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Abstract—Each year wildfires result in billions of dollars in
property damage. Being one of the major natural hazards,
wildfires nowadays are also a global affair whose negative impact
is particularly devastating in developing countries. As wildfires
are expected to become more frequent and severe, more accurate
models to predict wildfires are vital to mitigating risks and
developing more informed decision-making. Artificial intelligence
(AI) has a potential to enhance wildfire risk analytics on multiple
fronts. For example, deep learning (DL) has been successfully
used to classify active fires, burned scars, smoke plumes and to
track the spread of active wildfires. Since wildfire spread tends to
exhibit highly complex spatio-temporal dependencies which often
cannot be accurately described with conventional Euclidean-
based approaches, we postulate that the tools of topological and
geometric deep learning, specifically designed for non-Euclidean
objects such as manifolds and graphs, may offer a more compet-
itive solution. We validate the proposed methodology to predict
wildfire occurrences in Greece and several regions of Africa. Our
results indicate that the Firecast Zigzag Convolutional Network
(F-ZCN) outperforms the current baseline methods for wildfire
prediction and opens a path for more accurate wildfire risk
analytics, even in scenarios of limited and noisy data records.

Index Terms—Time-Series Analysis, Topological Data Analysis,
Geometric Deep Learning, Wildfire Risk Analytics

I. INTRODUCTION

Modeling wildfire occurrences is a spatio-temporal complex
process which includes non-linear interrelated fire drivers
factors (e.g., weather, vegetation, and soil moisture) along
with human drivers, further exacerbated by current climate
change [1]. Although significant advances in wildfire modeling
have been made, there still exist major limitations, such as
computational power, quality, and availability of the data [2].
Furthermore, despite recent breakthroughs in machine learning
(ML) in Earth science, the simultaneous and complementary
use of spatial structures and temporal evolution from space
and suborbital observations is still in its infancy. One of the
key obstructing challenges here is the inability of the current
wildfire models to efficiently characterize nonstationary spatio-
temporal structures and to detect anomalies arising in the time-
evolving environment of the modeling steps. Furthermore, one
of the main challenges in providing decision-makers with
comprehensive, quantitative, and consumable information on
wildfire forecasts, especially in developing countries, is the
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limited spatial coverage of ground-based stations to measure
the key predictors. As such, the key to reliable forecasting
of wildfires is novel DL models that can fully take advan-
tage of satellite observations and the blend of observations
and numerical simulations, such as the European Centre for
Medium-Range Weather Forecasts Reanalysis v5 (ERAS; [3]).

We propose to address these challenges by harnessing the
power of geometric deep learning (GDL) enhanced by the
tools of topological data analysis (TDA), particularly, zigzag
persistence. The benefits of this approach are multi-fold.
First, by using a graph representation of wildfire spread, it
allows us to capture the complex spatio-temporal dependencies
that the traditional Euclidean-based methods cannot. Second,
by integrating zigzag persistence, we better describe latent
dynamic higher interactions among various wildfire driving
factors that are the key behind the wildfire spread mechanism.
Third, topological tools that are inherently more robust to
noisy data, enable us to better address the problem of limited
and irregular data records. As a result, we develop a more
systematic time-aware learning of wildfire spread.

The key novelties of this paper are summarized as follows:

« We introduce the concepts of geometric deep learning to
wildfire analytics, particularly, spatio-temporal prediction
of wildfire occurrence.

o We propose a time-aware topological layer which learns
patterns of persistent features across multiple scales of
the spatio-temporal fire drivers, using the notion of zigzag
persistence.

o We illustrate the proposed Firecast Zigzag Convolutional
Network (F-ZCN), in application to wildfire prediction in
Greece and Africa. Our experiments indicate that F-ZCN
leads to a more accurate wildfire prediction and shows
promise in successfully detecting hidden spatiotemporal
relationships among multi-source fire drivers.

II. RELATED WORK

Fire Weather Index. The most widespread tool to identify
periods of higher wildfire risk is the Fire Weather Index
(FWI), which relies on atmospheric factors, fuel moisture, and
physics-based modelling to provide consistent ratings of fire
susceptibility [4]. FWI is successful as an indicator of fire
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danger since this index correlates with burned areas across
non-arid global ecoregions and wetter climates. Despite FWI
success, there are regions, e.g., the central African rainforest,
in which anthropogenic factors, such as intentional ignitions
and landscape fragmentation, produce weak climate-fire rela-
tionships making FWI less effective as wildfire predictor [5],
[6]. Furthermore, there is societal and economic pressure to
provide as more reliable information for fire management
and future fire suppression decisions, in both, developed and
developing countries [7]. As prediction of widespread events
is a complex-multifaceted problem, we aim to further enrich
the pool of tools by showing what value modern persistent
homology approaches can bring to wildfire prediction in
developed and developing countries.

Wildfire Prediction via DL. Application of DL within wild-
fire science is a fairly underexplored area, with newer models
emerging during the last few years to tackle different aspects
of wildfires [8]-[10]. In the context of wildfire prediction,
some of the first efforts include the use of spatial DL for
forest fire risk prediction in Australia [11], and applications
of Convolutional Neural Networks (CNNs) to predict which
areas surrounding a burning wildfire have a higher risk of
near-future wildfire spread in Colorado-US [12]. In [13], a
variety of DL models are introduced to capture the spatio-
temporal features, from which the Convolutional Long-Short
Term Memory (ConvLSTM) achieved the best metrics against
traditional ML methods. In turn, the utility of Graph Neural
Networks (GNNs) and other GDL models for unstructured
wildfire data still remains noticeably less unexplored [10],
[14]. Finally, WildfireDB [15] contains over 17 million data
that capture how fires spread in the continental USA in the
last decade and shows benchmark results of ML models for
wildfire spread prediction. To the best of our knowledge, there
is no prior studies using GNNs enhanced by TDA for wildfire
prediction.

Topological Data Analysis within Wildfire Research. Topo-
logical Data Analysis (TDA) is a modern approach to charac-
terize the shapes and patterns of data based on its topology,
mainly by means of persistent homology (PH) [16]. Although
TDA is being actively used and developed across multiple
research areas, there are almost virtually no applications in the
context of wildfire research. [17] uses the Mapper algorithm
and PH to detect and classify non-linear patterns in weather
data during active and inactive fire seasons. In turn, [18§]
considers PH to associate wildfire sizes, i.e., burned areas,
with environmental conditions, thus, showing new ways to
classify wildfire events. These results further highlight the idea
that ML models containing TDA-based signatures are likely to
improve situational awareness of wildfire events. To the best of
our knowledge there are not any previous studies that extract
persistent spatio-temporal features to perform geographical
wildfire prediction.

III. PRELIMINARIES

Zigzag Persistence. Zigzag persistence (ZP) generalizes the
theory of traditional PH [19] to a case of inclusions going
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into multiple directions [20]-[22]. In this paper ZP is used
to track relevant topological features of the data over time,
by considering bidirectional maps (i.e. forward and backward
maps) over a time-indexed data.

Similarly to PH, information extracted from ZP can be
represented in the form of a persistence image [23]; this
representation is also known as the Zigzag Persistence Image
(ZPI) [24]. Alternatively, the ZP summary can be represented
in a form of zigzag curve [25].

Graphs and Image Representations. Suppose we have a d-
dimensional spatio-temporal dataset Y = {y!,...,y?} € R%
We can construct a graph G = (V,E) from Y, by viewing
each point as a node and computing the edge weights through
a certain similarity function. Here V denotes a set of nodes,
and E denotes a set of edges, weighted by a similarity
function. If we observe the data Y over T steps, it will then
result in a sequence of the corresponding time-evolving graphs
{G¢}T. In addition, we associate each graph G; with a node-
features matrix X; € RV¥*4 where N is the dimension of
node attributes. In this context the node-feature matrix can
represent various spatio-temporal information about locations
(i.e., nodes). Furthermore, we can associate X; with an image
defined as I, € RC"*XWxH where Clin is the number of input
channels, W is the width, and H height of the image. In this
image representation the number of channels corresponds to
the feature dimension (C'in = d) and the number of pixels in
the image corresponds to the number of nodes (W x H = N).
The type of connectivity given an image can be modeled in
different ways, for example, using connections of each pixel
(i.e. node) with its eight surrounded neighbors.
Graph Convolutions. A graph convolution is an operation
to extract feature information from each node given its struc-
ture [26]. It can be interpreted as smoothing the information
of each node by aggregating and transforming the information
of its neighborhood. A graph convolution layer can be defined
as follows [27]:
K
Z=> P{XW,+A}

apt
k=0

XWy, ey

where P* represents the power series of the transition
matrix, W € R¢"*M denotes a trainable paramater matrix
(where M denotes the hidden dimension), A € RNx*Cin
the normalized adjacency matrix with self-loops, Aapt the
self-adaptive adjacency matrix, and Z € RV*M the output
signal. Note that the self-adaptive adjacency matrix is designed
to discover hidden spatial dependencies by itself, which is
computed as follows:

Ay = Softmaz(o(ELEY)), (2)

where E; € RV*¢ is the node embedding dictionary with
learnable parameters, c is the dimension of the embedding,
0 < k < K denotes the power series. The power series of
the transition matrix P¥ can be created in several ways, in
the particular case of an undirected graph can be computed as
P=A/YY  aj. Note that in some works the self-adaptive
adjacency matrix is known as Laplacianlink [24], [28].
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IV. FIRECAST Z1GZAG GRAPH CONVOLUTIONAL
NETWORK

We formulate the task of wildfire risk prediction as a
binary classification problem. That is, given spatio-temporal
information X,;, we assess whether a pixel-of-interest (POI)
will be on fire at the next time step ¢ + 1. This problem is
widely known as pixel-wise classification.

To tackle this task, we propose a model, namely, Firecast
Zigzag Convolutional Network (F-ZCN) that combines infor-
mation of a topological zigzag layer with a topological Graph
Convolutional Layer by means of a Gate Recurrent Unit. This
process is detailed in Figure 3, where the spatio-temporal
information is used as input for each layer.

First, it applies a topological zigzag layer (Figure 1) which
uses ZPI information. Formaly, it is defined as follows:

ZO = ViT(PT) 3)

where PI € RP*P and ZO € R?*!, Note that depend-
ing on the configuration, a zigzag filtration might generate
different signatures. For simplicity, in our case we concate-
nate p-dimensional topological features (0-dimensional and
1-dimensional holes) as different input channels. Then, the
zigzag information is passed through a layer normalization,
which enables smoother gradients, faster training times, and
achieves better generalization [29]. After that, a ViT is used
to learn the topological patterns that can be found in the
ZPI. Note that this ViT version uses multi-head mechanisms
attentions, and position embedding that allows us to extract of
ZPI information efficiently [30]. Second, we include a Graph
Convolutional Layer (Figure 2). This layer includes spatial and
temporal graph convolution, respectively. While the former is
to capture spatial correlation between nodes, the latter is to
capture temporal correlation between features in different time
slices. We adopt Equation (III) in our architecture to apply
spatial convolutions, where W1 and Wy, are trainable weights
of the network, P, is computed with a power series of the
adjacency matrix A. The output of this spatial convolution is
multiplied by a hidden matrix Wj:

S =7ZW; “4)

where W3 € RM*H/2 3nd § € RN*H/2,
In addition to the spatial domain, we apply a convolution
to all the time slices of the graph as follows:

L = W,XW; &)
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Fig. 2: Graph Convolutional Network Layer.

Firecast Zigzag Graph Convolutional Network Arquitecture

Spatio-Temporal Information
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Fig. 3: Architecture of F-ZCN. Spatio-temporal information is given
as input to GCN layer and Topological Zigzag Layer, then the output
of each layer is combined and processed by the binary cross-entropy
loss, which represents the probability of fire on a pixel-of-interest.

where W, € RT*! is a vector of learnable weights,
W; € RCnxH/2 ig 3 hidden matrix, and L € RV*H/2 jg
the output of the temporal convolution. On the last step of
the graph convolutional layer is concatenated the outputs of
the spatial convolution (Z) and temporal convolution (L) as
Q = Dense(COMBINE(Z,L)), where Q € R2*!. The
output of combining both layers is downsized by a dense layer.
Note that in several parts of the network is included a layer
normalization layer which enables smoother gradients, faster
training times, and achieves better generalization [29]. Finally,
information of both layers ZO and Q are added and passed
to the binary cross entropy loss function.

V. EXPERIMENTS

We illustrate the proposed F-ZCN model in application to
forecasting wildfire occurrences in Eastern Mediterranean and
the African continent at various resolutions. We also conduct
an ablation study to assess individual contributions of the F-
ZCN components.

A. Datasets

We consider two regions: Eastern Mediterranean and sur-
rounding areas (defined in a lower resolution) and the African
continent (defined in a higher resolution).

Eastern Mediterranean. We consider the dataset proposed in
[13], which consists of 1 km x 1 km x 1 day resolution.
The region of interest of this dataset is centered around
Greece covering a total area of 1,253 km x 983 km. Note
that, we consider the following 25 variables as predictors
and can be grouped as follows: (i) Daily wheater data from
ERA-5 [3]: Land of maximum 2m temperature, maximum
wind speed, minimum relative humidity, total precipitation,
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TABLE I: Wildfire risk prediction comparison between different DL methods on test set 2020 and test set 2021. Note that the year 2020

represents a typical fire season and the year 2021 represents an extreme one.

Year 2020 Precision Recall F1-Score Accuracy AUC AUCPR
ConvLSTM  0.842 + 0.032  0.660 + 0.030  0.739 + 0.027 84.52% + 0.015 0911 4+ 0.023  0.857 &+ 0.030
LSTM 0.834 £ 0.026  0.696 + 0.046  0.757 £ 0.023  85.18% 4+ 0.010  0.923 4+ 0.005 0.864 4 0.008
GCN 0.877 + 0.014  0.683 £ 0.024 0.768 £+ 0.015  86.24% =4 0.007  0.936 £ 0.004  0.893 + 0.007
F-ZCN 0.907 + 0.016  0.706 + 0.025 0.793 + 0.012 87.76% =+ 0.005 0.951 4+ 0.003  0.919 + 0.006
Year 2021 Precision Recall F1-Score Accuracy AUC AUCPR
ConvLSTM  0.901 £ 0.019  0.905 + 0.027 0.903 4+ 0.015  93.49% + 0.009 0.978 + 0.006 0.958 4+ 0.012
LSTM 0.891 £+ 0.015 0.859 + 0.039 0.874 £ 0.019 91.77% 4+ 0.010  0.942 4+ 0.003  0.942 4+ 0.007
GCN 0.923 £+ 0.012 0905 £+ 0.012 0914 £ 0.009 94.31% 4+ 0.006 0.981 4+ 0.002 0.964 4+ 0.005
F-ZCN 0.946 + 0.008  0.908 + 0.005 0.927 £+ 0.003 95.21% =+ 0.002 0.985 4+ 0.000 0.971 £+ 0.002

TABLE II: Wildfire risk prediction comparison between spatio-temporal DL methods on test sets 2019 (left side) and 2020 (right side) on
the African continent.

Year 2019 Precision Recall F1-Score Accuracy AUC AUCPR
ConvLSTM  0.949 + 0.005 0.984 £+ 0.007 0.966 4 0.004 0.966 4+ 0.004  0.997 4+ 0.001  0.997 4+ 0.001
GCN 0.965 £ 0.011  0.994 4+ 0.001 0979 + 0.005 0.979 £+ 0.006  0.999 4+ 0.000 0.999 + 0.000
F-ZCN 0.979 + 0.006 0.992 £+ 0.002 0986 + 0.002 0.985 + 0.002 0.999 + 0.000 0.999 + 0.000
Year 2020 Precision Recall F1-Score Accuracy AUC AUCPR
ConvLSTM  0.966 + 0.005 0.967 £ 0.006 0.966 4+ 0.004 0.966 + 0.004 0.996 £ 0.001  0.996 4+ 0.001
GCN 0.972 £+ 0.010 0.986 £+ 0.003 0.979 £+ 0.004 0.979 £ 0.005 0.998 £ 0.000 0.999 4 0.000
F-ZCN 0.978 + 0.006  0.987 4+ 0.002 0.982 + 0.003 0.982 + 0.003  0.999 4+ 0.000 0.999 + 0.000
TABLE III: Ablation study of the F-ZCN.
Year 2020 Precision Recall F1-Score Accuracy AUC AUCPR
F-ZCN 0.907 £ 0.016  0.706 + 0.025 0.793 £ 0.012  0.878 4+ 0.005 0.951 £ 0.003  0.919 £ 0.006
W/o Zigzag learning 0.877 &+ 0.014  0.683 £ 0.024 0.768 + 0.015 0.862 &+ 0.007  0.936 £ 0.004  0.893 + 0.007
W/o GCNSpatial 0.918 + 0.014 0.660 £+ 0.017 0.768 4+ 0.009  0.867 £ 0.004  0.946 4+ 0.003  0.909 + 0.005
W/o Adjacency 0.893 + 0.007 0.686 £ 0.012 0.776 + 0.006  0.868 4+ 0.003  0.940 £ 0.003  0.900 % 0.004
W/o Self-Adaptive Adjacency 0.880 4+ 0.033  0.701 £ 0.054 0.778 £ 0.020 0.867 + 0.006  0.942 4+ 0.003  0.902 + 0.006
Year 2021 Precision Recall F1-Score Accuracy AUC AUCPR
F-ZCN 0.946 + 0.008 0.908 &+ 0.005  0.927 £ 0.003 0.952 4+ 0.002  0.985 £ 0.000  0.971 + 0.002
W/o Zigzag learning 0.923 £ 0.012 0.905 + 0.012 0914 £ 0.009 0.943 4+ 0.006 0.981 £ 0.002  0.964 4+ 0.005
W/o GCNSpatial 0.944 + 0.009 0.907 £ 0.005 0.925 + 0.003 0.951 4+ 0.002 0.984 £ 0.001  0.970 &+ 0.004
W/o Adjacency 0.933 + 0.008  0.911 &+ 0.009  0.922 4+ 0.003  0.949 £+ 0.002 0.983 £ 0.001  0.966 + 0.005
W/o Self-Adaptive Adjacency 0.944 + 0.009 0.907 £ 0.005 0.925 4+ 0.003 0.951 £ 0.002  0.984 4+ 0.001  0.970 = 0.004

maximum 2m dew point temperature, and maximum surface
pressure; (ii) Saltellite variables from MODIS: Normalized
Difference Vegetation Index (NDVI), Day and Night Land
Surface Temperature; (iii) Soil from the European Drought
Observatory [31]: Soil moisture index; (iv) Geographic and
Demographic from Worldpop [32] and Copernicus EU-DEM:
Roads distance, waterway distance, yearly population density,
elevation and slope. Data collection on land from Copernicus
Corine Land Cover [33].

Note that the first ten variables are dynamic and the
remaining ones are static. For this dataset the years from
2009 to 2018 are for training set and 2019 for validation
set. Regarding testing sets, we take into account two sets,
one for each year; years 2020 and 2021. All four datasets
consists of 40,554 training (27,036 nonfire, 13,518 fire),
3,900 validation (2,600 nonfire, 1,300 fire), 3,684 testing
(2,456 nonfire, 1,228 fire) samples for 2020, and 13,221
testing (8,814 nonfire, 4,407 fire) samples for 2021. To
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overcome the problem of highly unbalanced classes caused
by the scarcely amount of fires, for each run, the negatives
are randomly sampled two times compared to positives [34].
Since our goal is to predict the center pixel and to decrease the
risk of sampling negatives that in fact represent fire dangers
different from the center pixel, this sampling process selects
negatives from days when no fire occurred on the entire patch
or region of interest. In this dataset, we use two modalities of
samples: temporal and spatio-temporal. The temporal dataset
consists of the time series of days {t —1,t—2,...,t—10} of
the dynamic input observations, which exploits the temporal
context. Furthermore, the spatial-temporal dataset consists of
25 km x 25 km x 10 days blocks of the dynamic input
observations centered spatially around the given cell. Note
that some features are static (e.g., yearly population density)
therefore are repeated in time.

African Continent. We further study the benefits of our pro-
posed method by analyzing its performance across developing
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Fig. 4: Fire danger for Greece on days 19/07/2020. DL methods offer a better resolution than the empirical Fire Weather Index.
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Fig. 5: Fire danger for Greece on days 21/07/2020. DL methods offers a better resolution than the empirical Fire Weather Index.

regions in the African continent. In particular, we build a
dataset for the Africa continent by taking as a source the
scientific datacube for seasonal fire forecasting around the
globe [35]. This dataset consists of a 0.25 degrees spatial
resolution, and 8 days of temporal resolution. Next 7 variables
serve as input features in our experiments: total precipitation,
sea surface temperature, average temperature at 2 Meters,
drought code average, Normalized Difference Vegetation Index
(NDVI), population density, and Downwards Surface Solar
Radiation (DSSR). Similarly, this dataset consists of spatio-
temporal blocks of 5 km x 5 km x 10 time dimensions,
where each time slice is the average along 8 days. Here, the
training set is taken from years 2009-2017, thus the validation
set comes from 2018; whilst for testing we use years 2019
and 2020. All our datasets consist of 9,000 samples for
training (1000 samples per year), and 16, 000 samples for each
remaining set.

B. Experimental Settings

This experimental validation takes into account two baseline
methods widely used for wildfire prediction: LSTM, from
[36], and ConvLSTM, from [37]. Note that both methods
are considered as standard for image processing tasks. Our
experimentation was carried out on an NVIDIA Tesla T4 GPU
card with 32GB of memory. LSTM and ConvLSTM were
configured as suggested by their authors [13]. GCN and F-
ZCN use 1 hidden GCN layer with size 18, node embedding
of size 64, and spatial convolution size K = 2. Each method
was run 10 times on their validation set using different seeds,
stopping criterion of 30 epochs, batch size is 256, and L2-
regularization weight of 0.001. Source codes are available
at https://github.com/yuzhouguangc/F-ZCN.git.
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VI. ABLATION STUDY

To have compelling insights on the importance of each
component within F-ZCN, we conduct ablation studies on the
Eastern Mediterranean dataset, focused on Greece, and present
the results in Table IIl. In particular, we test F-ZCN w/o
the zigzag learning module, spatial graph convolution, fixed
adjacency matrix, and self-adaptive adjacency matrix. Note
that the last two elements aim to verify the contribution using
a static adjacency matrix, and learning an adjacency matrix,
respectively. Results confirm that each component is beneficial
for F-ZCN. Specifically, we can found that, for AUC, the
relative gains of F-ZCN over F-ZCN w/o Zigzag learning are
1.603% and 0.408% on datasets in Year 2020 and Year 2021;
for AUCPR, the relative gains of F-ZCN over F-ZCN w/o
Zigzag learning are 2.911% and 0.721% on datasets in Year
2020 and Year 2021. Although removing the spatial graph
convolutions produces an improvement in terms of precision,
this action deteriorates the F1-Score metric and Accuracy.
Similarly, removing a fixed adjacency matrix improves the
Recall but deteriorates the remaining metrics. These results
reveal that the inclusion of the zigzag topological layer is
needed in order to improve the wildfire prediction and overall
performance of the proposed F-ZCN. Finally, it is relevant to
remark that each variant in this ablation study performs better
than all baseline methods in terms of F1-Score and Accuracy,
which supports the effectiveness of our TDA-based DL model.

VII. LESSONS LEARNED AND PATH TO DEPLOYMENT

Table I shows the six scores that represent the performance
of the two baseline methods and GCNs. Overall, regardless
of the score, F-ZCN shows the best performance followed by
GCN. For instance, for accuracy, the relative gains of F-ZCN
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Weather Index, and Normalized Different Vegetation Index, respectively.

over the runner-up, i.e., GCN are 1.763% and 0.954% on
datasets in the Year 2020 and Year 2021 respectively. This
demonstrates the value added by the time-aware topologi-
cal layer in modeling the spatio-temporal risk of wildfires.
Figures 4-7 show that the fire risk from the DL models
outperform FWI. First of all, the DL models highlight the
area with actual fire occurrences with greater contrast in the
fire danger than FWI. In addition, FWI’s spatial resolution
is limited to resolution of the meteorological field used to
calculate FWI, whereas the DL models can predict fire risk
at fine spatial resolution. The high-resolution prediction of
fire risk is important, especially for Greece with its complex
topography and archipelago of small islands. FWI tends to
be relatively high over hot and dry desert areas as shown in
Figure 6. However, due to the lack of vegetation, the high
FWI over the Sahara is unlikely related to considerable fire
danger. The reasonable agreement between the burned area
observation and F-ZCN output indicates that it is important to
use NDVI in predicting fire danger.

VIII. CONCLUSION AND FUTURE WORK

Development of innovative early warning mechanisms for
wildfire management is the key towards improving wildfire
preparedness, preventing property damages and saving lives.
In this project, we have introduced the GNN approach, boosted
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with time-aware topological signatures for wildfire prediction.
The integration of time-conditioned topological descriptors
enriches the pool of features from which significant non-linear
relationships of fire drivers can be obtained. Our findings in
Greece and the African continent have shown that F-ZCN
delivers more accurate fire risk prediction regardless of the
local climate conditions, thereby, addressing the limitations of
the currently adopted approaches such as FWI. From a social
perspective, this paper aims to add to the set of new solutions
that can potentially reduce the gap between developed and
developing countries in terms of efficient and costless wildfire
prediction.

As future work, we plan to further enhance the prediction of
wildfire events by introducing health, demographic, and non-
environmental factors, and address the explainability and fair-
ness of assessing wildfire severity [38]. Furthermore, we will
explore solutions to address the problem of fusing multi-source
data, especially, in the absence of labelled fire indices. This can
be approached, for example, with the concepts of contrastive
learning [39]. Another important direction for developing
pro-active and reliable wildfire prediction is associated with
a better understanding of the impact of data resolution on
decision making tasks [40], and TDA tools may be a promising
approach to tackle this fundamental problem [41], [42].
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