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ABSTRACT

The early Paleoproterozoic (ca. 2.5-2.2 Ga) represents a critical juncture in Earth history,
marking the inception of an oxygenated atmosphere while bearing witness to potentially mul-
tiple widespread and severe glaciations. Deciphering the nature of this glacial epoch and its
connection with atmospheric oxygenation has, however, proven difficult, hindered by a reliance
on disputed stratigraphic correlations given the paucity of direct radiometric age constraints.
Nowhere is this more acute than within the South African Transvaal Supergroup: Here, while
the loss of oxygen-sensitive mass-independent sulfur isotope fractionation (S-MIF) has been
reported from both the Duitschland and Rooihoogte formations, divided opinion surrounding
the time-equivalence of these units has prompted authors to argue for vastly different oxygen-
ation trajectories. Addressing this debate, we present a depositional Re-Os age (2443 = 33 Ma)
from diamictite samples preserved in drillcore of the upper Duitschland Formation. The
100-million-year separation between the Duitschland Formation and its previously presumed
equivalent reveals at least two isolated disappearances of S-MIF, requiring that the Great
Oxidation Event was dynamic and proceeded via discrete oxygenation episodes whose struc-
ture remains incompletely understood. Importantly, our revised framework aligns the lower
Duitschland diamictite with the low-latitude glacigenic Makganyene Formation, supporting
hypotheses of widespread regional, and potentially global, early Paleoproterozoic glaciation.

INTRODUCTION

Owing to its extreme oxygen intolerance
(Pavlov and Kasting, 2002), the presence of
mass-independent sulfur isotope fractionation
(S-MIF) within the geological record is taken to
reflect the persistence of an oxygen-free atmo-
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spheric state for over half of Earth’s history.
Thereafter, although the broad disappearance
of S-MIF is used to constrain the initial accu-
mulation of atmospheric oxygen to 2.5-2.3 Ga,
different readings of the S-MIF record have been
used to portray vastly different oxygenation tra-
jectories, with researchers arguing for either a
unidirectional (Luo et al., 2016; Warke et al.,
2020) or an oscillatory oxygenation pathway
(Gumsley et al., 2017; Poulton et al., 2021).
Despite being central to both viewpoints,
stratigraphic uncertainties within the South Afri-
can Transvaal Supergroup (Fig. 1) are the root of
this divergence. Here, the Duitschland and Rooi-
hoogte formations record the disappearance of
S-MIF (Fig. 2), which occurred ca. 2316 Ma in
the latter (Hannah et al., 2004; Luo et al., 2016).
In the absence of direct age constraints from the
Duitschland Formation, opinions differ concern-
ing its time equivalence to the Rooihoogte For-
mation, and, while many have correlated these
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units (Coetzee, 2001; Luo et al., 2016; Warke
and Schroder, 2018; Havsteen et al., 2023;
Beukes and Schroder, 2024), others view them
as separate entities (Gumsley et al., 2017; Bek-
ker et al., 2020; Poulton et al., 2021; Senger
et al., 2023). Thus, radiometric age constraints
are necessary to test these stratigraphic models
and construct robust regional and global corre-
lations to elucidate the timing and trajectory of
atmospheric oxygenation.

Profound changes in atmospheric composi-
tion likely influenced the planet’s greenhouse gas
inventory with concomitant climatic ramifica-
tions. Indeed, globally distributed glacial diamic-
tites, some deposited at low latitudes (Evans et al.,
1997; Gumsley et al., 2017), imply dramatic cli-
mate upheavals and the development of severe,
potentially snowball-Earth-like, glaciation(s) dur-
ing the early Paleoproterozoic (Kirschvink et al.,
2000). To determine the extent and synchrone-
ity of these glaciations, absolute age constraints
from units hosting glacial deposits, including the
Duitschland Formation, are needed to inform a
more nuanced understanding of their relationship,
if any, with atmospheric oxygenation.

GEOLOGIC BACKGROUND

The Transvaal Supergroup is preserved pre-
dominantly within the Griqualand West and
Transvaal basins of the Kaapvaal Craton, South
Africa (Fig. 1). While analogous chemical sedi-
mentation, conforming to a robust chronostrati-
graphic framework, defines the lower Transvaal
Supergroup (Chuniespoort and lower Ghaap
groups), their basin-specific character diverges
thereafter (Fig. 2; Beukes, 1983; Nelson et al.,
1999; Pickard, 2003). In the Griqualand West
Basin, the siliciclastic Koegas Subgroup breaks
from chemical sedimentation, being sequen-
tially overlain by the glacigenic Makganyene
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Figure 1. Simplified geology of the Griqualand West and Transvaal basins preserved within
the Kaapvaal Craton, South Africa (inset). Core ADL-1 is marked with a star. Modified from

Coetzee (2001).

Formation (Evans et al., 1997; Gumsley et al.,
2017), the volcanogenic Ongeluk Formation,
the Mn- and Fe-rich Hotazel Formation, and
carbonates of the Mooidraai Formation. Within
the Transvaal Basin, however, the ferruginous
Penge Formation grades into the mixed silici-
clastic-carbonate Tongwane Formation, which is
unconformably overlain by the Duitschland and
Timeball Hill formations in the northeast (Fig. 1)
and the Rooihoogte and Timeball Hill forma-
tions over the remainder of the basin where the
Tongwane—Duitschland formations are absent.
While the Rooihoogte—Timeball Hill tran-
sition is dated to ca. 2316 Ma in the Carleton-
ville area (Hannah et al., 2004), the Duitsch-
land Formation lacks any direct depositional
age constraint. Consequently, the recognition of
broad lithological and geochemical similarities
between the two units, in combination with their
unconformable relationship with the underlying
Penge Formation, has prompted some authors
to correlate the two units (Coetzee, 2001; Luo
et al., 2016; Havsteen et al., 2023; Beukes and
Schroder, 2024). In detail, however, while the
Duitschland Formation hosts a 30-200-m-thick
glacigenic diamictite near its base (Coetzee,
2001) and is bisected by the mid-Duitschland
unconformity (MDU), defined by conglomer-
ates and evidence of syn-depositional fault-
ing (Warke and Schroder, 2018), only locally
developed diamictites and conglomerates are
seen within the Rooihoogte Formation (Coetzee,
2001; Luo et al., 2016). Furthermore, the Rooi-
hoogte-Timeball Hill contact is gradational,

whereas the Duitschland equivalent is marked
by a 20-m-thick chert breccia that may signal
a significant hiatus (Coetzee, 2001; Gumsley
et al., 2017; see Supplemental Material text').

APPROACH AND RESULTS

Aiming to test conflicting viewpoints con-
cerning the timing and trajectory of atmo-
spheric oxygenation, we sampled a fine-
grained, locally developed, 0.4-m-thick
diamictite interpreted as a gravity flow ~15 m
above the MDU for rhenium-osmium (Re-Os)
geochronology. Samples containing mudstone
and carbonate clasts and matrix were obtained
from core ADL-1, drilled at the type locality
of the Duitschland Formation (Fig. 1). As
detailed in the Supplemental Material, whole-
rock diamictite sub-samples from core inter-
val 280.95-280.55 m underwent chemical,
mass spectrometry, and data-reduction pro-
tocols for Re-Os isotope analysis within the
Yale Geochemistry and Geochronology Cen-
ter. This approach yielded a Model 3 isochron
age of 2443 + 33 Ma with an associated ini-
tial '¥70s/'#80s (Osi) ratio of 0.15 =+ 0.05, mean
square of weighted deviates (MSWD) = 62
(Fig. 3; Table S1). Total uncertainties are

ISupplemental Material. Detailed analytical meth-
ods and sample information, supplemental stratigraphic
context, data tables containing all geochronologi-
cal, petrographic, and whole-rock geochemical data.
Please visit https://doi.org/10.1130/GEOL.S.26857663
to access the supplemental material; contact editing@
geosociety.org with any questions.

reported at 20 and include the uncertainty asso-
ciated with the '8’Re decay constant. To verify
the hydrogenous origin of Re and Os within
the upper Duitschland Formation, major- and
trace-element abundance and total organic car-
bon content determinations were generated at
Activation Laboratories, Canada (Table S2).

DISCUSSION
Implications for the Great Oxidation Event
Though other scenarios may be permissible,
the weight of the geochemical evidence pre-
sented here supports the interpretation that our
Re-Os age of 2443 + 33 Ma constrains depo-
sition of the upper Duitschland Formation to
between ca. 2476 and 2410 Ma (see discussion
in the Supplemental Material). This new age is
consistent with the maximum depositional zircon
U-Pb age (Schroder et al., 2016; 2424 4 24 Ma)
and reinterpretation of an existing constraint
(Zeh et al., 2020; 2353 £ 18 Ma) by Senger
et al. (2023; 2427 = 7 Ma). The coalescence
of these ages invalidates previous correlations
(Coetzee, 2001; Luo et al., 2016; Havsteen et al.,
2023; Beukes and Schroder, 2024) with the ca.
2316 Ma Rooihoogte Formation (Hannah et al.,
2004), identitying the Duitschland Formation as
a discrete unconformity-bounded unit (Fig. 2).
Temporal separation of the Duitschland and
Rooihoogte formations requires at least two
disappearances of S-MIF within the Transvaal
Basin, with the first recorded in the lower por-
tion of the upper Duitschland Formation in the
Duitschland area (Guo et al., 2009), and the lat-
ter occurring ~100 million years later within the
upper Rooihoogte Formation in the Carletonville
area (Luo et al., 2016). Interestingly, while the
isochron-derived Osi (0.15 4= 0.05) overlaps with
contemporaneous mantle (0.11; Fig. 3), we sug-
gest this value represents a moderate oxidative
source of radiogenic Os to the oceans, consis-
tent with co-occurring hydrogenous Re and Os
enrichments. Evidence for oxidative weather-
ing combined with multiple losses of S-MIF in
the Transvaal Supergroup offers insight into the
dynamics of the Great Oxidation Event, requiring
multiple sustained oxygenation episodes of suf-
ficient severity to break from the S-MIF-yielding
oxygen-free background state that predominated
until ca. 2316 Ma (Luo et al., 2016; Izon et al.,
2022). Although isolated instances of S-MIF
within the overlying Timeball Hill Formation
have been used to argue for continued fluctuations
in atmospheric oxygen levels until ca. 2250 Ma
(Fig. 2; Poulton et al., 2021), subsequent work
has failed to identify these instances of S-MIF
in the same and adjacent borehole cores (Izon
etal., 2022; Uveges et al., 2023). Thus, any post-
Rooihoogte oxygen fluctuations must have been
ephemeral, representing departures from a more
oxygen-replete background state than before ca.
2316 Ma (Uveges et al., 2023). While we await
the constraints necessary to fully illuminate the
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dynamics of the Great Oxidation Event, it appears
that the atmosphere accrued oxygen in an epi-

newly resolved oxygenation episodes remains

cause(s) and consequence(s) of atmospheric oxy-
genation and their link with glaciation.

Duitschland Formation Correlation with
the Griqualand West Basin

diverse conglomeratic facies directly under-
lying the MDU have been ascribed to deposi-
tion in a deltaic environment prone to syn-dep-
ositional faulting (Warke and Schroder, 2018),
the time encompassed by the MDU is likely
to be insignificant relative to the precision of  Global Correlation of Early

our approach (Fig. 3; see Supplemental Mate-  Paleoproterozoic Glaciation and
rial text). Therefore, our 2443 £+ 33 Ma age Relationship with Oxygenation
obtained from ~15 m above the MDU provides
a close minimum age for the basal Duitschland
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Figure 4. The global chronostratigraphic distribution of, and proposed correlation between, early-Paleoproterozoic-aged diamictite-bearing
successions. MBM—Meteorite Bore Member. Modified from Bekker et al. (2020).

evidence characterizes the Makganyene For-
mation as a marine-influenced, low-latitude,
glacigenic unit. These features, in concert with
the global-scale abundance of early Paleopro-
terozoic glacial diamictites, have prompted
many workers to envisage a snowball Earth
climatic state during this interval (e.g., Kirsch-
vink et al., 2000). Accordingly, correlation of the
lower Duitschland and Makganyene diamictites
(Fig. 2) strengthens arguments for widespread
glaciation at ca. 2430 Ma.

Further support for widespread glacia-
tion can be found in Fennoscandia (Fig. 4),
where the glacigenic Graywacke-Diamictite
Member of the Polisarka Formation, depos-
ited between 2442 4+ 2 Ma and 2434 4+ 7 Ma,
can be correlated with the Makganyene and
Duitschland formations (Fig. 4; Amelin et al.,
1995; Brasier et al., 2013). Beyond this, how-
ever, the picture is less clear. Within the North
American Huronian Supergroup, for instance,
three diamictite-bearing units were deposited
between 2453 4+ 6 Ma and 2310 + 5 Ma (Ket-
chum et al., 2013; Rasmussen et al., 2024).
While the oldest diamictite, the Ramsey
Lake Formation, likely correlates with the
ca. 2430 Ma South African glacial depos-
its, the lack of sufficiently precise radiomet-
ric ages prevents unequivocal correlation.
Given the disputed age (2313 4+ 16 Ma or
ca. 2430 Ma) of the Meteorite Bore Member,
Turee Creek Group (Philippot et al., 2018;
Bekker et al., 2020), and contested glacial
nature (Martin, 2020; Bekker et al., 2020)
of the <2450 4+ 3 Ma (Trendall et al., 2004)

diamictite within the underlying Boolgeeda
Formation, it is currently unclear how gla-
cial strata from Western Australia correlate
globally. Clearly, further geochronologic
constraints are required to develop a robust
chronostratigraphic framework capable of
resolving global-scale glacial dynamics during
the early Paleoproterozoic and their potential
link to atmospheric oxygenation.

Warke et al. (2020) interpret sulfur mass-
dependent fractionation below the Polisarka
diamictite as evidence that oxygenation and
resultant oxidation of atmospheric methane
drove glaciation by reduction of the greenhouse
effect (Fig. 4; Pavlov et al., 2000; Claire et al.,
2006). In contrast, the persistence of S-MIF
above the potentially correlative basal Duitsch-
land diamictite, and subsequent loss across the
MDU, favors models in which oxygenation is
driven by deglacial weathering (Kirschvink
et al., 2000; Gumsley et al., 2017; Poulton
et al., 2021). Moreover, documentation of mul-
tiple glacial diamictites and losses of S-MIF dis-
counts singular tectonic or evolutionary drivers
and instead requires that any causal mechanism
for glaciation or oxygenation be dynamic (e.g.,
Gumsley et al., 2017; Poulton et al., 2021).
Additionally, if the Polisarka and lower Duitsch-
land are correlative, the disappearance of S-MIF
preceding deposition of the ca. 2430 diamictite
in Fennoscandia suggests that reevaluation of
equivalent strata in South Africa, the Koegas
Subgroup and Tongwane Formation, may pro-
vide further insight into the highly dynamic
nature of the Great Oxidation Event.

CONCLUSIONS

A new Re-Os isochron age of 2443 + 33 Ma
from a diamictite in the upper Duitschland For-
mation invalidates previous correlations with
the Rooihoogte Formation (Coetzee, 2001; Luo
et al., 2016; Havsteen et al., 2023; Beukes and
Schroder, 2024). Dissociation of these units by
~100 million years requires at least two broad-
scale S-MIF losses within the Transvaal Basin
(Guo et al., 2009; Luo et al., 2016), implying
that atmospheric oxygenation was dynamic and
that the Great Oxidation Event comprised multi-
ple, currently ill-defined, oxygenation episodes.
Aligning the lower Duitschland diamictite with
the glacigenic Makganyene Formation extends
the reach of low-latitude glacigenic deposits
beyond the Griqualand West Basin, emphasizing
the broader extent of the ca. 2430 Ma glaciation.
In turn, this stratigraphic revision identifies the
Ghaap—Postmasburg and Chuniespoort—Pretoria
transitions as key intervals to further elucidate
the initial causes of these pivotal events in Earth
history.
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