
Floating-Point Neural Networks are
Provably Robust Universal Approximators

Geonho Hwang1 , Wonyeol Lee2 , Yeachan Park3 , Sejun Park4(B) ,
and Feras Saad5

1 GIST, Gwangju, Republic of Korea
hgh2134@gist.ac.kr

2 POSTECH, Pohang, Republic of Korea
wonyeol.lee@postech.ac.kr

3 Sejong University, Seoul, Republic of Korea
ychpark@sejong.ac.kr

4 Korea University, Seoul, Republic of Korea
sejun.park000@gmail.com

5 Carnegie Mellon University, Pittsburgh, PA, USA
fsaad@cmu.edu

Abstract. The classical universal approximation (UA) theorem for neu-
ral networks establishes mild conditions under which a feedforward neural
network can approximate a continuous function f with arbitrary accuracy.
A recent result shows that neural networks also enjoy a more general inter-
val universal approximation (IUA) theorem, in the sense that the abstract
interpretation semantics of the network using the interval domain can
approximate the direct image map of f (i.e., the result of applying f to a set
of inputs) with arbitrary accuracy. These theorems, however, rest on the
unrealistic assumption that the neural network computes over infinitely
precise real numbers, whereas their software implementations in practice
compute over finite-precision floating-point numbers. An open question is
whether the IUA theorem still holds in the floating-point setting.

This paper introduces the first IUA theorem for floating-point neu-
ral networks that proves their remarkable ability to perfectly capture the
direct image map of any rounded target function f , showing no lim-
its exist on their expressiveness. Our IUA theorem in the floating-point
setting exhibits material differences from the real-valued setting, which
reflects the fundamental distinctions between these two computational
models. This theorem also implies surprising corollaries, which include
(i) the existence of provably robust floating-point neural networks; and
(ii) the computational completeness of the class of straight-line programs
that use only floating-point additions and multiplications for the class of
all floating-point programs that halt.

Keywords: Neural networks · Robust machine learning · Floating
point · Universal approximation · Abstract interpretation

G. Hwang and W. Lee—Equal contribution.
The full version of this article is at https://doi.org/10.48550/arXiv.2506.16065.
c© The Author(s) 2025
R. Piskac and Z. Rakamarić (Eds.): CAV 2025, LNCS 15932, pp. 301–326, 2025.
https://doi.org/10.1007/978-3-031-98679-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-98679-6_14&domain=pdf
http://orcid.org/0000-0001-7137-426X
http://orcid.org/0000-0003-0301-0872
http://orcid.org/0000-0002-4211-6226
http://orcid.org/0000-0003-1580-5664
http://orcid.org/0000-0002-0505-795X
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.1007/978-3-031-98679-6_14

302 G. Hwang et al.

1 Introduction

Background. Despite the remarkable success of neural networks on diverse
tasks, these models often lack robustness and are subject to adversarial attacks.
Slight perturbations to the network inputs can cause the network to produce
significantly different outputs [23, 63], raising serious concerns in safety-critical
domains such as healthcare [18], cybersecurity [57], and autonomous driving [16].

These issues have brought about significant advances in new algorithms for
robustness verification [2, 34, 42], which prove the robustness of a given network;
and robust training [24, 48, 56, 68], which train a network to be provably robust.
But despite these advances, provably robust networks do not yet achieve state-of-
the-art accuracy [38]. For example, on the CIFAR-10 image classification bench-
mark, non-robust networks achieve over 99% accuracy, whereas the best provably
robust networks achieve less than 63% [37]. This performance gap has prompted
researchers to explore whether there exists fundamental limits on the expressive-
ness of provably robust networks that restrict their accuracy [3].

Surprisingly, it has been proven that no such fundamental limit exists. Infor-
mally, for any continuous function f : Rd → R and compact set K ⊂ Rd, there
exists a neural network g : Rd → R whose robustness properties are “sufficiently
close” to those of f over K and easily provable using abstract interpretation [10]
over the interval domain. This result, known as the interval universal approx-
imation (IUA) theorem [4, 66], generalizes the classical universal approxima-
tion (UA) theorem [12, 27] from pointwise-values to intervals, and confirms that
provably robust networks do not suffer from a fundamental loss of expressive
power.

Key Challenges. The IUA theorem in [4, 66] overlooks a critical aspect of real-
world computation, which is the use of floating-point arithmetic instead of real
arithmetic. It assumes that neural networks and interval analyses operate on
arbitrary real numbers with exact operations. In reality, numerical implemen-
tations of neural networks use floating-point numbers and operations [22, §4.1],
sometimes with extremely low-precision to speed-up performance [14, 29]. This
discrepancy means that the existing IUA theorem does not directly apply to
neural networks that are implemented in software and actually used in practice.

To our knowledge, no prior work has studied the robustness and expressive-
ness properties of floating-point neural networks or established an IUA theorem
for them. The unique complexities of floating-point arithmetic introduce daunt-
ing challenges to any such theoretical study. For example, floating-point num-
bers are discretized and bounded, and their operations have rounding errors that
become infinite in cases of overflow. Whereas the IUA proof over reals requires
very large real numbers for network weights or intermediate computations, these
values cannot be represented as floats. Naively rounding reals to floats causes
approximation errors that invalidate many steps of the IUA proofs in [4, 66].

This Work. We formally study the IUA theorem over floating point, as a step
toward bridging the theory and practice of provably robust neural networks.

Floating-Point Networks are Provably Robust Universal Approximators 303

Fig. 1. Illustration and comparison of the IUA theorems. (a) In the real-valued setting,
the neural network abstract interpretation ν� forms a δ-approximation to the image
map of f . (b) In the floating-point setting, ν� exactly computes the upper and lower
points of the image map of f : ν�(B) = [min ̂f (B), max ̂f (B)] ∩ F.

We first formulate a floating-point analog of the IUA theorem, considering
the details of floating point. Let f : Rd → R be a target function to approximate.
Since all floating-point neural networks are functions between floating-point val-
ues, they can at-best approximate the rounded version ̂f : Fd → F of f over
floats, where F denotes the set of all floats. The floating-point version of the IUA
theorem asks the following: is there a floating-point neural network ν : Fd → F
whose interval semantics is arbitrarily close to the direct image map of the
rounded target ̂f over [−1, 1]d? More formally, this property means that for any
δ > 0, there exists a neural network ν such that for all boxes B ⊆ [−1, 1]d ∩ Fd,

∣

∣

∣min ν�(B) − min ̂f (B)
∣

∣

∣ ≤ δ,
∣

∣

∣max ν�(B) − max ̂f(B)
∣

∣

∣ ≤ δ. (1)

In Eq. (1), ν�(B) is the result of abstract interpretation of B under ν (using the
interval domain), and ̂f (B) :=

{

̂f (x) | x ∈ B
}

⊂ R is the image of B under ̂f .
We prove that the IUA theorem holds for floating-point networks, despite all

their numerical complexities. In particular, we show that for any target function
f and a large class of activation functions σ, including most practical ones (e.g.,
ReLU, GELU, sigmoid), it is possible to find a floating-point network ν with σ
whose interval semantics exactly matches the direct image map of the rounded
target ̂f over [−1, 1]d ∩ Fd (Fig. 1). This result implies that no fundamental limit
exists on the expressiveness of provably robust floating-point neural networks.

Our result is considerably different from the previous IUA theorem over the
reals in three key aspects. The previous theorem considers continuous target
functions; requires a restricted class of so-called squashable activation functions;
and finds networks that are arbitrarily close to target functions. In contrast, our
result considers arbitrary target functions; allows almost all activation functions
used in practice; and find networks that are precisely equal to (rounded) target
functions. Our IUA theorem even holds for the identity activation function,
which is not the case for the traditional IUA or UA theorems over real numbers,
because any network that uses the identity activation is affine over the reals.

304 G. Hwang et al.

As a corollary of our main theorem, we prove the following existence of prov-
ably robust floating-point neural networks: given an ideal floating-point classi-
fier ̂f (not necessarily a neural network) that is robust (not necessarily provably
robust), we can find a floating-point neural network ν that is identical to ̂f and
is provably robust with interval analysis. We also prove a nontrivial result about
“floating-point completeness”, as an unexpected byproduct of the main theorem.
Specifically, we show that the class of straight-line floating-point programs that
use only floating-point + and × operations is floating-point interval-complete: it
can simulate any terminating floating-point program that takes finite floats as
input and returns arbitrary floats as output. The same statement holds under the
interval semantics. To our knowledge, no prior work has identified such a small
yet powerful class of floating-point programs, suggesting that this corollary is of
significant independent interest to the extensive floating-point literature.

Contributions. This article makes the following contributions:

• We formalize a floating-point analog of the interval universal approximation
(IUA) theorem, to bridge the theory and practice of provably robust neural
networks (Sect. 2, Sect. 3). It asks if there is a floating-point network whose
interval semantics is close to the direct image map of a given target function.

• We prove the floating-point version of the IUA theorem does hold, for all
target functions and a broad class of activation functions that includes most
of the activations used in practice (Sect. 3.1, Sect. 3.2, Sect. 5). This shows no
fundamental limit exists on the expressiveness of provably robust networks
over floats.

• We rigorously analyze the essential differences between the previous IUA
theorem over reals and our IUA theorem over floats (Sect. 3.3). Unlike real-
valued networks, floating-point networks can perfectly capture the behavior
of any rounded target function, even with the identity activation function.

• We prove that if there exists an ideal robust floating-point classifier, then one
can always find a provably robust floating-point network that makes exactly
the same prediction as the classifier (Sect. 4.1).

• We prove that the set of straight-line floating-point programs with only (+, ×)
is floating-point interval-complete: it can simulate any terminating floating-
point programs that take finite inputs and return finite/infinite outputs, under
the usual floating-point semantics and interval semantics (Sect. 4.2).

2 Preliminaries

This section introduces floating-point arithmetic (Sect. 2.1), neural networks
that compute over floating-point numbers (Sect. 2.2), and interval analysis for
neural networks (Sect. 2.3). Throughout the paper, we define N to be the set of
positive integers and let [n] := {1, . . . , n} for each n ∈ N.

Floating-Point Networks are Provably Robust Universal Approximators 305

2.1 Floating Point

Floating-Point Numbers. Let E, M ∈ N. The set of finite floating-point
numbers with E-bit exponent and (M +1)-bit significand is typically defined by

F
E
M :=

{

(−1)b × (s0.s1 . . . sM)2 × 2e
∣

∣ b, si ∈ {0, 1}, e ∈ {emin, ..., emax}
}

, (2)

where emin := −2E−1 + 2 and emax := 2E−1 − 1 [52]. The set of all floating-
point numbers, including non-finite ones, is then defined by FE

M := F
E
M ∪

{−∞, +∞, ⊥}, where ⊥ denotes NaN (i.e., not-a-number). For brevity, we call
a floating-point number simply a float, and write FE

M and FE
M simply as F and

F. In this paper, we assume E ≥ 5 and 2E−1 ≥ M ≥ 3, which hold for nearly
all practical floating-point formats, including bfloat16 [1] and all the formats
defined in the IEEE-754 standard [31] such as float16, float32, and float64.

We introduce several notations and terms related to finite floats. First, we
define three key constants: the smallest positive float ω := 2emin−M , the largest
positive float Ω := 2emax(2 − 2−M), and the machine epsilon ε := 2−M −1. Next,
consider a finite float x ∈ F. We call x a subnormal number if 0 < |x| < 2emin , and
a normal number otherwise. The exponent and significand of x are defined by
ex := max {�log2 |x|
, emin} ∈ [emin, emax] and sx := |x| /2ex ∈ [0, 2). We use
sx,0, . . . , sx,M to denote the binary expansion of sx, i.e., (sx,0. sx,1 . . . sx,M)2 =
sx with sx,i ∈ {0, 1}. The predecessor and successor of x in F are written as
x− := max

{

y ∈ F \ {⊥} | x > y
}

and x+ := min
{

y ∈ F \ {⊥} | x < y
}

.

Floating-Point Operations. We define the rounding function rnd : R ∪
{−∞, +∞} → F as follows: rnd(x) := −∞ if x ∈ [−∞, −Ω − c], rnd(x) :=
arg miny∈F

|y − x| if x ∈ (−Ω − c, Ω + c), and rnd(x) := +∞ if x ∈ [Ω + c, +∞],
where c := 2emaxε and arg min breaks ties by choosing a float y with sy,M = 0.
This function corresponds to the rounding mode “round to nearest (ties to even)”,
which is the default rounding mode in the IEEE-754 standard [31].

The floating-point arithmetic operations ⊕,�, ⊗ : F × F → F are defined
via the rounding function: for finite floats x, y ∈ F, x ⊕ y := rnd(x + y), x �
y := rnd(x − y), and x ⊗ y := rnd(x × y). We omit the definition for non-finite
operands because they are unimportant in this paper, except that x ⊕ 0 =
x � 0 = x for all x ∈ {−∞, +∞}. For the full definition, refer to the IEEE-754
standard [31].

We introduce two more floating-point operations: affW,b and rnd(f).
First, we define the floating-point affine transformation: for a matrix W =
(wi,j)i∈[m],j∈[n] ∈ Fm×n and a vector b = (b1, . . . , bm) ∈ Fm, affW,b : Fn → Fm

is defined by

affW,b(x1, . . . , xn) :=

⎛

⎝

⎛

⎝
n ◦∑

j=1

xj ⊗ w1,j

⎞

⎠ ⊕ b1, . . . ,

⎛

⎝
n ◦∑

j=1

xj ⊗ wm,j

⎞

⎠ ⊕ bm

⎞

⎠ . (3)

Here, ◦∑ denotes the floating-point summation defined in the left-associative
way: ◦∑n

i=1 yi := (· · · ((y1 ⊕ y2) ⊕ y3) · · ·)⊕ yn, where the order of ⊕ is important

306 G. Hwang et al.

Fig. 2. Illustrations of a network ν1 without the last affine layer (left), a network ν2

without the first affine layer (middle), and their composition ν2 ◦ ν1 (right). Note that
affW ′

1,b′
1

◦ affWL,bL = affW ′
1,b′

1
is a floating-point affine transformation.

because ⊕ is not associative. Next, we define the correctly rounded version of a
real-valued function. For f : R → R, the function rnd(f) : F → F is defined by

rnd(f)(x) :=

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

rnd(f (x)) if x ∈ (−∞, +∞)

rnd

(
lim
t→x

f (t)

)
if x ∈ {−∞, +∞} ∧ lim

t→x
f (t) ∈ R ∪ {−∞, +∞}

⊥ otherwise.

(4)

2.2 Neural Networks

A neural network typically refers to a composition of affine transformations and
activation functions. Formally, for L ∈ N and σ : F → F, we call a function ν a
depth-L σ-neural network (or a neural network) if ν is defined by

ν : Fd0 → FdL , ν := affWL,bL ◦ σ̃dL−1 ◦ affWL−1,bL−1 ◦ · · · ◦ ̃σd1 ◦ affW1,b1 (5)

for some d� ∈ N, W� ∈ Fd�×d�−1 , and b� ∈ Fd� , where ̃σn : Fn → Fn is the
coordinatewise application of σ. Here, L denotes the number of layers, σ the
floating-point activation function, d0 and dL the input and output dimensions,
d� the number of hidden neurons in the �-th layer (� ∈ [L−1]), and W� and b� the
parameters of the floating-point affine transformation in the �-th layer (� ∈ [L]).
We emphasize that a neural network in this paper is a function over floating-point
values, defined in terms of floating-point activation function and arithmetic. For
instance, a depth-1 neural network is a floating-point affine transformation.

Let ν be a neural network defined as Eq. (5). We say ν is without the last
affine layer if dL = dL−1, WL is the identity matrix, and bL = 0. Similarly, we
say ν is without the first affine layer if d1 ≥ d0, W1 is a rectangular diagonal
matrix whose diagonal entries are all 1, and b1,i = 0 for all i ∈ [d0]. The two
definitions are not perfectly symmetric due to some technical details arising in
our proofs. We note that a neural network can be constructed by composing

Floating-Point Networks are Provably Robust Universal Approximators 307

networks without the first/last affine layer(s) and arbitrary networks (Fig. 2).
For example, consider arbitrary networks ν1 : Fn0 → Fn1 and ν4 : Fn3 → Fn4 , a
network without the first affine layer ν2 : Fn1 → Fn2 , and a network without the
first and last affine layers ν3 : Fn2 → Fn3 . It is easily verified that the function
ν : Fn0 → Fn4 specified by ν(x) = (ν4 ◦ · · · ◦ ν1)(x) denotes a network, whose
definition in the form of Eq. (5) can be obtained by “merging” the last layer of
ν1 and the first layer of ν2, etc.

2.3 Interval Semantics

Interval analysis [11, 50] is a technique for analyzing the behavior of numerical
programs soundly and efficiently, based on abstract interpretation [10]. It uses
intervals to overapproximate the ranges of inputs and expressions, and prop-
agates them through a program to overapproximate the output range. Inter-
val analysis has been used to establish the robustness of practical neural net-
works [19, 24, 33, 43]. It can overapproximate the output range of a network over
perturbed inputs, which is required to prove robustness; and it runs efficiently
by performing only simple computations, which is required to analyze large-scale
networks.
Interval Domain and Operations. We formalize interval analysis for neural
networks as follows. We first define the interval domain

I :=
{

〈a, b〉
∣

∣ a, b ∈ F \ {⊥} with a ≤ b
}

∪ {�} , (6)

on which interval analysis operates. Here, 〈a, b〉 abstracts the floating-point
interval [a, b] ∩ F, and � abstracts the entire floating-point set F including
⊥. The concrete semantics of an abstract interval I ∈ I and an abstract box
B = (I1, . . . , Id) ∈ Id are defined through the concretization function γ, where

γ : ∪∞
d=1I

d → ∪∞
d=12

F
d
, γ (I) :=

{

[a, b] ∩ F if I = 〈a, b〉
F if I = �

, γ (B) :=
d

∏

i=1

γ (Ii) .

(7)

We say that an abstract box B ∈ Id is in a set S ⊆ Rd if γ(B) ⊆ S.
For any function φ : Fd → F over floats (which is not a neural network or a

floating-point affine transformation), the interval operation φ� : Id → I extends
φ to the interval domain as follows:

φ�(B) :=

{

〈min S, max S〉 if ⊥ /∈ S
� if ⊥ ∈ S

, where S := φ(γ (B)). (8)

In the special case that φ = � ∈ {⊕,�, ⊗} is a floating-point arithmetic opera-
tion, the above definition (using infix notation) is equivalent to the following:

〈a, b〉 �� 〈c, d〉 :=

{

〈min S, max S〉 if ⊥ /∈ S
� if ⊥ ∈ S

, where S :=

{

a � c, a � d,
b � c, b � d

}

,

(9)

308 G. Hwang et al.

and �� returns � if at least one of its operands is �. 1 We remark that ��

can be efficiently computed, and so can φ� when φ : F → F is piecewise-
monotone with finitely many pieces, which holds for the correctly rounded
versions of widely-used activation functions (e.g., ReLU, GELU, sigmoid).
We then define the interval affine transformation aff�

W,b : In → Im, which
extends its floating-point counterpart affW,b : Fn → Fm: aff�

W,b(I1, . . . , In) :=
((

◦∑n
j=1

� Ij ⊗� 〈wi,j , wi,j〉
)

⊕� 〈bi, bi〉
)m

i=1
, where ◦∑� is the interval summation

which uses ⊕� instead of ⊕.

Interval Semantics. The interval semantics ν� : Id0 → IdL of a neural network
ν : Fd0 → FdL is defined as the result of interval analysis on ν:

ν� := aff�
WL,bL

◦ σ̃�
dL−1

◦ aff�
WL−1,bL−1

◦ · · · ◦ ̃σ�
d1

◦ aff�
W1,b1

, (10)

where ν is assumed to be defined as Eq. (5) and ̃σ�
n : In → In is the coordinate-

wise application of σ� : I → I. It is easily verified that the interval semantics is
sound with respect to the floating-point semantics:

ν (γ (B)) ⊆ γ
(

ν�(B)
)

(B ∈ Id0). (11)

That is, the result of interval analysis ν�(B) ∈ IdL subsumes the set of all possible
outputs of the network ν when the input is in the concrete box γ (B) ⊆ Fd0 .

3 Interval Universal Approximation Over Floats

This section presents our main result on interval universal approximation (IUA)
for floating-point neural networks. We first introduce conditions on activation
functions for our result (Sect. 3.1), and then formally describe our result under
these conditions (Sect. 3.2). We then compare our IUA theorem over floats
with existing IUA theorems over reals, highlighting several nontrivial differences
(Sect. 3.3).

3.1 Conditions on Activation Functions

Our IUA theorem is for floating-point neural networks that use activation func-
tions satisfying the following conditions (Fig. 3).

Condition 1. An activation function σ : F → F satisfies the following condi-
tions:

1 This definition of �� differs slightly from the standard definition, as �� uses “round
to nearest” mode (implicit in �), whereas the more common mode is “round down-
ward/upward” (e.g., 〈a, b〉 ⊕� 〈c, d〉 := 〈a ⊕↓ c, b ⊕↑ d〉) [26, Section 5]. This choice
is due to different goals to achieve: our definition overapproximates floating-point
operations (e.g., ⊕), while the usual one overapproximates exact operations (e.g., +).

Floating-Point Networks are Provably Robust Universal Approximators 309

Fig. 3. Illustration of the first (left), second (middle), and third (right) conditions in
Condition 1 for the ReLU activation function: σ(x) := max{x, 0} for x ∈ F.

(C1) There exist c1, c2 ∈ F such that σ(c1) = 0, |σ(c2)| ∈ [ε
2 + 2ε2 , 5 4 − 2ε],

max{|c1|, |c2|} ≥ 2emin+1, and σ(x) lies between σ(c1) and σ(c2) for all x
between c1 and c2, where ε is the machine epsilon (see Sect. 2.1).

(C2) There exists η ∈ F with |η| ∈ [2emin+5 , 4−8ε] and |σ(η)|, |σ(η+)| ∈ [2emin+5 ,
2emax−6 · |η|] such that for any x, y ∈ F with x ≤ η < η+ ≤ y,

σ(x) ≤ σ(η) < σ(η+) ≤ σ(y) or σ(x) ≥ σ(η) > σ(η+) ≥ σ(y). (12)

(C3) There exists λ ∈ [0, 2emax−7 · min{|σ(η)|, 2M +3}] such that for any x, y ∈ F
with x ≤ η < η+ ≤ y,

|σ(x) − σ(η)| ≤ λ|x − η| and |σ(y) − σ(η+)| ≤ λ|y − η+|. (13)

The condition (C1) states that the activation function σ can output the exact
zero (i.e., σ(c1)) and some value whose magnitude is approximately in [ε

2 ,
5
4]

(i.e., σ(c2)); and its output is within σ(c1) and σ(c2) for all inputs between
c1 and c2. The condition (C2) states that there exists some threshold η such
that σ(x) is either smaller or greater than σ(η) or σ(η+), depending on whether
x is on the left or right side of η. This condition holds automatically for all
monotone activation functions that are non-constant on either [2emin+5 , 4−8ε]∩F

or [−4 + 8ε, −2emin+5] ∩ F. The condition (C3) states that σ does not increase
or decrease too rapidly from η and η+, which implies that σ(x) is finite for all
finite floats x ∈ F.

While Condition 1 is mild, verifying whether practical activation functions
over floats satisfy Condition 1 can be cumbersome. Floating-point activation
functions are typically implemented in complicated ways [7, 44, 51] (e.g., by
intermixing floating-point operations with integer/bit-level operations and if-
else branches), which makes it challenging to rigorously analyze such imple-
mentations [17, 36]. To bypass this issue, we focus on the correctly rounded
version σ : F → F of a real-valued activation function ρ : R → R (i.e.,
σ(x) := rnd(ρ(x))), when verifying Condition 1. Correctly rounded versions
of elementary mathematical functions have been actively developed in several
software libraries [13, 39, 40, 58, 72].

310 G. Hwang et al.

Under the correct rounding assumption, we provide an easily verifiable suf-
ficient condition for activation functions on reals that can be used to verify
Condition 1 for their rounded versions. The proof of Lemma 1 is in §B.1.

Lemma 1. For any activation function ρ : R → R, the correctly rounded acti-
vation rnd(ρ) : F → F satisfies Condition 1 if the following conditions hold:

(C1′) There exist c′
1, c

′
2 ∈ F such that |ρ(c′

1)| ≤ ω
2 , |ρ(c′

2)| ∈ [ε
2 + 2ε2 , 5 4 − 2ε],

max{|c′
1|, |c′

2|} ≥ 2emin+1, and ρ(x) lies between ρ(c′
1) and ρ(c′

2) for all x
between c′

1 and c′
2, where ω is the smallest positive float (see Sect. 2.1).

(C2′) There exists δ ∈ R with |δ| ∈ [3 8 ,
7
8] such that

• for all x, y ∈ R satisfying x ≤ δ − 1 8 < δ + 1 8 ≤ y,

ρ(x)≤ ρ(δ − 1 8) < ρ(δ + 1 8)≤ ρ(y) or ρ(x)≥ ρ(δ − 1 8) > ρ(δ + 1 8)≥ ρ(y),

• |ρ(x)| ∈ [1 4 , 1] and |ρ(x) − ρ(y)| > 1 8 |x − y| for all x, y ∈ [δ − 1 8 , δ + 1 8].
(C3′) ρ is λ-Lipschitz continuous for some λ ∈ [0, 1 5 · 2emax−9].

The Conditions (C1′)–(C3′) in Lemma 1 correspond to the Conditions (C1)–
(C3) in Condition 1. The Condition (C1′), corresponding to (C1), can be easily
satisfied since modern activation functions are piecewise-monotone and either
zero at zero (e.g., ReLU, GELU, softplus, tanh) or close to zero at −Ω or Ω (e.g.,
sigmoid). The Condition (C2′) roughly states the existence of δ ∈ R satisfying
the following: (i) ρ(δ− 1

8) and ρ(δ+ 1 8) are lower/upper bounds of ρ on (−∞, δ− 1
8)

and (δ + 1 8 , ∞); and (ii) ρ is bounded and strictly monotone on [δ − 1 8 , δ + 1 8].
This condition guarantees the existence of η ∈ F in (C2). The Condition (C3′),
corresponding to (C3), can also be easily satisfied since λ < 3 for most practical
activation functions. We note that Lemma 1 gives sufficient but not necessary
conditions for a correctly rounded activation function to satisfy Condition 1.

The following corollary uses Lemma 1 to show that many prominent activa-
tion functions satisfy Condition 1. Its proof is in §B.2.

Corollary 1. The correctly rounded implementations of the ReLU, LeakyReLU,
GELU, ELU, Mish, softplus, sigmoid, and tanh activations satisfy Condition 1.

3.2 Main Result

We are now ready to present our IUA theorem over floating-point arithmetic.

Theorem 1. Let σ : F → F be an activation function satisfying Condition 1. 2
Then, for any target function f : Rd → R, there exists a σ-neural network
ν : Fd → F such that

γ
(

ν�(B)
)

=
[

min ̂f (γ(B)) , max ̂f (γ(B))
]

∩ F (14)

2 Condition 1 is sufficient for Theorem 1 but not necessary. E.g., Theorem 1 still holds
under 8-bit floats (both E4M3 and E5M2 formats [46]) for the ReLU activation
function; this corresponds to the case where (C1) and (C2) hold but (C3) is violated.
.

Floating-Point Networks are Provably Robust Universal Approximators 311

for ̂f = rnd(f) : Fd → Fd and for all abstract boxes B in [−1, 1]d. 3

Theorem 1 states that for any activation function σ : F → F satisfying
Condition 1 and any target function f : Rd → R, there exists a σ-network
ν whose interval semantics exactly computes the upper and lower points of the
direct image map of the rounded target ̂f : Fd → F on [−1, 1]d∩Fd. A special case
of our IUA Theorem 1 is the following universal approximation (UA) theorem
for floating-point neural networks:

ν(x) = ̂f(x) (x ∈ [−1, 1]d ∩ Fd). (15)

That is, floating-point neural networks using an activation function satisfying
Condition 1 can represent any function ̂f : [−1, 1]d ∩ Fd → F ∪ {−∞, +∞}; or
the rounded version of any real function f : [−1, 1]d → R. Moreover, Theorem 1
easily extends to any target function f : Rd → Rd′

with multiple outputs.
As previous IUA results assume exact operations over reals, they do not

extend to our setting of floating-point arithmetic (due to rounding errors, over-
flow, NaNs, discreteness, boundedness, etc.). As a simple example of these issues,
consider the following subnetwork, which is used in the IUA proof of [4]:

μ(x, y) = 1
2

(ReLU(x + y) − ReLU(−x − y) − ReLU(x − y) − ReLU(y − x)) .

This subnetwork returns min{x, y} if all operations are exact. However, it does
not under floating-point arithmetic due to the rounding error: if (+, ×) is
replaced by (⊕, ⊗), then μ(x, y) = 0 �= ε = min {x, y} for x = 1 and y = ε.

In addition, the network construction in [66, Theorem 4.10] requires multi-
plying a large number z that depends on the target error and the activation
function, to the output of some neuron. However, because F is bounded and
floating-point operations are subject to overflow, the number z and the result
of the multiplication are not guaranteed to be within F when using a small tar-
get error (e.g., less than ω) or when using common activations functions (e.g.,
ReLU, softplus). To bypass these issues, we carefully analyze rounding errors
and design a network without infinities in the intermediate layers, when proving
Theorem 1.

We present the proof outline of Theorem 1 in Sect. 5, and the full proof in
§D–§F. We implemented the proof (i.e., our network construction) in Python and
made it available at https://github.com/yechanp/floating-point-iua-theorem.

3.3 Comparison With Existing Results Over Reals

Theorem 1, which gives an IUA theorem over floats, has notable differences from
previous IUA theorems over the reals [4, Theorem 1.1]; [66, Theorem 3.7].
3 In the literature on universal approximation theorems, it is typically assumed that

the inputs are in [0, 1] or in a compact subset of R (e.g., [4, 12, 66, 69]). Since the
inputs are often normalized to [−1, 1], we focus the theoretical analysis on [−1, 1]d .
.

https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem
https://github.com/yechanp/floating-point-iua-theorem

312 G. Hwang et al.

One difference is the class of target functions and the desired property of
networks. Previous IUA theorems find a network that sufficiently approximates
the direct image map of a continuous target function (i.e., δ > 0 in Eq. (1)).
In contrast, our IUA theorem finds a network that exactly computes the direct
image map of an arbitrary rounded target function (i.e., δ = 0 in Eq. (1)). This
difference arises from the domains of the functions being approximated: the real-
valued setting considers functions f over [−1, 1]d (or a compact K ⊂ Rd); the
floating-point setting considers functions ̂f over [−1, 1]d ∩ Fd.

• Since [−1, 1]d is uncountable, exactly computing the direct image map of f
requires a network to fit uncountably many input/output pairs and related
box/interval pairs. This task is difficult to achieve, and indeed, recent
works [3, 5, 47] prove that it is theoretically unachievable even for simple target
functions (e.g., continuous piecewise linear functions).

• Since [−1, 1]d ∩ Fd is finite, exactly computing the direct image map of ̂f
requires a network to fit finitely many input/output and box/interval pairs.
Our result proves that, despite all the complexities of floating-point compu-
tation, this task can be achieved for any rounded target function.

Another key difference is the class of activation functions. There are real-
valued activation functions ρ, ρ′ : R → R such that previous IUA theorems
cannot hold for ρ but our IUA theorem does hold for rnd(ρ) : F → F; and vice
versa for ρ′.

• An example of ρ is the identity function: ρ(x) = x. No classical IUA or UA
theorem can hold for ρ, since all real-valued ρ-networks μ : Rd → R are affine
over the reals (i.e., there exists A ∈ R1×d and b ∈ R such that μ(x) = Ax + b
for all x ∈ Rd). In contrast, our IUA theorem does hold for rnd(ρ), because
rnd(ρ) satisfies all the conditions in Lemma 1 (with constants c′

1 = 0, c′
2 = 1,

δ = 1/2, and λ = 1). This counterintuitive result is made possible because
floating-point rnd(ρ)-networks ν : Fd → F can be non-affine over the reals
(i.e., there may not exist A ∈ R1×d and b ∈ R such that ν(x) = Ax + b for
all x ∈ Fd). This non-affineness arises from rounding errors: some floating-
point affine transformations affW,b are not actually affine over the reals due
to rounding errors. An interesting implication of this result is discussed in
Sect. 4.2.

• An example of ρ′ is any function that is non-decreasing on R, is constant on
[−Ω, Ω], and satisfies limx→−∞ ρ

′(x) < limx→+∞ ρ
′(x), where the two limits

exist in R. The real-valued IUA theorem holds for ρ′, because ρ′ satisfies
the condition in [66, Definition 2.3]. However, no floating-point IUA or UA
theorem can hold for rnd(ρ′), because all rnd(ρ′)-networks ν : F → F must
be monotone if its depth is 1, and must satisfy ν(0) = ν(ω) otherwise. The
monotonicity holds when the depth is 1 since ⊕, ⊗ are monotone when an
operand is a constant; and ν(0) = ν(ω) holds otherwise since x ⊗ a ⊕ b ∈
[−Ω, Ω] for all x ∈ {0, ω} and a, b ∈ F, and rnd(ρ′) is constant on [−Ω, Ω]∩ F.

Floating-Point Networks are Provably Robust Universal Approximators 313

4 Implications of IUA Theorem Over Floats

This section presents two important implications of our IUA theorem, on prov-
able robustness and “floating-point completeness”. We first prove the existence
of a provably robust floating-point network, given an ideal robust floating-point
classifier (Sect. 4.1). We then prove that floating-point + and × are sufficient to
simulate all halting programs that return finite/infinite floats when given finite
floats (Sect. 4.2).

4.1 Provable Robustness of Neural Networks

Consider the task of classifying floating-point inputs x ∈ X (e.g., images of
objects) into n ∈ N classes (e.g., categories of objects), where X := [−1, 1]d ∩ Fd

denotes the space of inputs throughout this subsection. For this task, a function
f : X → Fn is often viewed as a classifier in the following sense: f predicts x
to be in the i-th class (i ∈ [n]), where i := class(f(x)) and class : Fn → [n]
is defined by class(y1, . . . , yn) := arg maxi∈[n] yi with an arbitrary tie-breaking
rule.

A typical robustness property of a classifier f is that f should predict the
same class for all neighboring inputs under the �∞ distance [38]. We formalize
this notion of robust classifiers in a way similar to [66, Definition A.4].

Definition 1. Let δ > 0 and D ⊆ X . A classifier f : X → Fn is called δ -robust
on D if for all x0 ∈ D, y, y′ ∈ f (Nδ(x0)) implies class(y) = class(y′), where
Nδ(x0) := {x ∈ X | ‖x0 − x‖∞ ≤ δ} and ‖ · ‖∞ denotes the �∞-norm.

Neural networks have been widely used as classifiers, but establishing the
robustness properties of practical networks as in Definition 1 is intractable due
to the enormous number of inputs to be checked (i.e., |Nδ(x0)| � 1 when d � 1).
Instead, these properties have been proven often by using interval analysis, as
mentioned in Sect. 2.3. We formalize the notion of such provably robust networks
under interval analysis, in a way similar to [66, Definition A.5].

Definition 2. Let δ > 0 and D ⊆ X . A neural network ν : Fd → Fn is called
δ -provably robust on D if for all x0 ∈ D, y, y′ ∈ γ(ν�(B)) implies class(y) =
class(y′), where B ∈ Id denotes the abstract box such that γ(B) = Nδ(x0).

Under these definitions, we prove that given an ideal robust classifier f , we
can always find a neural network ν (i) whose robustness property is exactly the
same as that of f and is easily provable using only interval analysis, and (ii)
whose predictions are precisely equal to those of f .

Theorem 2. Let f : X → Fn be a classifier that is δ-robust on D, and σ :
F → F be an activation function satisfying Condition 1. Then, there exists a
σ-neural network ν : Fd → Fn that is δ-provably robust on D and makes the
same prediction as f on D (i.e., class(ν(x)) = class(f(x)) for all x ∈ D).

314 G. Hwang et al.

Proof Sketch. We show this (i) by applying Theorem 1 to n target functions
that are constructed from f , and (ii) by using the following observation: the
network constructed in the proof of Theorem 1 has depth not depending on a
target function (when d is fixed). The full proof is in §C.1. ��

4.2 Floating-Point Interval-Completeness

To motivate our result, we recall the notion of Turing completeness. A com-
putation model is called Turing-complete if for every Turing machine T , there
exists a program in the model that can simulate the machine [6, 35, 49]. Exten-
sive research has established the Turing completeness of numerous computation
models: from untyped λ-calculus [8, 64] and μ-recursive functions [9, 20], to type
systems (e.g., Haskell [67], Java [25]) and neural networks over the rationals
(e.g., RNNs [59], Transformers [54]). These results identify simpler computation
models as powerful as Turing machines, and shed light on the computational
power of new models.

We ask an analogous question for floating-point computations instead of
binary computations, where the former is captured by floating-point programs
and the latter by Turing machines. That is, which small class of floating-point
programs can simulate all (or nearly all) floating-point programs?

Formally, let F be the set of all terminating programs that take finite floats
and return finite or infinite floats, where these programs can use any floating-
point constants/operations (e.g., −∞, ⊗) and language constructs (e.g., if-else,
while). Then, F semantically denotes the set of all functions from Fn to (F ∪
{−∞, +∞})m for all n, m ∈ N, because each such function can be expressed with
if-else branches and floating-point constants. For this class of programs, we define
the notion of (interval-)simulation and floating-point (interval-)completeness as
follows.

Definition 3. Let P, Q ∈ F be programs with arity n. We say Q simulates P if
Q(x) = P (x) for all x ∈ Fn, where P (x) denotes the concrete semantics of P on
x. We say Q interval-simulates P if γ(Q�(B)) = [min P (γ(B)), max P (γ(B))]∩ F
for all abstract boxes B in Fn, where Q�(B) denotes the interval semantics of Q
on B.

Definition 4. We say a class of programs G ⊆ F is floating-point (interval-)
complete if for every P ∈ F , there exists Q ∈ G such that Q (interval-)
simulates P .

We prove that a surprisingly small class of programs is floating-point interval-
complete (so floating-point complete). In particular, we show that only floating-
point addition, multiplication, and constants are sufficient to interval-simulate
all halting programs that output finite/infinite floats when given finite floats.

Theorem 3. F⊕,⊗ ⊂ F is floating-point interval-complete, where F⊕,⊗ denotes
the class of straight-line programs that use only ⊕, ⊗, and floating-point con-
stants.

Floating-Point Networks are Provably Robust Universal Approximators 315

Proof Sketch. We show this by extending the key lemma used in the proof
of Theorem 1: there exist σ-networks that capture the direct image maps of
indicator functions over [−1, 1]n ∩ Fn (Lemma 2). In particular, we prove that
[−1, 1]n ∩ Fn can be extended to Fn if σ is the identity function. The full proof
is in §C.2. ��

To our knowledge, this is the first non-trivial result on floating-point
(interval-) completeness. This result is an extension of our IUA theorem (The-
orem 1) for the identity activation function σid, in that floating-point interval-
completeness considers the input domain Fn (not [−1, 1]n∩Fn) and F⊕,⊗ includes
all σid-networks (but no other σ-networks). Theorem 3, however, cannot be
extended to the input domain (F ∪ {−∞, +∞})n (instead of Fn), since no pro-
gram in F⊕,⊗ can represent a non-constant function that maps an infinite float
to a finite float—this is because ⊕ and ⊗ do not return finite floats when applied
to ±∞.

5 Proof of IUA Theorem Over Floats

We now prove Theorem 1 by constructing a σ-neural network that computes the
upper and lower points of the direct image map of a rounded target function ̂f .
For a, b ∈ R, we let [a, b]F := [a, b] ∩ F and I[a,b] := {I ∈ I | γ(I) ⊆ [a, b]}. With
this notation, (I[a,b])d is the set of all abstract boxes in [a, b]d.

We start with defining indicator functions for a set of floating-point values
and for an abstract box, which play a key role in our proof.

Definition 5. Let d ∈ N. For S ⊆ Fd, we define ιS : Fd → F as ιS(x) := 1 if
x ∈ S, and ιS(x) := 0 otherwise. For a ∈ F, we define ι>a : F → F by ι{x>a | x∈F},
and define ι≥a, ι<a, ι≤a analogously. For C ∈ Id, we define ιC : Fd → F by ιγ(C).

Our proof of Theorem 1 consists of two parts. We first show the existence of σ-
networks that precisely compute indicator functions under the interval semantics.
We then construct a σ-network stated in Theorem 1 by composing the σ-networks
for indicator functions and using the properties of indicator functions.

Both parts of our proof are centered around a new property of activation
functions, which we call “([a, b]F, η,K,Lφ, Lψ)-separability” and define as follows.

Definition 6. We say that σ : F → F is ([a, b]F, η,K,Lφ, Lψ) -separable for
a, b, η, K ∈ F and Lφ, Lψ ∈ N if the following hold:

• For every z ∈ [a, b]F, there exist depth-Lφ σ-networks φ≤z, φ≥z : F → F
without the last affine layer such that φ�

≤z = (Kι≤z)� and φ�
≥z = (Kι≥z)� on

I[a,b].
• There exists a depth-Lψ σ-network ψ>η : F → F without the first and last
affine layers such that ψ�

>η = (Kι>η)� on I[a,b].

316 G. Hwang et al.

The first condition in Definition 6 ensures the existence of σ-networks that
perfectly implement scaled indicator functions Kι≤z and Kι≥z under the interval
semantics, for all z ∈ [a, b]F. Since these networks should have the same depth
Lφ without the last affine layer, a function ν : Fn → F defined, e.g., by

ν(x1, . . . , xn) =

(

n

◦∑
i=1

α ⊗ φ≤zi
(xi)

)

⊕ β (16)

denotes a depth-Lφ σ-network for any zi ∈ [a, b]F and α, β ∈ F. The second
condition in Definition 6 guarantees that another scaled indicator function Kι>η
can be precisely implemented by a depth-Lψ σ-network ψ>η without the first and
last affine layers. This implies, e.g., that ψ>η ◦ ν denotes a depth-(Lφ + Lψ − 1)
σ-network, where ν denotes the network presented in Eq. (16).

Using the separability property, we can formally state the two parts of our
proof as Lemmas 2 and 3. Theorem 1 is a direct corollary of the two lemmas.
We present the proofs of Lemmas 2 and 3 in the next subsections (Sect. 5.1 and
5.2).

Lemma 2. Suppose that σ : F → F satisfies Condition 1 with constants c2, η ∈
F. Then, σ is ([−1, 1]F, η,K,Lφ, Lψ)-separable for some Lφ, Lψ ∈ N, where η
and K := σ(c2) satisfy |η| ∈ [2emin+5 , 4 − 8ε] and |K| ∈ [ε

2 + 2ε2 , 5 4 − 2ε].

Lemma 3. Suppose that σ : F → F is ([a, b]F, η,K,Lφ, Lψ)-separable for some
a, b, η, K ∈ F and Lφ, Lψ ∈ N with |η| ∈ [2emin+5 , 4 − 8ε] and |K| ∈ [ε

2 + 2ε2 , 5 4 −
2ε]. Then, for every d ∈ N and function h : Fd → F \{⊥}, there exists a σ-neural
network ν : Fd → F such that ν�(B) = h�(B) for all abstract boxes B in [a, b]d.

To prove Lemma 2, we construct a σ-network for the scaled indicator function
Kι≥z in two steps. We first construct a σ-network that maps all inputs smaller
than z to some point x1, and all other inputs to another point x2 �= x1 (Lemma
4 and 6), where we exploit round-off errors to obtain such “contraction” (Lemma
17 in §F). We then map x1 to c1 and x2 to c2, and apply σ to the result so that
the final network maps all inputs smaller than z to σ(c1) = 0 and all other
inputs to σ(c2) = K (Lemma 5). We construct σ-networks for Kι≤z and Kι>η
analogously.

To prove Lemma 3, we construct σ-networks for the scaled indicator func-
tions of every box in ([a, b]F)d (Lemma 7) and every subset of ([a, b]F)d (Lemma
8), using the indicator functions constructed in Lemma 2. We construct the final
σ-network (i.e., universal interval approximator) as a floating-point linear com-
bination of the σ-networks that represent the scaled indicator functions of the
level sets of the target function (Lemma 9).

5.1 Proof of Lemma 2

To prove Lemma 2, we assume that the activation function σ : F → F satisfies
Condition 1 with some constants c1, c2, η ∈ F. By Condition 1, the constants

Floating-Point Networks are Provably Robust Universal Approximators 317

η and K := σ(c2) clearly satisfy the range condition in Lemma 2. Hence, it
remains to show the ([−1, 1]F, η,K,Lφ, Lψ)-separability of σ for some Lφ, Lψ ∈
N. This requires us to construct σ-networks ψ>η and φ≤z, φ≥z for every z ∈
[−1, 1]F such that ψ�

>η = (Kι>η)�, φ�
≤z = (Kι≤z)�, and φ�

≥z = (Kι≥z)� on I[−1,1]

(Definition 6).
We first construct ψ>η using Lemmas 4 and 5 (Fig. 4). The proofs of these

lemmas, presented in §D.1 and §D.2, rely heavily on (C1)–(C3) of Condition 1.

Lemma 4. There exists a σ-network μ : F → F without the first affine layer such
that μ� (〈−Ω, η〉) = 〈η, η〉, μ�(〈η+ , Ω〉) = 〈η+ , η+〉, and μ�(〈−Ω, Ω〉) = 〈η, η+〉.
Lemma 5. Let (θ, θ′) be either (c1, c2) or (c2, c1). Then, there exists a depth-2 σ-
network τθ,θ′ : F → F without the first affine layer such that τ �

θ,θ′(〈η, η〉) = 〈θ, θ〉,
τ �
θ,θ′(〈η+ , η+〉) = 〈θ′, θ′〉, and τ �

θ,θ′(〈η, η+〉) = 〈min {θ, θ′} , max {θ, θ′}〉.

Lemma 4 states that we can construct a σ-network μ without the first affine
layer, whose interval semantics maps all finite (abstract) intervals left of η to the
singleton interval 〈η, η〉, all finite intervals right of η+ to 〈η+ , η+〉, and all the
remaining finite intervals to 〈η, η+〉. Similarly, Lemma 5 shows that there exists
a σ-network τθ,θ′ without the first affine layer, whose interval semantics maps
〈η, η〉 to 〈θ, θ〉, 〈η+ , η+〉 to 〈θ′, θ′〉, and 〈η, η+〉 to the interval between θ and θ′.
By composing these networks with σ, we construct ψ>η as

ψ>η := σ ◦ τc1,c2 ◦ μ. (17)

This function ψ>η is a σ-network without the first and last affine layers, since
τc1,c2 are μ are without the first affine layer. Moreover, ψ�

>η = (Kι>η)� on I[−1,1]

by the aforementioned properties of τc1,c2 and μ, and by the next properties of
σ from Condition 1 of Condition 1: σ(c1) = 0, σ(c2) = K, and σ(x) lies between
them for all x between c1 and c2. Lastly, we choose Lψ as the depth of ψ>η.

We next construct φ≤z and φ≥z using Lemma 6 (Fig. 4). The proof of this
lemma is provided in §D.3.

Fig. 4. Illustration of networks μ, τc1,c2 , μz (Lemmas 4–6) and ψ>η, φ≤z (Eqs. (17)
and (18)), assuming (b) in Lemma 6. A box/dot denotes an abstract interval.

318 G. Hwang et al.

Lemma 6. Let z ∈ F with |z| ≤ 1+. Then, there exists a depth-1 σ-network
μz : F → F such that one of the following holds.

(a) γ (μ�
z(〈−1, z〉)) ⊂ [−Ω, η] and γ (μ�

z(〈z+ , 1〉)) ⊂ [η+ , Ω].
(b) γ (μ�

z(〈−1, z〉)) ⊂ [η+ , Ω] and γ (μ�
z(〈z+ , 1〉)) ⊂ [−Ω, η].

Lemma 6 ensures the existence of a depth-1 σ-network μz, whose interval
semantics maps 〈−1, z〉 and 〈z+ , 1〉 to an interval left of η and an interval right
of η+. By composing μz with the previous networks τθ,θ′ and μ, we construct
φ≤z as

φ≤z :=

{

σ ◦ τc2,c1 ◦ μ ◦ μz if (a) holds in Lemma 6
σ ◦ τc1,c2 ◦ μ ◦ μz if (b) holds in Lemma 6.

(18)

By a similar argument used above, the function φ≤z is a σ-network without the
last affine layer, and it satisfies the desired equation: φ�

≤z = (Kι≤z)� on I[−1,1].
We construct φ≥z analogously, but using μz− instead of μz. Since the depths of
φ≤z and φ≥z are identical for all z, we denote this depth by Lφ. This completes
the construction of ψ>η, φ≤z, and φ≥z, finishing the proof of Lemma 2.

5.2 Proof of Lemma 3

To prove Lemma 3, we assume that the activation function σ is ([a, b]F, η,K,Lφ,
Lψ)-separable for some η, K ∈ F with |η| ∈ [2emin+5 , 4 − 8ε] and |K| ∈ [ε

2 + 2ε2 ,
5
4 − 2ε]. Given this, we construct a σ-network whose interval semantics exactly
computes that of the target function h : Fd → F \ {⊥} for all abstract boxes in
[a, b]d. In our construction, we progressively implement the following functions
using σ-networks: (i) scaled indicator functions of arbitrary boxes, (ii) scaled
indicator functions of arbitrary sets, and (iii) the target function.

We first construct a σ-network ν̃B, for any abstract box B in [a, b]d, that
implements the scaled indicator function KιB under the interval semantics.

Lemma 7. For any B ∈ (I[a,b])d, there exists a depth-L σ-network ν̃B : Fd → F
without the last affine layer such that ν̃�

B = (KιB)� on (I[a,b])d, where L :=
Lφ + (Lψ − 1)(�log2M d� + 1).

In the proof of Lemma 7, we design ̃νB using the networks ψ>η, φ≤z, and
φ≥z constructed in Sect. 5.1. Specifically, for an abstract box B = (〈a1, b1〉, . . . ,
〈ad, bd〉), we define a σ-network ν̃i : F → F as

ν̃i(x) := ψ>η ((α ⊗ φ≥ai
(x)) ⊕ (α ⊗ φ≤bi

(x)) ⊕ β) , (19)

where α, β ∈ F are constants such that β ≤ η, (α ⊗ K) ⊕ β ≤ η, and (α ⊗ K) ⊕
(α ⊗ K) ⊕ β > η. Then, we can show that ν̃�

i = (Kι〈ai,bi〉)
� on I[a,b]. When d is

small (e.g., d ≤ 2M +1), we construct ν̃B using ν̃i and ψ>η, as follows:

ν̃B(x1, . . . , xd) := ψ>η

((

d

◦∑
i=1

α′ ⊗ ν̃i(xi)

)

⊕ β′

)

, (20)

Floating-Point Networks are Provably Robust Universal Approximators 319

where α′, β′ ∈ F are suitably chosen so that ν̃�
B = (KιB)� on (I[a,b])d. When d is

large (e.g., d > 2M +1), this construction does not work since ◦∑d
i=1α

′⊗ν̃i(xi) may
not be computed as we want due to rounding errors (e.g., ◦∑n

i=1 1 = 2M +1 < n
for all n > 2M +1). In such a case, we construct ν̃B hierarchically using more
layers, but based on a similar idea. A rigorous proof of Lemma 7, including the
proof that appropriate α, α′, β, β′ ∈ F exist, is presented in §E.1

Using ν̃B, we next construct a σ-network ν̃S , for any set S in ([a, b]F)d, whose
interval semantics computes that of the scaled indicator function KιS .

Lemma 8. Suppose that for any B ∈ (I[a,b])d, there exists a depth-L σ-network
ν̃B without the last affine layer such that ν̃�

B = (KιB)� on (I[a,b])d. Then, for any
S ⊆ ([a, b]F)d, there exists a depth-(L + Lψ − 1) σ-network ν̃S : Fd → F without
the last affine layer such that ν̃�

S = (KιS)� on (I[a,b])d.

In the proof of Lemma 8, we construct ̃νS using ν̃B and ψ>η, as follows:

ν̃S(x) := ψ>η

((

◦∑
B∈T

α′′ ⊗ ν̃B(x)

)

⊕ η

)

, (21)

where T denotes the collection of all abstract boxes in S, and α′′ ∈ F is a
constant such that η < (◦∑n

i=1α
′′ ⊗ K) ⊕ η < ∞ for all n ≥ 1. We remark that

it is possible to make the summation not overflow even for a large n, by cleverly
exploiting the rounding errors from ⊕. With a proper choice of α′′, we can further
show that ν̃�

S = (KιS)� on (I[a,b])d. A formal proof of Lemma 8 is given in §E.2.
Using ν̃S , we finally construct a σ-network that coincides, under the interval

semantics, with the target function h over ([a, b]F)d. This result (Lemma 9) and
the above results (Lemma 7 and 8) directly imply Lemma 3.

Lemma 9. Assume that for any S ⊆ ([a, b]F)d, there exists a depth-L′ σ-network
ν̃S without the last affine layer such that ν̃�

S = (KιS)� on (I[a,b])d. Then, for any
h : Fd → F \ {⊥}, there exists a σ-network ν : Fd → F such that ν� = h� on
(I[a,b])d.

We now illustrate the main idea of the proof of Lemma 9. For a simpler
argument, we assume that h is non-negative; the proof for the general case is
similar (see §E.3). Let 0 = z0 < z1 < · · · < zn = +∞ be all non-negative floats
(except ⊥) in increasing order, and let Si := {x ∈ ([a, b]F)d | h(x) ≥ zi} be the
level set of h for zi. Under this setup, we construct ν using ν̃Si

, as follows:

ν(x) :=
m

◦∑
i=1

αi ⊗ ν̃Si
(x), (22)

where m ∈ N ∪ {0} and αi ∈ F are chosen so that zm =
max {h(x) | x ∈ ([a, b]F)d} and αi ⊗ K ≈ zi − zi−1 for all i ∈ [m]. If αi ⊗ K
is close enough to zi − zi−1, then the floating-point summation ◦∑k

i=1αi ⊗ K is
exactly equal to the exact summation

∑k
i=1zi − zi−1 = zk for all k ∈ [m], by the

rounding errors of ⊕. Using this observation, we can show that ν(x) = h(x) for
all x ∈ ([a, b]F)d, and more importantly, ν� = h� on (I[a,b])d. The full proof of
Lemma 9 is in §E.3.

320 G. Hwang et al.

6 Related Work

Universal Approximation. Universal approximation theorems for neural net-
works are widely studied in the literature, which include results for feedforward
networks [12, 27, 28, 55], convolutional networks [71], residual networks [41], and
transformers [70]. With the advent of low-precision computing for neural net-
works (e.g., 8-bit E5M2, 8-bit E4M3 [46, 65]; float16 [45]; bfloat16 [1]), there
has been growing interest among researchers in characterizing their expressive-
ness power in this setting. New UA theorems for “quantized” neural networks,
which use finite-precision network parameters with exact real arithmetic, have
been studied in [15, 21]. These networks differ from the floating-point networks
considered in this work, because our networks use inexact floating-point arith-
metic.

To the best of current knowledge, [30, 53] are the only works that study UA
theorems for floating-point neural networks. [53] proves UA theorems for ReLU
and step activation functions. Our IUA Theorem 1, by virtue of Eq. (15), is
a strict generalization of [53] in two senses: (i) it applies to a much broader
class of activations that satisfy Condition 1, which subsumes ReLU and step
functions; and (ii) it provides a result for abstract interpretation via interval
analysis, of which the pointwise approximation considered in [53] is a special
case. Concurrent with this article, [30] generalizes [53] to support a wider range
of activation functions and larger input domains. Our Theorem 1 partially sub-
sumes [30] in that it is a result for interval approximation, whereas [30] considers
only pointwise approximation. Conversely, a special case of our Theorem 1 for
pointwise approximation (i.e., Eq. (15)) is subsumed by [30] in that it applies to
smaller classes of activation functions and input domains.

Interval Universal Approximation. The first work to establish an IUA the-
orem for neural networks used interval analysis with the ReLU activation [4],
which was later extended to the more general class of so-called “squashable”
activation functions [66]. Whereas these previous IUA theorems assume the
neural network can compute over arbitrary real numbers with infinitely precise
real arithmetic, the IUA result (Theorem 1) in this work applies to “machine-
implementable” neural networks that use floating-point numbers and operations.
To the best our knowledge, no previous work has established an IUA theorem
for floating-point neural networks. These different computational models lead to
substantial differences in both the proof methods (cf. Sect. 3.2 and 5) and the
specific technical results—Sect. 3.3 gives a detailed discussion of how Theorem 1
differs from previous IUA and robustness results [4, Theorem 1.1]; [66, Theorem
3.7].

Provable Robustness. There is an extensive literature on robustness veri-
fication and robust training for neural networks, which is surveyed in, e.g., [4,
Chapter 1]; [38, 60]. Notable methods among these works are [61, 62], which verify
the robustness of a neural network using abstract interpretation with the zono-
tope and polyhedra domains for a restricted class of activations, and are sound

Floating-Point Networks are Provably Robust Universal Approximators 321

with respect to floating-point arithmetic. Compared to these methods, our con-
tribution is a theoretical result on the inherent expressiveness of provably robust
floating-point networks under the interval domain for a broad class of activation
functions, rather than new verification algorithms or abstract domains. Indeed,
our existence result directly applies to the zonotope and polyhedra domains, as
they are more precise than the interval domain. More specific IUA theorems
tailored to these domains may yield more compact constructions that witness
the existence of a provably robust floating-point neural network. Recently, [32]
shows that even if a neural network is provably robust over real arithmetic, it
can be non-robust over floating-point arithmetic and remain vulnerable to adver-
sarial attacks. This highlights the importance of establishing robustness in the
floating-point setting.

Acknowledgments. G. Hwang and Y. Park were supported by Korea Institute for
Advanced Study (KIAS) Individual Grants AP092801 and AP090301, via the Center for
AI and Natural Sciences at KIAS. G. Hwang was also supported by National Research
Foundation of Korea (NRF) Grants RS-2025-00515264 and RS-2024-00406127, funded
by the Korea Ministry of Science and ICT (MSIT); and the Gwangju Institute of Science
and Technology (GIST) Global University Project in 2025. Y. Park was also supported
by the Sejong University faculty research fund in 2025. S. Park was supported by
the Korea Institute of Information & Communications Technology Planning & Eval-
uation (IITP) Grant RS-2019-II190079, funded by the Korea MSIT; the Information
Technology Research Center (IITP-ITRC) Grant IITP-2025-RS-2024-00436857, funded
by the Korea MSIT; and the Culture, Sports, and Tourism R&D Program through
the Korea Creative Content Agency (KOCCA) Grants RS-2024-00348469 and RS-
2024-00345025, funded by the Korea Ministry of Culture, Sports and Tourism (MCST)
in 2024. W. Lee and F. Saad were supported by the United States National Science
Foundation (NSF) under Grant No. 2311983 and funds from the Computer Science
Department at Carnegie Mellon University. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems. arXiv 1603.04467 (2016). https://doi.org/10.48550/arXiv.1603.
04467

2. Albarghouthi, A.: Introduction to neural network verification (2021). https://doi.
org/10.48550/arXiv.2109.10317

3. Baader, M.: Expressivity of certified neural networks. Ph.D. thesis, ETH Zurich,
Zurich, Switzerland (2024). https://doi.org/10.3929/ETHZ-B-000677199

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.48550/arXiv.2109.10317
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199
https://doi.org/10.3929/ETHZ-B-000677199

322 G. Hwang et al.

4. Baader, M., Mirman, M., Vechev, M.T.: Universal approximation with certified
networks. In: Proceedings of the International Conference on Learning Represen-
tations (2020). https://doi.org/10.48550/arXiv.1909.13846

5. Baader, M., Müller, M.N., Mao, Y., Vechev, M.T.: Expressivity of ReLU-networks
under convex relaxations. In: Proceedings of the International Conference on Learn-
ing Representations (2024). https://openreview.net/forum?id=awHTL3Hpto

6. Barak, B.: Introduction to Theoretical Computer Science (2023). https://introtcs.
org

7. Beebe, N.: The Mathematical-Function Computation Handbook: Programming
Using the MathCW Portable Software Library. Springer (2017). https://doi.org/
10.1007/978-3-319-64110-2

8. Church, A.: A set of postulates for the foundation of logic. Ann. Math. 34(4),
839–864 (1933). https://doi.org/10.2307/1968702

9. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936). https://doi.org/10.2307/2371045

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the ACM Symposium on Principles of Programming Languages, pp. 238–252
(1977). https://doi.org/10.1145/512950.512973

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Proceedings of an ACM Conference on Language Design for Reli-
able Software, pp. 77–94 (1977). https://doi.org/10.1145/800022.808314

12. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Sig. Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

13. Daramy-Loirat, C., et al.: CR-LIBM: a library of correctly rounded elementary
functions in double-precision. Research Report ENSL-01529804, Laboratoire de
l’Informatique du Parallèlisme, December 2006. https://ens-lyon.hal.science/ensl-
01529804

14. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: QLoRA: efficient fine-
tuning of quantized LLMs. In: Proceedings of the International Conference on
Neural Information Processing Systems (2023). https://doi.org/10.5555/3666122.
3666563

15. Ding, Y., Liu, J., Xiong, J., Shi, Y.: On the universal approximability and com-
plexity bounds of quantized ReLU neural networks. In: International Conference
on Learning Representations (2019). https://doi.org/10.48550/arXiv.1802.03646

16. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classifi-
cation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1625–1634 (2018). https://doi.org/10.1109/CVPR.2018.00175

17. Faissole, F., de Lamarlière, P.G., Melquiond, G.: End-to-end formal verification of a
fast and accurate floating-point approximation. In: Proceedings of the International
Conference on Interactive Theorem Proving, pp. 14:1–14:18 (2024). https://doi.
org/10.4230/LIPIcs.ITP.2024.14

18. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.:
Adversarial attacks on medical machine learning. Science 363(6433), 1287–1289
(2019). https://doi.org/10.1126/science.aaw4399

19. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the IEEE Symposium on Security and Privacy,
pp. 3–18 (2018). https://doi.org/10.1109/SP.2018.00058

https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://doi.org/10.48550/arXiv.1909.13846
https://openreview.net/forum?id=awHTL3Hpto
https://openreview.net/forum?id=awHTL3Hpto
https://openreview.net/forum?id=awHTL3Hpto
https://openreview.net/forum?id=awHTL3Hpto
https://openreview.net/forum?id=awHTL3Hpto
https://introtcs.org
https://introtcs.org
https://introtcs.org
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.2307/1968702
https://doi.org/10.2307/1968702
https://doi.org/10.2307/1968702
https://doi.org/10.2307/1968702
https://doi.org/10.2307/1968702
https://doi.org/10.2307/1968702
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.5555/3666122.3666563
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.48550/arXiv.1802.03646
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.4230/LIPIcs.ITP.2024.14
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058

Floating-Point Networks are Provably Robust Universal Approximators 323

20. Gödel, K.: On undecidable propositions of formal mathematics systems (Notes by
Kleene, S.C., Rosser, J.B.) Institute for Advanced Study (1934). https://albert.
ias.edu/20.500.12111/7996

21. Gonon, A., Brisebarre, N., Gribonval, R., Riccietti, E.: Approximation speed of
quantized versus unquantized ReLU neural networks and beyond. IEEE Trans.
Inf. Theory 69(6), 3960–3977 (2023). https://doi.org/10.1109/TIT.2023.3240360

22. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. MIT Press (2016).
http://www.deeplearningbook.org/

23. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Proceedings of the International Conference on Learning Represen-
tations (2015). https://doi.org/10.48550/arXiv.1412.6572

24. Gowal, S., et al.: Scalable verified training for provably robust image classification.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
4841–4850 (2019). https://doi.org/10.1109/ICCV.2019.00494

25. Grigore, R.: Java generics are Turing complete. In: Proceedings of the ACM Sym-
posium on Principles of Programming Languages, pp. 73–85 (2017). https://doi.
org/10.1145/3093333.3009871

26. Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles
to implementation. J. ACM 48(5), 1038–1068 (2001). https://doi.org/10.1145/
502102.502106

27. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/
0893-6080(89)90020-8

28. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural Netw.
3(5), 551–560 (1990). https://doi.org/10.1016/0893-6080(90)90005-6

29. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations.
J. Mach. Learn. Res. 18(1), 6869–6898 (2017). https://doi.org/10.5555/3122009.
3242044

30. Hwang, G., Park, Y., Lee, W., Park, S.: Floating-point neural networks can repre-
sent almost all floating-point functions. In: Proceedings of the International Con-
ference on Machine Learning (2025)

31. Institute of Electrical and Electronics Engineers: IEEE Standard for Floating-Point
Arithmetic (IEEE Std 754-2019). IEEE, Piscataway, NJ, USA (2019). https://doi.
org/10.1109/IEEESTD.2019.8766229

32. Jin, J., Ohrimenko, O., Rubinstein, B.I.P.: Getting a-round guarantees: floating-
point attacks on certified robustness. In: Proceedings of the Workshop on Artifi-
cial Intelligence and Security, pp. 53–64 (2024). https://doi.org/10.1145/3689932.
3694761

33. Jovanovic, N., Balunovic, M., Baader, M., Vechev, M.T.: On the paradox of cer-
tified training. Trans. Mach. Learn. Res. (2022). https://doi.org/10.48550/arXiv.
2102.06700

34. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

35. Kozen, D.: Automata and Computability. Springer (1997). https://doi.org/10.
1007/978-1-4612-1844-9

https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://albert.ias.edu/20.500.12111/7996
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/3093333.3009871
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.1145/3689932.3694761
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.48550/arXiv.2102.06700
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9

324 G. Hwang et al.

36. Lee, W., Sharma, R., Aiken, A.: On automatically proving the correctness of
math.h implementations. Proc. ACM Programm. Lang. 2(POPL), 47:1–47:32
(2018). https://doi.org/10.1145/3158135

37. Li, L., Xie, T., Li, B.: Leaderboard for “SoK: certified robustness for deep neural
networks” (2023). https://sokcertifiedrobustness.github.io/leaderboard/. Accessed
19 May 2025

38. Li, L., Xie, T., Li, B.: SoK: certified robustness for deep neural networks. In:
Proceedings of the IEEE Symposium on Security and Privacy, pp. 1289–1310.
IEEE Press (2023). https://doi.org/10.1109/SP46215.2023.10179303

39. Lim, J.P., Nagarakatte, S.: High performance correctly rounded math libraries for
32-bit floating point representations. In: Proceedings of the ACM Conference on
Programming Languages Design and Implementation, pp. 359–374 (2021). https://
doi.org/10.1145/3453483.3454049

40. Lim, J.P., Nagarakatte, S.: One polynomial approximation to produce correctly
rounded results of an elementary function for multiple representations and round-
ing modes. Proc. ACM Programm. Lang. 6(POPL), 1–28 (2022). https://doi.org/
10.1145/3498664

41. Lin, H., Jegelka, S.: ResNet with one-neuron hidden layers is a universal approx-
imator. In: Proceedings of the International Conference on Neural Information
Processing Systems (2018). https://dl.acm.org/doi/10.5555/3327345.3327515

42. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.:
Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–
404 (2021). https://doi.org/10.1561/2400000035

43. Mao, Y., Müller, M.N., Fischer, M., Vechev, M.T.: Understanding certified training
with interval bound propagation. In: Proceedings of the International Conference
on Learning Representations (2024). https://doi.org/10.48550/arXiv.2306.10426

44. Markstein, P.: IA-64 and Elementary Functions: Speed and Precision. Hewlett-
Packard Professional Books, Prentice Hall (2000)

45. Micikevicius, P., et al.: Mixed precision training. In: International Conference on
Learning Representations (2018). https://doi.org/10.48550/arXiv.1710.03740

46. Micikevicius, P., et al.: FP8 formats for deep learning. arXiv 2209.05433 (2022).
https://doi.org/10.48550/arXiv.2209.05433

47. Mirman, M., Baader, M., Vechev, M.T.: The fundamental limits of neural net-
works for interval certified robustness. Trans. Mach. Learn. Res. (2022). https://
openreview.net/forum?id=fsacLLU35V

48. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Proceedings of the International Conference
on Machine Learning (2018). http://proceedings.mlr.press/v80/mirman18b.html

49. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press
(2011). https://doi.org/10.1093/acprof:oso/9780199233212.001.0001

50. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. Soc.
Ind. Appl. Math. (2009). https://doi.org/10.1137/1.9780898717716

51. Muller, J.: Elementary Functions: Algorithms and Implementation, 3rd edn.
Birkhäuser, Boston, MA (2016). https://doi.org/10.1007/978-1-4899-7983-4

52. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic. Springer (2018).
https://doi.org/10.1007/978-3-319-76526-6

53. Park, Y., Hwang, G., Lee, W., Park, S.: Expressive power of ReLU and step net-
works under floating-point operations. Neural Netw. (2024). https://doi.org/10.
1016/j.neunet.2024.106297

54. Pérez, J., Barceló, P., Marinkovic, J.: Attention is Turing-complete. J. Mach. Learn.
Res. 22, 75:1–75:35 (2021). https://dl.acm.org/doi/10.5555/3546258.3546333

https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://sokcertifiedrobustness.github.io/leaderboard/
https://sokcertifiedrobustness.github.io/leaderboard/
https://sokcertifiedrobustness.github.io/leaderboard/
https://sokcertifiedrobustness.github.io/leaderboard/
https://sokcertifiedrobustness.github.io/leaderboard/
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1109/SP46215.2023.10179303
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3498664
https://doi.org/10.1145/3498664
https://doi.org/10.1145/3498664
https://doi.org/10.1145/3498664
https://doi.org/10.1145/3498664
https://doi.org/10.1145/3498664
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://dl.acm.org/doi/10.5555/3327345.3327515
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://openreview.net/forum?id=fsacLLU35V
https://openreview.net/forum?id=fsacLLU35V
https://openreview.net/forum?id=fsacLLU35V
https://openreview.net/forum?id=fsacLLU35V
https://openreview.net/forum?id=fsacLLU35V
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://doi.org/10.1016/j.neunet.2024.106297
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333
https://dl.acm.org/doi/10.5555/3546258.3546333

Floating-Point Networks are Provably Robust Universal Approximators 325

55. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta
Numerica 8, 143–195 (1999). https://doi.org/10.1017/S0962492900002919

56. Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Proceedings of the International Confer-
ence on Neural Information Processing Systems (2018). https://dl.acm.org/doi/
10.5555/3327546.3327746

57. Rosenberg, I., Shabtai, A., Elovici, Y., Rokach, L.: Adversarial machine learning
attacks and defense methods in the cyber security domain. ACM Comput. Surv.
54(5) (2021). https://doi.org/10.1145/3453158

58. Sibidanov, A., Zimmermann, P., Glondu, S.: The CORE-MATH project. In: Pro-
ceedings of the IEEE Symposium on Computer Arithmetic, pp. 26–34 (2022).
https://doi.org/10.1109/ARITH54963.2022.00014

59. Siegelmann, H., Sontag, E.: On the computational power of neural nets. J. Comput.
Syst. Sci. 50(1), 132–150 (1995). https://doi.org/10.1006/jcss.1995.1013

60. Singh, G.: Building trust and safety in artificial intelligence with abstract inter-
pretation. In: Hermenegildo, M.V., Morales, J.F. (eds.) Static Analysis, pp. 28–38.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44245-2_3

61. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Proceedings of the International Conference on Neural
Information Processing Systems (2018). https://dl.acm.org/doi/10.5555/3327546.
3327739

62. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certify-
ing neural networks. Proc. ACM Programm. Lang. 3(POPL), 41:1–41:30 (2019).
https://doi.org/10.1145/3290354

63. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the
International Conference on Learning Representations (2014). https://doi.org/10.
48550/arXiv.1312.6199

64. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. s2-42(1), 230–265 (1937). https://doi.
org/10.1112/plms/s2-42.1.230

65. Wang, N., Choi, J., Brand, D., Chen, C.Y., Gopalakrishnan, K.: Training deep
neural networks with 8-bit floating point numbers. In: Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (2018). https://doi.
org/10.5555/3327757.3327866

66. Wang, Z., Albarghouthi, A., Prakriya, G., Jha, S.: Interval universal approximation
for neural networks. Proc. ACM Programm. Lang. 6(POPL), 14.1–14.29 (2022).
https://doi.org/10.1145/3498675

67. Wansbrough, K.: Instance declarations are universal (1998). http://www.lochan.
org/keith/publications/undec.html

68. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Proceedings of the International Conference
on Machine Learning (2018). https://doi.org/10.48550/arXiv.1711.00851

69. Yarotsky, D.: Optimal approximation of continuous functions by very deep ReLU
networks. In: Proceedings of the Conference on Learning Theory (2018). https://
doi.org/10.48550/arXiv.1802.03620

70. Yun, C., Bhojanapalli, S., Rawat, A.S., Reddi, S., Kumar, S.: Are transformers
universal approximators of sequence-to-sequence functions? In: Proceedings of the
International Conference on Learning Representations (2020). https://doi.org/10.
48550/arXiv.1912.10077

https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://dl.acm.org/doi/10.5555/3327546.3327746
https://doi.org/10.1145/3453158
https://doi.org/10.1145/3453158
https://doi.org/10.1145/3453158
https://doi.org/10.1145/3453158
https://doi.org/10.1145/3453158
https://doi.org/10.1145/3453158
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://doi.org/10.1007/978-3-031-44245-2_3
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.5555/3327757.3327866
https://doi.org/10.1145/3498675
https://doi.org/10.1145/3498675
https://doi.org/10.1145/3498675
https://doi.org/10.1145/3498675
https://doi.org/10.1145/3498675
https://doi.org/10.1145/3498675
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
http://www.lochan.org/keith/publications/undec.html
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1711.00851
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1802.03620
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077
https://doi.org/10.48550/arXiv.1912.10077

326 G. Hwang et al.

71. Zhou, D.X.: Universality of deep convolutional neural networks. Appl. Comput.
Harmon. Anal. 48(2), 787–794 (2020). https://doi.org/10.1016/j.acha.2019.06.004

72. Ziv, A., Olshansky, M., Henis, E., Retiman, A.: IBM accurate portable Mathlib
(2001). https://github.com/dreal-deps/mathlib

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://github.com/dreal-deps/mathlib
https://github.com/dreal-deps/mathlib
https://github.com/dreal-deps/mathlib
https://github.com/dreal-deps/mathlib
https://github.com/dreal-deps/mathlib
https://github.com/dreal-deps/mathlib
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Floating-Point Neural Networks are Provably Robust Universal Approximators*-10pt
	1 Introduction
	2 Preliminaries
	2.1 Floating Point
	2.2 Neural Networks
	2.3 Interval Semantics

	3 Interval Universal Approximation Over Floats
	3.1 Conditions on Activation Functions
	3.2 Main Result
	3.3 Comparison With Existing Results Over Reals

	4 Implications of IUA Theorem Over Floats
	4.1 Provable Robustness of Neural Networks
	4.2 Floating-Point Interval-Completeness

	5 Proof of IUA Theorem Over Floats
	5.1 Proof of Lemma 2
	5.2 Proof of Lemma 3

	6 Related Work
	References

