different goals to achieve: our definition overapproximates floating-point 
operations (e.g., ⊕), while the usual one overapproximates exact operations (e.g., +). 
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Fig. 3. Illustration of the first (left), second (middle), and third (right) conditions in 
Condition 1 for the ReLU activation function: σ(x) := max{x, 0} for x ∈ F. 

(C1) There exist c1, c2 ∈ F such that σ(c1) = 0, |σ(c2)| ∈  [ ε 
2 + 2ε2 , 5 4 − 2ε], 

max{|c1|, |c2|} ≥ 2emin+1, and  σ(x) lies between σ(c1) and σ(c2) for all x 
between c1 and c2, where  ε is the machine epsilon (see Sect. 2.1). 

(C2) There exists η ∈ F with |η| ∈  [2emin+5 , 4−8ε] and |σ(η)|, |σ(η+)| ∈  [2emin+5 , 
2emax−6 · |η|] such that for any x, y ∈ F with x ≤ η <  η+ ≤ y, 

σ(x) ≤ σ(η) < σ(η+) ≤ σ(y) or σ(x) ≥ σ(η) > σ(η+) ≥ σ(y). (12) 

(C3) There exists λ ∈ [0, 2emax−7 · min{|σ(η)|, 2M +3}] such that for any x, y ∈ F 
with x ≤ η <  η+ ≤ y, 

|σ(x) − σ(η)| ≤  λ|x − η| and |σ(y) − σ(η+)| ≤  λ|y − η+|. (13) 

The condition (C1) states that the activation function σ can output the exact 
zero (i.e., σ(c1)) and some value whose magnitude is approximately in [ ε 

2 , 
5 
4 ] 

(i.e., σ(c2)); and its output is within σ(c1) and σ(c2) for all inputs between 
c1 and c2. The condition (C2) states that there exists some threshold η such 
that σ(x) is either smaller or greater than σ(η) or σ(η+), depending on whether 
x is on the left or right side of η. This condition holds automatically for all 
monotone activation functions that are non-constant on either [2emin+5 , 4−8ε]∩F 

or [−4 + 8ε, −2emin+5] ∩ F. The condition (C3) states that σ does not increase 
or decrease too rapidly from η and η+, which implies that σ(x) is finite for all 
finite floats x ∈ F. 

While Condition 1 is mild, verifying whether practical activation functions 
over floats satisfy Condition 1 can be cumbersome. Floating-point activation 
functions are typically implemented in complicated ways [ 7, 44, 51] (e.g., by  
intermixing floating-point operations with integer/bit-level operations and if-
else branches), which makes it challenging to rigorously analyze such imple-
mentations [ 17, 36]. To bypass this issue, we focus on the correctly rounded 
version σ : F → F of a real-valued activation function ρ : R → R (i.e., 
σ(x) := rnd(ρ(x))), when verifying Condition 1. Correctly rounded versions 
of elementary mathematical functions have been actively developed in several 
software libraries [ 13, 39, 40, 58, 72].
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Under the correct rounding assumption, we provide an easily verifiable suf-
ficient condition for activation functions on reals that can be used to verify 
Condition 1 for their rounded versions. The proof of Lemma 1 is in §B.1. 

Lemma 1. For any activation function ρ : R → R, the correctly rounded acti-
vation rnd(ρ) :  F → F satisfies Condition 1 if the following conditions hold: 

(C1′) There exist c′
1, c

′
2 ∈ F such that |ρ(c′

1)| ≤  ω 
2 , |ρ(c′

2)| ∈  [ ε 
2 + 2ε2 , 5 4 − 2ε], 

max{|c′
1|, |c′

2|} ≥ 2emin+1, and  ρ(x) lies between ρ(c′
1) and ρ(c′

2) for all x 
between c′

1 and c′
2, where  ω is the smallest positive float (see Sect. 2.1). 

(C2′) There exists δ ∈ R with |δ| ∈  [ 3 8 , 
7 
8 ] such that 

• for all x, y ∈ R satisfying x ≤ δ − 1 8 < δ  + 1 8 ≤ y, 

ρ(x)≤ ρ(δ − 1 8 ) < ρ(δ + 1 8 )≤ ρ(y) or ρ(x)≥ ρ(δ − 1 8 ) > ρ(δ + 1 8 )≥ ρ(y), 

• |ρ(x)| ∈  [ 1 4 , 1] and |ρ(x) − ρ(y)| > 1 8 |x − y| for all x, y ∈ [δ − 1 8 , δ  + 1 8 ]. 
(C3′) ρ is λ-Lipschitz continuous for some λ ∈ [0, 1 5 · 2emax−9]. 

The Conditions (C1′)–(C3′) in Lemma 1 correspond to the Conditions (C1)– 
(C3) in Condition 1. The Condition (C1′), corresponding to (C1), can be easily 
satisfied since modern activation functions are piecewise-monotone and either 
zero at zero (e.g., ReLU, GELU, softplus, tanh) or close to zero at −Ω or Ω (e.g., 
sigmoid). The Condition (C2′) roughly states the existence of δ ∈ R satisfying 
the following: (i) ρ(δ− 1 

8 ) and ρ(δ+ 1 8 ) are lower/upper bounds of ρ on (−∞, δ− 1 
8 ) 

and (δ + 1 8 , ∞); and (ii) ρ is bounded and strictly monotone on [δ − 1 8 , δ  + 1 8 ]. 
This condition guarantees the existence of η ∈ F in (C2). The Condition (C3′), 
corresponding to (C3), can also be easily satisfied since λ <  3 for most practical 
activation functions. We note that Lemma 1 gives sufficient but not necessary 
conditions for a correctly rounded activation function to satisfy Condition 1. 

The following corollary uses Lemma 1 to show that many prominent activa-
tion functions satisfy Condition 1. Its proof is in §B.2. 

Corollary 1. The correctly rounded implementations of the ReLU, LeakyReLU, 
GELU, ELU, Mish, softplus, sigmoid, and  tanh activations satisfy Condition 1. 

3.2 Main Result 

We are now ready to present our IUA theorem over floating-point arithmetic. 

Theorem 1. Let σ : F → F be an activation function satisfying Condition 1. 2
Then, for any target function f : Rd → R, there exists a σ-neural network 
ν : Fd → F such that 

γ
(

ν�(B)
)

=
[

min ̂f (γ(B)) , max ̂f (γ(B))
]

∩ F (14)

2 Condition 1 is sufficient for Theorem 1 but not necessary. E.g., Theorem 1 still holds 
under 8-bit floats (both E4M3 and E5M2 formats [ 46]) for the ReLU activation 
function; this corresponds to the case where (C1) and (C2) hold but (C3) is violated. 
. 
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for ̂f = rnd(f ) :  Fd → Fd and for all abstract boxes B in [−1, 1]d. 3

Theorem 1 states that for any activation function σ : F → F satisfying 
Condition 1 and any target function f : Rd → R, there exists a σ-network 
ν whose interval semantics exactly computes the upper and lower points of the 
direct image map of the rounded target ̂f : Fd → F on [−1, 1]d∩Fd. A special case 
of our IUA Theorem 1 is the following universal approximation (UA) theorem 
for floating-point neural networks: 

ν(x) = ̂f(x) (x ∈ [−1, 1]d ∩ Fd). (15) 

That is, floating-point neural networks using an activation function satisfying 
Condition 1 can represent any function ̂f : [−1, 1]d ∩ Fd → F ∪ {−∞, +∞}; or  
the rounded version of any real function f : [−1, 1]d → R. Moreover, Theorem 1 
easily extends to any target function f : Rd → Rd′

with multiple outputs. 
As previous IUA results assume exact operations over reals, they do not 

extend to our setting of floating-point arithmetic (due to rounding errors, over-
flow, NaNs, discreteness, boundedness, etc.). As a simple example of these issues, 
consider the following subnetwork, which is used in the IUA proof of [ 4]: 

μ(x, y) =  1 
2 

(ReLU(x + y) − ReLU(−x − y) − ReLU(x − y) − ReLU(y − x)) . 

This subnetwork returns min{x, y} if all operations are exact. However, it does 
not under floating-point arithmetic due to the rounding error: if (+, ×) is 
replaced by (⊕, ⊗), then  μ(x, y) = 0 �= ε = min {x, y} for x = 1  and y = ε. 

In addition, the network construction in [ 66, Theorem 4.10] requires multi-
plying a large number z that depends on the target error and the activation 
function, to the output of some neuron. However, because F is bounded and 
floating-point operations are subject to overflow, the number z and the result 
of the multiplication are not guaranteed to be within F when using a small tar-
get error (e.g., less than ω) or when using common activations functions (e.g., 
ReLU, softplus). To bypass these issues, we carefully analyze rounding errors 
and design a network without infinities in the intermediate layers, when proving 
Theorem 1. 

We present the proof outline of Theorem 1 in Sect. 5, and the full proof in 
§D–§F. We implemented the proof (i.e., our network construction) in Python and 
made it available at https://github.com/yechanp/floating-point-iua-theorem. 

3.3 Comparison With Existing Results Over Reals 

Theorem 1, which gives an IUA theorem over floats, has notable differences from 
previous IUA theorems over the reals [ 4, Theorem 1.1]; [ 66, Theorem 3.7].
3 In the literature on universal approximation theorems, it is typically assumed that 

the inputs are in [0, 1] or in a compact subset of R (e.g., [ 4, 12, 66, 69]). Since the 
inputs are often normalized to [−1, 1], we focus the theoretical analysis on [−1, 1]d . 
. 

https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
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One difference is the class of target functions and the desired property of 
networks. Previous IUA theorems find a network that sufficiently approximates 
the direct image map of a continuous target function (i.e., δ >  0 in Eq. (1)). 
In contrast, our IUA theorem finds a network that exactly computes the direct 
image map of an arbitrary rounded target function (i.e., δ = 0  in Eq. (1)). This 
difference arises from the domains of the functions being approximated: the real-
valued setting considers functions f over [−1, 1]d (or a compact K ⊂  Rd); the 
floating-point setting considers functions ̂f over [−1, 1]d ∩ Fd. 

• Since [−1, 1]d is uncountable, exactly computing the direct image map of f 
requires a network to fit uncountably many input/output pairs and related 
box/interval pairs. This task is difficult to achieve, and indeed, recent 
works [ 3, 5, 47] prove that it is theoretically unachievable even for simple target 
functions (e.g., continuous piecewise linear functions). 

• Since [−1, 1]d ∩ Fd is finite, exactly computing the direct image map of ̂f 
requires a network to fit finitely many input/output and box/interval pairs. 
Our result proves that, despite all the complexities of floating-point compu-
tation, this task can be achieved for any rounded target function. 

Another key difference is the class of activation functions. There are real-
valued activation functions ρ, ρ′ : R → R such that previous IUA theorems 
cannot hold for ρ but our IUA theorem does hold for rnd(ρ) :  F → F; and  vice  
versa for ρ′. 

• An example of ρ is the identity function: ρ(x) =  x. No classical IUA or UA 
theorem can hold for ρ, since  all  real-valued ρ-networks μ : Rd → R are affine 
over the reals (i.e., there exists A ∈ R1×d and b ∈ R such that μ(x) =  Ax + b 
for all x ∈ Rd). In contrast, our IUA theorem does hold for rnd(ρ), because 
rnd(ρ) satisfies all the conditions in Lemma 1 (with constants c′

1 = 0, c′
2 = 1, 

δ = 1/2, and  λ = 1). This counterintuitive result is made possible because 
floating-point rnd(ρ)-networks ν : Fd → F can be non-affine over the reals 
(i.e., there may not exist A ∈ R1×d and b ∈ R such that ν(x) =  Ax + b for 
all x ∈ Fd). This non-affineness arises from rounding errors: some floating-
point affine transformations affW,b are not actually affine over the reals due 
to rounding errors. An interesting implication of this result is discussed in 
Sect. 4.2. 

• An example of ρ′ is any function that is non-decreasing on R, is constant on 
[−Ω, Ω], and satisfies limx→−∞ ρ

′(x) < limx→+∞ ρ
′(x), where the two limits 

exist in R. The real-valued IUA theorem holds for ρ′, because ρ′ satisfies 
the condition in [ 66, Definition 2.3]. However, no floating-point IUA or UA 
theorem can hold for rnd(ρ′), because all rnd(ρ′)-networks ν : F → F must 
be monotone if its depth is 1, and must satisfy ν(0) = ν(ω) otherwise. The 
monotonicity holds when the depth is 1 since ⊕, ⊗ are monotone when an 
operand is a constant; and ν(0) = ν(ω) holds otherwise since x ⊗ a ⊕ b ∈ 
[−Ω, Ω] for all x ∈ {0, ω} and a, b ∈ F, and  rnd(ρ′) is constant on [−Ω, Ω]∩ F.
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4 Implications of IUA Theorem Over Floats 

This section presents two important implications of our IUA theorem, on prov-
able robustness and “floating-point completeness”. We first prove the existence 
of a provably robust floating-point network, given an ideal robust floating-point 
classifier (Sect. 4.1). We then prove that floating-point + and × are sufficient to 
simulate all halting programs that return finite/infinite floats when given finite 
floats (Sect. 4.2). 

4.1 Provable Robustness of Neural Networks 

Consider the task of classifying floating-point inputs x ∈ X  (e.g., images of 
objects) into n ∈ N classes (e.g., categories of objects), where X := [−1, 1]d ∩ Fd 

denotes the space of inputs throughout this subsection. For this task, a function 
f : X →  Fn is often viewed as a classifier in the following sense: f predicts x 
to be in the i-th class (i ∈ [n]), where i := class(f(x)) and class : Fn → [n] 
is defined by class(y1, . . . , yn) := arg maxi∈[n] yi with an arbitrary tie-breaking 
rule. 

A typical robustness property of a classifier f is that f should predict the 
same class for all neighboring inputs under the �∞ distance [ 38]. We formalize 
this notion of robust classifiers in a way similar to [ 66, Definition A.4]. 

Definition 1. Let δ >  0 and D ⊆  X  . A classifier f : X →  Fn is called δ -robust 
on D if for all x0 ∈ D, y, y′ ∈ f (Nδ(x0)) implies class(y) = class(y′), where  
Nδ(x0) := {x ∈ X  | ‖x0 − x‖∞ ≤ δ} and ‖ · ‖∞ denotes the �∞-norm. 

Neural networks have been widely used as classifiers, but establishing the 
robustness properties of practical networks as in Definition 1 is intractable due 
to the enormous number of inputs to be checked (i.e., |Nδ(x0)| � 1 when d � 1). 
Instead, these properties have been proven often by using interval analysis, as 
mentioned in Sect.  2.3. We formalize the notion of such provably robust networks 
under interval analysis, in a way similar to [ 66, Definition A.5]. 

Definition 2. Let δ >  0 and D ⊆  X . A neural network ν : Fd → Fn is called 
δ -provably robust on D if for all x0 ∈ D, y, y′ ∈ γ(ν�(B)) implies class(y) =  
class(y′), where  B ∈  Id denotes the abstract box such that γ(B) =  Nδ(x0). 

Under these definitions, we prove that given an ideal robust classifier f , we  
can always find a neural network ν (i) whose robustness property is exactly the 
same as that of f and is easily provable using only interval analysis, and (ii) 
whose predictions are precisely equal to those of f . 

Theorem 2. Let f : X →  Fn be a classifier that is δ-robust on D, and  σ : 
F → F be an activation function satisfying Condition 1. Then, there exists a 
σ-neural network ν : Fd → Fn that is δ-provably robust on D and makes the 
same prediction as f on D (i.e., class(ν(x)) = class(f(x)) for all x ∈ D).
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Proof Sketch. We show this (i) by applying Theorem 1 to n target functions 
that are constructed from f , and (ii) by using the following observation: the 
network constructed in the proof of Theorem 1 has depth not depending on a 
target function (when d is fixed). The full proof is in §C.1. ��

4.2 Floating-Point Interval-Completeness 

To motivate our result, we recall the notion of Turing completeness. A com-
putation model is called Turing-complete if for every Turing machine T , there  
exists a program in the model that can simulate the machine [ 6, 35, 49]. Exten-
sive research has established the Turing completeness of numerous computation 
models: from untyped λ-calculus [ 8, 64] and  μ-recursive functions [ 9, 20], to type 
systems (e.g., Haskell [ 67], Java [ 25]) and neural networks over the rationals 
(e.g., RNNs [ 59], Transformers [ 54]). These results identify simpler computation 
models as powerful as Turing machines, and shed light on the computational 
power of new models. 

We ask an analogous question for floating-point computations instead of 
binary computations, where the former is captured by floating-point programs 
and the latter by Turing machines. That is, which small class of floating-point 
programs can simulate all (or nearly all) floating-point programs? 

Formally, let F be the set of all terminating programs that take finite floats 
and return finite or infinite floats, where these programs can use any floating-
point constants/operations (e.g., −∞, ⊗) and language constructs (e.g., if-else, 
while). Then, F semantically denotes the set of all functions from Fn to (F ∪ 
{−∞, +∞})m for all n, m ∈ N, because each such function  can be expressed with  
if-else branches and floating-point constants. For this class of programs, we define 
the notion of (interval-)simulation and floating-point (interval-)completeness as 
follows. 

Definition 3. Let P, Q ∈ F  be programs with arity n. We say  Q simulates P if 
Q(x) =  P (x) for all x ∈ Fn, where  P (x) denotes the concrete semantics of P on 
x. We say  Q interval-simulates P if γ(Q�(B)) = [min P (γ(B)), max P (γ(B))]∩ F 
for all abstract boxes B in Fn, where  Q�(B) denotes the interval semantics of Q 
on B. 

Definition 4. We say a class of programs G ⊆  F  is floating-point (interval-) 
complete if for every P ∈ F , there exists Q ∈ G  such that Q (interval-) 
simulates P . 

We prove that a surprisingly small class of programs is floating-point interval-
complete (so floating-point complete). In particular, we show that only floating-
point addition, multiplication, and constants are sufficient to interval-simulate 
all halting programs that output finite/infinite floats when given finite floats. 

Theorem 3. F⊕,⊗ ⊂ F  is floating-point interval-complete, where F⊕,⊗ denotes 
the class of straight-line programs that use only ⊕, ⊗, and floating-point con-
stants.
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Proof Sketch. We show this by extending the key lemma used in the proof 
of Theorem 1: there exist σ-networks that capture the direct image maps of 
indicator functions over [−1, 1]n ∩ Fn (Lemma 2). In particular, we prove that 
[−1, 1]n ∩ Fn can be extended to  Fn if σ is the identity function. The full proof 
is in §C.2. ��

To our knowledge, this is the first non-trivial result on floating-point 
(interval-) completeness. This result is an extension of our IUA theorem (The-
orem 1) for the identity activation function σid, in that floating-point interval-
completeness considers the input domain Fn (not [−1, 1]n∩Fn) and  F⊕,⊗ includes 
all σid-networks (but no other σ-networks). Theorem 3, however, cannot be 
extended to the input domain (F ∪ {−∞, +∞})n (instead of Fn), since no pro-
gram in F⊕,⊗ can represent a non-constant function that maps an infinite float 
to a finite float—this is because ⊕ and ⊗ do not return finite floats when applied 
to ±∞. 

5 Proof of IUA Theorem Over Floats 

We now prove Theorem 1 by constructing a σ-neural network that computes the 
upper and lower points of the direct image map of a rounded target function ̂f . 
For a, b ∈ R, we let  [a, b]F := [a, b] ∩ F and I[a,b] := {I ∈ I | γ(I) ⊆ [a, b]}. With 
this notation, (I[a,b])d is the set of all abstract boxes in [a, b]d. 

We start with defining indicator functions for a set of floating-point values 
and for an abstract box, which play a key role in our proof. 

Definition 5. Let d ∈ N. For  S ⊆  Fd, we define ιS : Fd → F as ιS(x) := 1  if 
x ∈ S, and  ιS(x) := 0  otherwise. For a ∈ F, we define ι>a : F → F by ι{x>a | x∈F}, 
and define ι≥a, ι<a, ι≤a analogously. For C ∈  Id, we define ιC : Fd → F by ιγ(C). 

Our proof of Theorem 1 consists of two parts. We first show the existence of σ-
networks that precisely compute indicator functions under the interval semantics. 
We then construct a σ-network stated in Theorem 1 by composing the σ-networks 
for indicator functions and using the properties of indicator functions. 

Both parts of our proof are centered around a new property of activation 
functions, which we call “([a, b]F, η,K,Lφ, Lψ)-separability” and define as follows. 

Definition 6. We say that σ : F → F is ([a, b]F, η,K,Lφ, Lψ) -separable for 
a, b, η, K ∈ F and Lφ, Lψ ∈ N if the following hold: 

• For every z ∈ [a, b]F, there exist depth-Lφ σ-networks φ≤z, φ≥z : F → F 
without the last affine layer such that φ�

≤z = (Kι≤z)� and φ�
≥z = (Kι≥z)� on 

I[a,b]. 
• There exists a depth-Lψ σ-network ψ>η : F → F without the first and last 
affine layers such that ψ�

>η = (Kι>η)� on I[a,b].
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The first condition in Definition 6 ensures the existence of σ-networks that 
perfectly implement scaled indicator functions Kι≤z and Kι≥z under the interval 
semantics, for all z ∈ [a, b]F. Since these networks should have the same depth 
Lφ without the last affine layer, a function ν : Fn → F defined, e.g., by 

ν(x1, . . . , xn) =

(

n 

◦∑
i=1 

α ⊗ φ≤zi
(xi)

)

⊕ β (16) 

denotes a depth-Lφ σ-network for any zi ∈ [a, b]F and α, β ∈ F. The second 
condition in Definition 6 guarantees that another scaled indicator function Kι>η 
can be precisely implemented by a depth-Lψ σ-network ψ>η without the first and 
last affine layers. This implies, e.g., that ψ>η ◦ ν denotes a depth-(Lφ + Lψ − 1) 
σ-network, where ν denotes the network presented in Eq. (16). 

Using the separability property, we can formally state the two parts of our 
proof as Lemmas 2 and 3. Theorem  1 is a direct corollary of the two lemmas. 
We present the proofs of Lemmas 2 and 3 in the next subsections (Sect. 5.1 and 
5.2). 

Lemma 2. Suppose that σ : F → F satisfies Condition 1 with constants c2, η  ∈ 
F. Then,  σ is ([−1, 1]F, η,K,Lφ, Lψ)-separable for some Lφ, Lψ ∈ N, where  η 
and K := σ(c2) satisfy |η| ∈  [2emin+5 , 4 − 8ε] and |K| ∈  [ ε 

2 + 2ε2 , 5 4 − 2ε]. 

Lemma 3. Suppose that σ : F → F is ([a, b]F, η,K,Lφ, Lψ)-separable for some 
a, b, η, K ∈ F and Lφ, Lψ ∈ N with |η| ∈  [2emin+5 , 4 − 8ε] and |K| ∈  [ ε 

2 + 2ε2 , 5 4 − 
2ε]. Then, for every d ∈ N and function h : Fd → F \{⊥}, there exists a σ-neural 
network ν : Fd → F such that ν�(B) =  h�(B) for all abstract boxes B in [a, b]d. 

To prove Lemma 2, we construct  a  σ-network for the scaled indicator function 
Kι≥z in two steps. We first construct a σ-network that maps all inputs smaller 
than z to some point x1, and all other inputs to another point x2 �= x1 (Lemma 
4 and 6), where we exploit round-off errors to obtain such “contraction” (Lemma 
17 in §F). We then map x1 to c1 and x2 to c2, and apply σ to the result so that 
the final network maps all inputs smaller than z to σ(c1) = 0  and all other 
inputs to σ(c2) =  K (Lemma 5). We construct σ-networks for Kι≤z and Kι>η 
analogously. 

To prove Lemma 3, we construct  σ-networks for the scaled indicator func-
tions of every box in ([a, b]F)d (Lemma 7) and every subset of ([a, b]F)d (Lemma 
8), using the indicator functions constructed in Lemma 2. We construct the final 
σ-network (i.e., universal interval approximator) as a floating-point linear com-
bination of the σ-networks that represent the scaled indicator functions of the 
level sets of the target function (Lemma 9). 

5.1 Proof of Lemma 2 

To prove Lemma 2, we assume that the activation function σ : F → F satisfies 
Condition 1 with some constants c1, c2, η  ∈ F. By Condition 1, the constants
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η and K := σ(c2) clearly satisfy the range condition in Lemma 2. Hence, it 
remains to show the ([−1, 1]F, η,K,Lφ, Lψ)-separability of σ for some Lφ, Lψ ∈ 
N. This requires us to construct σ-networks ψ>η and φ≤z, φ≥z for every z ∈ 
[−1, 1]F such that ψ�

>η = (Kι>η)�, φ�
≤z = (Kι≤z)�, and  φ�

≥z = (Kι≥z)� on I[−1,1] 

(Definition 6). 
We first construct ψ>η using Lemmas 4 and 5 (Fig. 4). The proofs of these 

lemmas, presented in §D.1 and §D.2, rely heavily on (C1)–(C3) of Condition 1. 

Lemma 4. There exists a σ-network μ : F → F without the first affine layer such 
that μ� (〈−Ω, η〉) = 〈η, η〉, μ�(〈η+ , Ω〉) = 〈η+ , η+〉, and  μ�(〈−Ω, Ω〉) = 〈η, η+〉. 
Lemma 5. Let (θ, θ′) be either (c1, c2) or (c2, c1). Then, there exists a depth-2 σ-
network τθ,θ′ : F → F without the first affine layer such that τ �

θ,θ′(〈η, η〉) = 〈θ, θ〉, 
τ �
θ,θ′(〈η+ , η+〉) = 〈θ′, θ′〉, and  τ �

θ,θ′(〈η, η+〉) = 〈min {θ, θ′} , max {θ, θ′}〉. 

Lemma 4 states that we can construct a σ-network μ without the first affine 
layer, whose interval semantics maps all finite (abstract) intervals left of η to the 
singleton interval 〈η, η〉, all finite intervals right of η+ to 〈η+ , η+〉, and all the 
remaining finite intervals to 〈η, η+〉. Similarly, Lemma 5 shows that there exists 
a σ-network τθ,θ′ without the first affine layer, whose interval semantics maps
〈η, η〉 to 〈θ, θ〉, 〈η+ , η+〉 to 〈θ′, θ′〉, and 〈η, η+〉 to the interval between θ and θ′. 
By composing these networks with σ, we construct  ψ>η as 

ψ>η := σ ◦ τc1,c2 ◦ μ. (17) 

This function ψ>η is a σ-network without the first and last affine layers, since 
τc1,c2 are μ are without  the first affine layer. Moreover,  ψ�

>η = (Kι>η)� on I[−1,1] 

by the aforementioned properties of τc1,c2 and μ, and by the next properties of 
σ from Condition 1 of Condition 1: σ(c1) = 0, σ(c2) =  K, and  σ(x) lies between 
them for all x between c1 and c2. Lastly, we choose Lψ as the depth of ψ>η. 

We next construct φ≤z and φ≥z using Lemma 6 (Fig. 4). The proof of this 
lemma is provided in §D.3. 

Fig. 4. Illustration of networks μ, τc1,c2 , μz (Lemmas 4–6) and  ψ>η, φ≤z (Eqs. (17) 
and (18)), assuming (b) in Lemma 6. A box/dot denotes an abstract interval.
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Lemma 6. Let z ∈ F with |z| ≤  1+. Then, there exists a depth-1 σ-network 
μz : F → F such that one of the following holds. 

(a) γ (μ�
z(〈−1, z〉)) ⊂ [−Ω, η] and γ (μ�

z(〈z+ , 1〉)) ⊂ [η+ , Ω]. 
(b) γ (μ�

z(〈−1, z〉)) ⊂ [η+ , Ω] and γ (μ�
z(〈z+ , 1〉)) ⊂ [−Ω, η]. 

Lemma 6 ensures the existence of a depth-1 σ-network μz, whose interval 
semantics maps 〈−1, z〉 and 〈z+ , 1〉 to an interval left of η and an interval right 
of η+. By composing  μz with the previous networks τθ,θ′ and μ, we construct  
φ≤z as 

φ≤z :=

{

σ ◦ τc2,c1 ◦ μ ◦ μz if (a) holds in Lemma 6 
σ ◦ τc1,c2 ◦ μ ◦ μz if (b) holds in Lemma 6. 

(18) 

By a similar argument used above, the function φ≤z is a σ-network without the 
last affine layer, and it satisfies the desired equation: φ�

≤z = (Kι≤z)� on I[−1,1]. 
We construct φ≥z analogously, but using μz− instead of μz. Since the depths of 
φ≤z and φ≥z are identical for all z, we denote this depth by Lφ. This completes 
the construction of ψ>η, φ≤z, and  φ≥z, finishing the proof of Lemma 2. 

5.2 Proof of Lemma 3 

To prove Lemma 3, we assume that the activation function σ is ([a, b]F, η,K,Lφ, 
Lψ)-separable for some η, K ∈ F with |η| ∈  [2emin+5 , 4 − 8ε] and |K| ∈  [ ε 

2 + 2ε2 , 
5 
4 − 2ε]. Given this, we construct a σ-network whose interval semantics exactly 
computes that of the target function h : Fd → F \ {⊥}  for all abstract boxes in 
[a, b]d. In our construction, we progressively implement the following functions 
using σ-networks: (i) scaled indicator functions of arbitrary boxes, (ii) scaled 
indicator functions of arbitrary sets, and (iii) the target function. 

We first construct a σ-network ν̃B, for any abstract box B in [a, b]d, that  
implements the scaled indicator function KιB under the interval semantics. 

Lemma 7. For any B ∈  (I[a,b])d, there exists a depth-L σ-network ν̃B : Fd → F 
without the last affine layer such that ν̃�

B = (KιB)� on (I[a,b])d, where  L := 
Lφ + (Lψ − 1)(�log2M d� + 1). 

In the proof of Lemma 7, we design  ̃νB using the networks ψ>η, φ≤z, and  
φ≥z constructed in Sect. 5.1. Specifically, for an abstract box B = (〈a1, b1〉, . . . ,
〈ad, bd〉), we define a σ-network ν̃i : F → F as 

ν̃i(x) := ψ>η ((α ⊗ φ≥ai
(x)) ⊕ (α ⊗ φ≤bi

(x)) ⊕ β) , (19) 

where α, β ∈ F are constants such that β ≤ η, (α ⊗ K) ⊕ β ≤ η, and  (α ⊗ K) ⊕ 
(α ⊗ K) ⊕ β >  η. Then, we can show that ν̃�

i = (Kι〈ai,bi〉)
� on I[a,b]. When  d is 

small (e.g., d ≤ 2M +1), we construct ν̃B using ν̃i and ψ>η, as follows: 

ν̃B(x1, . . . , xd) := ψ>η

((

d 

◦∑
i=1 

α′ ⊗ ν̃i(xi)

)

⊕ β′

)

, (20)
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where α′, β′ ∈ F are suitably chosen so that ν̃�
B = (KιB)� on (I[a,b])d. When  d is 

large (e.g., d >  2M +1), this construction does not work since ◦∑d 
i=1α

′⊗ν̃i(xi) may 
not be computed as we want due to rounding errors (e.g., ◦∑n 

i=1 1 = 2M +1 < n  
for all n >  2M +1). In such a case, we construct ν̃B hierarchically using more 
layers, but based on a similar idea. A rigorous proof of Lemma 7, including the 
proof that appropriate α, α′, β, β′ ∈ F exist, is presented in §E.1 

Using ν̃B, we next construct  a  σ-network ν̃S , for any set S in ([a, b]F)d, whose  
interval semantics computes that of the scaled indicator function KιS . 

Lemma 8. Suppose that for any B ∈  (I[a,b])d, there exists a depth-L σ-network 
ν̃B without the last affine layer such that ν̃�

B = (KιB)� on (I[a,b])d. Then, for any 
S ⊆  ([a, b]F)d, there exists a depth-(L + Lψ − 1) σ-network ν̃S : Fd → F without 
the last affine layer such that ν̃�

S = (KιS)� on (I[a,b])d. 

In the proof of Lemma 8, we construct  ̃νS using ν̃B and ψ>η, as follows: 

ν̃S(x) := ψ>η

((

◦∑
B∈T 

α′′ ⊗ ν̃B(x)

)

⊕ η

)

, (21) 

where T denotes the collection of all abstract boxes in S, and  α′′ ∈ F is a 
constant such that η <  (◦∑n 

i=1α
′′ ⊗ K) ⊕ η <  ∞ for all n ≥ 1. We remark that  

it is possible to make the summation not overflow even for a large n, by cleverly 
exploiting the rounding errors from ⊕. With a proper choice of α′′, we can  further  
show that ν̃�

S = (KιS)� on (I[a,b])d. A formal proof of Lemma 8 is  given in §E.2.  
Using ν̃S , we finally construct a σ-network that coincides, under the interval 

semantics, with the target function h over ([a, b]F)d. This result (Lemma 9) and  
the above results (Lemma 7 and 8) directly imply Lemma 3. 

Lemma 9. Assume that for any S ⊆  ([a, b]F)d, there exists a depth-L′ σ-network 
ν̃S without the last affine layer such that ν̃�

S = (KιS)� on (I[a,b])d. Then, for any 
h : Fd → F \ {⊥}, there exists a σ-network ν : Fd → F such that ν� = h� on 
(I[a,b])d. 

We now illustrate the main idea of the proof of Lemma 9. For  a simpler  
argument, we assume that h is non-negative; the proof for the general case is 
similar (see §E.3). Let 0 =  z0 < z1 < · · ·  < zn = +∞ be all non-negative floats 
(except ⊥) in increasing order, and let Si := {x ∈ ([a, b]F)d | h(x) ≥ zi} be the 
level set of h for zi. Under this setup, we construct ν using ν̃Si

, as follows: 

ν(x) := 
m 

◦∑
i=1 

αi ⊗ ν̃Si
(x), (22) 

where m ∈ N ∪ {0} and αi ∈ F are chosen so that zm = 
max {h(x) | x ∈ ([a, b]F)d} and αi ⊗ K ≈ zi − zi−1 for all i ∈ [m]. If  αi ⊗ K 
is close enough to zi − zi−1, then the floating-point summation ◦∑k 

i=1αi ⊗ K is 
exactly equal to the exact summation

∑k 
i=1zi − zi−1 = zk for all k ∈ [m], by the  

rounding errors of ⊕. Using this observation, we can show that ν(x) =  h(x) for 
all x ∈ ([a, b]F)d, and more importantly, ν� = h� on (I[a,b])d. The full proof of 
Lemma 9 is in §E.3.
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6 Related Work 

Universal Approximation. Universal approximation theorems for neural net-
works are widely studied in the literature, which include results for feedforward 
networks [ 12, 27, 28, 55], convolutional networks [ 71], residual networks [ 41], and 
transformers [ 70]. With the advent of low-precision computing for neural net-
works (e.g., 8-bit E5M2, 8-bit E4M3 [ 46, 65]; float16 [ 45]; bfloat16 [ 1]), there 
has been growing interest among researchers in characterizing their expressive-
ness power in this setting. New UA theorems for “quantized” neural networks, 
which use finite-precision network parameters with exact real arithmetic, have 
been studied in [ 15, 21]. These networks differ from the floating-point networks 
considered in this work, because our networks use inexact floating-point arith-
metic. 

To the best of current knowledge, [ 30, 53] are the only works that study UA 
theorems for floating-point neural networks. [ 53] proves UA theorems for  ReLU  
and step activation functions. Our IUA Theorem 1, by virtue of Eq. (15), is 
a strict generalization of [ 53] in two senses: (i) it applies to a much broader 
class of activations that satisfy Condition 1, which subsumes ReLU and step 
functions; and (ii) it provides a result for abstract interpretation via interval 
analysis, of which the pointwise approximation considered in [ 53] is a special 
case. Concurrent with this article, [ 30] generalizes [ 53] to support a wider  range  
of activation functions and larger input domains. Our Theorem 1 partially sub-
sumes [ 30] in that it is a result for interval approximation, whereas [ 30] considers  
only pointwise approximation. Conversely, a special case of our Theorem 1 for 
pointwise approximation (i.e., Eq. (15)) is subsumed by [ 30] in that it applies to  
smaller classes of activation functions and input domains. 

Interval Universal Approximation. The first work to establish an IUA the-
orem for neural networks used interval analysis with the ReLU activation [ 4], 
which was later extended to the more general class of so-called “squashable” 
activation functions [ 66]. Whereas these previous IUA theorems assume the 
neural network can compute over arbitrary real numbers with infinitely precise 
real arithmetic, the IUA result (Theorem 1) in this work applies to “machine-
implementable” neural networks that use floating-point numbers and operations. 
To the best our knowledge, no previous work has established an IUA theorem 
for floating-point neural networks. These different computational models lead to 
substantial differences in both the proof methods (cf. Sect. 3.2 and 5) and  the  
specific technical results—Sect. 3.3 gives a detailed discussion of how Theorem 1 
differs from previous IUA and robustness results [ 4, Theorem 1.1]; [ 66, Theorem  
3.7]. 

Provable Robustness. There is an extensive literature on robustness veri-
fication and robust training for neural networks, which is surveyed in, e.g., [ 4, 
Chapter 1]; [ 38, 60]. Notable methods among these works are [ 61, 62], which verify 
the robustness of a neural network using abstract interpretation with the zono-
tope and polyhedra domains for a restricted class of activations, and are sound
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with respect to floating-point arithmetic. Compared to these methods, our con-
tribution is a theoretical result on the inherent expressiveness of provably robust 
floating-point networks under the interval domain for a broad class of activation 
functions, rather than new verification algorithms or abstract domains. Indeed, 
our existence result directly applies to the zonotope and polyhedra domains, as 
they are more precise than the interval domain. More specific IUA theorems 
tailored to these domains may yield more compact constructions that witness 
the existence of a provably robust floating-point neural network. Recently, [ 32] 
shows that even if a neural network is provably robust over real arithmetic, it 
can be non-robust over floating-point arithmetic and remain vulnerable to adver-
sarial attacks. This highlights the importance of establishing robustness in the 
floating-point setting. 
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