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Abstract—Each year wildfires result in billions of dollars in
property damage. Being one of the major natural hazards,
wildfires nowadays are also a global affair whose negative impact
is particularly devastating in developing countries. As wildfires
are expected to become more frequent and severe, more accurate
models to predict wildfires are vital to mitigating risks and
developing more informed decision-making. Artificial intelligence
(AI) has a potential to enhance wildfire risk analytics on multiple
fronts. For example, deep learning (DL) has been successfully
used to classify active fires, burned scars, smoke plumes and to
track the spread of active wildfires. Since wildfire spread tends to
exhibit highly complex spatio-temporal dependencies which often
cannot be accurately described with conventional Euclidean-
based approaches, we postulate that the tools of topological and
geometric deep learning, specifically designed for non-Euclidean
objects such as manifolds and graphs, may offer a more compet-
itive solution. We validate the proposed methodology to predict
wildfire occurrences in Greece and several regions of Africa. Our
results indicate that the Firecast Zigzag Convolutional Network
(F-ZCN) outperforms the current baseline methods for wildfire
prediction and opens a path for more accurate wildfire risk
analytics, even in scenarios of limited and noisy data records.

Index Terms—Time-Series Analysis, Topological Data Analysis,
Geometric Deep Learning, Wildfire Risk Analytics

I. INTRODUCTION

Modeling wildfire occurrences is a spatio-temporal complex

process which includes non-linear interrelated fire drivers

factors (e.g., weather, vegetation, and soil moisture) along

with human drivers, further exacerbated by current climate

change [1]. Although significant advances in wildfire modeling

have been made, there still exist major limitations, such as

computational power, quality, and availability of the data [2].

Furthermore, despite recent breakthroughs in machine learning

(ML) in Earth science, the simultaneous and complementary

use of spatial structures and temporal evolution from space

and suborbital observations is still in its infancy. One of the

key obstructing challenges here is the inability of the current

wildfire models to efficiently characterize nonstationary spatio-

temporal structures and to detect anomalies arising in the time-

evolving environment of the modeling steps. Furthermore, one

of the main challenges in providing decision-makers with

comprehensive, quantitative, and consumable information on

wildfire forecasts, especially in developing countries, is the

limited spatial coverage of ground-based stations to measure

the key predictors. As such, the key to reliable forecasting

of wildfires is novel DL models that can fully take advan-

tage of satellite observations and the blend of observations

and numerical simulations, such as the European Centre for

Medium-Range Weather Forecasts Reanalysis v5 (ERA5; [3]).

We propose to address these challenges by harnessing the

power of geometric deep learning (GDL) enhanced by the

tools of topological data analysis (TDA), particularly, zigzag

persistence. The benefits of this approach are multi-fold.

First, by using a graph representation of wildfire spread, it

allows us to capture the complex spatio-temporal dependencies

that the traditional Euclidean-based methods cannot. Second,

by integrating zigzag persistence, we better describe latent

dynamic higher interactions among various wildfire driving

factors that are the key behind the wildfire spread mechanism.

Third, topological tools that are inherently more robust to

noisy data, enable us to better address the problem of limited

and irregular data records. As a result, we develop a more

systematic time-aware learning of wildfire spread.

The key novelties of this paper are summarized as follows:

• We introduce the concepts of geometric deep learning to

wildfire analytics, particularly, spatio-temporal prediction

of wildfire occurrence.

• We propose a time-aware topological layer which learns

patterns of persistent features across multiple scales of

the spatio-temporal fire drivers, using the notion of zigzag

persistence.

• We illustrate the proposed Firecast Zigzag Convolutional

Network (F-ZCN), in application to wildfire prediction in

Greece and Africa. Our experiments indicate that F-ZCN

leads to a more accurate wildfire prediction and shows

promise in successfully detecting hidden spatiotemporal

relationships among multi-source fire drivers.

II. RELATED WORK

Fire Weather Index. The most widespread tool to identify

periods of higher wildfire risk is the Fire Weather Index

(FWI), which relies on atmospheric factors, fuel moisture, and

physics-based modelling to provide consistent ratings of fire

susceptibility [4]. FWI is successful as an indicator of fire
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danger since this index correlates with burned areas across

non-arid global ecoregions and wetter climates. Despite FWI

success, there are regions, e.g., the central African rainforest,

in which anthropogenic factors, such as intentional ignitions

and landscape fragmentation, produce weak climate-fire rela-

tionships making FWI less effective as wildfire predictor [5],

[6]. Furthermore, there is societal and economic pressure to

provide as more reliable information for fire management

and future fire suppression decisions, in both, developed and

developing countries [7]. As prediction of widespread events

is a complex-multifaceted problem, we aim to further enrich

the pool of tools by showing what value modern persistent

homology approaches can bring to wildfire prediction in

developed and developing countries.

Wildfire Prediction via DL. Application of DL within wild-

fire science is a fairly underexplored area, with newer models

emerging during the last few years to tackle different aspects

of wildfires [8]–[10]. In the context of wildfire prediction,

some of the first efforts include the use of spatial DL for

forest fire risk prediction in Australia [11], and applications

of Convolutional Neural Networks (CNNs) to predict which

areas surrounding a burning wildfire have a higher risk of

near-future wildfire spread in Colorado-US [12]. In [13], a

variety of DL models are introduced to capture the spatio-

temporal features, from which the Convolutional Long-Short

Term Memory (ConvLSTM) achieved the best metrics against

traditional ML methods. In turn, the utility of Graph Neural

Networks (GNNs) and other GDL models for unstructured

wildfire data still remains noticeably less unexplored [10],

[14]. Finally, WildfireDB [15] contains over 17 million data

that capture how fires spread in the continental USA in the

last decade and shows benchmark results of ML models for

wildfire spread prediction. To the best of our knowledge, there

is no prior studies using GNNs enhanced by TDA for wildfire

prediction.

Topological Data Analysis within Wildfire Research. Topo-

logical Data Analysis (TDA) is a modern approach to charac-

terize the shapes and patterns of data based on its topology,

mainly by means of persistent homology (PH) [16]. Although

TDA is being actively used and developed across multiple

research areas, there are almost virtually no applications in the

context of wildfire research. [17] uses the Mapper algorithm

and PH to detect and classify non-linear patterns in weather

data during active and inactive fire seasons. In turn, [18]

considers PH to associate wildfire sizes, i.e., burned areas,

with environmental conditions, thus, showing new ways to

classify wildfire events. These results further highlight the idea

that ML models containing TDA-based signatures are likely to

improve situational awareness of wildfire events. To the best of

our knowledge there are not any previous studies that extract

persistent spatio-temporal features to perform geographical

wildfire prediction.

III. PRELIMINARIES

Zigzag Persistence. Zigzag persistence (ZP) generalizes the

theory of traditional PH [19] to a case of inclusions going

into multiple directions [20]–[22]. In this paper ZP is used

to track relevant topological features of the data over time,

by considering bidirectional maps (i.e. forward and backward

maps) over a time-indexed data.

Similarly to PH, information extracted from ZP can be

represented in the form of a persistence image [23]; this

representation is also known as the Zigzag Persistence Image

(ZPI) [24]. Alternatively, the ZP summary can be represented

in a form of zigzag curve [25].

Graphs and Image Representations. Suppose we have a d-

dimensional spatio-temporal dataset Y = {y1, ..., yd} ∈ R
d.

We can construct a graph G = (V,E) from Y, by viewing

each point as a node and computing the edge weights through

a certain similarity function. Here V denotes a set of nodes,

and E denotes a set of edges, weighted by a similarity

function. If we observe the data Y over T steps, it will then

result in a sequence of the corresponding time-evolving graphs

{Gt}
T
1

. In addition, we associate each graph Gt with a node-

features matrix Xt ∈ R
N×d, where N is the dimension of

node attributes. In this context the node-feature matrix can

represent various spatio-temporal information about locations

(i.e., nodes). Furthermore, we can associate Xt with an image

defined as It ∈ R
Cin×W×H , where Cin is the number of input

channels, W is the width, and H height of the image. In this

image representation the number of channels corresponds to

the feature dimension (Cin = d) and the number of pixels in

the image corresponds to the number of nodes (W ×H = N ).

The type of connectivity given an image can be modeled in

different ways, for example, using connections of each pixel

(i.e. node) with its eight surrounded neighbors.

Graph Convolutions. A graph convolution is an operation

to extract feature information from each node given its struc-

ture [26]. It can be interpreted as smoothing the information

of each node by aggregating and transforming the information

of its neighborhood. A graph convolution layer can be defined

as follows [27]:

Z =
K∑

k=0

Pk
1
XW1 + Âk

aptXW2, (1)

where Pk represents the power series of the transition

matrix, W ∈ R
Cin×M denotes a trainable paramater matrix

(where M denotes the hidden dimension), Â ∈ R
N×Cin

the normalized adjacency matrix with self-loops, Âapt the

self-adaptive adjacency matrix, and Z ∈ R
N×M the output

signal. Note that the self-adaptive adjacency matrix is designed

to discover hidden spatial dependencies by itself, which is

computed as follows:

Âapt = Softmax(σ(E1E
T
1
)), (2)

where E1 ∈ RN×c is the node embedding dictionary with

learnable parameters, c is the dimension of the embedding,

0 ≤ k ≤ K denotes the power series. The power series of

the transition matrix Pk can be created in several ways, in

the particular case of an undirected graph can be computed as

P = A/
∑N

i=1
aji. Note that in some works the self-adaptive

adjacency matrix is known as Laplacianlink [24], [28].
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Fig. 1: Topological Zigzag Layer.

IV. FIRECAST ZIGZAG GRAPH CONVOLUTIONAL

NETWORK

We formulate the task of wildfire risk prediction as a

binary classification problem. That is, given spatio-temporal

information Xt, we assess whether a pixel-of-interest (POI)

will be on fire at the next time step t + 1. This problem is

widely known as pixel-wise classification.

To tackle this task, we propose a model, namely, Firecast

Zigzag Convolutional Network (F-ZCN) that combines infor-

mation of a topological zigzag layer with a topological Graph

Convolutional Layer by means of a Gate Recurrent Unit. This

process is detailed in Figure 3, where the spatio-temporal

information is used as input for each layer.

First, it applies a topological zigzag layer (Figure 1) which

uses ZPI information. Formaly, it is defined as follows:

ZO = V iT (PI) (3)

where PI ∈ R
p×p and ZO ∈ R

2×1. Note that depend-

ing on the configuration, a zigzag filtration might generate

different signatures. For simplicity, in our case we concate-

nate p-dimensional topological features (0-dimensional and

1-dimensional holes) as different input channels. Then, the

zigzag information is passed through a layer normalization,

which enables smoother gradients, faster training times, and

achieves better generalization [29]. After that, a ViT is used

to learn the topological patterns that can be found in the

ZPI. Note that this ViT version uses multi-head mechanisms

attentions, and position embedding that allows us to extract of

ZPI information efficiently [30]. Second, we include a Graph

Convolutional Layer (Figure 2). This layer includes spatial and

temporal graph convolution, respectively. While the former is

to capture spatial correlation between nodes, the latter is to

capture temporal correlation between features in different time

slices. We adopt Equation (III) in our architecture to apply

spatial convolutions, where W1 and W2 are trainable weights

of the network, P1 is computed with a power series of the

adjacency matrix A. The output of this spatial convolution is

multiplied by a hidden matrix W3:

S = ZW3 (4)

where W3 ∈ R
M×H/2 and S ∈ R

N×H/2.

In addition to the spatial domain, we apply a convolution

to all the time slices of the graph as follows:

L = W4XW5 (5)

Input

GConvSpatial

GConvTemporal

DenseLayer
NormalizationGRU

GCN Layer

Fig. 2: Graph Convolutional Network Layer.

Graph Convolution Layer

Topological Zigzag Layer

Binary Cross

Entropy Loss...

Spatio-Temporal Information

Probability of fire on
...

Firecast Zigzag Graph Convolutional Network Arquitecture

Fig. 3: Architecture of F-ZCN. Spatio-temporal information is given
as input to GCN layer and Topological Zigzag Layer, then the output
of each layer is combined and processed by the binary cross-entropy
loss, which represents the probability of fire on a pixel-of-interest.

where W4 ∈ R
T×1 is a vector of learnable weights,

W5 ∈ R
Cin×H/2 is a hidden matrix, and L ∈ R

N×H/2 is

the output of the temporal convolution. On the last step of

the graph convolutional layer is concatenated the outputs of

the spatial convolution (Z) and temporal convolution (L) as

Q = Dense(COMBINE(Z,L)), where Q ∈ R
2×1. The

output of combining both layers is downsized by a dense layer.

Note that in several parts of the network is included a layer

normalization layer which enables smoother gradients, faster

training times, and achieves better generalization [29]. Finally,

information of both layers ZO and Q are added and passed

to the binary cross entropy loss function.

V. EXPERIMENTS

We illustrate the proposed F-ZCN model in application to

forecasting wildfire occurrences in Eastern Mediterranean and

the African continent at various resolutions. We also conduct

an ablation study to assess individual contributions of the F-

ZCN components.

A. Datasets

We consider two regions: Eastern Mediterranean and sur-

rounding areas (defined in a lower resolution) and the African

continent (defined in a higher resolution).

Eastern Mediterranean. We consider the dataset proposed in

[13], which consists of 1 km × 1 km × 1 day resolution.

The region of interest of this dataset is centered around

Greece covering a total area of 1, 253 km × 983 km. Note

that, we consider the following 25 variables as predictors

and can be grouped as follows: (i) Daily wheater data from

ERA-5 [3]: Land of maximum 2m temperature, maximum

wind speed, minimum relative humidity, total precipitation,
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TABLE I: Wildfire risk prediction comparison between different DL methods on test set 2020 and test set 2021. Note that the year 2020
represents a typical fire season and the year 2021 represents an extreme one.

Year 2020 Precision Recall F1-Score Accuracy AUC AUCPR

ConvLSTM 0.842 ± 0.032 0.660 ± 0.030 0.739 ± 0.027 84.52% ± 0.015 0.911 ± 0.023 0.857 ± 0.030
LSTM 0.834 ± 0.026 0.696 ± 0.046 0.757 ± 0.023 85.18% ± 0.010 0.923 ± 0.005 0.864 ± 0.008
GCN 0.877 ± 0.014 0.683 ± 0.024 0.768 ± 0.015 86.24% ± 0.007 0.936 ± 0.004 0.893 ± 0.007

F-ZCN 0.907 ± 0.016 0.706 ± 0.025 0.793 ± 0.012 87.76% ± 0.005 0.951 ± 0.003 0.919 ± 0.006

Year 2021 Precision Recall F1-Score Accuracy AUC AUCPR

ConvLSTM 0.901 ± 0.019 0.905 ± 0.027 0.903 ± 0.015 93.49% ± 0.009 0.978 ± 0.006 0.958 ± 0.012
LSTM 0.891 ± 0.015 0.859 ± 0.039 0.874 ± 0.019 91.77% ± 0.010 0.942 ± 0.003 0.942 ± 0.007
GCN 0.923 ± 0.012 0.905 ± 0.012 0.914 ± 0.009 94.31% ± 0.006 0.981 ± 0.002 0.964 ± 0.005

F-ZCN 0.946 ± 0.008 0.908 ± 0.005 0.927 ± 0.003 95.21% ± 0.002 0.985 ± 0.000 0.971 ± 0.002

TABLE II: Wildfire risk prediction comparison between spatio-temporal DL methods on test sets 2019 (left side) and 2020 (right side) on
the African continent.

Year 2019 Precision Recall F1-Score Accuracy AUC AUCPR

ConvLSTM 0.949 ± 0.005 0.984 ± 0.007 0.966 ± 0.004 0.966 ± 0.004 0.997 ± 0.001 0.997 ± 0.001
GCN 0.965 ± 0.011 0.994 ± 0.001 0.979 ± 0.005 0.979 ± 0.006 0.999 ± 0.000 0.999 ± 0.000

F-ZCN 0.979 ± 0.006 0.992 ± 0.002 0.986 ± 0.002 0.985 ± 0.002 0.999 ± 0.000 0.999 ± 0.000

Year 2020 Precision Recall F1-Score Accuracy AUC AUCPR

ConvLSTM 0.966 ± 0.005 0.967 ± 0.006 0.966 ± 0.004 0.966 ± 0.004 0.996 ± 0.001 0.996 ± 0.001
GCN 0.972 ± 0.010 0.986 ± 0.003 0.979 ± 0.004 0.979 ± 0.005 0.998 ± 0.000 0.999 ± 0.000

F-ZCN 0.978 ± 0.006 0.987 ± 0.002 0.982 ± 0.003 0.982 ± 0.003 0.999 ± 0.000 0.999 ± 0.000

TABLE III: Ablation study of the F-ZCN.

Year 2020 Precision Recall F1-Score Accuracy AUC AUCPR

F-ZCN 0.907 ± 0.016 0.706 ± 0.025 0.793 ± 0.012 0.878 ± 0.005 0.951 ± 0.003 0.919 ± 0.006
W/o Zigzag learning 0.877 ± 0.014 0.683 ± 0.024 0.768 ± 0.015 0.862 ± 0.007 0.936 ± 0.004 0.893 ± 0.007

W/o GCNSpatial 0.918 ± 0.014 0.660 ± 0.017 0.768 ± 0.009 0.867 ± 0.004 0.946 ± 0.003 0.909 ± 0.005
W/o Adjacency 0.893 ± 0.007 0.686 ± 0.012 0.776 ± 0.006 0.868 ± 0.003 0.940 ± 0.003 0.900 ± 0.004

W/o Self-Adaptive Adjacency 0.880 ± 0.033 0.701 ± 0.054 0.778 ± 0.020 0.867 ± 0.006 0.942 ± 0.003 0.902 ± 0.006

Year 2021 Precision Recall F1-Score Accuracy AUC AUCPR

F-ZCN 0.946 ± 0.008 0.908 ± 0.005 0.927 ± 0.003 0.952 ± 0.002 0.985 ± 0.000 0.971 ± 0.002
W/o Zigzag learning 0.923 ± 0.012 0.905 ± 0.012 0.914 ± 0.009 0.943 ± 0.006 0.981 ± 0.002 0.964 ± 0.005

W/o GCNSpatial 0.944 ± 0.009 0.907 ± 0.005 0.925 ± 0.003 0.951 ± 0.002 0.984 ± 0.001 0.970 ± 0.004
W/o Adjacency 0.933 ± 0.008 0.911 ± 0.009 0.922 ± 0.003 0.949 ± 0.002 0.983 ± 0.001 0.966 ± 0.005

W/o Self-Adaptive Adjacency 0.944 ± 0.009 0.907 ± 0.005 0.925 ± 0.003 0.951 ± 0.002 0.984 ± 0.001 0.970 ± 0.004

maximum 2m dew point temperature, and maximum surface

pressure; (ii) Saltellite variables from MODIS: Normalized

Difference Vegetation Index (NDVI), Day and Night Land

Surface Temperature; (iii) Soil from the European Drought

Observatory [31]: Soil moisture index; (iv) Geographic and

Demographic from Worldpop [32] and Copernicus EU-DEM:

Roads distance, waterway distance, yearly population density,

elevation and slope. Data collection on land from Copernicus

Corine Land Cover [33].

Note that the first ten variables are dynamic and the

remaining ones are static. For this dataset the years from

2009 to 2018 are for training set and 2019 for validation

set. Regarding testing sets, we take into account two sets,

one for each year; years 2020 and 2021. All four datasets

consists of 40, 554 training (27, 036 nonfire, 13, 518 fire),

3, 900 validation (2, 600 nonfire, 1, 300 fire), 3, 684 testing

(2, 456 nonfire, 1, 228 fire) samples for 2020, and 13, 221
testing (8, 814 nonfire, 4, 407 fire) samples for 2021. To

overcome the problem of highly unbalanced classes caused

by the scarcely amount of fires, for each run, the negatives

are randomly sampled two times compared to positives [34].

Since our goal is to predict the center pixel and to decrease the

risk of sampling negatives that in fact represent fire dangers

different from the center pixel, this sampling process selects

negatives from days when no fire occurred on the entire patch

or region of interest. In this dataset, we use two modalities of

samples: temporal and spatio-temporal. The temporal dataset

consists of the time series of days {t−1, t−2, . . . , t−10} of

the dynamic input observations, which exploits the temporal

context. Furthermore, the spatial-temporal dataset consists of

25 km × 25 km × 10 days blocks of the dynamic input

observations centered spatially around the given cell. Note

that some features are static (e.g., yearly population density)

therefore are repeated in time.

African Continent. We further study the benefits of our pro-

posed method by analyzing its performance across developing
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Fig. 4: Fire danger for Greece on days 19/07/2020. DL methods offer a better resolution than the empirical Fire Weather Index.
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Fig. 5: Fire danger for Greece on days 21/07/2020. DL methods offers a better resolution than the empirical Fire Weather Index.

regions in the African continent. In particular, we build a

dataset for the Africa continent by taking as a source the

scientific datacube for seasonal fire forecasting around the

globe [35]. This dataset consists of a 0.25 degrees spatial

resolution, and 8 days of temporal resolution. Next 7 variables

serve as input features in our experiments: total precipitation,

sea surface temperature, average temperature at 2 Meters,

drought code average, Normalized Difference Vegetation Index

(NDVI), population density, and Downwards Surface Solar

Radiation (DSSR). Similarly, this dataset consists of spatio-

temporal blocks of 5 km × 5 km × 10 time dimensions,

where each time slice is the average along 8 days. Here, the

training set is taken from years 2009-2017, thus the validation

set comes from 2018; whilst for testing we use years 2019

and 2020. All our datasets consist of 9, 000 samples for

training (1000 samples per year), and 16, 000 samples for each

remaining set.

B. Experimental Settings

This experimental validation takes into account two baseline

methods widely used for wildfire prediction: LSTM, from

[36], and ConvLSTM, from [37]. Note that both methods

are considered as standard for image processing tasks. Our

experimentation was carried out on an NVIDIA Tesla T4 GPU

card with 32GB of memory. LSTM and ConvLSTM were

configured as suggested by their authors [13]. GCN and F-

ZCN use 1 hidden GCN layer with size 18, node embedding

of size 64, and spatial convolution size K = 2. Each method

was run 10 times on their validation set using different seeds,

stopping criterion of 30 epochs, batch size is 256, and L2-

regularization weight of 0.001. Source codes are available

at https://github.com/yuzhouguangc/F-ZCN.git.

VI. ABLATION STUDY

To have compelling insights on the importance of each

component within F-ZCN, we conduct ablation studies on the

Eastern Mediterranean dataset, focused on Greece, and present

the results in Table III. In particular, we test F-ZCN w/o

the zigzag learning module, spatial graph convolution, fixed

adjacency matrix, and self-adaptive adjacency matrix. Note

that the last two elements aim to verify the contribution using

a static adjacency matrix, and learning an adjacency matrix,

respectively. Results confirm that each component is beneficial

for F-ZCN. Specifically, we can found that, for AUC, the

relative gains of F-ZCN over F-ZCN w/o Zigzag learning are

1.603% and 0.408% on datasets in Year 2020 and Year 2021;

for AUCPR, the relative gains of F-ZCN over F-ZCN w/o

Zigzag learning are 2.911% and 0.721% on datasets in Year

2020 and Year 2021. Although removing the spatial graph

convolutions produces an improvement in terms of precision,

this action deteriorates the F1-Score metric and Accuracy.

Similarly, removing a fixed adjacency matrix improves the

Recall but deteriorates the remaining metrics. These results

reveal that the inclusion of the zigzag topological layer is

needed in order to improve the wildfire prediction and overall

performance of the proposed F-ZCN. Finally, it is relevant to

remark that each variant in this ablation study performs better

than all baseline methods in terms of F1-Score and Accuracy,

which supports the effectiveness of our TDA-based DL model.

VII. LESSONS LEARNED AND PATH TO DEPLOYMENT

Table I shows the six scores that represent the performance

of the two baseline methods and GCNs. Overall, regardless

of the score, F-ZCN shows the best performance followed by

GCN. For instance, for accuracy, the relative gains of F-ZCN
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Fig. 6: Fire danger for Africa on day 21/03 /2020. Each date represents the average of 8 days. Reported are Burned Areas, F-ZCN, Fire
Weather Index, and Normalized Different Vegetation Index, respectively.
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Fig. 7: Fire danger for Africa on day 16/05/2020. Each date represents the average of 8 days. Reported are Burned Areas, F-ZCN, Fire
Weather Index, and Normalized Different Vegetation Index, respectively.

over the runner-up, i.e., GCN are 1.763% and 0.954% on

datasets in the Year 2020 and Year 2021 respectively. This

demonstrates the value added by the time-aware topologi-

cal layer in modeling the spatio-temporal risk of wildfires.

Figures 4-7 show that the fire risk from the DL models

outperform FWI. First of all, the DL models highlight the

area with actual fire occurrences with greater contrast in the

fire danger than FWI. In addition, FWI’s spatial resolution

is limited to resolution of the meteorological field used to

calculate FWI, whereas the DL models can predict fire risk

at fine spatial resolution. The high-resolution prediction of

fire risk is important, especially for Greece with its complex

topography and archipelago of small islands. FWI tends to

be relatively high over hot and dry desert areas as shown in

Figure 6. However, due to the lack of vegetation, the high

FWI over the Sahara is unlikely related to considerable fire

danger. The reasonable agreement between the burned area

observation and F-ZCN output indicates that it is important to

use NDVI in predicting fire danger.

VIII. CONCLUSION AND FUTURE WORK

Development of innovative early warning mechanisms for

wildfire management is the key towards improving wildfire

preparedness, preventing property damages and saving lives.

In this project, we have introduced the GNN approach, boosted

with time-aware topological signatures for wildfire prediction.

The integration of time-conditioned topological descriptors

enriches the pool of features from which significant non-linear

relationships of fire drivers can be obtained. Our findings in

Greece and the African continent have shown that F-ZCN

delivers more accurate fire risk prediction regardless of the

local climate conditions, thereby, addressing the limitations of

the currently adopted approaches such as FWI. From a social

perspective, this paper aims to add to the set of new solutions

that can potentially reduce the gap between developed and

developing countries in terms of efficient and costless wildfire

prediction.

As future work, we plan to further enhance the prediction of

wildfire events by introducing health, demographic, and non-

environmental factors, and address the explainability and fair-

ness of assessing wildfire severity [38]. Furthermore, we will

explore solutions to address the problem of fusing multi-source

data, especially, in the absence of labelled fire indices. This can

be approached, for example, with the concepts of contrastive

learning [39]. Another important direction for developing

pro-active and reliable wildfire prediction is associated with

a better understanding of the impact of data resolution on

decision making tasks [40], and TDA tools may be a promising

approach to tackle this fundamental problem [41], [42].
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[3] J. Muñoz-Sabater, E. Dutra, A. Agustı́-Panareda, C. Albergel, G. Ar-
duini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach
et al., “Era5-land: A state-of-the-art global reanalysis dataset for land
applications,” Earth System Science Data, vol. 13, no. 9, pp. 4349–4383,
2021.

[4] C. Van Wagner and T. Pickett, Equations and FORTRAN program for

the Canadian forest fire weather index system. Government of Canada,
1985, vol. 33.

[5] J. T. Abatzoglou, A. P. Williams, L. Boschetti, M. Zubkova, and
C. A. Kolden, “Global patterns of interannual climate–fire relationships,”
Global change biology, vol. 24, no. 11, pp. 5164–5175, 2018.

[6] F. Di Giuseppe, C. Vitolo, B. Krzeminski, C. Barnard, P. Maciel, and
J. San-Miguel, “Fire weather index: the skill provided by the european
centre for medium-range weather forecasts ensemble prediction system,”
Nat. Hazards and Earth System Sci., vol. 20, no. 8, pp. 2365–2378, 2020.

[7] P. F. Moore, “Global wildland fire management research needs,” Current

Forestry Reports, vol. 5, pp. 210–225, 2019.

[8] P. Jain, S. C. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and
M. D. Flannigan, “A review of machine learning applications in wildfire
science and management,” Environmental Reviews, vol. 28, no. 4, pp.
478–505, 2020.

[9] D. Shadrin, S. Illarionova, F. Gubanov, K. Evteeva, M. Mironenko,
I. Levchunets, R. Belousov, and E. Burnaev, “Wildfire spreading predic-
tion using multimodal data and deep neural network approach,” Scientific

Reports, vol. 14, no. 1, p. 2606, 2024.

[10] Z. Xu, J. Li, S. Cheng, X. Rui, Y. Zhao, H. He, and L. Xu, “Wildfire
risk prediction: A review,” arXiv:2405.01607, 2024.

[11] M. Naderpour, H. M. Rizeei, and F. Ramezani, “Forest fire risk predic-
tion: A spatial deep neural network-based framework,” Remote Sensing,
vol. 13, no. 13, p. 2513, 2021.

[12] D. Radke, A. Hessler, and D. Ellsworth, “Firecast: Leveraging deep
learning to predict wildfire spread.” in IJCAI, 2019, pp. 4575–4581.

[13] S. Kondylatos, I. Prapas, M. Ronco, I. Papoutsis, G. Camps-Valls,
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