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ABSTRACT In this paper, we propose a data-driven framework for collaborative wideband spectrum
sensing and scheduling for networked unmanned aerial vehicles (UAVs), which act as secondary users (SUs)
to opportunistically utilize detected ‘‘spectrum holes’’. Our overall framework consists of three main stages.
Firstly, in the model training stage, we explore dataset generation in a multi-cell environment and train a
machine learning (ML) model using the federated learning (FL) architecture. Unlike the existing studies on
FL for wireless that presume datasets are readily available for training, we propose an end-to-end architecture
that directly integrates wireless dataset generation, which involves capturing I/Q samples from over-the-air
signals in a multi-cell environment, into the FL training process. To this purpose, we propose a multi-label
classification problem for wideband spectrum sensing to detect multiple spectrum holes simultaneously based
on the I/Q samples collected locally by the UAVs. In the traditional FL that employs federated averaging
(FedAvg) as the aggregating method, each UAV is assigned an equal weight during model aggregation.
However, due to the differences in wireless channels observed at each UAV in a multi-cell environment,
the received signal powers and collected datasets at different UAV locations could be significantly different,
which could degrade the FL performance using equal weights. To address this issue, we propose a proportional
weighted federated averaging method (pwFedAvg) in which the aggregating weights are proportional to the
received signal powers at each UAV, thereby integrating the intrinsic properties of wireless channels into the
FL algorithm. Secondly, in the collaborative spectrum inference stage, we propose a collaborative spectrum
fusion strategy that is compatible with the unmanned aircraft system traffic management (UTM) ecosystem.
In particular, we improve the accuracy of spectrum sensing results by combining the multi-label classification
results from the individual UAVs by performing spectrum fusion at a central server. Finally, in the spectrum
scheduling stage, we leverage reinforcement learning (RL) solutions to dynamically allocate the detected
spectrum holes to the secondary users. To evaluate the proposed methods, we establish a comprehensive
simulation framework that generates a near-realistic synthetic dataset using MATLAB LTE toolbox by
incorporating base station (BS) locations in a chosen area of interest, performing ray-tracing, and emulating
the primary user’s channel usage in terms of I/Q samples. This evaluation methodology provides a flexible
framework to generate large spectrum datasets that could be used for developing ML/AI-based spectrum
management solutions for aerial devices.

INDEX TERMS UAV-based spectrum sensing, collaborative inference, federated learning (FL), reinforce-
ment learning (RL), UAS traffic management (UTM).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have attracted sig-
nificant interest from communications and networking,

robotics, and control societies for exploring novel appli-
cations such as on-demand connectivity, search-and-rescue
operations, and situational awareness, to name a few [1].
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FIGURE 1. Unmanned Aircraft System Traffic Management (UTM)
architecture showing the separation between Federal Aviation
Administration (FAA) and industry developments; Flight
Information Management System (FIMS).

As of April 2024, there were roughly 800,000 registered
UAVs in the US alone, positioning UAVs as one of the
fastest-growing sectors in the aviation industry [2]. Tra-
ditionally, UAVs that are used for recreational purposes
are operated under visual line of sight (VLOS) conditions.
However, real-world and commercial deployments will most
likely be in the form of beyond visual line-of-sight (BVLOS),
which provides easier access to remote or hazardous areas,
less human intervention, and reduced cost of operation [3].
For safe operations of multiple UAVs under BVLOS con-
ditions, the National Aeronautics and Space Administration
(NASA) and Federal Aviation Administration (FAA) are in
the process of defining the UTM system [4]. Fig. 1 shows
a simplified form of the UTM architecture, highlighting
the separation between FAA and industry development and
deployment responsibilities for the necessary infrastructure,
services, and entities that interact within the UTM ecosystem.
In this work, we mainly focus on the hierarchical structure
between multiple operators and the UAS service supplier
(USS), which assists multiple operators in meeting UTM
operational requirements, ensuring safe and efficient utiliza-
tion of the airspace.

The concept of operations within the UTM architecture [4]
highlights the need for spectrum resources to facilitate wire-
less communications between UAVs, UAV operators, and the
USS network. Existing terrestrial mobile networks (for exam-
ple, 4G LTE and 5G networks) provide significant wireless
coverage with relatively low latency, high throughput, and
low cost, making the cellular network a good candidate for
UAV operation in BVLOS scenarios [5]. However, the pro-
liferation of new wireless services and the demand for higher
cellular data rates have significantly exacerbated the spec-
trum crunch that cellular providers are already experiencing.

FIGURE 2. Envisioned FL system model in a Multi-cell wireless
network with multiple UAVs.

Therefore, it is essential to develop dynamic spectrum sens-
ing, inference, and sharing solutions for UAV operations in
existing licensed and unlicensed spectrum to enable advanced
aerial use cases in BVLOS, such as urban air mobility (UAM)
and advanced air mobility (AAM) [6], [7].

There exists a multitude of prior works on spectrum man-
agement frameworks for ground users [8], [9], [10], [11],
[12]. For instance, the authors in [9], [10], and [11] propose
deep learning-based wideband spectrum sensing to dynam-
ically detect ‘‘spectrum holes’’. Furthermore, the authors
in [12] propose reinforcement learning (RL) techniques for
spectrum sharing, assuming that spectrum sensing results are
readily available. While these data-driven spectrum manage-
ment frameworks for ground users are available, they are not
directly applicable for UTM-enabled UAV operations, due to
several factors, such as the widely different wireless channel
models and the overall system architecture [9], [12]. In the
context of UAV spectrum sharing systems, the authors in [13]
and [14] proposed spatial-spectral sensing (SSS) to develop
efficient spectrum sharing policies for UAV communications
aimed at improving the overall spectral efficiency (SE). How-
ever, the SSS models do not consider the spectrum usage
pattern of users under realistic scenarios (e.g., ignoring the
I/Q level samples), and/or they consider only a single primary
user (PU) or secondary user (SU). Moreover, the problem of
joint multi-channel wideband spectrum sensing and schedul-
ing among several SUs has not been fully investigated.

In this paper, we propose a unified and data-driven spec-
trum sensing and scheduling framework to enable UAVs to
effectively share the spectrum with existing primary users.
To make our development more concrete and grounded, the
problem of joint spectrum sensing and sharing is formu-
lated as energy efficiency (EE) maximization in a wideband
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multi-UAV network scenario. Then, we transform the EE
optimization problem into aMarkovDecision Process (MDP)
to maximize the overall throughput of the SUs. At the spec-
trum sensing stage, we note the inherent hierarchical nature of
the UTM architecture with USS (shown in Fig. 1) is a good
match for federated learning (FL) based spectrum sensing.
For the spectrum scheduling stage, we develop RL-based
solutions to enable non-manual and automated spectrum
resource allocation.

Particular to the spectrum sensing stage, we propose an
FL-based cooperative wideband spectrum sensing across
multiple UAVs. To this purpose, we develop a multi-label
classification framework to identify spectrum holes based
on the observed I/Q samples. Each UAV trains its respec-
tive local models using the locally collected datasets and
transmits the local model parameters to the central server.
Furthermore, we propose a proportional weighted federated
averaging (pwFedAvg) method that incorporates the received
signal power at each UAV into the FL aggregation algorithm,
thereby integrating the dataset generation plane with the FL
model training plane, as shown in Fig. 2. Once the train-
ing process is completed, all UAVs have an updated global
model that predicts spectrum holes. To further enhance the
accuracy of the individual spectrum inference results, the
predicted spectrum holes from the multi-label classification
at each UAV are fused at a central server within the UTM
ecosystem. In the spectrum scheduling stage, we develop
and implement several RL algorithms, including the standard
Q-learning methods to dynamically allocate underutilized
spectrum sub-channels to multiple UAVs. We further inves-
tigate the performance of the ‘‘vanilla’’ deep Q-Network
(DQN) and its variations, including double DQN (DDQN)
and DDQN with soft-update.

Furthermore, one of the primary challenges of using
machine learning (ML) based methods for spectrum sensing
and scheduling approaches is the need for large amounts
of training data. The lack of available spectral data in
many cases is a significant obstacle, especially for UAV
networks that introduce an additional level of complexity
for large-scale experimental data collection. To address this
gap, we have developed a comprehensive framework for
generating spectrum datasets. This framework models LTE
waveform generation and propagation channels in any envi-
ronment of interest, particularly suitable for UTM-enabled
UAV applications. Using the generated dataset, we provide
a comprehensive set of numerical results to demonstrate the
efficacy of the joint FL-based spectrum sensing, spectrum
fusion, and RL-based dynamic spectrum allocation to mul-
tiple UAVs. In summary, the main contributions of this paper
are as follows:

• We develop a spectrum management framework based
on the envisioned UTM deployment architecture. To this
end, we propose a joint spectrum sensing and scheduling
problem for collaborative networked UAVs that operate
according to the UTM rules. The joint optimization

problem integrates the spectrum sensing results into the
spectrum scheduling stage for scenarios with multiple
secondary users (i.e., UAVs) and primary users.

• For spectrum sensing, we propose an FL-based solution
to enable collaborative model training across distributed
UAVs. We propose the pwFedAvg method that inte-
grates the underlying wireless channel conditions into
the FL aggregation step. We also provide the con-
vergence analysis results of the proposed pwFedAvg
method. Furthermore, we demonstrate the benefits of
collaborative spectrum sensing by incorporating a fusion
step, which further enhances the performance of wide-
band spectrum sensing. For the spectrum scheduling
stage, we leverage Q-learning-based solutions to allo-
cate the detected spectrum holes to the requesting UAVs.

• We outline a methodology for generating large amounts
of I/Q dataset for UAVs in a wide geographical area,
considering the effects in a multi-cell multi-path envi-
ronment by incorporating the base station locations and
accurately modeling the environment using ray-tracing
methods. Based on the established framework, we pro-
vide a comprehensive set of numerical results to analyze
the performance of pwFedAvg compared with the tra-
ditional FedAvg approach, as well as with centralized
and local learning. Our results demonstrate the efficacy
of the pwFedAvg method for collaborative spectrum
sensing, without the need to transfer all I/Q samples to
one location as in central learning.

This paper extends our prior work [15] in which we did not
investigate the feasibility of model training using FLmethods
for UAVs. In contrast, this paper mainly focuses on develop-
ing FL-based spectrum sensing by incorporating the wireless
datasets captured by multiple UAVs into the FL model
training plane, as shown in Fig. 2. Furthermore, we have sig-
nificantly extended our dataset generation by scaling the size
of captured I/Q data samples and increasing the number of
reflection and diffraction rays, thereby enhancing the fidelity
of emulating the propagation environment. The remainder of
this paper is organized as follows. In Section II, we review
related works. In Section III, we present the overall sys-
tem model and problem formulation for FL-based wideband
spectrum sensing and collaborative spectrum inference and
scheduling. In Section IV, we discuss the dataset generation
model and the model training aspects of the FL-based solu-
tion to incorporate our proposed pwFedAvgmethod, followed
by a discussion of the convergence analysis of pwFedAvg.
In Section V, we present dynamic spectrum allocation using
RL. Section VI describes our methodology to generate a
synthetic spectrum dataset followed by our numerical results
in Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORKS
A. SPECTRUM SENSING AND SHARING FOR UAVs
The authors in [16] address spectrum access and inter-
ference management by utilizing SSS for ground-based
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device-to-device (D2D) communications [17], [18]. Further-
more, the authors in [14] and [19] extend the usage of SSS to
UAVs to opportunistically access the licensed channels that
are occupied by the D2D communications of ground users.
The UAVs perform SSS to obtain the received signal strength
and compare it with a threshold to identify the spectrum
occupancy of a particular D2D channel. However, in general,
energy-based detection methods would require capturing the
entire waveform for a sub-channel to compute the energy
and compare it with a predefined threshold. When there are
multiple sub-channels, such detection methods repeated for
each sub-channel add further time and hardware complexity.
Therefore, SSS methods are not directly applicable to wide-
band spectrum sensing by UAVs to detect multiple spectrum
holes simultaneously.
In addition to the SSS methods, data-driven deep learning

(DL) methods for spectrum sensing have been considered
in prior works [20], [21]. To develop multi-channel spec-
trum sensing using DL, the authors in [9] developed a fast
wideband spectrum sensing based on DL. The DL model is
based on a convolutional neural network (CNN) that accepts
raw I/Q signals and predicts the spectrum holes. The above
works consider a single PU, a single SU only, and the channel
between the PU and SU is modeled as a Rayleigh fading
channel.

Furthermore, there exists extensive research on spectrum-
sharing solutions. For example, the authors in [11], [22], [23],
and [24] propose the use of RL for dynamic spectrum access
in multi-channel wireless networks. Furthermore, the authors
in [12], [25], and [26] propose the use of DQN, in which,
during each time slot, a single SU decides whether to stay
idle or transmit using one of the sub-channels in a multi-
channel environment without performing spectrum sensing.
While these studies have provided significant insights, they
consider one SU only and are well-studied for ground-based
communications.

In this paper, we consider a data-driven approach to predict
multiple spectrum holes simultaneously from the raw I/Q
signals captured in a multi-cell multi-path fading environ-
ment consisting of multiple PUs and SUs. We incorporate
ray-tracing methods to effectively model the dynamic UAV
environment instead of assuming a statistical channel model.
Furthermore, we employ RL for dynamically allocating
resources for the UAVs based on predicted spectrum holes.

B. FL-BASED SPECTRUM SENSING
FL for spectrum sensing has lately gained popularity [27],
[28], [29], [30], [31]. The authors in [27], [29] discuss the
application of FL for spectrum sensing in cognitive radio
environments, where an SU detects the spectrum holes in
the PU’s spectrum band and utilizes them opportunistically.
However, the studies only considered a single PU with mul-
tiple SUs within the coverage of the PU. There exists a
separate class of research that concentrates on interference
management in multi-cell wireless networks and incorporates

over-the-air computation in FL [32], [33], [34], [35]. For
instance, the authors in [32] study the adverse effects of
inter-cell interference on the uplink and downlink local model
aggregates and global model updates and propose solutions to
mitigate the interference. In contrast to the above-mentioned
works, in this paper, we cater to multiple PUs and SUs,
incorporate wireless channel characteristics of a multi-cell
network at the dataset generation level, and also consider
wideband spectrum sensing.

Furthermore, there are several research works on FL for
wireless systems that investigate how the convergence of
the learning process is affected by the noisy transmissions
between the clients and the server [36], [37], [38]. The
authors in [39], [40], [41] proposed communication-efficient
federated learning that quantizes the model weights before
transmission. In particular, the authors in [39] propose a
dynamic aggregation for heterogeneous quantization, where
different weights are assigned to clients based on their quan-
tization error. These studies often assume that the datasets
are readily available to clients and focus primarily on the
specific discussions of the model training plane, as illustrated
in Fig. 2. Furthermore, these studies consider standard ML
datasets, such as CIFAR-10, MNIST, and Shakespeare [37].
Yet, wireless datasets collected by multiple UAVs in a

multi-cell environment are significantly complex and differ-
ent compared to those standard datasets. For instance, data
collected at oneUAV locationmay encounter distinct wireless
channels, varying numbers of propagation paths, and signifi-
cantly different received signal power levels compared to the
data collected at other locations. This variability underscores
the need for tailored approaches to model training within
FL frameworks, particularly when dealing with datasets from
real-world wireless environments.

In this paper, we demonstrate and evaluate the performance
of FL models for wideband spectrum sensing using over-
the-air I/Q datasets, as illustrated in Fig. 2. This framework
incorporates capturing wireless datasets by UAVs operat-
ing in a multi-cell environment, training an FL model to
detect available spectrum holes, collaborative spectrum sens-
ing by incorporating fusion rules and allocating spectrum
resources to the requesting UAVs. For FL-based model train-
ing, we propose a proportional weighted federated averaging
(pwFedAvg) algorithm that incorporates the received power
observed at different UAV locations into the FL model train-
ing. The proposed algorithm assigns a higher weight to the
UAVs that receive higher signal power.

III. SYSTEM MODEL AND PROBLEM FORMULATION
To model collaborative wideband spectrum sensing and
scheduling, we consider a multi-cell wireless network that
consists of a set of base stations (BS) denoted by B (|B| =

B), as shown in Fig. 3. In addition, we consider a set of
UAVs denoted by K (|K| = K ) in the system. To coordinate
the collaborative spectrum sensing, fusion, and scheduling,
we assume that each time slot is divided into four consecutive
sub-slots: UAV resource request (treq), spectrum sensing (ts),
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FIGURE 3. A zoomed-in version of dataset generation plane of a
multi-cell wireless network with multiple UAVs.

broadcasting to central server (tb), and channel access (ta).
Specifically, at the beginning of each time slot, the UAVs
that require PU resources request the server for resource
allocation. In the subsequent sub-slot of sensing (ts), the
UAVs perform spectrum sensing and broadcast the sensed
channel information in the following sub-slot (tb). The central
server then applies fusion rules and obtains the spectrum
holes. In the access sub-slot (ta) the central server first assigns
the spectrum holes to the requesting UAVs. The UAVs then
transmit on the allocated spectrum holes in the access sub-
slot (ta). In an ideal scenario, UAVs would transmit on
the allocated spectrum holes immediately. However, in the
physical deployment, there would be a delay in forming the
packets, adjusting the front-end filters, and transmission by
the UAVs. Hence, we assume that in the first time slot, the
UAVs will not transmit in the access sub-slot (ta) but prepare
their packets for subsequent time slots. In the subsequent
time slots, the UAVs transmit on the spectrum holes that are
allocated in the previous time slot. In this paper, we focus
on three main stages to develop our proposed framework: (i)
FL-based training for wideband spectrum sensing, (ii) col-
laborative spectrum inference and fusion, and (iii) spectrum
scheduling. To coordinate the above three stages, we assume a
central server within the UTM ecosystem. Next, we describe
these stages.

A. MODEL TRAINING, SPECTRUM INFERENCE, AND
SCHEDULING STAGES
1) FL-BASED MODEL TRAINING FOR SPECTRUM
SENSING
The UTM system architecture shown in Fig. 1 supports
data exchange between multiple UAVs through the USS net-
work. Such a hierarchical architecture makes it feasible to
implement FL-based learning algorithms to identify spectrum
holes. In this case, we may consider two deployment models
within the UTM architecture. One model would be to have
a server deployed by each UAV operator where multiple
UAVs connected to the operator act as FL clients. The sec-
ond model would have a server within the USS network
that orchestrates multiple UAV operators. Thus, with several
UAVs training local models, they exchangemodel parameters
with the central server that is located either at the USS or UAV
operator. The central server then aggregates the local model
weights according to an aggregation algorithm and transmits

the global model weights back to the UAVs to update their
local models.

2) COLLABORATIVE SPECTRUM INFERENCE AND
FUSION
Due to the highly dynamic environment in which UAVs
operate, it may not be feasible for all UAVs to achieve
high prediction accuracy across all sub-channels. Therefore,
we leverage collaborative spectrum inference by the UAVs
and perform fusion at the fusion module within the central
server to increase the reliability of spectrum hole detec-
tion. In particular, each UAV captures the raw I/Q samples
from over-the-air received signals and predicts the avail-
ability of spectrum holes across M sub-channels using the
FL-trained model. We assume that there is an associated
spectrum inference cost for each UAV k involved in sensing
at time slot t . The spectrum inference cost is the energy
consumed for sensing the spectrum and is proportional to
the voltage VCC of the receiver, the system bandwidth W ,
and the duration allotted for sensing (ts) [42]. Therefore,
it is defined as SCk,m(t) = tsV 2

CCWm, where Wm is the
m-th sub-channel bandwidth. Upon completion of the spec-
trum inference phase, the UAV k has a predicted spectrum
occupancy vector ĥk (t) = [̂hk,1(t), . . . , ĥk,M (t)] such that
ĥk,m(t) = 0 if the m-th sub-channel is detected vacant at time
t , and ĥk,m(t) = 1 otherwise. This problem can be considered
as a multi-label classification problem, and we leverage deep
neural network (DNN) at each UAV that accepts raw I/Q
samples Rk as inputs and outputs the predicted spectrum
occupancy vector ĥk (t).
The central server receives multiple copies of spectrum

holes detected by individual UAVs and applies fusion rules
that result in aggregated prediction. In this paper, we use the
n-out-of-K fusion rule defined as follows:

ẑm(t) =

 0, if
∑
k∈K

1{̂hk,m(t) = 0} ≥ n;

1, otherwise,
(1)

where 1{.} is an indicator function. In this case, ẑ(t) =

[̂z1(t), . . . , ẑM (t)] is the fused prediction of all the M sub-
channels at the central server. Note that when n = 1, the
n-out-of-K rule is equivalent to the ‘‘OR’’ rule, and n = K is
the same as the ‘‘AND’’ rule.

3) SPECTRUM SCHEDULING
Based on the aggregated fusion result provided by the fusion
module, the central server then allocates sub-channels to
the requesting UAVs. The UAVs then transmit data on the
sub-channels allocated to them by the server in the next time
slot. The transmission energy consumption is denoted by
ACk,m(t). The access cost is the energy consumed for data
transmission and is defined as ACk,m(t) = taPtx , where Ptx is
the transmit power and ta is the time allotted to transmission.
Furthermore, the transmission utility is the amount of data
transmitted on the allocated sub-channel, which is defined as
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follows:

Uk,m(t) = taWm log2
(
1 + SNRk,m(t)

)
, (2)

where SNRk,m(t) denotes the signal-to-noise ratio for UAV k
on sub-channel m.

We highlight that the UAVs transmit on those sub-channels
that were detected vacant in the previous time slot t −

1. Hence, spectrum collision occurs when the previously
detected spectrum holes are no longer available at the current
time slot t . Note that the true state of sub-channelm at UAV k
is denoted by hk,m(t) and is obtained according to Eq. (9). To
capture spectrum collisions, we define the spectrum access
collision indicator ck,m(t) as follows:

ck,m(t) =


1, if hk,m(t) = 0 and ẑm(t − 1) = 0;
−1, if hk,m(t) ̸= 0 and ẑm(t − 1) = 0;
0, otherwise.

(3)

Next, we formulate a joint spectrum sensing and scheduling
optimization problem.

B. JOINT SPECTRUM SENSING AND SCHEDULING
PROBLEM FORMULATION
Given the presented system model, we now introduce a
joint spectrum sensing and scheduling problem to coordi-
nate collaborative spectrum sensing and spectrum scheduling.
We cast the problem as the energy efficiency (EE) maximiza-
tion for the UAVs, where EE is defined as the ratio of system
throughput (bits per second) to the total energy consumed
for spectrum sensing and transmission (joules). The system
throughput is determined by scheduling decisions, withUAVs
opportunistically accessing the spectrum resources of the pri-
mary network. The energy costs are influenced by the number
of UAVs participating in spectrum sensing and the energy
consumed during spectrum access. In particular, let yk,m(t) =

1 if UAV k is scheduled to use sub-channel m at time t ,
and yk,m(t) = 0 otherwise. Given that the spectrum holes
are allocated to the requesting SUs based on the sub-channel
availability, we incorporate the sensing and access costs to
maximize the overall EE of the system. Therefore, we have:

max
{yk,m(t)}

E
{ ∑

t,k,m

yk,m(t) ck,m(t) Uk,m(t)
yk,m(t)ACk,m(t) + SCk,m(t)

}
subject to:

∑
m
yk,m(t) ≤ 1, ∀ k = 1, 2, 3, . . .K ,∑

k
yk,m(t) ≤ 1, ∀ m = 1, 2, 3, . . .M ,∑

k,m
yk,m(t) ≤ M −

∑M

m=1
ẑm(t),

yk,m(t) ∈ {0, 1},
(4)

where Uk,m(t), SCk,m(t), and ACk,m(t) are, respectively, the
amount of data transmitted, the sensing cost, and transmis-
sion cost by the SU k on sub-band m. The first and second
constraints guarantee that each UAV is scheduled to use
at most one sub-channel. The expression M −

∑M
m=1 ẑm(t)

represents the total number of predicted spectrum holes at
time t . Therefore, the third constraint ensures that the total
spectrum resources allocated to UAVs acrossM sub-channels
do not exceed the number of detected spectrum holes at time
t . We note that the optimization problem in Eq. (4) is a
fractional integer programming problem, which is NP-hard
in general. Hence, we consider maximizing the numerator
alone, which is the total utility Ū (t) of the UAVs over all
sub-channels. As a result, the problem becomes an integer
programming problem. In this case, the utility would depend
on the spectrum usage pattern by the PUs, which is captured
by ck,m(t) as well as the channel condition between the BSs
and UAVs that determine the amount of transmitted data
Uk,m(t). To tackle this utility optimization problem, wemodel
the channel occupancy hk,m(t) as a Markov process, enabling
us to use an MDP formulation to solve this problem [43] and
develop a dynamic spectrum scheduling for the SUs. Further
details on how we solve the MDP using RL are discussed in
Section V.
Furthermore, as presented in the system model, we note

that spectrum usage pattern is captured by the ck,m(t) in
Eq. (3), where each UAV is capable of wideband spectrum
sensing. Before the spectrum scheduling stage, we have a
spectrum sensing stage where each UAV predicts the spec-
trum holes and the results are fused to obtain ẑ(t) defined in
Eq. (1). In this paper, we use a DNN at each UAV to detect
spectrum holes, and to train the DNN models, we present
an FL-based approach for distributed training of spectrum
sensing models.

IV. PROPOSED FL-BASED MODEL TRAINING FOR
SPECTRUM SENSING
A. DATASET GENERATION
We assume that each UAV receives signals from more than
one BS due to the fact that they operate at higher altitudes,
which increases the chances of signal reception from mul-
tiple BSs. Furthermore, we assume that the cell bandwidth
W is partitioned into M orthogonal sub-channels. Then the
total transmitted signal from a BS b across M orthogonal
sub-channels at any time t can be represented by the super-
position principle as follows:

sb(t) =

M∑
m=1

Ib,m(t) vb,m(t), ∀b ∈ B, (5)

where Ib,m(t) = 1 if them-th sub-channel of BS b is occupied
at time t , and 0 otherwise. Moreover, vb,m(t) represents the
waveform on the m-th sub-channel. As a result, sb(t) is the
transmitted baseband waveform. Each UAV k then receives a
wideband signal from multiple BSs in a multi-path propaga-
tion environment, which can be expressed as follows:

rk (t) =

B∑
b=1

gk,b(t) ∗ sb(t) + ηk (t), ∀k ∈ K, (6)

where gk,b(t) represents the multi-path channel between BS b
and UAV k and ηk (t) denotes the noise signal observed at
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UAV k . Therefore, the signal-to-noise ratio (SNR) observed
at UAV k can be written as follows:

SNRk (t) =
||

∑B
b=1 gk,b(t) ∗ sb(t)||2

σ 2
k (t)

, ∀k ∈ K, (7)

where σ 2
k (t) represents the noise variance observed at UAV

k at time t . We use Pk (t) to denote the total power received
in UAV k at time t , the numerator term in Eq. (7). The total
power received at UAV k is directly proportional to the signal
generated as defined in Eq. (5) and the wireless channel as
defined in Eq. (6). We will use Pk (t) in proportional weight
scaling for FL training.

To train the DNN models for predicting spectrum holes
using raw I/Q samples, it has been shown that the charac-
teristics of the wireless signal can be captured by observing
only a portion of the signal waveform [9], [15]. Hence, from
the received baseband signal rk (t), we capture J I/Q samples
and store them locally. Therefore, the samples from baseband
waveform collected at UAV k are represented as Rk (t) given
as follows:

Rk (t) = R̃k (t) + η̃k (t), ∀k ∈ K, (8)

where R̃k (t) represents the J I/Q samples from the first term
in Eq. (6) and the second term represents J complex Gaussian
noise samples.

In addition to the I/Q samples, we also need to store the true
labels for channel occupancy at each UAV k at time t . The
channel occupancy vector hk (t) is an M -dimensional vector,
with each index indicating if a sub-channel m is occupied or
free at time t and can be computed as follows:

hk,m(t) =


1,

B∑
b=1

Ib,m(t) ≥ 1;

0, Otherwise.

(9)

Note that hk (t) observed at time t would be the true label
corresponding to the wideband received signal rk (t). The
channel occupancy would remain unchanged for the stored J
I/Q samples Rk (t). We store (Rk (t), hk (t)) as an input-output
pair that will be used for the training of the FL model. For the
sake of simplicity of notation, we represent the input-output
pair as (Rk , hk ). In this paper, we assume that both I/Q
samples and true labels are available to the UAVs for model
training. However, in real-world deployment, the labels must
first be collected from the base stations by the central server,
where the true labels are then computed according to Eq. (9).
The server then broadcasts the true labels back to the UAVs.
Note that for each M -dimensional channel occupancy vector
hk , the input-output pair is treated as one data sample, and the
total I/Q dataset collected at UAV k is denoted as follows:

Dk =
{
(R1

k ,h
1
k ), (R

2
k ,h

2
k ), . . . (R

|Dk |
k ,h|Dk |

k )
}
, (10)

where |Dk | represents the total number of samples in the
UAV k . These local datasets are used in FL-based training
for spectrum hole detection.

FIGURE 4. Multi-label classification using DNN.

In the FL setting, each UAV k trains a local wideband
spectrum sensingmodel whose parameters are denoted byωk.
Hence, the primary objective of the local model is to find a
mathematical function f (ωk ,Rk ), that maps input I/Q samples
Rk to hk , i.e.,

f (ωk ,Rk ) : Rk → hk . (11)

To this end, using the raw I/Q samples (Rk ) each UAV k trains
a local model that detects vacant sub-channels, such that the
local loss function Lk (ω) minimizes the error between the true
labels hk and the predicted labels ĥk, as defined below:

Lk (ω) ≜
1

|Dk |

|Dk |∑
i=1

l(f (ωk ,Rik );h
i
k )), (12)

where l(.) is the loss function for computing the prediction
loss in the supervised machine learning setting. Furthermore,
f (.) represents the predicted label for the sample (Rik , h

i
k ) and

ωk represents the local model parameters during training.
For each input sequence Rik , we intend to obtain an M -

dimensional binary vector ĥk
i
that represents the predicted

spectrum holes. This is an instance of a classical multi-label
classification problem for which we employ DNN. We next
discuss the architecture of the DNN model used for training.

B. DNN MODEL ARCHITECTURE
Previous research works that address classification prob-
lems in the wireless domain have shown that filters in the
CNNs are highly effective at identifying patterns in the I/Q
signals [44], [45]. As mentioned earlier, spectrum hole pre-
diction using I/Q samples is an instance of a multi-label
classification problem, and we choose CNNs as our frame-
work of choice. Furthermore, deep networks that use multiple
layers of CNNs have been shown to further improve learning
performance [46], [47]. Although DNNs that use CNNs have
demonstrated significant advantages, they are computation-
ally intensive, especially when handling larger input sizes.
However, it has been identified that only a portion of the sig-
nal waveform is sufficient to identify the spectrum holes [9],
[15]. Hence, in this work, we only capture J I/Q samples
from the waveform, which significantly decreases computa-
tional complexity. By reducing the input size, we obtain a
lightweight model suitable for deployment on UAVs, which
typically have limited onboard computational resources.

The DNN architecture considered is shown in Fig. 4. The
model accepts raw I/Q samples as input, specifically a tensor
of size (J , 2), where J is the number of I/Q samples, defined
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in Eq. (8). The I/Q samples are then processed by two one-
dimensional (1D) convolutional layers (Conv1D) followed
by a 1D maximum pooling layer (MaxPool1D), where each
MaxPool1D reduces the output dimension by half. When the
input size is small, a network with many MaxPool1D layers
would reduce the tensor size and minimize the depth of the
network very quickly. Hence, we choose one MaxPool1D
layer for two Conv1D layers in our architecture. This layered
pattern is repeated twice, and one dense layer is followed by
a sigmoid layer at the end. By using a sigmoid function as
the activation function with binary cross-entropy as the loss
function at the output, each output neuron is independent of
the other, which creates a multi-label classifier.

C. CHANNEL-AWARE FL AGGREGATION METHOD
Given the system model, we now introduce a framework for
wideband spectrum sensing where multiple UAVs collabo-
ratively participate in the FL. In such a distributed learning
environment, we aim to learn a global statistical model at the
central server. Given that each UAV k trains a local model to
identify the spectrum holes byminimizing the local loss func-
tion Lk (ω), in the context of FL, we would like to minimize
the aggregated global loss function L(ω), as follows:

min
ω

{
L(ω) ≜

K∑
k=1

|Dk |
D

Lk (ω)
}
, (13)

where D=
∑K

k=1 |Dk | is the total size of data samples across
the UAVs.

To solve the global loss function in Eq. (13), the authors
in [48] proposed FedAvg, which is an iterative aggregation
algorithm by which the global model aggregates the local
model weights and redistributes the global model weights to
the local models. In particular, the central server first broad-
casts the latest model weights, ωt , to all the UAVs. Second,
each UAV k adjusts its weights as ωt

k = ωt and performs E
local updates as follows:

ωt+i+1
k = ωt+i

k − γ t+i ∇Lk (ω
t+i
k ; ξ t+ik ), i = 0, . . . ,E − 1,

(14)

where γ t+i is the learning rate of the local model and ξ t+ik is
the random batch of samples from the local data Dk . Then,
the server aggregates the local model weights to produce new
global model weights as follows:

ωt+E
=

K∑
k=1

pt+Ek ωt+E
k , (15)

where
∑K

k=1 p
t+E
k = 1, for any t and E . The design of the

aggregation weights pt+Ek in Eq. (15) has been investigated
in recent studies. For instance, the authors in [38] propose
optimizing federated averaging over fading channels that
allocates non-uniform weights to different clients based on
the observed instantaneous channel state information at the
receiver (CSIR). Similarly, [37] and [49] present federated

Algorithm 1 Channel-Aware FL-Based Training
1: Initialize the global model parameters ω and local model

ωk, ∀k ∈ K; T : Communication rounds.
2: for t in T do
3: for UAV k in K do
4: Choose a batch of I/Q samples ξ tk ⊆ Dk .
5: Train the local model for E epochs per Eq. (14).
6: end for
7: Broadcast the weights ωt+E

k to the central server.
8: Aggregate local model weights at the server per

Eq. (15).
9: Update local models using the global model weights,

i.e., ωt+1
k = ωt+1.

10: end for

learning approaches over noisy channels that allocate varying
weights, which are expressed in terms of the SNR values
observed between the clients and the server in the model
training plane. The authors in [35], [39], [40], [41] consider
device heterogeneity and assign weights to clients based on
their quantization errors.

In our considered multi-cell environment, the signal
received at different UAV locations experiences different
channel conditions, and the signal power received at different
locations varies significantly. Hence, by assigning equal scal-
ing weights for the local model gradients, the performance
metrics at UAV locations with strong signals deteriorate.
To compensate for this effect and improve performance
at locations that receive better signal power, we propose
a proportional weight scaling aggregation method for FL
(pwFedAvg) that assigns weights to UAVs proportional to
their received signal power, which is similar to [38] that
assumes awireless channel in themodel training plane.More-
over, as mentioned earlier, we only capture a portion of I/Q
samples. The CNNs identify the patterns in the I/Q signals
by training a model, whose weights would be proportional to
the input signal. This is in line with the derivation of binary
cross entropy loss gradient, where the gradients are directly
proportional to the input [50], [51].

To this end, we propose proportional weights as follows:

pt+Ek =

K∑
k=1

αt+Ek

αt+E
, (16)

where αt+Ek =
√
P̄k and αt+E =

∑K
k=1

√
P̄k . Here, P̄k rep-

resents the average received signal power at UAV k for the
batch of samples ξ t+ik up to E epochs. The overall process
of FL-based model training using the pwFedAvg approach
is outlined in Algorithm 1. Next, we discuss convergence
analysis.

D. CONVERGENCE ANALYSIS
In this section, we provide the convergence analysis of the
proposed pwFedAvg algorithm. To this end, we first intro-
duce the following assumptions.
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Assumption 1: The loss function Lk (.) is L-smooth, i.e.,
for all u and v,

Lk (u) − Lk (v) ≤ (u− v)T ∇Lk (v) +
L
2

||u− v||22. (17)

Assumption 2: For each k , Lk (.) is β-strongly convex, i.e.,
for all u and v,

Lk (u) − Lk (v) ≥ (u− v)T ∇Lk (v) +
β

2
||u− v||22. (18)

Assumption 3: Let ξ k be the data samples chosen fromDk .
The variance of the stochastic gradients for each UAV k is
bounded i.e,

E
[
||∇Lk (ωk ; ξ k ) − ∇Lk (ωk )||22

]
≤ ρ2

k ∀ k ∈ K. (19)

Assumption 4: The expected squared norm of the
stochastic gradients for each UAV k is bounded as
follows:

E
[
||∇Lk (ωk ; ξ k )||

2
2
]

≤ G2
∀ k ∈ K. (20)

The expectations used in the analysis are taken over
ξ k unless otherwise stated where ξ k are the data
samples drawn from Dk . Next, similar to [49], [52],
we define two virtual sequences to denote the aggre-
gated full gradient and stochastic gradient respectively,
as follows:

āt =

K∑
k=1

αtk

αt
∇Lk (ωt

k ); at =

K∑
k=1

αtk

αt
∇Lk (ωt

k ; ξ tk ). (21)

We also assume that E[at ] = āt . Given these assumptions,
we have the following lemmas.
Lemma 1: Let ω∗

= [ω∗

1 , ω∗

2 , . . . , ω∗
d ] be the weights of

optimal global model, and ω∗
k = [ω∗

k,1, ω
∗

k,2, . . . , ω
∗
k,d ] be the

weights of optimal local model of UAV k . Here, d represents
the dimensions of the model weights. Then for each UAV k ,
the upper bound of the gap between the optimal global and
local models can be shown as,

Lk (ω∗) − Lk (ω∗
k ) ≤ τ, (22)

where τ = max
k

{
Ld
2 (max

i
{|ω∗

i − ω∗
k,i|})

2
}.

Lemma 2: The aggregated gradient is upper bounded as
follows:

E
(
||at − āt ||22

)
≤

K∑
k=1

(
αtk

αt

)2

ρ2
k . (23)

Lemma 3: Let the constants κ and γ t satisfy 1
κ

≤ γ t .
Then, we can show that:

E
[
||ωt+1

− ω∗
||
2
2
]

≤ (1 − βγ t )||ωt
− ω∗

||
2
2 + (γ t )2ζ t ,

(24)

where ζ t = 2κτ + 4(E − 1)2G2
+

∑K
k=1

(
αtk
αt

)2[
ρ2
k − 2Lτ

]
.

FIGURE 5. Joint spectrum inference and spectrum scheduling.

Theorem 1: Given that κ ≤ γ t =
1

βt+L , the optimality gap
for the proposed pwFedAvg satisfies the following:

E[L(ω)T ] − L∗
≤

L
βT + 2L

[
2ζ
β

+ L E||ω0
− ω∗

||
2
2

]
,

(25)

where ζ = maxt {ζ t } and ζ t is as defined in Lemma 3.
Therefore, we show that the convergence of our proposed
method is O( 1T ). Assuming that each UAV performs E
local epochs during training, an additional term emerges
in Eq. (24) that directly influences the optimality gap pre-
sented in Eq. (25). Furthermore, our convergence analysis
is based on the assumption of independent and identically
distributed (i.i.d.) data. However, when considering non-i.i.d.
data, an additional term related to data heterogeneity will
need to be taken into account in Eq. (25). The convergence
analysis for non-i.i.d. data can be found in [52] and [53]. All
of the proofs are presented in Section IX.

V. DYNAMIC SPECTRUM SCHEDULING USING RL
Once the DNN models are trained using our proposed pwFe-
dAvg, they output their spectrum hole predictions, which are
then fused at the fusion module, as described in Section III.
The identified spectrum holes will be allocated to requesting
UAVs. The integrated system model of collaborative spec-
trum sensing and scheduling is shown in Fig. 5, with the
overall algorithm described in Algorithm 2.

For spectrum scheduling, we note that the optimization
problem in Eq. (4) is a fractional integer programming prob-
lem, which is NP-hard in general. If we consider maximizing
the numerator alone, which is the total utility Ū (t) of the
UAVs over all sub-channels, the problem will become an
integer programming problem. In this case, the utility would
depend on the spectrum usage pattern by the PUs, which is
captured by ck,m(t) as well as the channel condition between
the BSs and UAVs that determine the amounts of transmitted
data Uk,m(t). To tackle this utility optimization problem,
we model the channel occupancy h(t) as a Markov process,
enabling us to use an MDP formulation to solve this prob-
lem [43] and develop a dynamic spectrum scheduling for the
SUs.
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Algorithm 2 Collaborative Spectrum Sensing and Schedul-
ing

Phase 1 – Spectrum Sensing and Broadcasting

1: for each UAV in K do
2: Capture I/Q samples from over-the-air signal.
3: Feed I/Q samples to the pre-trained ML model that

predicts the spectrum holes ĥ.
4: Broadcast the individual spectrum hole observations

ĥ(t) ∈ {0, 1}1×M to the central server.
5: end for

Phase 2 – Spectrum Fusion and Scheduling

6: Apply fusion rule in Eq. (1) to predict spectrum holes
ẑ(t).

7: Allocate a single spectrum hole to each requesting UAV
using a pre-trained RL algorithm, yk,m(t), such that
the constraints in Eq. (4) are satisfied.

8: UAVs are scheduled to transmit on the sub-channel
allocated in the previously allocated time slot.

9: Given the spectrum allocation yk,m(t) and spectrum
access collision indicator ck,m(t), the total utility Û (t)
can be computed using Eq. (4).

As we assume that there exist M sub-channels in the
system, each sub-channel can be modeled as an independent
two-stateMarkov chain. The transition probability functionP
can then be viewed as a set of transition probability matrices
{Pm} for each sub-channel that captures the randomness in
the assumed multi-user multi-channel environment. There-
fore, we formulate the total utility of the SUs as a traditional
MDP governed by the tuple (S, A, {Pm}, U, γ ), consisting
of the set of states S, set of actionsA, a transition probability
function {Pm}, a reward function U , and a discount factor γ .
To solve anMDP using RL, an agent learns to make decisions
in an uncertain environment by maximizing a cumulative
reward over a sequence of actions. Specifically, the agent
interacts with an environment by taking actions that transition
the system from one state to another, and the agent receives
a reward that is commensurate with the merit of the action.
The discount factor determines the relative importance of
immediate and future rewards.

A. DDQN-BASED SPECTRUM ALLOCATION
One of the most popular RL methods is Q-learning [43].
The classical Q-learning is table-based, i.e. the values of the
Q-function are stored in a table of size |S|×|A|. However,
when the size of the state and action spaces is large, the
complexity of tabular Q-learning becomes cumbersome. For
example, with M = 16 sub-channels, the Q-table will be of
size 65, 537× 17. To address the complexity issue, we adopt
the deep Q-learning approach in [54] to approximate the
Q-function by a neural network Qθ called DDQN and train

FIGURE 6. DDQN for spectrum allocation.

its weights θ using experience replay. As the name sug-
gests, we have two networks when using DDQN where Qθ

is called the primary network, and Q′

θ is called the target
network and the weights of the target network are updated
periodically. In the original DDQN, the weights of the target
network are directly copied from the primary network every
few episodes. In DDQN-soft, the target networks are updated
using POLYAK averaging to smoothly update the weights
(‘‘soft-update’’) [54].

The input to the DDQN agent is a state s of size 1 × M .
The output of the network is a vector of size 1× (M + 1) that
contains the values of the Q-function with respect to state s
and each of theM+1 actions. In all hidden layers, we use the
rectified linear unit (ReLU) as an activation function. Given
the neural network’s input-output dimensions, the overall
DDQN architecture and its interaction with the environment
are shown in Fig. 6. As shown, the major components are the
primary network, target network, experience replay, and the
interaction with the environment to select an action.

To train the DDQN agent, the experiences are initially
stored in the memory using ϵ-greedy policy, that is, for a state
st , an action at is taken randomly with probability ϵt , or taken
greedily with probability 1-ϵt from the current state of the
DDQN network. Then, when we have sufficient samples in
the memory a mini-batch of X experiences {(si, ai, ri, s′i)}i ∈

X t is randomly sampled from memory for every time step t
to train the neural networks. Here,X t is the set of experiences
currently available in the memory. Based on the selected
mini-batch, we compute and update the weights θ of the pri-
mary networkQθ that minimize the loss function Lt (θ ). Fig. 6
captures the overall DDQN architecture and the interaction of
the agents with the environment [43], [54].

VI. I/Q DATASET GENERATION
Utilizing data-driven machine-learning techniques for
wide-band spectrum sensing requires substantial amounts of
spectrum data. While obtaining raw I/Q signals over the air
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FIGURE 7. Ray-tracing simulation setup used for dataset
generation. The plot illustrates the received signal paths at UAV
location 1 from all three base stations.

using physical hardware is the ideal scenario, the complexity
of coordinating multiple UAVs in a specific environment for
collaborative sensing poses significant challenges in achiev-
ing this objective. Therefore, we resort to MATLAB’s LTE
toolbox to create the I/Q samples and employ ray-tracing
methods to emulate the channel for generating synthetic
datasets that closely mimic the data collection process
through experimentation. The entire process of generating
synthetic datasets is outlined below.

A. DATASET GENERATION METHODOLOGY
As shown in Fig. 7, we assume a multi-cell environment
consisting of three neighboring cells with base stations at the
center of the cells. Without loss of generality, we simulate
one specific LTE band in the Kansas City area and obtain the
location of the base stations from cellmapper [55], an open
crowd-sourced cellular tower and coverage mapping service.
Furthermore, we assume there are three UAVs in the network
operating at an altitude of 90 meters. In this scenario, the base
stations act as the transmitter sites, and the UAV locations as
the receiver sites that collect the I/Q samples for wide-band
spectrum sensing.

Another important aspect of any wireless network is the
wireless channel modeling. We use ray-tracing methods
to incorporate the channel between the BS and the UAV.
We incorporate both reflection and diffraction settings in
ray-tracing to simulate a near real-world environment. This
is in contrast to using channel models, which consider prob-
abilistic channel models for line-of-sight (LoS) and non-LoS
channel conditions. Since we use ray-tracing, we have the
flexibility to incorporate different aspects of the environment
like buildings and vegetation, permittivity, and permeability
of the materials, which further enhances the channel model.

To mimic the real-world scenario for conducting ray-
tracing experiments, we use OpenStreetMap, which is a free
and open geographical database [56]. The evaluation area is
a 3 km × 3 km area with buildings and vegetation. We uti-
lize MATLAB’s ray tracer to emulate the wireless channel
between considered UAVs and base station locations. The
ray-tracing simulation setup is outlined in Table 1.
It is essential to note that this setup can be seamlessly

adapted to accommodate varying numbers of LTE cells and
UAVs as long as we can obtain the 3D environment and
load it into MATLAB. The MATLAB’s ray-tracing toolbox
effectively emulates the channel. As illustrated in Fig. 7,

TABLE 1. Ray-tracing simulation setup.

datasets are generated for threeUAV locations, with theUAVs
positioned randomly and spatially separated. The three UAV
locations can be interpreted either as three independent UAVs
simultaneously capturing data or as a single UAV collecting
data at three different points along its trajectory. However,
in the latter scenario, with only one UAV involved, it is not
possible to explore FL. In the former scenario, we assume the
UAVs are stationary and hover in a fixed position. In general,
this simulation can be extended to incorporate UAV flight
trajectories by running additional ray-tracing experiments for
each UAV way-point location in the UAV trajectory.

Next, we utilize MATLAB’s LTE Toolbox to generate the
LTE waveform to extract the I/Q samples. For generating
the LTE waveform, we assume that the entire cell bandwidth
of 10 MHz (50 resource blocks) is split into 16 orthogo-
nal sub-channels, each of size 3 resource blocks. Typically,
a base station has the flexibility to assign either a single
sub-channel or multiple sub-channels to a PU for transmitting
user-specific data on the downlink shared channel. Addition-
ally, various multiple access techniques can be employed to
transmit data to different PUs in different time slots. However,
during our dataset generation process, we do not consider
primary user locations and how the base station allocates
user-specific data to different PUs. At any given point in time,
we take a snapshot of the entire cell bandwidth and iden-
tify which spectrum bands are occupied. Furthermore, when
creating the downlink waveform, we omit the generation of
user-specific reference signals to avoid mixing user-specific
data with broadcast channels. Instead, we identify the appro-
priate indices and embed the LTE data samples into the
downlink shared channel to generate the LTE waveform.
We would like to emphasize that other multi-cell networks
and wireless technologies can also be considered instead of
LTE, but the evaluation scenarios and dataset generation steps
need to be modified accordingly. In this paper, we utilize
MATLAB’s LTE Toolbox to extract the I/Q samples received
by UAVs in a multi-cell environment, specifically for wide-
band spectrum sensing purposes.

B. MODELLING THE CHANNEL OCCUPANCY
In our assumed scenario, each cell bandwidth is divided
into 16 sub-channels such that a binary flag 1 indicates the
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FIGURE 8. M independent Binary Markov chains. In our dataset
generation, we set M = 16.

FIGURE 9. Spectrogram for a transmission on 6 sub-channels
out of 16 sub-channels.

sub-channel is allocated and 0 represents the sub-channel is
not allocated. Hence, each 16-bit binary combination serves
as a distinct true label for the channel occupancy. As a result,
the base station has the capability to generate 216 unique
labels, spanning from no sub-channel allocation to a fully
busy cell site. For instance, in Fig. 9 we show the spectrogram
of one channel realization, where 6 sub-channels are occupied
out of 16 sub-channels. Furthermore, we model the temporal
dynamics of each sub-channel using a binary Markov chain,
as shown in Fig. 8. Thus, the channel occupancy for each
sub-channel m evolves according to a transition probability
matrix Pm. In this paper, we consider different transition
probabilities for each sub-channel. Thus, the overall tran-
sition probabilities across M sub-channels are denoted as
follows:

P =

{ [
p100 p

1
01

p110 p
1
11

]
, · · · · · · ,

[
pM00 p

M
01

pM10 p
M
11

] }
. (26)

Further, we assume that all SUs are capable of receiving
the waveform from all the base stations, whose channel is
modeled by ray-tracing. In addition to the reflected paths
received from the corresponding base station in which the

FIGURE 10. Power spectrum observed at UAV 1 for transmission
on 6 sub-channels out of 16 sub-channels, with channel
impairments and for snr=−10dB; Vacant sub-channels are
indicated as 0 and occupied sub-channels by 1.

UAV is present, we also receive the waveform from the
neighboring base stations as shown in Fig. 7. The received
signal rk (t) at each UAV k can be written as a superposition
of wideband signals received from all base stations as shown
in Eq. (6).

In this work, we assume i.i.d. datasets across the UAVs.
In particular, as shown in Eq. (6), while each UAV observes
a different wireless channel from a base station, it still
receives signals from all base stations. As a result, each
UAV captures the same quantity of I/Q samples with the
same distribution of usage patterns (i.e., labels) across the
spectrum sub-channels. However, in real-world deployments,
signal loss at certain locations may lead to different UAVs
capturing varying amounts of data with different spectrum
usage patterns, resulting in non-i.i.d. data distributions across
different UAVs.

We vary the noise variance σ 2
k (t) at UAV k such that the

effective SNR varies from −10 dB to 20 dB in steps of
10 dB. For instance, in Fig. 10 we show the power spectrum
of the received signal at UAV location 1. Ideally, we would
like to capture the whole LTE frame corresponding to the
10 MHz LTE waveform. However, we only capture 32 I/Q
samples that provide a good trade-off between the compu-
tational complexity and the performance. In this context, for
each SNR, we collect approximately 6.8 million I/Q samples.
Considering all the SNR levels and the UAV locations, the
total generated dataset is more than 80 million I/Q samples,
which will be publicly released along with all source codes.
The generation of such large-scale spectrum datasets for
dynamic UAV environments enables us to evaluate the pro-
posed data-driven collaborative wideband spectrum sensing
and sharing, as described next.

VII. NUMERICAL RESULTS
In this section, we first present our target performance met-
rics, followed by a discussion of the results of spectrum
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sensing for different ML configurations. Next, we present
the results of collaborative spectrum inference and fusion
followed by spectrum access using RL.
Performance metrics: As mentioned earlier, detecting

spectrum holes aligns with the framework of a classical
multi-label classification problem, where each sub-channel
represents a label. We utilize Precision, Recall, and F1-score
as metrics to evaluate the classifier’s performance for each
sub-channel by constructing a confusionmatrix. Althoughwe
can calculate these performance metrics for each sub-channel
individually, it would be advantageous to have an average per-
formance assessment across all 16 sub-channels [57]. In this
paper, we consider the micro-averages for Precision, Recall,
and F1-score to concretely capture the wideband spectrum
sensing performance across the 16 sub-channels as follows:

Precision =

∑M
m=1 TP(m)∑M

m=1 TP(m) + FP(m)
, (27)

Recall =

∑M
m=1 TP(m)∑M

m=1 TP(m) + FN(m)
, (28)

F1-score =
2(Precision. Recall)
Precision + Recall

, (29)

where TP, FN, and FP account for the number of true pos-
itives, false negatives, and false positives, respectively. A
FP occurs when a sub-channel is declared a spectrum hole
while the sub-channel is currently occupied. If such a falsely
detected spectrum hole is assigned to the UAVs, we introduce
unwanted interference into the PU network. On the other
hand, FNmisses out on the vacant spectrum hole and declares
the sub-channel as busy. Hence, we ideally want lower FP
and FN which implies we obtain higher Precision and Recall
metrics. F1-score as defined in Eq. (29) is the geometric mean
of Precision and Recall.

A. SPECTRUM SENSING WITH DISTRIBUTED UAVs
1) MODEL TRAINING METHODS
As previously stated, the goal is to achieve wideband spec-
trum sensing to identify spectrum holes from the given
I/Q samples as inputs to the ML model. In this context,
we explore three model training configurations: centralized
learning (CL), local learning (LL), and federated learning
(FL), to train the wideband spectrum sensing model. In each
of these configurations, we use 70% of the dataset to train the
model and 30% for spectrum inference (testing) purposes.

Centralized Learning (CL) is a technique in which it is
assumed that all the data collected at different locations are
aggregated at one central server and are readily available to
train the ML model. At the end of the training process, there
will be one central model that can be tested at each UAV
location.

Local Learning (LL) is an ML technique in which each
UAV trains a model with its own local data, without sharing
the dataset or model parameters with a central server or other
UAVs. Hence, LL characterizes the performance of the model

at a particular location. At the end of the training process,
each UAV will have its own locally trained model.

Federated Learning achieves a trade-off between LL and
CL, as it does not require aggregating the datasets in a
central location; instead, the local model weights are trans-
ferred to the central server for aggregation, and in return,
the local models receive aggregated global weights. As such,
the training process is similar to LL except that the local
model weights are updated with the computed global weights
iteratively. To investigate FL performance, we implement
the FedAvg algorithm [48] as a baseline alongside our pro-
posed pwFedAvg described in Algorithm 1. At the end of
the training process, all UAVs will have the same global
model. In addition to FL-based methods, the dynamic nature
of UAVs suggests the potential utility of online learning
methods (see, for example, [58]) for spectrum sensing. How-
ever, we observed that as the data collected at different UAV
locations varied significantly, the model experienced catas-
trophic forgetting. This caused substantial changes in the
model weights and made the convergence of online learning
more challenging. Next, we compare the results obtained for
each configuration.

2) TRADE-OFF OF CL, LL, AND FL METHODS
The trained models are loaded on the UAVs for testing pur-
poses, and the performance metrics are computed at different
UAV locations for different SNRs. We note that each UAV
observes a different wireless channel, and thus the received
signal power is different at different locations. In Fig. 11,
Fig. 12, and Fig. 13, we compare the Precision, Recall, and
F1-score obtained at each UAV location for all the configu-
rations. To use the CL method, we need to accumulate all the
datasets in one place and train one central model. Hence, the
CL model performs well in different locations, as shown in
Fig. 11, Fig. 12, and Fig. 13. However, a major drawback is
the need to aggregate all datasets at a single location, which
may not always be feasible due to resource constraints and
security concerns. Therefore, while CL might be suitable for
small datasets, it becomes impractical for larger datasets.

On the other hand, in LLwe train a separate model for each
UAV with their location-specific data. While LL models per-
form comparably to CL models and address CL’s limitations,
the LL models cannot be generalized to other locations. For
example, in Fig. 14, when the local model trained at the UAV
location 1 is tested at locations 2 and 3 (denoted by LL-1-2
and LL-1-3), the performance metrics are significantly lower
than the performance metrics obtained by testing the local
model tested at location 1 itself (denoted by LL-1-1). This is
one of the key observations that led us to explore FL which
combines the advantages of both LL and CL to obtain a more
generalized global model, without the need to aggregate all
the datasets in one central location.

Comparing the performance of the model training methods
across different locations, we find that the performance met-
rics at UAV locations 2 and 3 are superior to those at location
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FIGURE 11. Comparison of Precision obtained at UAV locations 1, 2, 3 for CL, LL, FL-FedAvg, and FL-pwFedAvg.

FIGURE 12. Comparison of Recall obtained at UAV locations 1, 2, 3 for CL, LL, FL-FedAvg, and FL-pwFedAvg.

FIGURE 13. Comparison of F1-score obtained at UAV locations 1, 2, 3 for CL, LL, FL-FedAvg, and FL-pwFedAvg.

TABLE 2. Comparison of F1-score results with and without fusion for CL, LL, FL-FedAvg, and FL-pwFedAvg at UAV location 1.

1. For example, as shown in Fig. 11a, precision saturates
around 96% at the SNR of 20 dB for CL and LL at location
1. In contrast, for locations 2 and 3, precision improves with

increasing SNR, reaching 99.5% at 20 dB. A similar trend is
observed for Recall and F1-score, as illustrated in Fig. 12a,
and Fig. 13a.
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FIGURE 14. Comparison of performance metrics obtained for testing Local Learning (LL) model 1 at different UAV locations. Here,
LL-1-1 refers to LL model 1 (trained at location 1) tested at location 1, LL-1-2 refers to LL model 1 tested at location 2, and LL-1-3
refers to LL model 1 tested at location 3. From the results, we observe that the local model does not generalize well to new
locations.

3) FedAvg VERSUS pwFedAvg PERFORMANCE
To investigate the FL performance, we first implemented the
FedAvg algorithm [48], assuming each FL client performs
E = 10 local updates. From the results in Figs. 11- 13,
we note that FedAvg achieves good performance only for
the UAV locations 2 and 3. Given the datasets collected
at different UAV locations, the performance metrics of FL,
compared to CL and LL, are significantly impacted by the
UAV(s) that perform worst due to the model aggregating
step. This is because FedAvg scales the weights of all local
models equally. To reduce the impact of UAV locations with
poor performance, our proposed pwFedAvg algorithm scales
the weights of local models according to the received signal
power according to Eq. (15).

As shown in Fig. 11, Fig. 12, and Fig. 13, we note that the
proposed proportional weighting scheme improves F1-score
at locations 2 and 3. As shown in Fig. 13, the F1-score, for
locations 2 at SNR 10 dB is ∼ 7% higher and for location
3 is ∼ 4% higher than the FedAvg case. The improvement
at locations 2 and 3 is compensated by a slight decrease of ∼

0.5% at location 1. Furthermore, we also see an improvement
in Recall. For example, at SNR 20 dB Recall is ∼ 4% higher
than FL-FedAvg at both UAV locations 2 and 3. As shown
in Fig. 11, the improvement in Precision can be seen only at
SNR 10 dB. Hence, we base our conclusions on the F1-score,
since it is the geometric mean of both Precision and Recall.

Therefore, the numerical results show that both the CL and
LL models perform well for all the UAV locations. How-
ever, the CL model requires aggregating all data in a central
location, which is often impractical. On the other hand, the
LL model necessitates maintaining a separate model for each
location. While LL models achieve good performance for
their specific locations, they lack generalizability to other
locations. To address these limitations, we leverage FL as
a compromise between CL and LL, where we only share
model weights and obtain one final model at the end of the
training. We highlight that considering the generalization of
the CLmodel (i.e., testing the CLmodel performance at a new
location fromwhich training data was not collected) is also an
interesting research problem that merits further investigation.

However, our current results do not address such scenarios,
and we defer this investigation to future work.

B. FUSION-BASED SPECTRUM INFERENCE
As shown in Fig. 5, we consider fusing the spectrum hole
predictions frommultiple UAVs. This is motivated by the fact
that individual spectrum sensing performance might fluctuate
at different locations, which we observed in the CL, LL, and
FL settings. By applying fusion rules, we can compensate for
the effect of the different wireless channels observed at dif-
ferent UAV locations. As mentioned earlier, the performance
metrics at location 1 are lower in FL compared to locations
2 and 3. Hence, we focus on location 1 to understand the effect
of spectrum fusion. To this end, in Table. 2, we compare the
F1-score results with and without fusion for location 1 and
notice that the overall performance of all configurations is
significantly improved by fusion. Furthermore, the proposed
pwFedAvg algorithm outperforms FedAvg for all SNRswhen
we apply fusion. For example, at SNR 10 dB, fusion-based
pwFedAvg achieves 95.45%, while fusion-based FedAvg
achieves 91.52%. Therefore, fusion-based pwFedAvg fur-
ther improves the performance by proportionally scaling the
weights of models at the training stage as well as fusing the
spectrum sensing results from different locations at the testing
stage. The comparison results for the spectrum fusion results
at locations 2 and 3 are omitted for brevity, as they show
similar trends.

C. SPECTRUM RESOURCE ALLOCATION USING RL
As mentioned in Section V, we use deep Q-learning methods
for allocating spectrum resources to the UAVs. In Fig. 15a,
we compare the training performance of three variants of
Q-learning methods for allocating a sub-channel to a single
UAV whenever the fusion rule detects at least a single spec-
trum hole. In this regard, the Q-learning methods choose the
best sub-channel to allocate to a UAV. Over time, the RL
algorithm identifies which sub-channel to allocate and hence
the average aggregated utility for allocating one spectrum
hole to a UAV saturates at 200 kb/s. It is observed that DDQN
with soft update performs slightly better and converges ear-
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FIGURE 15. Training results for spectrum resource allocation
using RL.In (a), we compare the performance of different
Q-learning methods for resource allocation to a single UAV.
In (b), we evaluate the performance of DDQN-Soft when
allocating resources to one or two UAVs.

lier than DDQN and vanilla-DQN. While Q-learning-based
studies allocate a single resource to a secondary user, we con-
sider allocating spectrum holes to 2 UAVs. In this case,
we have augmented the DDQN algorithm with a soft update
to generate the two best actions where our action is the best
sub-channel or spectrum hole to allocate to the requesting
UAVs. In this regard, the DDQN allocates a spectrum hole
to two UAVs simultaneously. Hence, from the results in
Fig. 15b, we observe that the utility performance with two
SUs is slightly less than two times the performance with a
single SU. We further note that this paper tries to explore
the possibility of integrating spectrum sensing and sharing
by making use of the existing RL algorithms. In this paper,
since we consider M sub-channels, which correspond to a
finite discrete action space, we opted for Q-learning methods.
However, other advanced RL algorithms can be explored and
integrated into the proposed framework.

VIII. CONCLUSION
In this paper, we developed a collaborative wideband spec-
trum sensing and sharing solution for networked UAVs.
To train machine learning models for detecting spectrum
holes, we explored the applications of FL and developed an

architecture that integrates wireless dataset generation into
the FL model training and aggregation steps. To this end,
we proposed the pwFedAvg algorithm to incorporate wireless
channel conditions and received signal powers into the FL
aggregation algorithm. To further enhance the accuracy of the
predicted spectrum holes by individual UAVs, we considered
spectrum fusion at the central server. Additionally, by lever-
aging deep Q-learning methods, the detected spectrum holes
are dynamically allocated to the requesting UAVs.

To evaluate the proposed methods, we generated a
near-realistic synthetic dataset using MATLAB LTE toolbox
by incorporating base-station locations in a chosen area of
interest, performing ray-tracing, and emulating the primary
users’ channel usage in terms of I/Q samples. Based on the
collected I/Q datasets, we investigated the performance of
three model training algorithms, namely CL, LL, and FL.
Furthermore, the proposed pwFedAvg algorithm outperforms
FedAvg while achieving comparable results with respect to
the CL method without the need for sharing all datasets to a
central location. From the fusion results, we noticed that the
overall performance improved significantly for all learning
configurations, and the implemented DDQNmethod can pro-
vide dynamic spectrum scheduling across requesting UAVs.
In future work, we plan to expand the application of our
developed solutions to other technologies and spectrum bands
(beyond LTE), while incorporating realistic spectrum usage
of the incumbent users in those bands (i.e., PUs). Further-
more, we aim to develop an optimization-based approach that
jointly considers the received powers from the over-the-air
samples, along with other relevant metrics (e.g., communica-
tion rounds (E), learning rate γ , batch size, device and data
heterogeneity, etc.) to derive optimal aggregation weights.

IX. APPENDIX
Proof of Lemma 1: Since ∇Lk (ω∗

k ) = 0, assumption 1
reduces to Lk (ω∗) - Lk (ω∗

k ) ≤
L
2 ||ω∗

− ω∗
k ||

2
2. Using the

identities of vector norm and max-norm for a vector x,
||x||22 ≤ d ||x||2∞ = d(max

i
|xi|)2, we have:

L
2

||ω∗
− ω∗

k ||
2
2 ≤ max

k
{
Ld
2
(max

i
{|ω∗

i − ω∗
k,i|})

2
},

which completes the proof.
Proof of Lemma 2: Using the definition of virtual

sequences from Eq. (21), we have:

E
(
||at − āt ||22

)
(a)
= E

[ K∑
k=1

||

(
αtk

αt

)[
∇Lk (ωt

k ; ξ tk ) − ∇Lk (ωt
k )

]
||
2
2
]

(b)
≤

K∑
k=1

(
αtk

αt

)2

E
[
||∇Lk (ωt

k ; ξ tk ) − ∇Lk (ωt
k )||

2
2
]

(c)
≤

K∑
k=1

(
αtk

αt

)2

ρ2
k , (30)
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where (a) is from Eq. (21), (b) comes from Jensen’s inequal-
ity, and (c) is by applying Assumption 3.

Proof of Lemma 3: Similar to [52] in the convergence
analysis we defineωt+1

= ωt
−γ tat , and using the definition

of virtual sequences from Eq. (21) we obtain the following
equation:

||ωt+1
− ω∗

||
2
2 = ||ωt

− γ tat − ω∗
||
2
2

= ||ωt
− γ t āt + γ t āt − γ tat − ω∗

||
2
2

= ||ωt
− γ t āt − ω∗

||
2
2︸ ︷︷ ︸

A1

+ (γ t )2||at − āt ||22︸ ︷︷ ︸
A2

−2γ t ⟨ωt
− γ t āt − ω∗, at − āt ⟩︸ ︷︷ ︸

A3

. (31)

Since E[at ] = āt , it can be seen that E[A3] = 0. By expand-
ing E[A1], we have:

E[A1] = E
[
||ωt

− ω∗
||
2
2 + (γ t )2||āt ||22︸ ︷︷ ︸

A1,1

− 2 γ t ⟨ωt
− ω∗, āt ⟩︸ ︷︷ ︸
A1,2

]
(32)

The bound on A1,1 term can be derived as follows:

E[A1,1]
(a)
= (γ t )2 E

[
||

K∑
k=1

αtk

αt
∇Lk (ωt

k )||
2
2
]

(b)
≤ (γ t )2

K∑
k=1

(
αtk

αt

)2

||∇Lk (ωt
k )||

2
2

(c)
≤ 2L (γ t )2

K∑
k=1

(
αtk

αt

)2(
Lk (ωt

k ) − Lk (ω∗
k )

)
, (33)

where (a) is from Eq. (21), (b) comes from Jensen’s inequal-
ity, and (c) is obtained by applying Assumption 1 and
L-smoothness property [59]. The bound for A1,2 term can be
derived as follows:
E[A1,2]

= −2 γ t ⟨ωt
− ω∗,

K∑
k=1

αtk

αt
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where the first term in (a) results from applying
Cauchy-Schwartz inequality and AM-GM inequality [52],
[53], and the second term comes from Assumption 2. Fur-
thermore, the second term in (c) comes from the fact that∑K

k=1
αtk
αt

= 1. Using Lemma 3 from [52], E[A1,2,1] is
bounded by 2γ 2

t (E − 1)2G2. Combining E[A1,1], E[A1,2,2]
and E[A1,2,3], we have

E[A1,1] + E[A1,2,2] + E[A1,2,3]

≤ 4L(γ t )2
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)2(
Lk (ωt

k ) − Lk (ω∗
k )

)
− 2γ t

K∑
k=1

αtk

αt

(
Lk (ωt

k ) − Lk (ω∗)
)

(a)
≤ 4Lτ (γ t )2

K∑
k=1

(
αtk

αt

)2

− 2γ t
K∑
k=1

αtk

αt

[
1 − Lγ t

αtk

αt

](
Lk (ωt

k ) − Lk (ω∗)
)

(b)
≤ 4τγ t

[
1 − 2Lγ t

K∑
k=1

(
αtk

αt

)2]
, (35)

where (a) comes from Lemma 1 and (b) comes from the
fact that Lk (ωt

k ) − Lk (ω∗
k ) ≥ 0 and Lemma 1. Now,

E[A2] = (γ t )2
∑K

k=1

(
αtk
αt

)2

ρ2
k can be found easily by apply-

ing Lemma 1. Substituting E[A1], E[A2], and E[A3] into
E

(
||ωt+1

−ωt
||
2
2

)
and using the fact that 1

κ
≤ γ t , we complete

the proof.
Proof of Theorem 1 Similar to [49] and [52], we define

1t
= E[||ωt

−ω∗
||
2
2]. FromLemma 3, it follows that,1t+1

≤

(1 − βγ t )1t
+ (γ t )2ζ t . We assume γ t =

α
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for some

α > 1
β
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}, we will

prove 1t
≤

λ
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by induction as follows. The definition of λ

ensures that the inequality 1t
≤

λ
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holds for t = 0. For the
inequality to hold for t > 0, it follows from the definition as
follows:
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Specifically, if we choose α =
2
β
, µ =

2L
β
, then γ t =

2
βt+2L .

Then, we have
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Finally, we have:
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where (a) comes from L-smoothness of the loss function
and using the fact that ∇L(ω∗) = 0, (b) is computed
using Eq. (37), and (c) is computed by substituting the values
of α and µ. Hence, the convergence is proved to be O( 1T ).
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