

Pressure tuning of competing interactions on a honeycomb lattice

³ Piyush Sakrikar ^{*};Bin Shen , Eduardo H. T. Poldi , Faranak Bahrami , Xiaodong Hu , Eric M. Kenney ,
⁴ Qiaochu Wang , Kyle W. Fruhling , Chennan Wang , Ritu Gupta , Rustem Khasanov , Huber-
⁵ tus Luetkens , Stuart A. Calder , Adam A. Aczel , Gilberto Fabbris , Russell J. Hemley , Kemp W. Plumb ,
⁶ Ying Ran , Philipp Gegenwart , Alexander A. Tsirlin , Daniel Haskel , Michael J. Graf , Fazel Tafti

⁷ Department of Physics, Boston College, Chestnut Hill, MA 02467, USA

⁸ Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany

10 Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

11 Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA

¹² Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
¹³

14 Department of Physics, Brown University, Providence, RI 02912, United States

15 **Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland**

16 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

17 Magnetic exchange interactions are mediated via orbital overlaps across chemical bonds.
 18 Thus, modifying the bond angles by physical pressure or strain can tune the relative strength
 19 of competing interactions. Here we present a remarkable case of such tuning between the
 20 Heisenberg () and Kitaev () exchange, which respectively establish magnetically ordered
 21 and spin liquid phases on a honeycomb lattice. We observe a rapid suppression of the Néel
 22 temperature (T_N) with pressure in $\text{Ag}_3\text{LiRh}_2\text{O}_6$, a spin-1/2 honeycomb lattice with both
 23 and Δ couplings. Using a combined analysis of x-ray data and first-principles calculations,
 24 we find that pressure modifies the bond angles in a way that increases the Δ/J ratio and
 25 thereby suppresses T_N . Consistent with this picture, we observe a spontaneous onset of muon
 26 spin relaxation (ΔS_R) oscillations below T_N at low pressure, unlike in the high pressure phase,
 27 where oscillations appear only when $\Delta/J > 1$. Our results demonstrate the efficiency of
 28 pressure as a tuning parameter in **candidates of the Kitaev spin liquid**, particularly among
 29 transition metal systems.

*These authors contributed equally to this work.

30 **Introduction**

31 Materials with a honeycomb lattice and heavy elements can sustain anisotropic Kitaev interactions
32 which favor a quantum spin liquid (QSL) ground state ¹⁻³. The same materials also host isotropic
33 Heisenberg interactions which favor a long-range magnetic order (LRO) ^{4,5}. Theoretically, the QSL
34 ground state could be established by tuning the competition between the Kitaev and Heisenberg
35 interactions in favor of the former ^{6,7}. One approach to this problem would be to chemically
36 design new materials with a large Kitaev to Heisenberg coupling ratio $\frac{K_{\text{Heis}}}{K_{\text{Kitaev}}}$. Unfortunately, this
37 is proven to be an extremely challenging task ⁸⁻¹². An alternative approach would be to use external
38 parameters such as magnetic field strength ¹³ or angle ¹⁴ to tune an existing material away from
39 the Heisenberg limit and toward the Kitaev limit. In this work, we present a successful case of
40 such tuning by applying hydrostatic pressure, instead of magnetic field, on the honeycomb lattice
41 of $\text{Ag}_3\text{LiRh}_2\text{O}_6$.

42 $\text{Ag}_3\text{LiRh}_2\text{O}_6$ is synthesized from the parent compound Li_2RhO_3 by replacing the small inter-
43 layer Li atoms with large Ag atoms in a topotactic exchange reaction (Fig. 1a) ¹⁵. Changing the
44 interlayer atoms induces a trigonal distortion in RhO_6 octahedra, which enhances the Ising-like
45 anisotropy of the pseudospin-1/2 states ¹⁵. As a result, a robust antiferromagnetic (AFM) order is
46 established in $\text{Ag}_3\text{LiRh}_2\text{O}_6$ at $T_N = 100$ K, in stark contrast to the glassy transition at 6 K in Li_2RhO_3 .
47 The large $\frac{J_{\text{Heis}}}{J_{\text{Kitaev}}}$ in $\text{Ag}_3\text{LiRh}_2\text{O}_6$ indicates a dominant Heisenberg interaction, i.e. a small $\frac{K_{\text{Heis}}}{K_{\text{Kitaev}}}$ ratio.
48 We decided to study this material under pressure based on quantum chemistry calculations that
49 predict the $\frac{K_{\text{Heis}}}{K_{\text{Kitaev}}}$ ratio could be increased by modifying the $\text{Rh}-\text{O}-\text{Rh}$ bond angles within the
50 honeycomb layers (Fig. 1b) ¹⁶. Mn transition metal systems such as Li_2RhO_3 and $\text{Ag}_3\text{LiRh}_2\text{O}_6$ are
51 particularly sensitive to changes of bond angles, since they have comparable spin-orbit coupling
52 and crystal field energy scales ¹⁷.

53 Our multiprobe investigations reveal three pieces of evidence for a shift in the balance be-
54 tween the Heisenberg and Kitaev interactions with increasing pressure in $\text{Ag}_3\text{LiRh}_2\text{O}_6$. (i) Magne-
55 tization measurements show a rapid suppression of T_N under pressure up to 3 GPa, beyond which,
56 the AFM order disappears. (ii) X-ray diffraction (XRD) confirms the absence of structural transi-
57 tions up to 6 GPa, beyond which, the honeycomb lattice undergoes a dimerization transition. (iii)
58 SR experiments reveal a long-range order below T_N at low pressures but a short-range order at
59 high pressures, which becomes long-range only when $\frac{K_{\text{Heis}}}{K_{\text{Kitaev}}} > 1$. Thus, the SR data indicates an

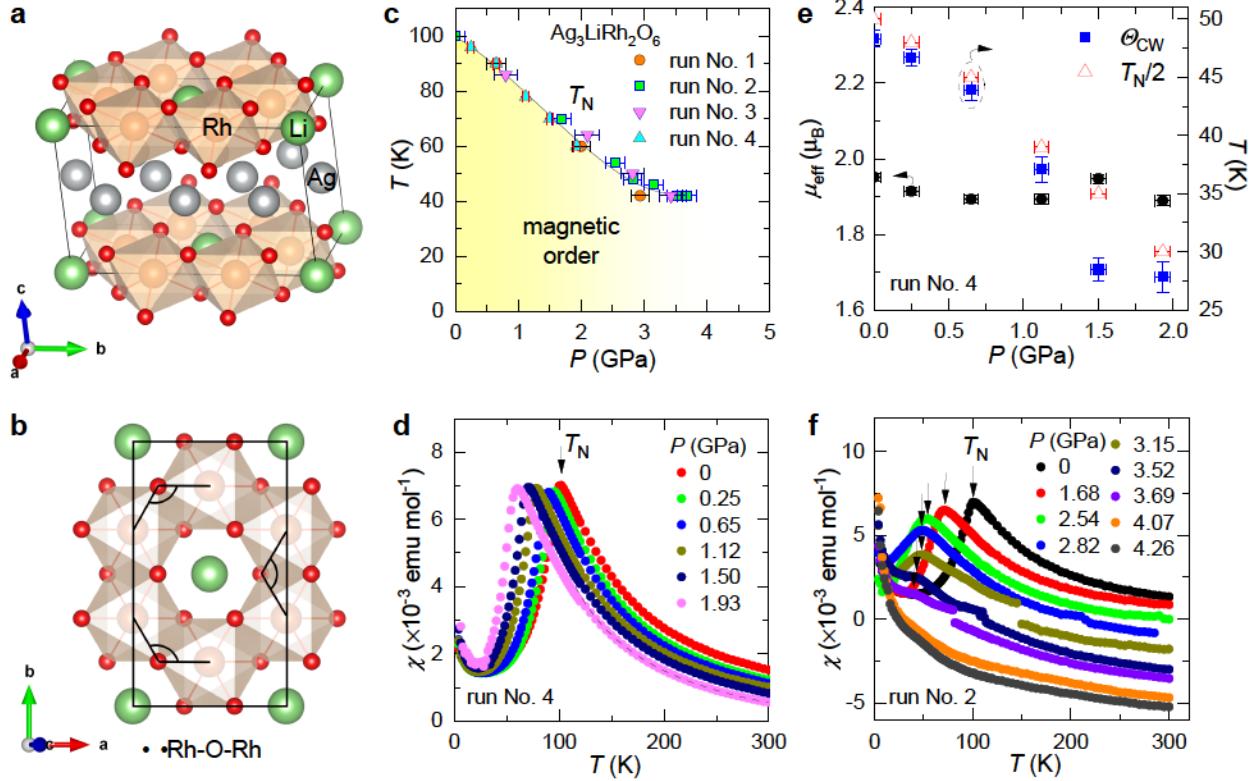


Figure 1: **Magnetization data.** (a) Unit cell of $\text{Ag}_3\text{LiRh}_2\text{O}_6$ in the monoclinic space group $C2/m$ with Ag atoms between the $[\text{LiRh}_2\text{O}_6]$ honeycomb layers. (b) $\angle\text{Rh-O-Rh}$ bond angles within a honeycomb layer. (c) Suppression of T_N with increasing pressure. (d) T_N is identified by the peak in $\chi(T)$ at different pressures. (e) Both T_N and Θ_{CW} decrease in parallel with pressure while μ_{eff} remains nearly unchanged. All data in this panel are from run No. 4. (f) The peak in susceptibility data (T_N) disappears at $P > 4$ GPa.

60 extended temperature regime of fluctuating short-range magnetism. Details of the magnetization,
 61 XRD, and μ SR data are presented below.

62 Magnetization

63 We started the high pressure investigations of $\text{Ag}_3\text{LiRh}_2\text{O}_6$ by measuring DC magnetic susceptibility
 64 of a polycrystalline sample inside a ceramic anvil pressure cell. To reach the maximum pressure
 65 of about 5.5 GPa, we used a pair of anvils with small culets in runs 1, 2 and 3 (Methods). To obtain
 66 higher quality data for the Curie-Weiss (CW) analysis, we used another pair of anvils with larger

67 culets which limited the pressure to 2 GPa in run 4.

68 The first observation in Fig. 1c is a rapid suppression of N with pressure at a rate of K/GPa
69 up to about 3 GPa. At each pressure, N was obtained from the peak in the curve as seen in
70 Fig. 1d for run 4. The high quality of these data enabled us to perform Curie-Weiss (CW) fits to
71 extract the CW temperature (cw) and effective magnetic moment (eff). Plotting N , cw , and
72 eff as a function of pressure in Fig. 1e reveals a parallel suppression of N and cw with pressure,
73 while eff remains nearly unchanged. Since cw is proportional to the Heisenberg coupling J ,
74 the parallel suppression of cw and N indicates a weakening of the average J under pressure.
75 The value of eff_B , which is unaffected by pressures, is close to the expected moment
76 for a pseudospin-1/2 state. In the supplementary information, we also provide DFT results that
77 confirm the robustness of the pseudospin-1/2 state up to 5 GPa. These observations suggest that
78 while the pseudospin-1/2 state in $Ag_3LiRh_2O_6$ remains unchanged under pressure, the Heisenberg
79 interactions weaken with increasing pressure, resulting in a rapid suppression of N .

80 Switching to anvils with smaller culet sizes, we extended measurements of N to higher
81 pressures in runs 1, 2, and 3 (Fig. 1f and the supplementary Fig. S1). The N curves qualitatively
82 changed at 3 GPa, where the AFM peak became smaller in magnitude and nearly disappeared
83 at 5 GPa (Fig. 1f). The disappearance of the AFM peak at high pressures suggests that
84 the Kitaev coupling J_K is suppressed at a slower rate than Heisenberg coupling J , hence the ratio
85 N_{small}/N_{large} is increased with increasing pressure.

86 Other than the $-$ model discussed above, an alternative theoretical framework for a hon-
87 eycomb lattice with spin-1/2 particles would be the $-$ model¹⁸⁻²¹. Such a model is particularly
88 relevant for $Ag_3LiRh_2O_6$ due to the Ising anisotropy of its pseudospin-1/2 state. The $-$ model is
89 frustrated when J_K is AFM ($J_K < 0$), regardless of the sign of J . In such a model, cw \propto N is
90 positive and decreases with pressure if $J_K < 0$ and $J > 0$ (i.e. with FM J_K and AFM J). Regardless
91 of using the $-$ model or $-$ model, the magnetization data presented in Fig. 1 are consistent
92 with competing interactions.

93 **X-ray diffraction**

94 We performed XRD measurements under pressure with two goals in mind. First, to confirm that
95 the suppression of the AFM order was not due to a structural transition, and second, to correlate
96 the T_N suppression with a change of $\angle_{\text{Rh-O-Rh}}$ bond angle.

97 Our search for a pressure-induced structural transition was motivated by previous studies on
98 the hyper-honeycomb system $\text{Ag}_3\text{LiRh}_2\text{O}_6$, which similar to $\text{Ag}_3\text{LiRh}_2\text{O}_6$, has a high T_N of 38 K at
99 ambient pressure and loses its AFM order under pressure^{22–25}. However, unlike in $\text{Ag}_3\text{LiRh}_2\text{O}_6$,
100 T_N remains nearly independent of pressure in $\text{Ag}_3\text{LiRh}_2\text{O}_6$ until the AFM order disappears abruptly
101 at ~ 5 GPa^{24,25}. The sudden loss of the AFM order in $\text{Ag}_3\text{LiRh}_2\text{O}_6$ is unrelated to competing
102 interactions. Instead, it originates from the loss of local moments due to the formation of Ir₂ dimers
103 under pressure^{23–25}. Measurements of x-ray magnetic circular dichroism (XMCD)²³ reveal a
104 quenching of both spin and orbital moments due to this dimerization at ~ 5 GPa. Thus, we
105 performed high-pressure x-ray diffraction on $\text{Ag}_3\text{LiRh}_2\text{O}_6$ to distinguish between two mechanism
106 for the loss of AFM order: (i) structural dimerization, and (ii) competing interactions.

107 The XRD patterns in Fig. 2a show that the monoclinic structure is preserved in $\text{Ag}_3\text{LiRh}_2\text{O}_6$
108 from 0 to 5 GPa at both 293 K and 85 K. Using LeBail fits to these data, we trace the evolution
109 of the unit cell parameters with pressure in Fig. 2b. All lattice parameters are smoothly decreasing
110 with increasing pressure, and the monoclinic angle β fluctuates around 74.6(1) degrees. The ab-
111 sence of a structural transition up to 5 GPa in Figs. 2a,b rules out the dimerization of Rh₂ units as
112 the mechanism of T_N suppression. This is consistent with the pressure independent T_{eff} in Fig. 1e,
113 since the formation of Rh₂ dimers would have quenched the local moments.

114 Fig. 2c shows that a structural transition finally occurs at ~ 9.5 GPa, well above the
115 pressure range of T_N suppression in Fig. 1c. The structural transition is signaled by a bifurcation
116 of the Bragg peak at 9.5 GPa in Fig. 2c (see also supplementary Fig. S2). A similar dimerization
117 transition has been reported in Li_2RhO_3 at nearly the same critical pressure²⁶.

118 The known presence of stacking faults in $\text{Ag}_3\text{LiRh}_2\text{O}_6$ ¹⁵ and limited angular range of the
119 high-pressure XRD data made Rietveld refinements of atomic positions challenging. Instead, we
120 used the lattice parameters from XRD as input to a density functional theory (DFT) code and

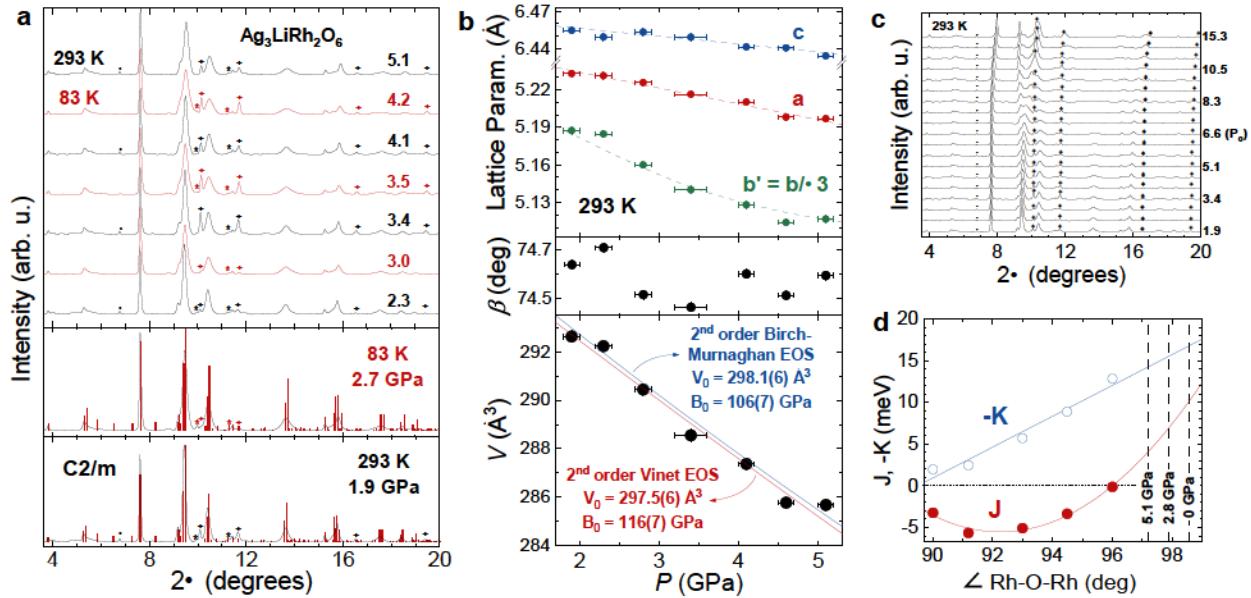


Figure 2: **X-ray diffraction.** (a) Pressure-dependent diffraction patterns at 293 K (black) and 83 K (red). The *, + and . symbols indicate, respectively, the Re peaks (gasket), Au peaks (manometers), and boron carbide seat. Red vertical bars in the bottom panel indicate calculated Bragg peak intensities at 1.9 GPa (293 K) and 2.7 GPa (83 K). (b) Monoclinic unit cell parameters, angle β , and volume plotted as a function of pressure. The P - V data are fitted (solid lines) using both 2nd order Vinet and 2nd order Birch-Murnaghan equations of state, rendering comparable values for the bulk modulus (B_0) and ambient pressure volume (V_0). (c) The bifurcation of the 9.5° Bragg peak at $P_c = 6.6$ GPa indicates a dimerization transition (see also Fig. S2). (d) The linear and quadratic dependence of K and J on $\angle\text{Rh-O-Rh}$ are reproduced from Ref. ¹⁶. Dashed lines indicate the average bond angle at different pressures.

121 found the atomic positions that minimized the free energy (supplementary information). Using the
 122 atomic coordinates from DFT, we evaluated the $\angle\text{Rh-O-Rh}$ bond angles at high pressures. The three
 123 dashed lines in Fig. 2d indicate the average values of $\angle\text{Rh-O-Rh}$ at different pressures, overlaid on
 124 a plot of J and K couplings versus $\angle\text{Rh-O-Rh}$ according to quantum chemistry calculations in
 125 Li_2RhO_3 ¹⁶. The key observation is that $|K/J|$ ratio increases rapidly with increasing pressure as
 126 the bond angles approach the critical value of 96° where $J \rightarrow 0$. Note that J changes quadratically
 127 with bond angle while $|K|$ changes linearly. This leads to the rapid increase of $|K/J|$ from 1.6 to
 128 2.6 and 3.6 as the pressure increases from 0 to 2.8 and 5.1 GPa, respectively. Such enhancement
 129 of the $|K/J|$ ratio in the absence of a structural transition before 5.5 GPa suggests that competing

130 interactions are responsible for the N suppression and disappearance of the AFM peak in Fig. 1.

131 We used the calculated Δ and Δ' curves for Li_2RhO_3 in Fig. 2d, because such calculations do
132 not exist for $\text{Ag}_3\text{LiRh}_2\text{O}_6$ at present. Thus, future material-specific calculations will be necessary
133 for a quantitative analysis. Nevertheless, the analysis in Fig. 2d demonstrates how competing
134 Kitaev and Heisenberg interactions could lead to the suppression of the AFM order. We point out
135 that a similar behavior is expected for competing Δ - Δ' interactions¹⁸⁻²¹, although material-specific
136 results have not been reported in this model, unlike the Δ - Δ' model¹⁶.

137 **Muon spin relaxation**

138 In SR, positively charged spin polarized muons are implanted in a sample to probe the local
139 magnetic field at some preferred crystallographic stopping site(s). The average time evolution
140 of the muon polarization Δ is monitored by detection of positrons which are preferentially
141 emitted along the muon polarization direction upon its decay (lifetime $\sim 2.2 \mu\text{s}$). Long-range
142 magnetic order is signaled by the onset of oscillations in Δ in zero magnetic field, and decay
143 of Δ (depolarization) can be caused by either magnetic disorder or dynamical fluctuations. The
144 polarization curves in Fig. 3 are labeled Δ_{mag} to indicate the removal of background signal from
145 the pressure cell²⁷ and a small non-magnetic signal from silver inclusions in the sample from the
146 total polarization signal Δ . Details of background subtraction are given in the supplementary
147 information (Fig. S3).

148 Before presenting any quantitative analysis, we reveal a qualitative difference between Δ_{mag}
149 curves obtained at low-pressure (~ 0.3 GPa) and high-pressure (~ 2.3 GPa) in Figs. 3a,b.
150 Whereas the oscillations appear immediately below $N \sim 95$ K at 0.3 GPa (Fig. 3a), they do not
151 appear until the temperature is decreased to half the $N \sim 43$ K at 2.3 GPa (Fig. 3b). The
152 observation of spontaneous oscillations below N at low pressures (Fig. 3a) indicates the onset of
153 long-range ordering. This is a typical behavior in a sample without magnetic disorder. The sur-
154 prising result is that at high pressures (Fig. 3b), oscillations associated with a long-range order do
155 not appear until temperatures below 20 K, which is half the $N \sim 42$ K at 2.3 GPa (Fig. 1c). In
156 the intermediate range $\sim N$, oscillations are replaced with a fast depolarization, sug-
157 gesting short-range magnetic ordering. A similar behavior has been reported at ambient pressure
158 in Li_2RhO_3 and $\sim \text{Li}_2\text{IrO}_3$ which are proximate Kitaev spin liquid materials^{28,29}. Specifically,

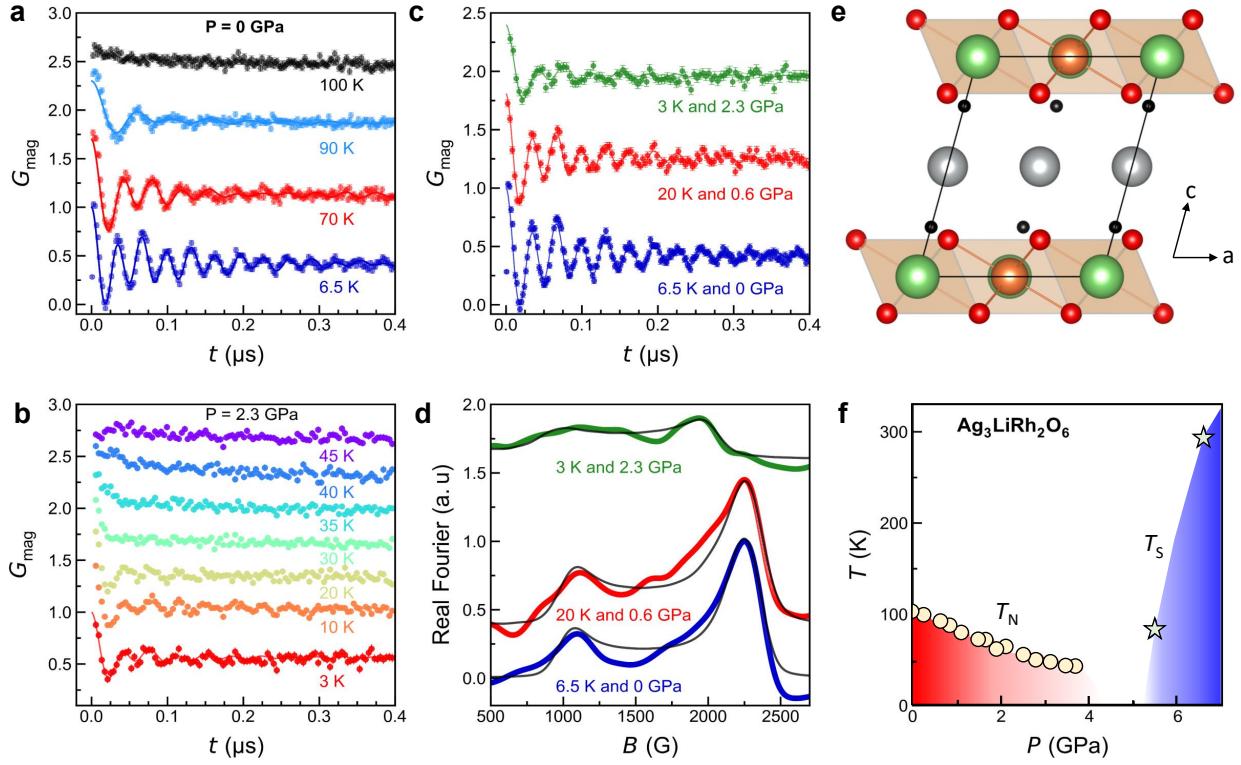


Figure 3: **μSR data.** (a) Muon polarization at a low pressure showing oscillations immediately below T_N . (b) At a high pressure, oscillations do not appear until $T_N/2$. (c) Comparing the low- T polarization curves at low-pressure (0 and 0.6 GPa) and high-pressure (2.3 GPa). (d) Comparing the Fourier transforms of polarization curves. (e) Visualizing the muon stopping sites (black circles) in the lattice structure. (f) Phase diagram of the magnetic (T_N) and structural (T_S) transitions in $\text{Ag}_3\text{LiRh}_2\text{O}_6$.

159 Li_2RhO_3 is proposed to be a proximate Kitaev spin liquid system where disorder establishes a
 160 spin glass phase¹⁶. Thus, pressure seems to tune the static magnetism of $\text{Ag}_3\text{LiRh}_2\text{O}_6$ toward the
 161 dynamic behavior observed in its parent compound Li_2RhO_3 .

In addition to the qualitative differences between low-pressure and high-pressure polarization curves at T_N , we also find quantitative differences at T_N . Figures 3c,d show G_{mag} spectra and their Fourier transforms at ambient pressure, 0.6 GPa, and 2.3 GPa for K. We fit the magnetic polarization curves to the following expression

$$G_{\text{mag}} = \text{mag} \cdot \text{osc} \cdot \text{avg} \quad (1)$$

Table 1: Fit parameters from Eq. 1 at ambient, low, and high pressures for $T = T_N$. Although the AFM transition appears sharper in the magnetization data, we use μ SR fits (Fig. S3b and S4b) to report T_N values in this Table, so that all parameters are extracted from the same measurement.

Pressure	0 GPa	0.6 GPa	2.3 GPa
N (K)	95.3(2)	95.4(8)	42.7(2)
\min (G)	1010(14)	1023(22)	14(3)
\max (G)	2134(14)	2155(22)	2010(3)
\min (G)	2193(14)	2203(13)	832(56)
\max (G)	2335(4)	2335(13)	1922(56)
(s)	2.6(4)	4(1)	0.2(1)
(s)	2.2(2)	4.4(8)	7(3)
osc	0.58(1)	0.55(3)	0.48(3)

162 which consists of two oscillatory terms, indicating two magnetically inequivalent stopping sites.
 163 Each term has a fractional contribution (and) to the total oscillatory component $_{\text{osc}}$ con-
 164 strained by ; was found to be 0.59(1) at low temperature and ambient pressure and
 165 fixed at that value in all subsequent fits. The two oscillatory terms are known as the Overhauser
 166 approximation ³⁰ for incommensurate magnetic ordering with a field distribution experienced by
 167 the muon which is symmetric about some non-zero average field in the range \min \max ,
 168 with

$$\text{avg} \quad \frac{\max}{\min} \quad \frac{\max}{\min} \quad (2)$$

169 and being the zeroth-order Bessel function of the first kind. Each term is damped at a respective
 170 rate . A long-time exponential decay with the rate constitutes the remaining fraction of the
 171 $\text{Ag}_3\text{LiRh}_2\text{O}_6$ response from the muons that experience a local field parallel to the initial muon
 172 spin orientation (on average 1/3 of the muons in an isotropic polycrystalline sample). For ease
 173 of fitting, we only used a single for both muon stopping sites. The fit parameters at low- and
 174 high-pressure regimes are listed in Table 1. We note that $_{\text{osc}}$ is somewhat less than the expected
 175 value of 0.67 for an isotropic polycrystal, suggesting a small degree of preferred orientation in the
 176 pressed polycrystalline pellet.

177 While N is substantially reduced by the application of 2.3 GPa, consistent with the magne-
 178 tization data, we find small changes in the local field parameters \max and \max . Such modest
 179 changes of the upper limits on the local field (less than 20%) could be accounted for by small

180 changes of lattice parameters with pressure (Fig. 2b), which change the local field experienced by
181 muons at the stopping sites (Fig. 3e). The small change of local fields in SR is consistent with the
182 nearly unchanged magnetic moment under pressure in the Curie-Weiss analysis (Fig. 1e). These
183 observations show the presence of robust local moments despite weakening of the magnetic order
184 at high pressures, consistent with increasing ratio.

185 **Discussion**

186 In prior works,^{13,14} magnetic field has been used to melt the long-range order into a fluctuating
187 regime in honeycomb lattices such as -RuCl₃. Instead of changing the strength of or cou-
188 plings, magnetic field enters the Hamiltonian as an external parameter (Zeeman term)^{31,32}. In
189 contrast, pressure could tune the relative strength of competing interactions directly by changing
190 orbital overlaps. Despite theoretical proposals about using pressure as a powerful tuning parame-
191 ter in Kitaev systems^{33,34}, an experimental verification has not been possible until now, because a
192 small pressure is enough to induce a dimerization transition in both systems (Ru dimerization
193 at 0.2 GPa in -RuCl₃ and at 0.5 GPa in Ag₃LiRu₂O₆)³⁵⁻³⁸ and systems (Ir dimerization at
194 1.4 GPa in -Li₂IrO₃)²³. Remarkably, such a structural transition does not appear in Ag₃LiRh₂O₆
195 until 5 GPa, leaving a gap between the AFM (red) and dimerized (blue) phases in the phase diagram
196 of Fig. 3f.

197 The emerging picture from our observations is a change of regime in Ag₃LiRh₂O₆ from a
198 static AFM order to a dynamic spin liquid like state. Such a transition could be interpreted either
199 within a - model, as demonstrated in Fig. 2d, or within a - model, although material-
200 specific calculations are not available for this model. Moving forward, it will be helpful to get
201 spectroscopic information from inelastic x-ray scattering and Raman scattering about the pressure
202 induced dynamic regime near 4 GPa, and to search for evidence of quantum critical behavior by
203 measuring temperature dependence of specific heat or NMR at low temperatures (K) near
204 4 GPa. Such experiments, combined with material-specific calculations, could reveal the nature of
205 the low-lying excitations in the gap between the red and blue phases in Fig. 3f.

206 **Methods**

207 **Material Synthesis.** Polycrystalline samples of $\text{Ag}_3\text{LiRh}_2\text{O}_6$ were synthesized using a topotactic
208 cation-exchange reaction from the parent compound Li_2RhO_3 following a previous publication¹⁵.
209 The structural and compositional quality of all samples were characterized at ambient condition
210 with powder x-ray diffraction and energy dispersive x-ray spectroscopy. The only impurity found
211 was about 5% pure silver inclusions.

212 **Magnetization measurements.** Magnetization of the powder sample was measured in a Quantum
213 Design MPMS3 using a composite ceramic anvil cell³⁹ with Daphne oil 7373 as the pressure-
214 transmitting medium. Pressure was determined from the superconducting transition of a lead
215 manometer. To achieve the maximum pressure of about 5.5 GPa, a pair of anvils with small culet
216 sizes (1 mm) were used in runs 1, 2, and 3. A small sample chamber with both diameter and thick-
217 ness of 0.5 mm was drilled into the Be-Cu gasket. To obtain data with higher quality for the CW
218 fits, another pair of anvils with larger culets (1.8 mm) were used in run 4. This time, the maximum
219 pressure was about 2 GPa due to the larger sample chamber with both diameter and thickness of
220 0.9 mm. In each run, magnetization of the empty cell was measured first as the background and
221 subtracted from total signal. The small jumps near zero magnetization in Fig. 1f and Fig. S1a,b are
222 due to this subtraction.

223 **Muon spin relaxation (SR).** The SR experiments were performed at the Paul Scherrer Institute
224 using the General Purpose Surface-Muon (GPS) and Decay-Channel (GPD) instruments on the
225 " M3" and " E1" beamlines, respectively. Measurements on a pressed disk (12 mm diameter,
226 1 mm thickness) were made on GPS at ambient pressure using a gas flow cryostat between 110
227 and 6.5 K. Measurements in GPD at pressures of 0.57 and 2.29 GPa (as determined by an indium
228 manometer) were made in He-flow cryostat using a piston-cylinder pressure cell²⁷ with Daphne oil
229 7373 as the pressure-transmitting medium. Data were analyzed using the MUSRFIT program⁴⁰.

230 **X-ray diffraction.** X-ray diffraction (XRD) data were collected at the High Pressure Collabora-
231 tive Access Team (HPCAT) beamline 16-BM-D of the Advanced Photon Source using diamond
232 anvil cells (DAC) with a combination of full and partially perforated anvils to reduce x-ray atten-
233 uation. Anvil culet diameter was 300 m. Rhenium gaskets were pre-indented to a thickness of
234 50 m, and a 180 m-diameter sample chamber was laser drilled at the center of the indentation.
235 Fine powder (5 m) of $\text{Ag}_3\text{LiRh}_2\text{O}_6$ together with ruby and gold manometers were loaded into the

236 sample chamber filled with Ne pressure medium. The entire sample chamber was rastered over the
237 m area of the 30 keV X-ray beam to improve powder averaging on the CCD detector.
238 Measurements were carried out at both ambient and low temperature (83 K). 2D XRD images were
239 integrated over using Dioptas software ⁴¹ and the integrated diffractograms were Le Bail fitted
240 using Jana2020 ⁴². Pressure-dependent lattice parameters were extracted and 2nd order Vinet and
241 Birch-Murnaghan equations of state were both fitted using EoSFit ⁴³.

242 **DFT calculations.** Structural optimization and electronic structure calculations at high pressures
243 were performed using the QUANTUM ESPRESSO and Wannier90 codes ⁴⁴⁻⁴⁶ with the experi-
244 mental crystallographic information as the input. To evaluate the wavefunctions in the supplemen-
245 tary information (Table S1), we first used Quantum ESPRESSO and Wannier90 codes to compute
246 the electronic structure using experimental lattice parameters from our XRD measurements under
247 pressure. Then, a tight-binding model was constructed for an individual RhO cluster, defined by
248 real-space hopping parameters extracted from DFT. The orbital information were calculated from
249 a Hartree-Fock mean-field model.

250 **Neutron diffraction.** Neutron powder diffraction (NPD) was performed on 2 grams of poly-
251 crystalline Ag₃LiRh₂O₆ using the HB-2A powder diffractometer and the HB-1A ⁴⁷ Triple-Axis-
252 Spectrometer (VERITAS) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab-
253 oratory (ORNL). On HB-2A, the sample was loaded into a 5 mm diameter Al can to give an
254 overall neutron transmission of 77.67%. We used collimations of open-21'-12' with a wavelength
255 of 2.41Å. On HB-1A the sample was loaded into an annular can with 1 mm annulus and resulting
256 neutron transmission of 90.38%. We used collimations of 40'-40'-40'-80' with a fixed incident
257 energy of 14.5 meV. FULLPROF ⁴⁸ was used for Rietveld refinements of crystal structures and
258 computing predicted magnetic diffraction patterns to compare with experimental data.

259 **References**

- 261 1. Jackeli, G. & Khaliullin, G. Mott Insulators in the Strong Spin-Orbit Coupling Limit:
262 From Heisenberg to a Quantum Compass and Kitaev Models. *Physical Review Letters* **102**,
263 017205 (2009). URL <https://link.aps.org/doi/10.1103/PhysRevLett.102.017205>.
- 265 2. Chaloupka, J., Jackeli, G. & Khaliullin, G. Kitaev-Heisenberg Model on a Honeycomb
266 Lattice: Possible Exotic Phases in Iridium Oxides A IrO₃. *Physical Review Letters* **105**,
267 027204 (2010). URL <https://link.aps.org/doi/10.1103/PhysRevLett.105.027204>.
- 269 3. Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization
270 of Kitaev quantum spin liquids. *Nature Reviews Physics* **1**, 264–280 (2019). URL <https://www.nature.com/articles/s42254-019-0038-2>.
- 272 4. Singh, Y. *et al.* Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates
273 A IrO₃. *Physical Review Letters* **108**, 127203 (2012). URL <https://link.aps.org/doi/10.1103/PhysRevLett.108.127203>.
- 275 5. Chaloupka, J., Jackeli, G. & Khaliullin, G. Zigzag Magnetic Order in the Iridium Oxide
276 Na IrO₃. *Physical Review Letters* **110**, 097204 (2013). URL <https://link.aps.org/doi/10.1103/PhysRevLett.110.097204>.
- 278 6. Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Generic Spin Model for the Honeycomb Iridates
279 beyond the Kitaev Limit. *Physical Review Letters* **112**, 077204 (2014). URL <https://link.aps.org/doi/10.1103/PhysRevLett.112.077204>.
- 281 7. Kimchi, I. & Vishwanath, A. Kitaev-Heisenberg models for iridates on the triangular, hyper-
282 kagome, kagome, fcc, and pyrochlore lattices. *Physical Review B* **89**, 014414 (2014). URL
283 <https://link.aps.org/doi/10.1103/PhysRevB.89.014414>.
- 284 8. Winter, S. M., Li, Y., Jeschke, H. O. & Valentì, R. Challenges in design of Kitaev materials:
285 Magnetic interactions from competing energy scales. *Physical Review B* **93**, 214431 (2016).
286 URL <https://link.aps.org/doi/10.1103/PhysRevB.93.214431>.

287 9. Winter, S. M. *et al.* Models and materials for generalized Kitaev magnetism. *Journal*
288 *of Physics: Condensed Matter* **29**, 493002 (2017). URL <https://dx.doi.org/10.1088/1361-648X/aa8cf5>.

290 10. Bahrami, F. *et al.* Effect of structural disorder on the Kitaev magnet Ag LiIr O . *Phys-*
291 *ical Review B* **103**, 094427 (2021). URL <https://link.aps.org/doi/10.1103/PhysRevB.103.094427>. Publisher: American Physical Society.

293 11. Coexistence of static and dynamic magnetism in the Kitaev spin liquid material Cu IrO . *Phys-*
294 *ical Review B* **100**, 094418 (2019). URL <https://link.aps.org/doi/10.1103/PhysRevB.100.094418>. Publisher: American Physical Society.

296 12. Kitagawa, K. *et al.* A spin-orbital-entangled quantum liquid on a honeycomb lattice. *Nature*
297 **554**, 341–345 (2018). URL <https://www.nature.com/articles/nature25482>.

298 13. Banerjee, A. *et al.* Excitations in the field-induced quantum spin liquid state of -RuCl .
299 *npj Quantum Materials* **3**, 1–7 (2018). URL <https://www.nature.com/articles/s41535-018-0079-2>.

301 14. Tanaka, O. *et al.* Thermodynamic evidence for a field-angle-dependent Majorana gap in a
302 Kitaev spin liquid. *Nature Physics* **18**, 429–435 (2022). URL <https://www.nature.com/articles/s41567-021-01488-6>.

304 15. Bahrami, F. *et al.* First demonstration of tuning between the Kitaev and Ising limits in a
305 honeycomb lattice. *Science Advances* **8**, eabl5671 (2022). URL <https://www.science.org/doi/10.1126/sciadv.abl5671>.

307 16. Katukuri, V. M. *et al.* Strong magnetic frustration and anti-site disorder causing spin-glass
308 behavior in honeycomb Li RhO . *Scientific Reports* **5**, 14718 (2015). URL <https://www.nature.com/articles/srep14718>.

310 17. Katukuri, V. M. *et al.* Electronic Structure of Low-Dimensional Oxides: Interplay of Lig-
311 and Distortions, Overall Lattice Anisotropy, and Spin–Orbit Interactions. *Inorganic Chemistry*
312 **53**, 4833–4839 (2014). URL <https://doi.org/10.1021/ic402653f>.

313 18. Mulder, A., Ganesh, R., Capriotti, L. & Paramekanti, A. Spiral order by disorder and lattice
314 nematic order in a frustrated Heisenberg antiferromagnet on the honeycomb lattice. *Phys-*

315 *ical Review B* **81**, 214419 (2010). URL <https://link.aps.org/doi/10.1103/PhysRevB.81.214419>.

317 19. Gong, S.-S., Sheng, D. N., Motrunich, O. I. & Fisher, M. P. A. Phase diagram of the spin-1/2

318 J -J Heisenberg model on a honeycomb lattice. *Physical Review B* **88**, 165138 (2013). URL <https://link.aps.org/doi/10.1103/PhysRevB.88.165138>.

320 20. Bishop, R. F. & Li, P. H. Y. Complete phase diagram of the spin- - - model (with

321 =) on the honeycomb lattice. *Physical Review B* **85**, 155135 (2012). URL <https://link.aps.org/doi/10.1103/PhysRevB.85.155135>.

323 21. Ganesh, R., van den Brink, J. & Nishimoto, S. Deconfined Criticality in the Frustrated

324 Heisenberg Honeycomb Antiferromagnet. *Physical Review Letters* **110**, 127203 (2013). URL <https://link.aps.org/doi/10.1103/PhysRevLett.110.127203>.

326 22. Takayama, T. *et al.* Hyperhoneycomb Iridate -Li IrO as a Platform for Kitaev Magnetism.

327 *Physical Review Letters* **114**, 077202 (2015). URL <https://link.aps.org/doi/10.1103/PhysRevLett.114.077202>.

329 23. Veiga, L. S. I. *et al.* Pressure tuning of bond-directional exchange interactions and magnetic

330 frustration in the hyperhoneycomb iridate -Li IrO . *Physical Review B* **96**, 140402 (2017). URL <https://link.aps.org/doi/10.1103/PhysRevB.96.140402>.

332 24. Majumder, M. *et al.* Breakdown of Magnetic Order in the Pressurized Kitaev Iridate -Li₂IrO₃.

333 *Physical Review Letters* **120**, 237202 (2018). URL <https://link.aps.org/doi/10.1103/PhysRevLett.120.237202>.

335 25. Shen, B. *et al.* Interplay of magnetism and dimerization in the pressurized Kitaev material

336 -Li₂IrO₃. *Physical Review B* **104**, 134426 (2021). URL <https://link.aps.org/doi/10.1103/PhysRevB.104.134426>.

338 26. Hermann, V. *et al.* Pressure-induced formation of rhodium zigzag chains in the honeycomb

339 rhodate Li RhO . *Physical Review B* **100**, 064105 (2019). URL <https://link.aps.org/doi/10.1103/PhysRevB.100.064105>.

341 27. Khasanov, R. Perspective on muon-spin rotation/relaxation under hydrostatic pressure. *Jour-*

342 *nal of Applied Physics* **132**, 190903 (2022). URL <https://doi.org/10.1063/5.0119840>.

344 28. Khuntia, P. *et al.* Local magnetism and spin dynamics of the frustrated honeycomb rhodate
345 Li_2RhO_3 . *Physical Review B* **96**, 094432 (2017). URL <https://link.aps.org/doi/10.1103/PhysRevB.96.094432>.

346

347 29. Choi, S. *et al.* Spin dynamics and field-induced magnetic phase transition in the honeycomb
348 Kitaev magnet $-\text{Li}_2\text{IrO}_3$. *Physical Review B* **99**, 054426 (2019). URL <https://link.aps.org/doi/10.1103/PhysRevB.99.054426>.

349

350 30. Yaouanc, A. & Reotier, P. D. d. *Muon Spin Rotation, Relaxation, and Resonance: Applications*
351 *to Condensed Matter*. International Series of Monographs on Physics (Oxford University
352 Press, Oxford, New York, 2011).

353 31. Zhang, S.-S., Halász, G. B. & Batista, C. D. Theory of the Kitaev model in a [111] mag-
354 netic field. *Nature Communications* **13**, 399 (2022). URL <https://www.nature.com/articles/s41467-022-28014-3>.

355

356 32. Cônsoli, P. M., Janssen, L., Vojta, M. & Andrade, E. C. Heisenberg-Kitaev model in a
357 magnetic field: expansion. *Physical Review B* **102**, 155134 (2020). URL <https://link.aps.org/doi/10.1103/PhysRevB.102.155134>.

358

359 33. Yadav, R., Rachel, S., Hozoi, L., van den Brink, J. & Jackeli, G. Strain- and pressure-tuned
360 magnetic interactions in honeycomb Kitaev materials. *Physical Review B* **98**, 121107 (2018).
361 URL <https://link.aps.org/doi/10.1103/PhysRevB.98.121107>.

362

363 34. Bhattacharyya, P. *et al.* Maximized ratio and cubiclike eff moments in a noncubic
364 environment in RuCl_3 under pressure. *Physical Review B* **108**, L161107 (2023). URL <https://link.aps.org/doi/10.1103/PhysRevB.108.L161107>.

365

366 35. Bastien, G. *et al.* Pressure-induced dimerization and valence bond crystal formation in the
367 Kitaev-Heisenberg magnet $-\text{RuCl}_3$. *Physical Review B* **97**, 241108 (2018). URL <https://link.aps.org/doi/10.1103/PhysRevB.97.241108>.

368

369 36. Stahl, Q. *et al.* Pressure-tuning of RuCl_3 towards the ideal Kitaev-limit (2022). URL <http://arxiv.org/abs/2209.08367>.

370

371 37. Wang, Z. *et al.* Pressure-induced melting of magnetic order and emergence of a new quantum
372 state in $-\text{RuCl}_3$. *Physical Review B* **97**, 245149 (2018). URL <https://link.aps.org/doi/10.1103/PhysRevB.97.245149>.

373

373 38. Takayama, T. *et al.* Competing spin-orbital singlet states in the honeycomb ruthenate
374 $\text{Ag}_3\text{LiRu}_2\text{O}_6$. *Physical Review Research* **4**, 043079 (2022). URL <https://link.aps.org/doi/10.1103/PhysRevResearch.4.043079>.

375

376 39. Tateiwa, N., Haga, Y., Fisk, Z. & Ōnuki, Y. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer. *Review of Scientific Instruments* **82**, 053906 (2011). URL <https://doi.org/10.1063/1.3590745>.

377

378

379

380 40. Suter, A. & Wojek, B. M. Musrfit: A Free Platform-Independent Framework for SR Data Analysis. *Physics Procedia* **30**, 69–73 (2012). URL <https://www.sciencedirect.com/science/article/pii/S187538921201228X>.

381

382

383 41. Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. *High Pressure Research* **35**, 223–230 (2015). URL <https://doi.org/10.1080/08957959.2015.1059835>.

384

385

386 42. Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. Jana2020 – a new version of the crystallographic computing system Jana. *Zeitschrift für Kristallographie - Crystalline Materials* **238**, 271–282 (2023). URL <https://www.degruyter.com/document/doi/10.1515/zkri-2023-0005/html?lang=en>.

387

388

389

390 43. Gonzalez-Platas, J., Alvaro, M., Nestola, F. & Angel, R. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. *Journal of Applied Crystallography* **49**, 1377–1382 (2016).

391

392

393 44. Giannozzi, P. *et al.* Quantum espresso: a modular and open-source software project for quantum simulations of materials. *Journal of physics: Condensed matter* **21**, 395502 (2009).

394

395 45. Giannozzi, P. *et al.* Advanced capabilities for materials modelling with quantum espresso. *Journal of Physics: Condensed Matter* **29**, 465901 (2017).

396

397 46. Pizzi, G. *et al.* Wannier90 as a community code: new features and applications. *Journal of Physics: Condensed Matter* **32**, 165902 (2020). URL <https://doi.org/10.1088%2F1361-648x%2Fab51ff>.

398

399

400 47. Aczel, A. A. *et al.* Revisiting the Kitaev material candidacy of Ir double perovskite iridates.
401 *Physical Review B* **99**, 134417 (2019). URL <https://link.aps.org/doi/10.1103/PhysRevB.99.134417>.

403 48. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron
404 powder diffraction. *Physica B: Condensed Matter* **192**, 55–69 (1993). URL <https://www.sciencedirect.com/science/article/pii/092145269390108I>.

405

406 **Acknowledgments** The authors thank L. Hozoi for fruitful discussions. F.T. and P.S. acknowledge sup-
407 port from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Physical Behavior
408 of Materials under Award No. DE-SC0023124. K.F. and F.B. acknowledge support from the National
409 Science Foundation under Award No. DMR-2203512. The work in Augsburg was funded by the Deutsche
410 Forschungsgemeinschaft (DFG, German Research Foundation) - TRR 360 - 492547816. Bin Shen acknowl-
411 edges the financial support of Alexander von Humboldt Foundation. K.W.P. and Q.W. were supported by
412 the U.S. Department of Energy, Office of Basic Energy Sciences, under Grant No. DE-SC0021223. This
413 work is based in part on experiments performed at the Swiss Muon Source $S\mu S$, Paul Scherrer Institute,
414 Villigen, Switzerland. Neutron scattering experiments were carried out at the High Flux Isotope Reactor
415 and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National
416 Laboratory. Y.R. and X.H. acknowledge support from the National Science Foundation under Grant No.
417 DMR-1712128. Work at the Advanced Photon Source was supported by the U.S. Department of Energy
418 Office of Science, Office of Basic Energy Sciences, under Award No. DE-AC02-06CH11357.

419 **Author Contributions** P.S., C.W., E.M.K., R.G., R.K., H.L., and M.J.G performed μ SR experiments.
420 B.S., K.W.F., P.G., and A.T. performed magnetization measurements. E.D.T.P., G.F., R.J.H., and D.H. per-
421 formed x-ray diffraction. Q.W., S.A.C., A.A.A., and K.W.P. performed neutron diffraction. F.B. synthesized
422 the material. X.H. and Y.R. performed theoretical calculations. F.T. conceptualized and coordinated the
423 project. All authors participated in the writing process.

424 **Competing interests** The authors declare no competing interests.

425 **Supplementary information** is available online including the crystallographic information file (CIF).

426 **Correspondence and requests for materials** should be addressed to F.T. via email fazel.tafti@bc.edu