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ABSTRACT:	Steric	molecular	descriptors	designed	for	machine	learning	(ML)	applications	are	critical	for	connecting	struc-
ture-function	relationships	 to	mechanistic	 insight.	However,	many	of	 these	descriptors	are	not	suitable	 for	application	to	
complex	systems,	such	as	catalyst	reactive	site	pockets.	In	this	context,	we	recently	disclosed	a	new	set	of	3D	steric	molecular	
descriptors	that	were	originally	designed	for	dirhodium(II)	tetra-carboxylate	catalysts.	Herein,	we	expand	the	Spatial	Molding	
for	Rigid	Targets	(SMART)	descriptor	toolkit	by	releasing	SMARTpy;	an	automated,	open-source	Python	API	package	for	com-
putational	workflow	integration	of	SMART	descriptors.	The	impact	of	the	structure	of	the	molecular	probe	for	generation	of	
SMART	descriptors	was	analyzed.	Resultant	SMART	descriptors	and	pocket	features	were	found	to	be	highly	dependent	upon	
probe	selection,	and	do	not	scale	linearly.	Flexible	probes	with	smaller	substituents	can	explore	narrow	pocket	regions	re-
sulting	in	a	higher	resolution	pocket	imprint.	Macrocyclic	probes	with	larger	substituents	are	more	applicable	to	larger	cavi-
ties	with	smooth	boundaries,	such	as	dirhodium	paddlewheel	complexes.	In	these	cases,	SMARTpy	provides	comparable	de-
scriptors	to	the	original	calculation	method	using	UCSF	Chimera.	Finally,	we	analyzed	a	series	of	case	studies	demonstrating	
how	SMART	descriptors	can	impact	other	areas	of	catalysis,	such	as	organocatalysis,	biocatalysis,	and	protein	pocket	analysis.

INTRODUCTION	
Structure-function	relationships	are	leveraged	to	provide	

mechanistic	 insight	 into	 the	connections	between	catalyst	
structural	features	and	observed	experimental	outcome.	A	
diverse	 array	 of	 steric	 molecular	 descriptors	 has	 histori-
cally	captured	structural	features	of	3D-representations	for	
application	 to	 statistical	 modeling	 and	 machine	 learning	
(ML)	prediction	of	reaction	performance.	Traditional	steric	
descriptors,	including	Sterimol1,2	(L,	B1,	B5)	and	buried	vol-
ume3,4	(VBur),	are	successfully	applied	to	diverse	areas	of	ca-
talysis	 and	provide	unique	 insight	 into	 structure-function	
relationships	 from	resultant	ML	models.	However,	 limita-
tions	of	many	steric	molecular	descriptors	prevent	their	ap-
plication	to	certain	complex	systems.	
We	 recently	 developed	 a	 set	 of	 steric	 molecular	 de-

scriptors	 tailored	 for	 dirhodium	paddlewheel	 catalysts.5–7	
These	are	privileged	catalyst	scaffolds	with	large,	conical	re-
active	pockets,	that	provide	a	confined	environment	condu-
cive	 to	 selective	 transformations.8–10	 As	 a	 result	 of	 these	
complex	 3D-conformations,	 steric	 features	 of	 these	 cata-
lysts	cannot	be	adequately	parametrized	using	traditional	
molecular	descriptors.5	 For	 instance,	 Sterimol	descriptors	
are	highly	dependent	upon	the	selection	of	the	L-axis.	This	
can	be	difficult	to	apply	to	systems	with	multiple	bridging	
ligands	 and	 distinct	 axial	 binding	 sites	 (Figure	 1a).	 Simi-
larly,	VBur	assumes	a	spherical	binding	environment	around	
the	metal	center	of	interest,	and	the	radius	of	search	space	
is	often	 too	small	 to	encompass	 the	distal	 ligand	environ-
ment	(Figure	1b).	As	a	result,	these	steric	descriptors	that	
were	designed	for	small	molecule	catalysts	were	found	to	

be	insufficient	to	describe	the	complex	cavity	environments	
in	dirhodium	catalysts.	

	
Figure	1:	a)	Challenges	of	dirhodium	catalysts	for	Sterimol	de-
scriptors.	 b)	 Challenges	 of	 dirhodium	 catalysts	 for	 VBur	 de-
scriptors.	
Free	and	open-source	toolkits	for	assessing	the	size	and	

shape	of	catalytically	active	pockets	are	well	established11–
14	and	utilized	in	fields	such	as	protein	docking.15–18	These		
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toolkits	also	have	limitations	that	prevent	flexible	applica-
tion	to	a	diverse	set	of	structures.	First,	many	of	these	pro-
grams	do	not	allow	 for	pocket	analysis	of	 structures	 con-
taining	subunits	beyond	the	scope	of	amino	acids	or	DNA-
bases,	and	thus	cannot	be	applied	to	many	small	molecule	
transition	metal	catalysts.	Second,	these	programs	are	de-
signed	to	analyze	pockets	encompassed	within	or	between	
larger	molecules	and	can	struggle	to	provide	a	reasonable	
cut	off	for	pockets	with	a	wide	entry.	Finally,	most	methods	
interpretate	pocket	accessibility	on	the	basis	of	solvent	ac-
cess.	 1920,21This	 method	 typically	 relies	 on	 generating	 a	
“space	 filling”22	 model	 of	 points	 with	 assigned	 Van	 der	
Waals	radii	to	parametrize	an	active	cavity	through	its	in-
teractions	with	solvent	models.	
Other	 approaches	 for	pocket	 description	have	been	 ex-

plored,	 including	generating	representations	based	on	lig-
and	 docking,	 electron	 density	 maps,	 grid-based	 ap-
proaches23,	and	machine	learning	algorithms24–26.	These	es-
tablished	methods	can	still	overestimate	the	size	and	acces-
sibility	of	specific	regions	within	a	pocket	from	the	perspec-
tive	 of	 a	 bound	 molecule.	 Approaches	 based	 on	 experi-
mental	assessment	of	a	series	of	docked	molecules	can	in-
herently	limit	the	domain	of	applicability	of	the	pocket	in-
formation	to	structurally	similar	molecules.27	28Thus,	a	gen-
eral	 method	 to	 generate	 quantitative	 pocket	 representa-
tions	remain	of	interest.	
Spatial	Molding	for	Approachable	Rigid	Targets	(SMART)	

descriptors	 quantify	 structural	 features	 at	 the	 reactive	

pockets	of	 catalysts,	 such	as	cavity	volume	(VCAVITY),	 entry	
surface	area	(ESA),	and	contact	surface	area	(CSA)	with	the	
surrounding	 ligands.	 These	 descriptors	 are	 obtained	
through	conformational	sampling	of	reactive	site	space	us-
ing	a	generalized	molecular	probe.	SMART	descriptors	were	
initially	applied	to	quantify	the	origins	of	regioselectivity	in	
dirhodium	 C‒H	 functionalization	 of	 donor/acceptor	 car-
benes5	and	diastereoselectivity	in	dirhodium	C‒H	insertion	
of	donor/donor	carbenes7.	Although	we	envisioned	broader	
applicability	to	diverse	areas	of	catalysis,	the	original	imple-
mentation	of	SMART	was	challenging	for	widespread	adop-
tion,	including	a	significant	reliance	on	user	input	and	the	
necessity	for	commercial	software.	These	two	factors	have	
prevented	the	rapid	analysis	of	larger	data	sets	and	limited	
the	accessibility	of	the	tool	to	a	broader	community	of	po-
tential	users.	
Herein,	 we	 release	 SMARTpy;	 a	 Python	 suite	 uniting	

open-source	computational	packages	 in	a	 fully	automated	
workflow	for	the	generation	of	SMART	descriptors.	In	addi-
tion	to	description	of	the	construction	of	the	SMART	cavities	
we	evaluated	 the	 impact	of	probe	design	on	resultant	de-
scriptors.	 Finally,	 we	 demonstrate	 the	 applicability	 of	
SMART	 descriptors	 through	 a	 series	 of	 case	 studies.	 This	
code	 is	 freely	 available	 and	 open-sourced	 on	 GitHub	
(https://github.com/SigmanGroup/SMART-molecular-
descriptors.git).	A	detailed	description	of	the	API	is	supplied	
in	the	Supplementary	Information,	and	all	structures	ana-
lyzed	are	available	in	the	Git	repository.		

	
Scheme	1.		SMART	template	conformational	search	protocol.	

	
	
WORKFLOW	
Original	Workflow	 for	 SMART	 Descriptor	 Calcula-

tion.	The	workflow	for	generating	SMART	descriptors	has	
been	 partially	 disclosed	 by	 Davies	 and	 Sigman.5	 In	 this	
workflow,	 molecular	 probes	 were	 added	 to	 catalysts,	
checked	for	atomic	overlap	with	the	structure,	then	con-
former	searched,	all	requiring	manual	user	input	for	every	
step.	This	 implementation	was	time	consuming	and	lim-
ited	 the	 possibility	 for	 high	 throughput	 catalyst	 para-
metrization.	The	most	significant	limitation	of	the	original	
workflow	is	that	probe	conformer	ensembles	were	gener-
ated	using	the	OPLS3e	forcefield29	and	a	torsional	Monte	
Carlo	(MC)	algorithm	implemented	in	MacroModel,	a	com-
mercial	 software	 distributed	 by	 Schrödinger.	 Molecular	

descriptors	were	then	calculated	using	the	free	program	
UCSF	Chimera30.	SMARTpy	employs	exclusively	 free	and	
open-source	Python	modules	 to	generate	conformer	en-
sembles.	 Additionally,	 the	 package	 employs	 multiple	
methods	for	computing	an	array	of	steric	descriptors.	
Molecular	 Probe	 Conformational	 Generation	 in	

SMARTpy.	 The	 initial	 method	 for	 conformer	 searching	
implemented	 in	 the	 SMART	 package	 was	 a	 simple	 tor-
sional	search	algorithm	that	rejected	moves	based	on	Van	
der	Waals	overlaps	with	the	structure.	This	method	per-
formed	well	for	acyclic	probes	with	freely	rotatable	bonds,	
but	 conformational	 searching	 for	 macrocycles	 was	 not	
possible	using	this	method.	Macrocyclic	structures	are	a	
known	limitation	of	torsional	algorithms	as	rotating	one	
bond	along	a	macrocycle	causes	multiple	other	bonds	to	
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simultaneously	rotate	on	the	structure	in	different	direc-
tions	to	maintain	atomic	geometry.	This	makes	the	search	
space	difficult	to	explore	by	simple	torsional	methods.	

	
Figure	2.	a)	VCAVITY	and	proxVCAVITY	measured	using	VBur	computed	at	different	radii	(12	Å	and	5	Å).	b)	VCAVITY	and	ACAVITY	measured	by	
triangulation	of	the	probe	ensemble	point	cloud.	c)	Sterimol	values	(L,	B1,	B5)	measured	for	the	cavity	ensemble.
MacroModel	 conformational	 searching	employs	a	ver-

sion	of	the	ConfGen	algorithm	disclosed	by	Watts	et.	al.31	
to	expand	applicability	and	speed	up	conformer	searching.	
ConfGen	 employs	 a	 template-based	method	where	 sub-
structures	of	the	molecule	of	interest	are	matched	to	pre-
computed	templates	of	conformer	ensembles.	Inspired	by	
the	format	of	 the	ConfGen	algorithm,	a	similar	approach	
was	employed	in	SMARTpy.	
Using	 the	 RDKit	 function	 EmbedMultipleMolecules	

command,	a	conformer	ensemble	template	is	first	gener-
ated	 for	 the	 free	 probe	 using	 the	MMFF	 forcefield.	 This	
represents	the	accessibility	of	space	to	the	probe	unhin-
dered	by	a	catalyst	structure	(Scheme	1).	This	template	is	
then	 fit	 into	 the	 pocket	 of	 interest	 aligned	 to	 a	 defined	
binding	axis	vector,	and	conformers	are	saved	or	rejected	
based	on	Van	der	Waals	overlap	with	the	structure.	The	
orientation	 of	 the	 probe	 template	 is	 rotated	 about	 the	
binding	axis	 stochastically,	 and	 the	 fitting	and	assessing	
process	 is	 repeated	 for	 a	 user-defined	 number	 of	 steps.	
The	saved	conformers	from	each	fitting	iteration	are	com-
piled	into	a	single	ensemble	and	returned	as	an	object	or	
optionally	saved	to	an	SDF	file	for	later	analysis.	
Molecular	 Descriptor	 Computational	 Methods	

Available	in	SMARTpy.	 In	UCSF	Chimera,	the	command	
molmap	was	used	 to	enclose	 the	probe	conformers	 in	a	
molecular	surface	from	which	VCAVITY	and	ACAVITY	were	com-
puted	(Figure	SX).	The	molmap	function	in	UCSF	Chimera	

is	 a	density-based	 computation	 that	 computes	 a	 surface	
around	 select	 atoms	 in	 a	 manner	 proportional	 to	 the	
atomic	numbers.	Open-source	Python	packages	were	im-
plemented	instead	for	either	speed	or	expanded	function-
ality	 to	compute	SMART	descriptors	 from	probe	ensem-
bles.	
Volume	 descriptors,	 such	 as	 VCAVITY,	 can	 be	 computed	

through	two	different	methods.	In	the	first	method,	alge-
braic	triangulation	and	the	alpha	method19	to	compute	a	
surface	encompassing	all	atoms	of	the	probe	ensemble	us-
ing	PyVista32	(Figure	3b).	Proximal	(proxVCAVITY)	and	distal	
(distVCAVITY)	volume	can	be	computed	by	defining	a	radius	
for	spherical	intersection	with	the	ensemble	and	compu-
ting	the	space	taken	up	by	separate	portions	of	the	cavity	
(Figure	3a).	This	first	method	was	implemented	for	speed	
of	descriptor	calculation,	as	assessment	of	the	probe	en-
sembles	proved	to	be	the	fastest	(Table	S1).	
In	the	second	method,	VBur	is	first	calculated	for	the	total	

probe	ensemble	using	Morfeus.	To	accomplish	this,	the	en-
semble	is	enclosed	within	a	large	sphere	and	the	percent-
age	of	sphere	volume	occupied	by	the	conformers	is	com-
puted	(Figure	3a).	This	method	is	significantly	slower	than	
the	 first	 (Table	S1),	but	 is	 implemented	 for19	 the	oppor-
tunity	 to	 compute	 an	 extended	 array	 of	 SMART	 de-
scriptors.	The	cavity	space	can	be	further	subdivided	into	
quadrants	 (VQUADRANT)	 and	 octants	 (VOCTANT).	 Sterimol	 de-
scriptors	 can	 also	 be	 computed	 for	 the	 conformational	
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ensemble,	as	an	interpretable	method	to	parametrize	the	
shape	of	 the	 cavity	by	 the	maximum	(B5)	 and	minimum	
(B1)	widths	perpendicular	to	the	structure	binding	axis	(L)	
(Figure	3c).	
	
METHODS	
Structures	for	Analysis.	Computed	dirhodium(II)	cat-

alyst	structures	from	a	study	by	Shaw	and	Sigman7	were	
used	to	assess	the	impact	of	probe	features	on	SMART	de-
scriptors.	A	subset	of	conformers	was	selected	with	sym-
metrical,	asymmetrical,	and	chiral	ligands	with	the	intent	
to	maximize	representative	ligand	feature	diversity	(Fig-
ure	 SX).	 All	 molecular	 probes	 (Table	 S2)	 employed	 for	
analysis	 have	 tetrahedral	 Si	 core	 atoms	 functionalized	
with	either	H	or	F.	The	tether	atom	that	binds	to	the	struc-
ture	is	S	with	a	dummy	H	atom	that	is	removed	after	initial	
docking.	The	choice	of	Si	was	initially	practical	for	ease	of	
pocket	 manipulation	 in	 UCSF	 Chimera	 with	 the	 legacy	
method,	but	many	molecular	units	can	now	be	used	as	a	
molecular	probe	core	using	SMARTpy.	
Computation	 of	 Case	 Study	 Structures.	 Each	 case	

study	is	adapted	from	a	literature	data	set	or	series	of	lit-
erature	data	sets.	Protein	and	enzyme	structures	were	ob-
tained	from	the	RCSB	Protein	Data	Bank	(PDB).	A	subset	
of	1,1’-bi-2-napthol	(BINOL)	and	1,1′-spirobiindane-7,7′-
diol	 (SPINOL)	 catalysts	 were	 selected	 from	 a	 published	
computational	study	on	BINOL	catalysts	to	represent	a	di-
verse	 set	 of	 substituent	 steric	 environments.33	 Initial	
structures	 of	 all	 chiral	 phosphoric	 acid	 (CPA)	 catalysts	
were	 optimized	 by	 xTB-GFN2	 using	 the	 ALPB	 solvation	
method	in	dichloromethane.	All	3D	images	are	generated	
in	UCSF	Chimera.	

	
Figure	 3.	 Dirhodium(II)	 catalyzed	 reactions	 for	 SMART	de-
scriptor	application.	a)	First	disclosure	of	SMART	descriptors	
in	C-H	functionalization	of	1-bromo-4-pethylbenzene.	b)	Sub-
sequent	application	and	expansion	of	SMART	descriptors	in	
diastereoselective	 C-H	 insertion.	 Subsequent	 application	 of	
SMART	descriptors.	
	
GENERAL	UTILITY	GUIDE	
The	Case	for	General	Cavity	Descriptors.	The	first	ap-

plication	 of	 SMART	 descriptors	 aided	 in	 mechanistic	

understanding	and	modeling	for	dirhodium(II)	catalyzed	
site-selective	 C-H	 functionalization	 of	 1-bromo-4-
pethylbenzene	via	donor/acceptor	carbenes	(Figure	4a).5	
This	initial	study	explicitly	quantified	that	more	confined	
and	rigid	catalysts	allowed	for	functionalization	at	the	less	
hindered	C2	 site.	The	authors	noted	direct	 comparisons	
showing	 that	 traditional	 Sterimol	 and	 Vbur	 steric	 de-
scriptors	 were	 unable	 to	 capture	 peripheral	 steric	 hin-
drance,	the	flexibility	of	catalyst	shape,	and	the	resulting	
variable	 accessibility	 of	 the	 bound	 carbene	 to	 the	 ap-
proaching	substrate	C−H	bonds.	

	
Figure	4.	a)	Opportunities	for	modulating	the	generalized	mo-
lecular	probe;	the	core	shape	(left)	and	substituents	(right).	
b)	The	probe	shape	greatly	impacts	the	shape	of	the	cavity.	
Flexible	probes	(AcycH_12)	can	explore	more	hindered	re-
gions	of	a	cavity	than	rigid	probes	(CycH_12).	c)	Probe	sub-
stituents	also	impact	the	size	of	the	cavity.	Small	substituents	
(CycH_12)	can	parametrize	more	space	than	larger	substitu-
ents	(CycF_12).	
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SMART	descriptors	were	 subsequently	 used	 to	model	
diastereoselectivity	in	the	C−H	insertion	of	donor/donor	
carbenes	 for	the	cyclization	of	benzodihydrofurans	(Fig-
ure	4b).7	However,	due	to	the	steric	demands	of	the	intra-
molecular	 cyclization	 transition	 state,	 this	 system	 re-
quired	a	different	molecular	probe	and	a	set	of	proximal	
and	distal	SMART	descriptors.	In	this	general	utility	guide,	
we	present	a	mechanistic	analysis	of	the	different	SMART	
methods	utilized	in	these	two	applications	to	contextual-
ize	the	practical	considerations	analyzed.	

	
Figure	5.	 Ligands	 can	direct	 intermolecular	 regioselectivity	
during	entrance	of	a	substrate	into	the	pocket	(top).	On	the	
other	hand,	ligands	can	direct	intramolecular	diastereoselec-
tivity	within	the	pocket	after	binding	(bottom).	
Parametrizing	 Dirhodium(II)	 Cavity	 Subspace.	 In	

the	 initial	 SMART	 application,	 the	 full	 cavity	 space	was	
parametrized.	This	proved	to	be	advantageous	for	an	in-
termolecular	C–H	insertion	as	the	second	substrate	enters	
the	 catalyst	 cavity	 and	 is	 directed	 towards	 the	 rhodium	
carbene	(Figure	5,	top).	In	the	intramolecular	cyclization,	
the	 site	 for	 C–H	 insertion	 is	 already	 within	 the	 pocket	
upon	carbene	 formation,	 thus	 the	space	proximal	 to	 the	
rhodium	is	likely	to	be	most	influential	to	selectivity	(Fig-
ure	5,	bottom).	
This	analysis	prompted	the	division	of	space	within	the	

SMART	cavity	into	proximal	vs	distal	with	respect	to	the	
rhodium.	Excluding	the	large,	distal	portion	of	the	pocket	
allows	for	focused	parametrization	of	the	proposed	active	
space	of	the	cavity	for	the	diastereoselectivity	determin-
ing	step.	To	accomplish	this,	a	sphere	was	centered	2.0	Å	
from	the	rhodium	(along	the	Rh-Rh	vector)	to	simulate	the	
position	of	a	bound	donor/donor	carbene.	The	proximal	
cavity	space	was	then	separately	parametrized	from	the	
full	space.	
It	 is	 generally	 recommended	 that	 the	 position	 of	 the	

probe	be	determined	using	 information	about	the	struc-
ture	 via	 computational	 or	 experimental	 methods.	 If	 a	
mechanistically	 guided	 “docking	 point”	 is	 not	 available,	
then	consistency	of	the	positioning	and	distance	between	
the	 structure	 binding	 point	 and	 the	 molecular	 probe	
should	be	conserved	across	a	data	set.	

	
Figure	6.	Comparison	of	VCAVITY	for	molecular	probes	with	an	
increasing	 energy	 window.	 Conformational	 sampling	 was	
performed	using	MacroModel.	
	
DISCUSSION	
Analyzing	Molecular	Probe	Design.	Users	may	wish	to	

carefully	tailor	the	probe	structure	to	a	specific	system	of	
interest,	thus	the	careful	design	of	a	molecular	probe	is	es-
sential.	The	general	SMART	molecular	probe	is	a	feature	
with	two	main	modes	of	modularity:	shape	and	substitu-
ent	radius	(Figure	4a).	Probe	shape	can	significantly	influ-
ence	the	determination	of	accessible	pocket	space.	Acyclic	
probes	allow	for	exploration	of	smaller	areas	with	more	
hindrance,	such	as	between	dirhodium	ligands,	resulting	
in	a	more	irregular	pocket	than	macrocyclic	probes	(Fig-
ure	4b).	Though	both	studies	using	SMART	utilize	macro-
cyclic	probes	acyclic	probes	are	noteworthy	variants	that	
may	be	preferred	in	certain	applications	where	high	flexi-
bility	is	essential,	such	as	shape-dependent	analysis.	
Cavities	generated	using	acyclic	probes	generally	result	

in	 larger	 values	 for	 SMART	 descriptors	 due	 to	 their	 in-
creased	flexibility	and	therefore	larger	search	space	com-
pared	 to	 macrocyclic	 probes.	 This	 is	 shown	 to	 impact	
VCAVITY	 when	 varying	 the	 conformational	 search	 energy	
window	(Figure	6).	
Macrocyclic	probes	(CycH_8,	CycH_10,	CycH_12)	reach	

maximum	VCAVITY	quickly,	and	higher	energy	conformers	
are	unable	to	continue	to	parametrize	additional	space	by	
further	 window	 increases	 beyond	 5.0	 kcal/mol.	 These	
probes	are	more	constrained	in	shape,	generally	resulting	
in	 more	 regular,	 spherical	 pockets.	 Acyclic	 probes	
(AcycH_8,	 AcycH_10,	 AcycH_12)	 explore	 more	 space	
(larger	 VCAVITY)	 with	 higher	 conformer	 energy	 windows.	
The	flexibility	and	narrow	side	arms	of	acyclic	probes	can	
access	smaller	cavities	within	a	pocket	of	interest,	such	as	
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gaps	and	channels	between	ligands,	parametrizing	unique	
cavity	space	compared	to	macrocyclic	probes.	
Substituents	bound	to	probes	can	also	determine	how	

small	of	space	is	accessible	to	the	probe,	and	consequently	
the	amount	of	detail	in	the	resultant	pocket	information.	
Probes	with	H	and	F	substituents	from	literature	probes	
were	compared	as	test	cases.	Smaller	substituents	(H)	al-
low	 for	 exploration	 of	 space	 closer	 to	 the	 surrounding	
structure,	resulting	in	a	larger	pocket	on	average.	VCAVITY	
computed	 by	 probes	 CycH_12	 and	 CycF_12	 show	 poor	
correlation	at	low	VCAVITY,	indicating	that	they	are	dispar-
ately	 parametrizing	 highly	 confined	 cavities	 (Figure	 7).	
The	 smaller	CycH_12	 substituents	 increase	 flexibility	 of	
the	probe,	allowing	it	to	explore	tighter	spaces	more	com-
pletely.	

	
Figure	 7.	 Comparison	 of	 H	 and	 F	 probe	 substituents.	 De-
scriptors	do	not	correlate	as	well	at	low	values	of	VCAVITY.	The	
lowest	 volumes	 are	more	 limited	using	CycF_12	 instead	of	
CycH_12	due	to	less	flexibility.	
Comparison	 of	 SMARTpy	 Descriptors	 to	 Legacy.	

SMART	 descriptors	 computed	 trhough	 SMARTpy	 were	
shown	 to	perform	comparably	 to	 the	original	UCSF	Chi-
mera	implementation.	VCAVITY	and	proxVCAVITY	are	well	cor-
related	between	the	two	methods	(Figure	11).	Two	outli-
ers	are	observed	that	are	not	well	correlated	due	to	 the	
number	 of	 probe	 conformers	 comprising	 the	 cavity	 en-
semble.	SMART	descriptors	calculated	on	sparse	ensem-
bles	 are	more	 variable	 and	dependent	upon	 the	 confor-
mation	of	the	probe.	The	reduction	of	cavity	featurization	
to	a	single	conformer	also	eliminated	the	generality	of	the	
pocket	information,	as	this	conformer	is	more	representa-
tive	of	where	the	molecular	probe	can	go	as	opposed	to	a	
substrate.	
SMARTpy	computed	VCAVITY	and	proxVCAVITY	are	found	to	

correlate	well	 to	Chimera-computed	descriptors	 (Figure	
8a).	 A	 few	 interesting	 outliers	 are	 observed	 in	 these	

correlations	 (Figure	 8a,	 dashed	 line).	 These	 structures	
were	visually	assessed	and	found	to	have	highly	hindered	
pockets,	 resulting	 in	 only	 a	 single	 probe	 conformer	 fit.	
Such	small	probe	ensembles	are	hypothesized	to	give	dis-
parate	VCAVITY	due	to	the	significant	dependence	upon	the	
exact	probe	conformation,	which	are	fit	into	the	pocket	us-
ing	a	stochastic	algorithm.	
VAREA	and	ESA	are	also	shown	to	correlate	well	to	UCSF	

Chimera	descriptors	(Figure	8b).	This	correlation	does	not	
hold	for	smaller	areas	(Figure	8b	,	gray	region),	attributed	
again	 to	 the	 high	 variability	 of	 SMART	 descriptors	 for	
sparse	 probe	 ensembles.	We	 again	 attribute	 this	 to	 the	
area	of	the	conformer	ensemble	being	highly	variable	for	
sparse	ensembles.	VAREA	is	thus	found	to	be	less	stable	than	
VCAVITY,	suggesting	that	area	descriptors	should	only	used	
for	dense	ensembles.	

	
Figure	8.	a)	VCAVITY	(blue)	and	proxVCAVITY	(red)	computed	us-
ing	SMARTpy	correlate	well	to	the	UCSF	Chimera	volume	de-
scriptors.	The	two	outliers	observed	are	thought	to	be	an	ar-
tifact	 of	 sparse	 conformational	 ensembles	 where	 the	 final	
VCAVITY	 is	more	dependent	on	individual	conformations	than	
with	larger	ensembles.	b)	ACAVITY	 (blue)	and	ESA	(red)	com-
puted	 using	 SMARTpy	 correlate	 well	 to	 the	 UCSF	 Chimera	
area	descriptors	
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Figure	10.	a)	Structure	of	SPINOL	and	BINOL	backbones.	b)	
Probe	positioning	for	CPA	catalysts.	The	phosphoric	acid	was	
replaced	by	the	molecular	probe.	c)	Scope	of	substituents	an-
alyzed	for	both	BINOL	and	SPINOL.	
	
APPLICATIONS	
SMART	 molecular	 descriptors	 are	 envisioned	 with	

broad	 applicability	 to	 the	 study	 and	 design	 of	 catalysts	
with	irregular	shapes.	In	this	section,	we	demonstrate	the	
utility	 of	 SMART	 for	 describing	 chiral	 phosphoric	 acids,	
enantioselective	 metalloenzyme	 catalysis,	 and	 protein	
side	 pockets	 by	 analyzing	 mechanistic	 implications	 of	
computed	descriptors.		
Chiral	 Phosphoric	Acid	 Scaffolds.	 Chiral	 phosphoric	

acid	(CPA)	catalysts	mediate	a	vast	array	of	enantioselec-
tive	 transformations.34	 The	 axially	 chiral	 scaffold	 asym-
metrically	hinders	the	binding	site	around	the	phosphoric	
acid	 moiety,	 encouraging	 selectivity.	 Diverse	 CPA	 back-
bones	and	scaffolds	have	been	designed	to	sterically	mod-
ulate	the	phosphoric	acid	site.	Some	of	the	most	employed	
scaffolds	 include	 BINOL	 and	 SPINOL	 backbones	 (Figure	
10a).	Variants	of	these	scaffolds	were	considered	to	assess	
the	ability	of	SMART	to	parametrize	the	steric	hindrance	
of	the	reactive	sites	of	CPAs	(Figure	10c).	
One	design	feature	commonly	leveraged	is	the	confine-

ment	and	rigidity	of	 the	binding	pocket.35	 Similar	 to	 the	
dirhodium(II)	catalysts,	a	more	hindered	CPA	binding	site	
is	 often	 connected	 to	 higher	 enantioselectivity.	 The	 de-
pendence	of	CPA	performance	on	3,3’	substitution	was	as-
sessed	by	Goodman,	showing	that	the	positioning	of	steric	
bulk	around	the	phosphoric	acid	controls	reactivity	by	di-
recting	substrate	orientation.36,37	From	this	model	of	reac-
tivity	 it	was	hypothesized	that	SMART	descriptors	could	
aid	in	the	comparison	and	selection	of	sterically	hindered	
CPA	structures.	
Due	to	the	proposed	proximal	influence	of	the	steric	en-

vironment	around	the	phosphoric	acid	moiety	on	selectiv-
ity,	the	probe	was	docked	taking	the	place	of	the	P	atom	in	
the	BINOL	and	SPINOL	backbones	(Figure	10b).	The	orig-
inal	CycH_12	 molecular	 probe	was	 implemented	 in	 the	

SMART	workflow	for	these	structures.	Upon	visual	inspec-
tion	of	the	docked	scaffolds	the	probe	was	determined	to	
be	too	long	and	would	likely	parametrize	redundant	space	
far	from	the	binding	site	(Figure	SX).	While	this	could	be	
resolved	during	the	descriptor	computation	step	by	only	
considering	 proxVCAVITY,	 we	 employed	 a	 shorter	 probe	
(CycH_10)	to	increase	the	speed	of	conformer	generation.	

	
Figure	11.	Difference	between	 the	minimum	octant	VOCTANT	
between	BINOL	and	SPINOL	backbones.	Bars	 in	 the	red	re-
gion	represent	catalysts	where	the	minimum	BIONOL	octant	
is	larger	than	the	SPINOL.	Bars	in	the	blue	region	represent	
catalysts	where	 the	minimum	SPINOL	octant	 is	 larger	 than	
the	BINOL.	
SMART	Descriptor	Analysis	for	Phosphoric	Acid	Cat-

alysts.	SPINOL	catalysts	were	initially	designed	to	provide	
more	 constrained	 and	 rigid	 reactive	 cavities	 than	 their	
BINOL	analogs.	Analysis	of	the	VCAVITY	 for	various	substi-
tuted	SPINOL	and	BINOL	catalysts	shows	a	linear	correla-
tion	 between	 backbones	 (Figure	 11a)	 supporting	 linear	
scaling	 of	 substituent	 bulk	 between	 backbone	 scaffolds.	
SPINOL	 catalysts	 generally	 have	 a	 smaller	 VCAVITY	 than	
BINOL	analogs	(Figure	Xb),	supporting	the	 initial	design	
impetus	for	SPINOL	scaffolds.	A	more	complex	trend	be-
tween	BINOL	and	SPINOL	became	apparent	through	anal-
ysis	of	VOCTANT.	
It	is	hypothesized	that	quadrant	bulk	plays	an	important	

role	 in	 substrate	 orientation.	 To	 remove	 bias	 in	 cavity	
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volume	arising	from	the	backbone	scaffolds,	octant	analy-
sis	was	performed	for	each	catalyst,	where	only	the	posi-
tive-Z	octants	were	considered	for	analysis	(Figure	SXa).	
The	two	backbone	aryl	C	atoms	were	assigned	as	the	XZ	
plane,	and	the	probe	tether	atom	defined	the	Z-axis	(Fig-
ure	SXb).	The	minimum	VOCTANT	was	found	to	vary	in	mag-
nitude	depending	on	both	 the	substituent	and	 the	back-
bone.	 The	 minimum	 VOCTANT	 for	 the	 BINOL	 backbone	 is	
larger	than	the	SPINOL	for	substituents	with	a	strict	3,5-	
substitution	pattern	(Figure	11b,	red).	Substituents	with	a	
1,6-	pattern	generate	a	larger	minimum	octant	for	SPINOL	
backbones	than	BINOL	(Figure	11b,	blue).		
Protein	Binding	Pockets.	The	binding	of	small	mole-

cules	to	protein	receptors	is	fundamental	to	many	biolog-
ical	processes.	Assessment	of	the	binding	environment	in	
protein	active	sites	is	crucial	to	the	design	of	small	mole-
cule	 ligands	 and	pharmaceuticals.	 Important	 features	 to	
assess	in	docking	studies	include	the	size	and	shape	of	the	
active	cavity	as	shape	matching	influences	binding.	To	il-
lustrate	the	utility	of	SMART	for	quantifying	protein	bind-
ing	pockets,	the	structure	of	the	G-coupled	protein	recep-
tor	(GPR)	was	selected	for	analysis.	
GPRs	 are	 responsible	 for	 a	 variety	 of	 biological	 func-

tions,38,39	 and	 design	 of	 small	 molecule	 antagonists	 for	
GPRs	is	of	interest	in	the	field	of	computational	drug	de-
sign.39,40	The	structure	and	dynamics	of	 the	side	binding	
pocket	of	the	GPR101-Gs	complex	(PDB:	8W8R)	have	been	

shown	 to	 influence	binding	 in	 computational	 antagonist	
design.38	The	structure	of	the	GPR101–Gs	protein	was	ob-
tained	 from	the	PDB	(PDB:	8W8R)	and	 truncated	 to	 the	
side	binding	pocket	of	GPR101.	Water	molecules	and	ions	
were	removed	 from	the	structure	 to	allow	space	 for	 the	
molecular	probe.	Multiple	conformations	of	these	proteins	
were	not	considered	to	reduce	computational	cost,	but	in	
principle	this	workflow	could	be	applied	to	analyze	pock-
ets	changes	across	conformational	ensembles.	
The	significance	of	residues	around	the	binding	site	can	

be	 difficult	 to	 discern,	 as	 dynamic,	 noncovalent	 interac-
tions	between	the	substrate	and	protein	are	influential	to	
docking.	Three	residues	were	selected	along	the	binding	
pocket	 to	 capture	 the	 local	 environments	 at	 different	
depths,	represented	by	noncovalent	attachment	to	differ-
ent	types	of	residues	(Figure	12).	The	centroid	of	P30	was	
used	 as	 the	 binding	 reference	 to	 assess	 environment	
around	the	N-terminus.	The	C2	of	the	W441	residue	was	
selected	 to	parametrize	 the	 transmembrane	domain	be-
tween	the	N-terminus	and	the	deeper	region	of	the	pocket.	
Finally,	T111	was	selected	to	probe	the	deeper	region	of	
the	larger	binding	cavity.	The	default	probe	CycH_12	was	
unable	 to	 dock	 in	 the	 side	 pocket	 without	 overlapping	
with	 protein	 residues.	 Due	 to	 the	 narrow	 shape	 of	 the	
binding	pocket,	a	 linear	probe	(LinH_6)	was	utilized	 for	
protein	descriptor	calculation.	

	
Figure	12.		a)	Select	GPR101	(PDB:	8W8R)	residues	along	the	transmembrane	domain	and	binding	pocket.	Depiction	of	probe	posi-
tioning	for	each	residue	(center).	b)	SMART	cavities	for	GPR101	(PDB:	8W8R)	side	biding	pocket	at	different	residues.	The	N-termi-
nus	is	very	hindered	resulting	in	a	small	cavity	(purple).	The	deepest	region	of	the	pocket	(blue)	is	larger	and	likely	has	more	flexi-
bility	in	binding	molecule	features.	The	transmembrane	between	the	two	pockets	is	too	hindered	for	the	probe	to	enter.	Either	con-
formational	dynamics	or	favorable	electrostatic	interactions	are	hypothesized	to	dictate	binding	in	this	domain.
The	N-terminus	is	shown	to	be	significantly	hindered	in	

GPR101	(Figure	X,	purple).	Additionally,	the	environment	
around	residue	P30	is	too	hindered	to	fit	a	general	molec-
ular	probe	(Figure	X,	red).	Based	on	this	analysis,	entrance	
of	a	small	molecule	into	the	side	pocket	is	likely	dictated	

by	 either	protein	 flexibility	 to	 open	 the	 transmembrane	
domain,	 or	 by	 favorable	 electrostatic	 interactions	 with	
neighboring	 residues.	 The	 deepest	 part	 of	 the	 pocket	 is	
shown	to	be	large	and	irregular	in	shape,	which	may	pro-
mote	the	binding	of	diverse	antagonists.	
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Selectivity	 in	Fe-Porphyrin	Enzymes.	Enzymes	with	
engineered	 reactive	 sites	 can	 induce	 highly	 selective	
transformations.39–42	One	well	established	transformation	
is	 intermolecular	 carbene	 insertion	bio-catalyzed	by	Fe-
porphyrin	residues.43–45	The	orientation	and	approach	of	
the	 substrate	 to	 the	 Fe-carbene	 intermediate	 influences	
the	observed	selectivity,	thus	the	residues	around	the	por-
phyrin	site	are	often	specifically	targeted	for	mutations.		
In	2022,	Arnold	disclosed	a	site	selective	C-H	function-

alization	using	engineered	enzyme	catalysts	derived	from	
the	P411-PFA	variant.46	Three	variants	were	assessed	to	
provide	 insight	 into	 the	 structural	 relationship	between	
active	site	residues	and	observed	reactivity.	We	reasoned	
that	SMART	descriptors	could	provide	additional	 insight	
into	the	porphyrin	site	proximal	to	Fe,	representative	of	
the	approach	of	N-phenyl-morpholine	to	a	Fe-carbene	in-
termediate.		
Enzyme	 structures	were	 obtained	 from	 the	PDB	 (IDs:	

5UCW,	 8DSG)	 and	 truncated	 to	 a	 single	 chain	 (A)	 for	

SMART	analysis.	Due	to	the	structural	significance	of	the	
bridging	water	 (w0)	 in	P411-PFA	 (8DSG),	 this	molecule	
was	retained	in	the	truncated	structure.46	Remaining	wa-
ter,	ion,	and	non-covalently	bound	residues	were	removed	
from	each	enzyme	to	allow	for	assessment	of	 the	empty	
cavity.	The	linear	probe,	LinH_6,	was	docked	at	the	axial	
position	of	the	Fe	site	to	represent	a	bound	carbene	inter-
mediate.	
The	major	structural	difference	between	P411-PFA	and	

the	P-4	variant	used	previously	for	selective	amination	is	
the	perturbation	of	the	helix	directly	over	the	binding	site.	
In	P4110PFA,	a	residue	mutation	induces	a	flip	in	orienta-
tion	resulting	in	a	site	of	increased	steric	hindrance.	This	
artifact	 hinders	 the	 distal	 portion	 of	 the	 binding	 cavity,	
shown	by	 a	 decrease	 in	distVCAVITY	 from	260Å3	 to	 237Å3	
(Figure	15a,b).	This	distal	hindrance	around	the	porphy-
rin	may	 influence	observed	selectivity	by	restricting	 the	
approach	of	the	N-phenyl-morpholine	substrate.	

	
Figure	13.	a)	SMART	cavity	(purple)	for	P-4	variant	(PDB:	5UCW).	b)	SMART	cavity	(purple)	for	P411-PFA	enzyme	(PDB:	8DSG).	The	
bulge	in	the	helix	proximal	to	the	porphyrin	site	exerts	more	hindrance	on	the	cavity	than	in	5UCW.

	
CONCLUSION	
Reactive	cavities	are	difficult	 to	sterically	parametrize	

in	mechanistically	meaningful	ways	using	traditional	mo-
lecular	descriptors.	A	 free,	open-source	Python	package,	
SMARTpy,	is	introduced	to	compute	SMART	molecular	de-
scriptors	that	have	been	disclosed	in	application	to	dirho-
dium(II)	 selectivity.	 SMART	 descriptors	 provide	 infor-
mation	 about	 the	 steric	 environment	 within	 a	 reactive	
cavity	 from	 the	 perspective	 of	 a	 bound	 or	 docked	 sub-
strate.	Though	designed	for	dirhodium	catalysts,	we	envi-
sion	a	broad	scope	of	applicability	to	diverse	systems.	
SMARTpy	 performs	 a	 template-based	 conformational	

search	that	generates	an	ensemble	representative	of	the	

topology	of	 the	 cavity.	The	 choice	of	molecular	probe	 is	
shown	to	influence	the	information	obtained	from	SMART	
parameters.	Acyclic	probes	are	shown	to	generate	highly	
irregular	 cavities,	 parametrizing	 the	 space	 between	 lig-
ands.	Macrocyclic	probes	generate	regular,	more	spherical	
pockets	due	to	rotational	barriers.	The	flexibility	of	mac-
rocyclic	probes	can	be	increased	by	the	selection	of	small	
substituents	bound	to	the	core,	such	as	H.	This	allows	the	
probe	to	explore	space	closer	to	the	ligands,	resulting	in	a	
“high	definition”	representation	of	the	cavity.	Depending	
on	the	flexibility	of	the	substrates	coming	together	within	
the	 pocket	 in	 the	 transformation	 of	 interest,	 smaller	 or	
larger	probes	may	be	more	suitable	for	generating	SMART	
descriptors.	
SMART	 descriptors	 were	 found	 to	 capture	 salient	

trends	across	BINOL	and	SPINOL	CPAs.	Lower	VCAVITY	 in	

a) b) P411-PFAP-4 Variant

distVCAVITY = 237 Å3distVCAVITY = 260 Å3
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SPINOL	catalysts	supports	the	prevalence	of	higher	selec-
tivity	 compared	 to	 BINOL	 catalysts.	 SMARTpy	 was	 also	
demonstrated	with	a	GPR101-Gs	side	binding	pocket.	The	
hindrance	of	the	N-terminus	and	transmembrane	domain	
are	 emphasized,	 suggesting	 that	 favorable	 non-covalent	
interactions	 are	 likely	 responsible	 for	 the	 initial	 proce-
dure	of	small	molecule	binding.	Finally,	two	enzymes	used	
for	different	selective	transformations	are	shown	to	differ	
in	the	distal	region	of	the	porphyrin	cavity.	The	more	hin-
dered	distal	cavity	observed	in	P411-PFA	is	hypothesized	
to	constrain	the	approach	of	substrates	to	the	Fe-carbene,	
directing	selectivity	for	C-H	functionalization.		
In	summary,	SMART	provides	a	convenient	tool	for	the	

precise	quantification	of	steric	environments	for	complex,	
irregularly	shaped	3D	cavities,	which	are	critical	for	con-
trolling	reactivity	 in	disparate	chemical	and	biochemical	
systems.	Although	non-covalent	interactions	are	not	cur-
rently	 supported	 for	 the	 generation	 of	molecular	 probe	
ensembles,	this	is	an	area	of	current	development.	
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