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Abstract. The classical universal approximation (UA) theorem for neu-
ral networks establishes mild conditions under which a feedforward neural
network can approximate a continuous function f with arbitrary accuracy.
A recent result shows that neural networks also enjoy a more general inter-
val universal approximation (IUA) theorem, in the sense that the abstract
interpretation semantics of the network using the interval domain can
approximate the direct image map of f (i.e., the result of applying f to aset
of inputs) with arbitrary accuracy. These theorems, however, rest on the
unrealistic assumption that the neural network computes over infinitely
precise real numbers, whereas their software implementations in practice
compute over finite-precision floating-point numbers. An open question is
whether the IUA theorem still holds in the floating-point setting.

This paper introduces the first ITUA theorem for floating-point neu-
ral networks that proves their remarkable ability to perfectly capture the
direct image map of any rounded target function f, showing no lim-
its exist on their expressiveness. Our IUA theorem in the floating-point
setting exhibits material differences from the real-valued setting, which
reflects the fundamental distinctions between these two computational
models. This theorem also implies surprising corollaries, which include
(i) the existence of provably robust floating-point neural networks; and
(ii) the computational completeness of the class of straight-line programs
that use only floating-point additions and multiplications for the class of
all floating-point programs that halt.

Keywords: Neural networks - Robust machine learning - Floating
point - Universal approximation - Abstract interpretation

G. Hwang and W. Lee—Equal contribution.
The full version of this article is at https://doi.org/10.48550/arXiv.2506.16065.
© The Author(s) 2025

R. Piskac and Z. Rakamari¢ (Eds.): CAV 2025, LNCS 15932, pp. 301-326, 2025.
https://doi.org/10.1007/978-3-031-98679-6_14

®

Check for
updates


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-98679-6_14&domain=pdf
http://orcid.org/0000-0001-7137-426X
http://orcid.org/0000-0003-0301-0872
http://orcid.org/0000-0002-4211-6226
http://orcid.org/0000-0003-1580-5664
http://orcid.org/0000-0002-0505-795X
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.48550/arXiv.2506.16065
https://doi.org/10.1007/978-3-031-98679-6_14

302 G. Hwang et al.

1 Introduction

Background. Despite the remarkable success of neural networks on diverse
tasks, these models often lack robustness and are subject to adversarial attacks.
Slight perturbations to the network inputs can cause the network to produce
significantly different outputs [23,63], raising serious concerns in safety-critical
domains such as healthcare [18], cybersecurity [57], and autonomous driving [16].

These issues have brought about significant advances in new algorithms for
robustness verification [2,34,42], which prove the robustness of a given network;
and robust training [24,48,56,68], which train a network to be provably robust.
But despite these advances, provably robust networks do not yet achieve state-of-
the-art accuracy [38]. For example, on the CIFAR-10 image classification bench-
mark, non-robust networks achieve over 99% accuracy, whereas the best provably
robust networks achieve less than 63% [37]. This performance gap has prompted
researchers to explore whether there exists fundamental limits on the expressive-
ness of provably robust networks that restrict their accuracy [3].

Surprisingly, it has been proven that no such fundamental limit exists. Infor-
mally, for any continuous function f : R — R and compact set X C R?, there
exists a neural network g : R* — R whose robustness properties are “sufficiently
close” to those of f over K and easily provable using abstract interpretation [10]
over the interval domain. This result, known as the interval universal approx-
imation (IUA) theorem [4,66], generalizes the classical universal approxima-
tion (UA) theorem [12,27] from pointwise-values to intervals, and confirms that
provably robust networks do not suffer from a fundamental loss of expressive
power.

Key Challenges. The IUA theorem in [4,66] overlooks a critical aspect of real-
world computation, which is the use of floating-point arithmetic instead of real
arithmetic. It assumes that neural networks and interval analyses operate on
arbitrary real numbers with exact operations. In reality, numerical implemen-
tations of neural networks use floating-point numbers and operations [22, §4.1],
sometimes with extremely low-precision to speed-up performance [14,29]. This
discrepancy means that the existing IUA theorem does not directly apply to
neural networks that are implemented in software and actually used in practice.
To our knowledge, no prior work has studied the robustness and expressive-
ness properties of floating-point neural networks or established an ITUA theorem
for them. The unique complexities of floating-point arithmetic introduce daunt-
ing challenges to any such theoretical study. For example, floating-point num-
bers are discretized and bounded, and their operations have rounding errors that
become infinite in cases of overflow. Whereas the IUA proof over reals requires
very large real numbers for network weights or intermediate computations, these
values cannot be represented as floats. Naively rounding reals to floats causes
approximation errors that invalidate many steps of the IUA proofs in [4,66].

This Work. We formally study the IUA theorem over floating point, as a step
toward bridging the theory and practice of provably robust neural networks.
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(a) f : R - R is a continuous target (b)f: Fdj F is a rounded target function;
function; v : R — R is a neural network. v : F¢ — F is a neural network.

Fig. 1. Hlustration and comparison of the IUA theorems. (a) In the real-valued setting,
the neural network abstract interpretation v* forms a d-approximation to the image
map of f. (b) In the floating-point setting, v* exactly computes the upper and lower
points of the image map of f: v*(B) = [min f(B), max f(B)] NnF.

We first formulate a floating-point analog of the IUA theorem, considering
the details of floating point. Let f : R? — R be a target function to approximate.
Since all floating-point neural networks are functions between floating-point val-
ues, they can at-best approximate the rounded version f : F¢ — F of f over
floats, where F denotes the set of all floats. The floating-point version of the ITUA
theorem asks the following: is there a floating-point neural network v : F¢ — F
whose interval semantics is arbitrarily close to the direct image map of the
rounded target f over [—1,1]%? More formally, this property means that for any
§ > 0, there exists a neural network v such that for all boxes B C [~1,1]¢ N TF<,

~

min v#(B) — min f(B)’ <4, ‘max v#(B) — max f(B)| < 6. (1)

In Eq. (1), v#(B) is the result of abstract interpretation of B under v (using the

~ ~ ~

interval domain), and f(B) = {f(x) | x € B} C R is the image of B under f.

We prove that the ITUA theorem holds for floating-point networks, despite all
their numerical complexities. In particular, we show that for any target function
f and a large class of activation functions o, including most practical ones (e.g.,
ReLU, GELU, sigmoid), it is possible to find a floating-point network v with o
whose interval semantics ezactly matches the direct image map of the rounded
target f over [—1,1]2NTF¢ (Fig. 1). This result implies that no fundamental limit
exists on the expressiveness of provably robust floating-point neural networks.

Our result is considerably different from the previous IUA theorem over the
reals in three key aspects. The previous theorem considers continuous target
functions; requires a restricted class of so-called squashable activation functions;
and finds networks that are arbitrarily close to target functions. In contrast, our
result considers arbitrary target functions; allows almost all activation functions
used in practice; and find networks that are precisely equal to (rounded) target
functions. Our IUA theorem even holds for the identity activation function,
which is not the case for the traditional IUA or UA theorems over real numbers,
because any network that uses the identity activation is affine over the reals.
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As a corollary of our main theorem, we prove the following existence of prov-
ably robust floating-point neural networks: given an ideal floating-point classi-
fier f (not necessarily a neural network) that is robust (not necessarily provably
robust), we can find a floating-point neural network v that is identical to J?and
is provably robust with interval analysis. We also prove a nontrivial result about
“floating-point completeness”, as an unexpected byproduct of the main theorem.
Specifically, we show that the class of straight-line floating-point programs that
use only floating-point 4+ and X operations is floating-point interval-complete: it
can simulate any terminating floating-point program that takes finite floats as
input and returns arbitrary floats as output. The same statement holds under the
interval semantics. To our knowledge, no prior work has identified such a small
yet powerful class of floating-point programs, suggesting that this corollary is of
significant independent interest to the extensive floating-point literature.

Contributions. This article makes the following contributions:

e We formalize a floating-point analog of the interval universal approximation
(IUA) theorem, to bridge the theory and practice of provably robust neural
networks (Sect. 2, Sect. 3). It asks if there is a floating-point network whose
interval semantics is close to the direct image map of a given target function.

e We prove the floating-point version of the IUA theorem does hold, for all
target functions and a broad class of activation functions that includes most
of the activations used in practice (Sect. 3.1, Sect. 3.2, Sect. 5). This shows no
fundamental limit exists on the expressiveness of provably robust networks
over floats.

e We rigorously analyze the essential differences between the previous TUA
theorem over reals and our IUA theorem over floats (Sect. 3.3). Unlike real-
valued networks, floating-point networks can perfectly capture the behavior
of any rounded target function, even with the identity activation function.

e We prove that if there exists an ideal robust floating-point classifier, then one
can always find a provably robust floating-point network that makes exactly
the same prediction as the classifier (Sect. 4.1).

e We prove that the set of straight-line floating-point programs with only (+, x)
is floating-point interval-complete: it can simulate any terminating floating-
point programs that take finite inputs and return finite/infinite outputs, under
the usual floating-point semantics and interval semantics (Sect. 4.2).

2 Preliminaries

This section introduces floating-point arithmetic (Sect. 2.1), neural networks
that compute over floating-point numbers (Sect. 2.2), and interval analysis for
neural networks (Sect. 2.3). Throughout the paper, we define N to be the set of
positive integers and let [n] := {1,...,n} for each n € N.
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2.1 Floating Point

Floating-Point Numbers. Let £, M € N. The set of finite floating-point
numbers with E-bit exponent and (M + 1)-bit significand is typically defined by

Ff/[ = {(—l)b X (80.81 .. -SJV[)Z x 2¢

b,s; € {0,1}, € € {emins s emax} > (2)

where e, == —2F71 + 2 and epax = 2F71 — 1 [52]. The set of all floating-
point numbers, including non-finite ones, is then defined by F¥, = F{, U
{—00,4+00, L}, where L denotes NaN (i.e., not-a-number). For brevity, we call
a floating-point number simply a float, and write FY; and F¥; simply as F and
F. In this paper, we assume E > 5 and 2~1 > M > 3, which hold for nearly
all practical floating-point formats, including bfloat16 [1] and all the formats
defined in the IEEE-754 standard [31] such as float16, float32, and float64.

We introduce several notations and terms related to finite floats. First, we
define three key constants: the smallest positive float w = 2¢min=M the largest
positive float §2 := 2¢max(2 — 2=M) and the machine epsilon ¢ :=2~M~1, Next,
consider a finite float z € F. We call  a subnormal number if 0 < |z| < 2¢min and
a normal number otherwise. The exponent and significand of x are defined by
e, = max{|1og, |2|], emin} € [emin;emax] and s, = |z| /2% € [0,2). We use
$5.0,---58,0m to denote the binary expansion of s, i.e., (§50.521 - 5z M)2 =
s, with s, ;, € {0,1}. The predecessor and successor of x in F are written as
v =max{y e F\ {1} |z >y} and 2" :=min{y e F\ {1} |z < y}.

Floating-Point Operations. We define the rounding function rmd : R U
{—00,+x} — F as follows: rnd(z) = —oco if € [~00,—2 — ¢], rnd(x) =
argmin, g |y — 2| if z € (=2 — ¢, 2+ ¢), and rnd(z) = +oo if z € [2 + ¢, +00],
where ¢ := 2°»»¢ and argmin breaks ties by choosing a float y with s, s = 0.
This function corresponds to the rounding mode “round to nearest (ties to even)”,
which is the default rounding mode in the IEEE-754 standard [31].

The floating-point arithmetic operations ®,0,® : F x F — F are defined
via the rounding function: for finite floats z,y € F, t @y = rnd(z + y), z &
y :=rmd(z —y), and £ ® y := rnd(z x y). We omit the definition for non-finite
operands because they are unimportant in this paper, except that * & 0 =
260 =z for all x € {—o00,+00}. For the full definition, refer to the IEEE-754

standard [31].
We introduce two more floating-point operations: affyyp and rnd(f).
First, we define the floating-point affine transformation: for a matrix W =

(Wi j)icim),jein) € F™ ™ and a vector b = (by,...,by) € F™, affy, : Fr — F™
is defined by

affW,b(:vl, .. .,.tn) = ((E z; ® w1,]-> Db, ..., (E T; ® wmd') D bm> . (3)
j=1 j=1

Here, ®, denotes the floating-point summation defined in the left-associative
way: Do Yi = (- ((y1 ®y2) Dys) - -+ ) B Yn, where the order of & is important
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| y = affw, b, (yo-1) Syr | i = ﬂﬁwb.bl, (Yrr—1) YL4r/-1 = a‘ﬂ“v}‘,,b/L, (Yr+r/—2)
y2 i= (G, o affywy,by ) (y1) yit1 = (Gay 0 affyy by ) (ye)
t t
y1 = (Ga; 0 affyy b ) (%) yL = (Ga; 0 affyy by ) (yr-1)
= (&d{)(x>aa(b,1.d{’,+1> ----- U(b,l,d’]>) = (5d{\(yL71)7U(b,1‘d(,+1) ----- 0(511,11;))
t
yi-1 = (Gay_, oaffw,_;b,_,)(YL-2) yi-1:=(Gay_, oaffw,_,b,_,)(yr-2)
vi = (Gay 0 affw, by )(X) y1 = (Ga, 0 affw, b, )(x)
[ X ] [ E ] [ X
141 1] 9 O 1]

Fig. 2. Illustrations of a network v1 without the last affine layer (left), a network v
without the first affine layer (middle), and their composition v; o vy (right). Note that
affW{,b/l oaffw, b, = affwl’,b’l is a floating-point affine transformation.

because @ is not associative. Next, we define the correctly rounded version of a
real-valued function. For f : R — R, the function rnd(f) : F — F is defined by

rnd(f(x)) if x € (—o0,+00)
rnd(f)(z) = { rnd (t@; f(t)) if 2 € {—o00, +00} A lim f(t) ER U {~oc0,+00}  (4)
1L otherwise.

2.2 Neural Networks

A neural network typically refers to a composition of affine transformations and
activation functions. Formally, for L € N and ¢ : F — F, we call a function v a
depth-L o-neural network (or a neural network) if v is defined by

. d ™ — ~ ~
v:iF® —F% vi=affw, b, 004, caffw, b, 0 004, caffw, b, (5)

for some dy € N, W, € Fd>xde—1 and b, € F%, where 6, : F* — F" is the
coordinatewise application of o. Here, L denotes the number of layers, o the
floating-point activation function, dy and dj, the input and output dimensions,
d¢ the number of hidden neurons in the ¢-th layer (¢ € [L—1]), and W, and b, the
parameters of the floating-point affine transformation in the ¢-th layer (¢ € [L]).
We emphasize that a neural network in this paper is a function over floating-point
values, defined in terms of floating-point activation function and arithmetic. For
instance, a depth-1 neural network is a floating-point affine transformation.

Let v be a neural network defined as Eq. (5). We say v is without the last
affine layer if d, = dy_1, W is the identity matrix, and by = 0. Similarly, we
say v is without the first affine layer if di > dy, W1 is a rectangular diagonal
matrix whose diagonal entries are all 1, and by ; = 0 for all ¢ € [dg]. The two
definitions are not perfectly symmetric due to some technical details arising in
our proofs. We note that a neural network can be constructed by composing
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networks without the first/last affine layer(s) and arbitrary networks (Fig.2).
For example, consider arbitrary networks v; : F* — F™ and vy : F*8 — F™, a
network without the first affine layer v : F** — F"2, and a network without the
first and last affine layers v : F?2 — F"3. It is easily verified that the function
v : Fo — F™ gpecified by v(x) = (v4 0 -+ 0 vp)(x) denotes a network, whose
definition in the form of Eq. (5) can be obtained by “merging” the last layer of
v1 and the first layer of vs, etc.

2.3 Interval Semantics

Interval analysis [11,50] is a technique for analyzing the behavior of numerical
programs soundly and efficiently, based on abstract interpretation [10]. It uses
intervals to overapproximate the ranges of inputs and expressions, and prop-
agates them through a program to overapproximate the output range. Inter-
val analysis has been used to establish the robustness of practical neural net-
works [19,24,33,43]. It can overapproximate the output range of a network over
perturbed inputs, which is required to prove robustness; and it runs efficiently
by performing only simple computations, which is required to analyze large-scale
networks.

Interval Domain and Operations. We formalize interval analysis for neural
networks as follows. We first define the interval domain

I:={(a,b)|a,beF\{L} witha<b} U{T}, (6)

on which interval analysis operates. Here, (a,b) abstracts the floating-point
interval [a,b] N F, and T abstracts the entire floating-point set F including
L. The concrete semantics of an abstract interval Z € 1 and an abstract box
B=(Ii,...,Zq) € I are defined through the concretization function ~, where

= bNF if T = (a,b) d
LU, T — e, oF 7) = [f’ ’ B) = 7).
7 Ug =2, (@) {F w71 7B 117( )
(7)

We say that an abstract box B € I¢ is in a set S C R? if v(B) C S.

For any function ¢ : F — T over floats (which is not a neural network or a
floating-point affine transformation), the interval operation ¢* : 14 — I extends
¢ to the interval domain as follows:

#(B) = {ﬁmiﬂs’m”‘” LTS whees=oh @) (©)

In the special case that ¢ = ® € {®,6,®} is a floating-point arithmetic opera-
tion, the above definition (using infix notation) is equivalent to the following;:

(minS, maxS) if L ¢S a@qa@d}

T iflLeS’

(a,b) o (c,d) == { where S = {b@c,b@d

9)
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and ©f returns T if at least one of its operands is T.! We remark that ©f
can be efficiently computed, and so can ¢f when ¢ : F — F is piecewise-
monotone with finitely many pieces, which holds for the correctly rounded
versions of widely-used activation functions (e.g., ReLU, GELU, sigmoid).
We then define the interval affine transformation affj‘i,v,b : I — I"™, which

extends its floating-point counterpart affyp, : F* — F™: aﬁ"‘i/v’b(Il, o Iy) =

((E;;lﬁfj ®f <UJi,j,U)i,j>) of <bi,bi>)z

, where B is the interval summation
=1
which uses @ instead of &.

Interval Semantics. The interval semantics vh T4 — 9 of a neural network
v :Fo — F is defined as the result of interval analysis on v:
N ~ff # ~f i

Vﬁ = aﬁWL,bL 04, ° aﬁWL—th—l 01100y, © aﬂWlabl’ (10)

where v is assumed to be defined as Eq. (5) and &%, : I" — 1" is the coordinate-

wise application of of : T — I. Tt is easily verified that the interval semantics is
sound with respect to the floating-point semantics:

v (v (B)) € v (v(B)) (B €1%). (11)

That is, the result of interval analysis v*(B) € I subsumes the set of all possible
outputs of the network v when the input is in the concrete box ~ (B) C F.

3 Interval Universal Approximation Over Floats

This section presents our main result on interval universal approximation (IUA)
for floating-point neural networks. We first introduce conditions on activation
functions for our result (Sect. 3.1), and then formally describe our result under
these conditions (Sect. 3.2). We then compare our IUA theorem over floats
with existing IUA theorems over reals, highlighting several nontrivial differences
(Sect. 3.3).

3.1 Conditions on Activation Functions

Our TUA theorem is for floating-point neural networks that use activation func-
tions satisfying the following conditions (Fig. 3).

Condition 1. An activation function o : F — F satisfies the following condi-
tions:

! This definition of ®* differs slightly from the standard definition, as ®f uses “round
to nearest” mode (implicit in ®), whereas the more common mode is “round down-
ward /upward” (e.g., (a,b) &F (¢c,d) = (a @, ¢,b®7 d)) [26, Section5]. This choice
is due to different goals to achieve: our definition overapproximates floating-point
operations (e.g., @), while the usual one overapproximates exact operations (e.g., +).
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[// o(x) = o(n)l /a

(@) < (@) <2‘T*77‘ <2y —nT|

n=05n"=05" n=051n

Fig. 3. Illustration of the first (left), second (middle), and third (right) conditions in
Condition 1 for the ReLU activation function: o(z) := max{z,0} for z € F.

(C1) There exist c1,co € F such that o(c1) = 0, |o(c2)| € [§ + 2622 — 2¢],
max{|ci|,|ca|} > 20wt and o(x) lies between o(c1) and o(ca) for all x
between ¢ and cz, where € is the machine epsilon (see Sect. 2.1).

(C2) There existsn € F with |n| € [2°mnT5 4—8¢] and |o(n)|, |o(nT)| € [26min+5,
2¢0max=6 . |n|] such that for any x,y € F withx <n<nt <y,

o(z)<o(n) <o) <oly) or o(z) 2o >o@™) 20oly). (12)

(C3) There exists A € [0, 257 .min{|o(n)|, 2M+3}] such that for any v,y € F
with x <n<nt <y,

lo(x) —o(m)| < ANz —nl and |o(y) =) < Ay—nT].  (13)

The condition (C1) states that the activation function o can output the exact
zero (i.e., o(c1)) and some value whose magnitude is approximately in [£, 2]
(i.e., o(c2)); and its output is within o(c;) and o(cg) for all inputs between
¢1 and cz. The condition (C2) states that there exists some threshold n such
that o(x) is either smaller or greater than o(n) or o(n*), depending on whether
z is on the left or right side of 1. This condition holds automatically for all
monotone activation functions that are non-constant on either [2¢min+5 4 —8e]NF

r [—4 + 8¢, —2%min 5] N F. The condition (C3) states that o does not increase
or decrease too rapidly from 1 and n*, which implies that o(x) is finite for all
finite floats z € F.

While Condition 1 is mild, verifying whether practical activation functions
over floats satisfy Condition 1 can be cumbersome. Floating-point activation
functions are typically implemented in complicated ways [7,44,51] (e.g., by
intermixing floating-point operations with integer/bit-level operations and if-
else branches), which makes it challenging to rigorously analyze such imple-
mentations [17,36]. To bypass this issue, we focus on the correctly rounded
version ¢ : F — F of a real-valued activation function p : R — R (i.e.,
o(xz) = rnd(p(z))), when verifying Condition 1. Correctly rounded versions
of elementary mathematical functions have been actively developed in several
software libraries [13,39,40,58,72].
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Under the correct rounding assumption, we provide an easily verifiable suf-
ficient condition for activation functions on reals that can be used to verify
Condition 1 for their rounded versions. The proof of Lemma 1 is in §B.1.

Lemma 1. For any activation function p : R — R, the correctly rounded acti-
vation rnd(p) : F — F satisfies Condition 1 if the following conditions hold:

(C1') There exist ¢, cy € F such that |p(c;)| < %, |p(ch)| € [§ + 2%, 5 — 2¢],
max{|c|,|ch|} > 2eminTL and p(x) lies between p(cy) and p(ch) for all x
between ¢} and ch, where w is the smallest positive float (see Sect. 2.1).

(C2') There exists 6 € R with |0] € [, I] such that
. forallx,yERsatisfymgxgé—%<(5+%§y,

p(x) <p(6—5)<p(d+5) <ply) or p(x)>p(d—5)>pd+3)>py),

o [p(@)] € [3,1] and |p(x) — p(y)| > glo —y| for allz,y €[5 — 5,0+ 5.
(C3') p is A-Lipschitz continuous for some X € [0, £ - 2¢max—9],

The Conditions (C1")~(C3") in Lemma 1 correspond to the Conditions (C1)-
(C3) in Condition 1. The Condition (C1"), corresponding to (C1), can be easily
satisfied since modern activation functions are piecewise-monotone and either
zero at zero (e.g., ReLU, GELU, softplus, tanh) or close to zero at —{2 or {2 (e.g.,
sigmoid). The Condition (C2') roughly states the existence of § € R satisfying
the following: (i) p(6—3) and p(6+3) are lower /upper bounds of p on (—c0,6— %)
and (6 + £,00); and (ii) p is bounded and strictly monotone on [§ — 1,8 + £].
This condition guarantees the existence of 7 € F in (C2). The Condition (C3'),
corresponding to (C3), can also be easily satisfied since A < 3 for most practical
activation functions. We note that Lemma 1 gives sufficient but not necessary
conditions for a correctly rounded activation function to satisfy Condition 1.

The following corollary uses Lemma 1 to show that many prominent activa-
tion functions satisfy Condition 1. Its proof is in §B.2.

Corollary 1. The correctly rounded implementations of the ReLU, LeakyReLU,
GELU, ELU, Mish, softplus, sigmoid, and tanh activations satisfy Condition 1.
3.2 Main Result

We are now ready to present our IUA theorem over floating-point arithmetic.

Theorem 1. Let 0 : F — F be an activation function satisfying Condition 1.%
Then, for any target function f : R? — R, there exists a o-neural network
v:F? = F such that

7 (v(8)) = [min f (+(B)) , max f (+(8) | NF (14)

2 Condition 1 is sufficient for Theorem 1 but not necessary. E.g., Theorem 1 still holds
under 8-bit floats (both E4AM3 and E5M2 formats [46]) for the ReLU activation
function; this corresponds to the case where (C1) and (C2) hold but (C3) is violated.
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for f =rnd(f) : F* — F¢ and for all abstract bozes B in [—1,1]4.3

Theorem 1 states that for any activation function ¢ : F — F satisfying
Condition 1 and any target function f : R? — R, there exists a o-network
v whose interval semantics eractly computes the upper and lower points of the
direct image map of the rounded target f : F¢ — F on [—1, 1]¢NF9. A special case
of our ITUA Theorem 1 is the following universal approximation (UA) theorem
for floating-point neural networks:

v(x) = f(x) (x € [-1,1]*NTFY). (15)
That is, floating-point neural networks using an activation function satisfying
Condition 1 can represent any function f : [~1,1]YNF? — F U {—o0, +00}; or
the rounded version of any real function f : [-1,1] — R. Moreover, Theorem 1

easily extends to any target function f : R — R? with multiple outputs.

As previous TUA results assume exact operations over reals, they do not
extend to our setting of floating-point arithmetic (due to rounding errors, over-
flow, NaNs, discreteness, boundedness, etc.). As a simple example of these issues,
consider the following subnetwork, which is used in the IUA proof of [4]:

wlx,y) = % (ReLU(z + y) — ReLU(—z — y) — ReLU(x — y) — ReLU(y — x)) .

This subnetwork returns min{z, y} if all operations are exact. However, it does
not under floating-point arithmetic due to the rounding error: if (4, x) is
replaced by (@, ®), then p(z,y) =0# e =min{z,y} for z =1 and y = e.

In addition, the network construction in [66, Theorem 4.10] requires multi-
plying a large number z that depends on the target error and the activation
function, to the output of some neuron. However, because F is bounded and
floating-point operations are subject to overflow, the number z and the result
of the multiplication are not guaranteed to be within F when using a small tar-
get error (e.g., less than w) or when using common activations functions (e.g.,
ReLU, softplus). To bypass these issues, we carefully analyze rounding errors
and design a network without infinities in the intermediate layers, when proving
Theorem 1.

We present the proof outline of Theorem 1 in Sect. 5, and the full proof in
§D—8F. We implemented the proof (i.e., our network construction) in Python and
made it available at https://github.com/yechanp /floating-point-iua-theorem.

3.3 Comparison With Existing Results Over Reals

Theorem 1, which gives an IUA theorem over floats, has notable differences from
previous IUA theorems over the reals [4, Theorem 1.1]; [66, Theorem 3.7].

3 In the literature on universal approximation theorems, it is typically assumed that
the inputs are in [0,1] or in a compact subset of R (e.g., [4,12,66,69]). Since the
inputs are often normalized to [—1, 1], we focus the theoretical analysis on [—1,1]¢.
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One difference is the class of target functions and the desired property of
networks. Previous IUA theorems find a network that sufficiently approzimates
the direct image map of a continuous target function (i.e., 6 > 0 in Eq. (1)).
In contrast, our IUA theorem finds a network that ezactly computes the direct
image map of an arbitrary rounded target function (i.e., § = 0 in Eq. (1)). This
difference arises from the domains of the functions being approximated: the real-
valued setting considers functions f over [~1,1]¢ (or a compact K C R%); the

~

floating-point setting considers functions f over [—1,1]¢ N9,

e Since [—1,1]¢ is uncountable, exactly computing the direct image map of f
requires a network to fit uncountably many input/output pairs and related
box/interval pairs. This task is difficult to achieve, and indeed, recent
works [3,5,47] prove that it is theoretically unachievable even for simple target
functions (e.g., continuous piecewise linear functions).

e Since [~1,1]2 N F? is finite, exactly computing the direct image map of f
requires a network to fit finitely many input/output and box/interval pairs.
Our result proves that, despite all the complexities of floating-point compu-
tation, this task can be achieved for any rounded target function.

Another key difference is the class of activation functions. There are real-
valued activation functions p,p’ : R — R such that previous IUA theorems
cannot hold for p but our TUA theorem does hold for rnd(p) : F — F; and vice
versa, for p'.

e An example of p is the identity function: p(x) = x. No classical IUA or UA
theorem can hold for p, since all real-valued p-networks p : R — R are affine
over the reals (i.e., there exists A € R'*? and b € R such that u(x) = Ax+b
for all x € R%). In contrast, our [IUA theorem does hold for rnd(p), because
rnd(p) satisfies all the conditions in Lemma 1 (with constants ¢j =0, ¢4 =1,
d = 1/2, and A = 1). This counterintuitive result is made possible because
floating-point rnd(p)-networks v : F¢ — F can be non-affine over the reals
(i.e., there may not exist A € R'*% and b € R such that v(x) = Ax + b for
all x € F?). This non-affineness arises from rounding errors: some floating-
point affine transformations affyyp, are not actually affine over the reals due
to rounding errors. An interesting implication of this result is discussed in
Sect. 4.2.

e An example of p’ is any function that is non-decreasing on R, is constant on
[— 92, 2], and satisfies lim,_, o p'(z) < limy— 400 p'(2), where the two limits
exist in R. The real-valued TUA theorem holds for p’, because p’ satisfies
the condition in [66, Definition 2.3]. However, no floating-point ITUA or UA
theorem can hold for rnd(p’), because all rnd(p’)-networks v : F — F must
be monotone if its depth is 1, and must satisfy v(0) = v(w) otherwise. The
monotonicity holds when the depth is 1 since @&, ® are monotone when an
operand is a constant; and v(0) = v(w) holds otherwise since x ® a & b €
[—£2, 0] for all z € {0,w} and a,b € F, and rnd(p’) is constant on [—2, 2]NF.
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4 TImplications of IUA Theorem Over Floats

This section presents two important implications of our TUA theorem, on prov-
able robustness and “floating-point completeness”. We first prove the existence
of a provably robust floating-point network, given an ideal robust floating-point
classifier (Sect. 4.1). We then prove that floating-point + and x are sufficient to
simulate all halting programs that return finite/infinite floats when given finite
floats (Sect. 4.2).

4.1 Provable Robustness of Neural Networks

Consider the task of classifying floating-point inputs x € X (e.g., images of
objects) into n € N classes (e.g., categories of objects), where X = [~1,1]¢ N [F?
denotes the space of inputs throughout this subsection. For this task, a function
f . X — F™ is often viewed as a classifier in the following sense: f predicts x

to be in the i-th class (i € [n]), where i = class(f(x)) and class : F" — [n]
is defined by class(y1,...,yn) = arg max, e, ¥; With an arbitrary tie-breaking
rule.

A typical robustness property of a classifier f is that f should predict the
same class for all neighboring inputs under the ¢, distance [38]. We formalize
this notion of robust classifiers in a way similar to [66, Definition A.4].

Definition 1. Let § > 0 and D C X. A classifier f : X — F™ is called § -robust
on D if for all xg € D, y,y’ € f(Ns(x0)) implies class(y) = class(y’), where
Ns(x0) = {x € X | ||x0 — X||oo <} and || - |0 denotes the £oo-norm.

Neural networks have been widely used as classifiers, but establishing the
robustness properties of practical networks as in Definition 1 is intractable due
to the enormous number of inputs to be checked (i.e., [N5(x¢)| > 1 when d > 1).
Instead, these properties have been proven often by using interval analysis, as
mentioned in Sect. 2.3. We formalize the notion of such provably robust networks
under interval analysis, in a way similar to [66, Definition A.5].

Definition 2. Let § > 0 and D C X. A neural network v : F¢ — F™ is called
§ -provably robust on D if for all xo € D, y,y’ € v(v#(B)) implies class(y) =
class(y’), where B € 1¢ denotes the abstract box such that v(B) = N5(xo).

Under these definitions, we prove that given an ideal robust classifier f, we
can always find a neural network v (i) whose robustness property is ezactly the
same as that of f and is easily provable using only interval analysis, and (ii)
whose predictions are precisely equal to those of f.

Theorem 2. Let f : X — F" be a classifier that is §-robust on D, and o :
F — F be an activation function satisfying Condition 1. Then, there exists a
o-neural network v : FY — F™ that is §-provably robust on D and makes the
same prediction as f on D (i.e., class(v(x)) = class(f(x)) for all x € D).
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Proof Sketch. We show this (i) by applying Theorem 1 to n target functions
that are constructed from f, and (ii) by using the following observation: the
network constructed in the proof of Theorem 1 has depth not depending on a
target function (when d is fixed). The full proof is in §C.1. O

4.2 Floating-Point Interval-Completeness

To motivate our result, we recall the notion of Turing completeness. A com-
putation model is called Turing-complete if for every Turing machine T', there
exists a program in the model that can simulate the machine [6,35,49]. Exten-
sive research has established the Turing completeness of numerous computation
models: from untyped A-calculus [8,64] and p-recursive functions [9,20], to type
systems (e.g., Haskell [67], Java [25]) and neural networks over the rationals
(e.g., RNNs [59], Transformers [54]). These results identify simpler computation
models as powerful as Turing machines, and shed light on the computational
power of new models.

We ask an analogous question for floating-point computations instead of
binary computations, where the former is captured by floating-point programs
and the latter by Turing machines. That is, which small class of floating-point
programs can simulate all (or nearly all) floating-point programs?

Formally, let F be the set of all terminating programs that take finite floats
and return finite or infinite floats, where these programs can use any floating-
point constants/operations (e.g., —oo, ®) and language constructs (e.g., if-else,
while). Then, F semantically denotes the set of all functions from F™ to (F U
{00, +00})™ for all n,m € N, because each such function can be expressed with
if-else branches and floating-point constants. For this class of programs, we define
the notion of (interval-)simulation and floating-point (interval-)completeness as
follows.

Definition 3. Let P,Q € F be programs with arity n. We say @) simulates P if
Q(x) = P(x) for allx € F™, where P(x) denotes the concrete semantics of P on
x. We say Q interval-simulates P if v(Q#(B)) = [min P(y(B)), max P(y(B))|NF
for all abstract boxes B in F™, where Q¥(B) denotes the interval semantics of Q

on B.

Definition 4. We say a class of programs G C F is floating-point (interval-)
complete if for every P € F, there exists Q € G such that Q (interval-)
simulates P.

We prove that a surprisingly small class of programs is floating-point interval-
complete (so floating-point complete). In particular, we show that only floating-
point addition, multiplication, and constants are sufficient to interval-simulate
all halting programs that output finite/infinite floats when given finite floats.

Theorem 3. Fg o C F is floating-point interval-complete, where Fg g denotes
the class of straight-line programs that use only ®, ®, and floating-point con-
stants.
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Proof Sketch. We show this by extending the key lemma used in the proof
of Theorem 1: there exist o-networks that capture the direct image maps of
indicator functions over [—1,1]™ NF™ (Lemma 2). In particular, we prove that
[-1,1]* NF™ can be extended to F™ if ¢ is the identity function. The full proof
is in §C.2. O

To our knowledge, this is the first non-trivial result on floating-point
(interval-) completeness. This result is an extension of our IUA theorem (The-
orem 1) for the identity activation function oiq, in that floating-point interval-
completeness considers the input domain F” (not [—1, 1]"NF™) and Fg g includes
all oig-networks (but no other o-networks). Theorem 3, however, cannot be
extended to the input domain (F U {—o0,+00})" (instead of F"), since no pro-
gram in Fg ¢ can represent a non-constant function that maps an infinite float
to a finite float—this is because @ and ® do not return finite floats when applied
to £oo.

5 Proof of IUA Theorem Over Floats

We now prove Theorem 1 by constructing a o-neural network that computes the
upper and lower points of the direct image map of a rounded target function f.
For a,b € R, we let [a,b]r := [a,b] NF and I}, 4 = {Z € 1| y(Z) C [a,b]}. With
this notation, (Ij,)? is the set of all abstract boxes in [a, b]?.

We start with defining indicator functions for a set of floating-point values
and for an abstract box, which play a key role in our proof.

Definition 5. Let d € N. For S C F¢, we define 15 : F¢ — F as 1s(x) = 1 if
x €S, and 15(x) := 0 otherwise. Fora € F, we define 1~ : F — T by L{z>a|z€F} 5
and define t>q, L<q, t<q analogously. For C € 1%, we define 1c : F¢ — F by Ly(C)-

Our proof of Theorem 1 consists of two parts. We first show the existence of o-
networks that precisely compute indicator functions under the interval semantics.
We then construct a o-network stated in Theorem 1 by composing the o-networks
for indicator functions and using the properties of indicator functions.

Both parts of our proof are centered around a new property of activation
functions, which we call “([a, b]g, n, K, L4, Ly )-separability” and define as follows.

Definition 6. We say that o : F — F is ([a,blr,n, K, Ly, L) -separable for
a,b,n, K € F and Ly, Ly € N if the following hold:

e For every z € [a,blp, there exist depth -Lg o-networks ¢<Z,¢>Z F-TF
without the last affine layer such that d) = (Ki<,)* and q5>z (Ku>;)" on
Ta,p)-

e There exists a depth- Léb o-network w>,, : F — F without the first and last
affine layers such that 1<, = (Kisy)?* onligp).
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The first condition in Definition 6 ensures the existence of o-networks that
perfectly implement scaled indicator functions Ki<, and Kt>, under the interval
semantics, for all z € [a, b]p. Since these networks should have the same depth
L, without the last affine layer, a function v : F* — F defined, e.g., by

(X1, .. Tp) = <§a®¢§zi(mi)> @ (16)

denotes a depth-Lgs o-network for any z; € [a,b]r and o, € F. The second
condition in Definition 6 guarantees that another scaled indicator function K¢,
can be precisely implemented by a depth-L,, o-network v, without the first and
last affine layers. This implies, e.g., that ¢, o v denotes a depth-(Lg + Ly, — 1)
o-network, where v denotes the network presented in Eq. (16).

Using the separability property, we can formally state the two parts of our
proof as Lemmas 2 and 3. Theorem 1 is a direct corollary of the two lemmas.
We present the proofs of Lemmas 2 and 3 in the next subsections (Sect. 5.1 and
5.2).

Lemma 2. Suppose that o : F — F satisfies Condition 1 with constants ca,n €
F. Then, o is ([-1,1]r,n, K, Ly, Ly)-separable for some Ly, Ly € N, where n
and K = o(cy) satisfy |n| € [2==+5 4 — 8] and |K| € [§ + 2¢%, 2 — 2¢].

Lemma 3. Suppose that o : F — F is ([a,blg,n, K, Ly, Ly)-separable for some
a,b,n, K € F and Ly, Ly € N with |n| € [2¢=2F5 4 — &¢] and |K| € [§ + 22,2 —
2¢]. Then, for every d € N and function h : F* — F\{ L}, there exists a o-neural
network v : F¢ — T such that v*(B) = h*(B) for all abstract bozes B in [a,b]?.

To prove Lemma 2, we construct a o-network for the scaled indicator function
K>, in two steps. We first construct a o-network that maps all inputs smaller
than z to some point x1, and all other inputs to another point zo # x; (Lemma
4 and 6), where we exploit round-off errors to obtain such “contraction” (Lemma
17 in §F). We then map z1 to ¢; and x5 to cg, and apply o to the result so that
the final network maps all inputs smaller than z to o(c;) = 0 and all other
inputs to o(c2) = K (Lemma 5). We construct o-networks for Ki<, and K,
analogously.

To prove Lemma 3, we construct o-networks for the scaled indicator func-
tions of every box in ([a, b]r)? (Lemma 7) and every subset of ([a,b]r)? (Lemma
8), using the indicator functions constructed in Lemma 2. We construct the final
o-network (i.e., universal interval approximator) as a floating-point linear com-
bination of the o-networks that represent the scaled indicator functions of the
level sets of the target function (Lemma 9).

5.1 Proof of Lemma 2

To prove Lemma 2, we assume that the activation function ¢ : F — F satisfies
Condition 1 with some constants c1,co,7 € F. By Condition 1, the constants
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n and K = o(cg) clearly satisfy the range condition in Lemma 2. Hence, it
remains to show the ([—1, 1], n, K, Ly, Ly)-separability of o for some Ly, Ly €
N. This requires us to construct o- networks 1/J>,7 and ¢<Z,(,z5>z for every z €
[—1, 1]F such that 1/)>n (Kisp)t, ¢5<Z (Ki<.)* and ¢> (Kus2)f on Ty
(Deﬁmtlon 6).

We first construct v, using Lemmas 4 and 5 (Fig.4). The proofs of these
lemmas, presented in §D.1 and §D.2, rely heavily on (C1)—(C3) of Condition 1.

Lemma 4. There exists a o-network p : F — F without the first affine layer such
that pi* ((—=£2,m)) = (n,m), @ ((n*,2)) = (", 0"), and p*((~$2,2)) = (n,77).

Lemma 5. Let (0,0') be either (c1,ca) or (ca,c1). Then, there exists a depth-2 o-
network 79 ¢ : F — F without the first aﬂine layer such that ’7'9 o ((n,m)) = (0,0),

7o o (0 07)) = (0,0"), and 7} 5, ((n,n*)) = (min {6,0'} ,max {0,6'}).

Lemma 4 states that we can construct a o-network p without the first affine
layer, whose interval semantics maps all finite (abstract) intervals left of 1 to the
singleton interval (n,n), all finite intervals right of n* to (n*,n™"), and all the
remaining finite intervals to (n, ™). Similarly, Lemma 5 shows that there exists
a o-network 7y ¢ without the first affine layer, whose interval semantics maps
(n,m) to (0,0), {n*,n*) to (¢/,0’), and (n,n") to the interval between § and ¢’.
By composing these networks with o, we construct v, as

w>77 =00 TC1,C2 o M (17)

This function v, is a o-network without the first and last affine layers since
Ter,e, are (b are without the first affine layer. Moreover, 7,ZJ>77 (Ktsy)* on ITETEY
by the aforementioned properties of 7., ., and p, and by the next properties of
o from Condition 1 of Condition 1: o(c;) = 0, o(ce) = K, and o(x) lies between
them for all z between c¢; and cy. Lastly, we choose Ly as the depth of .

We next construct ¢<, and ¢, using Lemma 6 (Fig.4). The proof of this
lemma is provided in §D.3.
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- J
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Fig. 4. Illustration of networks p, 7c, c,, = (Lemmas 4-6) and ¥s,, ¢<. (Egs. (17)
and (18)), assuming (b) in Lemma 6. A box/dot denotes an abstract interval.
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Lemma 6. Let z € F with |z| < 1T. Then, there exists a depth-1 o-network
s F— F such that one of the following holds.

(a) v (ui((~1,2))) C [=92,1] and v (ui((z7,1))) C [T, £2].
(b) v (i ((—1,2))) C [In", 2] and v (uE((z*,1))) C [-92,7).

Lemma 6 ensures the existence of a depth-1 o-network p,, whose interval
semantics maps (—1,z) and (2%, 1) to an interval left of n and an interval right
of n*. By composing . with the previous networks 79 ¢ and p, we construct
¢§z as

00 Teyc, Opofi, if (a) holds in Lemma6
<z = . . (18)
00Ty ¢cp 00, if (b) holds in Lemmao6.

By a similar argument used above, the function ¢< is a o-network without the
last affine layer, and it satisfies the desired equation: ¢<Z (K LSZ) on I_qq).
We construct ¢, analogously, but using x.- instead of y,. Since the depths of
¢<. and ¢>. are identical for all z, we denote this depth by Ls. This completes
the construction of ¥, ¢<., and ¢, finishing the proof of Lemma 2.

5.2 Proof of Lemma 3

To prove Lemma 3, we assume that the activation function o is ([a, b]r, 7, K, Ly,
L.)-separable for some 7, K € F with || € [2°m»+5 4 — 8¢] and |K| € [§ + 22,
g — 2¢]. Given this, we construct a o-network whose interval semantics exactly
computes that of the target function h : F¢ — F\ {L} for all abstract boxes in
[a,b]¢. In our construction, we progressively implement the following functions
using o-networks: (i) scaled indicator functions of arbitrary boxes, (ii) scaled
indicator functions of arbitrary sets, and (iii) the target function.

We first construct a o-network 5, for any abstract box B in [a,b]?, that
implements the scaled indicator function K¢z under the interval semantics.

Lemma 7. For any B € (I[, )%, there emsts a depth L o-network vg : F¢ — T
without the last affine layer such that 1/ = (Kuw)* on (Ijap)?, where L :
Ly + (Lw — 1)([loggn d] + 1).

In the proof of Lemma 7, we design 5 using the networks v, ¢<., and
¢> constructed in Sect. 5.1. Specifically, for an abstract box B = ({(a1,b1), ...,
(aq,bq)), we define a o-network ; : F — F as

vi(2) = sy (@ @ d2a,(2)) ® (@ ® <, (2)) © 5), (19)

where a, 8 € F are constants such that 8 <7, (a®@ K)® [ <7, and (a ® K) ®
(e« ® K) @ 8 > n. Then, we can show that ﬂf = (I(L<ai7bi>)ji on I, 5. When d is
small (e.g., d < 2M+1) we construct 5 using 7; and v, as follows:

ﬁg(l‘l,..., w>,7 ((Ea ®V'L £ ) @ﬁ/> s (20)
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where o, 3 € F are suitably chosen so that o Z/B (Kug)* on (Ijq 4))%. When d is
large (e.g., d > 2M*1), this construction does not work since ®;_, o’ ®; (z;) may
not be computed as we want due to rounding errors (e.g., ‘Q:?zl 1=2M+1 < p
for all n > 2M+1). In such a case, we construct 75 hierarchically using more
layers, but based on a similar idea. A rigorous proof of Lemma 7, including the
proof that appropriate a, o, 3,3 € F exist, is presented in §E.1

Using 75, we next construct a o-network /g, for any set S in ([a, bjr)?, whose
interval semantics computes that of the scaled indicator function Kis.

Lemma 8. Suppose that for any B € (I, b]) there exists a depth L o-network
g without the last affine layer such that uﬁB = (Ku)* on (Ijq))?. Then, for any
S C ([a,b]r)?, there exists a depth (L+ Lw — 1) o-network s : F4 — F without
the last affine layer such that U 1/5 (Kus)* on (Ijq )%

In the proof of Lemma 8, we construct s using 75 and v, as follows:

7s(x) ¢>n<<§a“®% >®n>7 (21)
BeT

where 7 denotes the collection of all abstract boxes in S, and o € F is a
constant such that n < (®_,a” ® K) @& n < oo for all n > 1. We remark that
it is possible to make the summation not overflow even for a large n, by cleverly
exploiting the rounding errors from . With a proper choice of o, we can further
show that 17"13 = (Kus)® on (Ij4))?% A formal proof of Lemma 8 is given in §E.2.

Using vg, we finally construct a o-network that coincides, under the interval
semantics, with the target function h over ([a,b]g)¢. This result (Lemma 9) and
the above results (Lemma 7 and 8) directly imply Lemma 3.

Lemma 9. Assume that for any S C ([a, b; r)?, there exists a depth—L’ o-network
Us without the last affine layer such that Ug = (KLS) n (I, b]) Then for any
h:Fd — F\ {L}, there exists a o-network v : F* — F such that v* = h¥ on
(Tfa ).

We now illustrate the main idea of the proof of Lemma 9. For a simpler
argument, we assume that h is non-negative; the proof for the general case is
similar (see §E.3). Let 0 = 29 < 21 < -+ < 2z, = +00 be all non-negative floats
(except L) in increasing order, and let S; = {x € ([a,b]r)? | h(x) > z;} be the
level set of h for z;. Under this setup, we construct v using s,, as follows:

)= a; ® s, (x), (22)
i=1

where m € N U {0} and o; € TF are chosen so that z, =
max {h(x) | x € ([a,b]r)?} and a; ® K ~ 2z; — z;_1 for all i € [m]. If a; @ K
is close enough to z; — z;_1, then the ﬂoatlng point summation @:Z 105 ® K is
exactly equal to the exact summation Zz 12i — Zi—1 = 2y, for all k € [m], by the
rounding errors of @. Using this observation, we can show that v(x) = h(x) for
all x € ([a,b]r)?, and more importantly, v* = h* on (Ij,;))%. The full proof of
Lemma 9 is in §E.3.
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6 Related Work

Universal Approximation. Universal approximation theorems for neural net-
works are widely studied in the literature, which include results for feedforward
networks [12,27,28,55], convolutional networks [71], residual networks [41], and
transformers [70]. With the advent of low-precision computing for neural net-
works (e.g., 8-bit E5M2, 8-bit EAM3 [46,65]; float16 [45]; bfloat16 [1]), there
has been growing interest among researchers in characterizing their expressive-
ness power in this setting. New UA theorems for “quantized” neural networks,
which use finite-precision network parameters with exact real arithmetic, have
been studied in [15,21]. These networks differ from the floating-point networks
considered in this work, because our networks use inezact floating-point arith-
metic.

To the best of current knowledge, [30,53| are the only works that study UA
theorems for floating-point neural networks. [53] proves UA theorems for ReL.U
and step activation functions. Our IUA Theorem 1, by virtue of Eq. (15), is
a strict generalization of [53] in two senses: (i) it applies to a much broader
class of activations that satisfy Condition 1, which subsumes ReLLU and step
functions; and (ii) it provides a result for abstract interpretation via interval
analysis, of which the pointwise approximation considered in [53] is a special
case. Concurrent with this article, [30] generalizes [53] to support a wider range
of activation functions and larger input domains. Our Theorem 1 partially sub-
sumes [30] in that it is a result for interval approximation, whereas [30] considers
only pointwise approximation. Conversely, a special case of our Theorem 1 for
pointwise approximation (i.e., Eq. (15)) is subsumed by [30] in that it applies to
smaller classes of activation functions and input domains.

Interval Universal Approximation. The first work to establish an IUA the-
orem for neural networks used interval analysis with the ReLU activation [4],
which was later extended to the more general class of so-called “squashable”
activation functions [66]. Whereas these previous IUA theorems assume the
neural network can compute over arbitrary real numbers with infinitely precise
real arithmetic, the ITUA result (Theorem 1) in this work applies to “machine-
implementable” neural networks that use floating-point numbers and operations.
To the best our knowledge, no previous work has established an TUA theorem
for floating-point neural networks. These different computational models lead to
substantial differences in both the proof methods (cf. Sect. 3.2 and 5) and the
specific technical results—Sect. 3.3 gives a detailed discussion of how Theorem 1
differs from previous IUA and robustness results [4, Theorem 1.1]; [66, Theorem
3.7].

Provable Robustness. There is an extensive literature on robustness veri-
fication and robust training for neural networks, which is surveyed in, e.g., [4,
Chapter 1]; [38,60]. Notable methods among these works are [61,62], which verify
the robustness of a neural network using abstract interpretation with the zono-
tope and polyhedra domains for a restricted class of activations, and are sound
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with respect to floating-point arithmetic. Compared to these methods, our con-
tribution is a theoretical result on the inherent expressiveness of provably robust
floating-point networks under the interval domain for a broad class of activation
functions, rather than new verification algorithms or abstract domains. Indeed,
our existence result directly applies to the zonotope and polyhedra domains, as
they are more precise than the interval domain. More specific IUA theorems
tailored to these domains may yield more compact constructions that witness
the existence of a provably robust floating-point neural network. Recently, [32]
shows that even if a neural network is provably robust over real arithmetic, it
can be non-robust over floating-point arithmetic and remain vulnerable to adver-
sarial attacks. This highlights the importance of establishing robustness in the
floating-point setting.
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