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Abstract—The onset of Industry 4.0 is rapidly transform-
ing the manufacturing world through the integration of cloud
computing, machine learning (ML), artificial intelligence (AI),
and universal network connectivity, resulting in performance
optimization and increased productivity. Digital Twins (DT) are
one such transformational technology that leverages software
systems to replicate physical process behavior, and representing
it in a digital environment. This paper aims to explore the
use of photogrammetry (which is the process of reconstructing
physical objects into virtual 3D models using photographs) and
3D Scanning techniques to create accurate visual representation
of the ’Physical Process’, to interact with the ML/AI based
behavior models. To achieve this, we have used a readily available
consumer device, the iPhone 15 Pro, which features stereo
vision capabilities, to capture the depth of an Industry 4.0
system. By processing these images using 3D scanning tools,
we created a raw 3D model for 3D modeling and rendering
software for the creation of a DT model. The paper highlights the
reliability of this method by measuring the error rate in between
the ground truth (measurements done manually using a tape
measure) and the final 3D model created using this method. The
overall mean error is 4.97% and the overall standard deviation
error is 5.54% between the ground truth measurements and
their photogrammetry counterparts. The results from this work
indicate that photogrammetry using consumer-grade devices can
be an efficient and cost-efficient approach to creating DTs for
smart manufacturing, while the approaches flexibility allows for
iterative improvements of the models over time.

Index Terms—Digital Twin, Photogrammetry, Industry 4.0,
Stereo-vision, 3D Reconstruction, Smart Manufacturing

I. INTRODUCTION

As digital technologies advance, Industry 4.0 (I4) represents
the next step in manufacturing, development, and education,
where the digital and physical worlds intersect, automating
cyber-physical systems (CPS), through the use of AI/ML and
network connectivity [1], [2]. This adoption of I4 is enabling
design and development of Digital Twins, which are virtual
environments that digitally mirror the real CPS in all aspects
through the use of one or more behavior models [1]–[3].

This work is partly supported by the National Science Foundation (NSF)
award number NSF-2335046 and the University of Arizona’s Research,
Innovation & Impact (RII) award for the “Future Factory”.

A DT is a Software System replicating the behavior of
one or more physical processes using one or more behavior
models, aiming to represent the physical twin’s complete
lifecycle [1]. DT’s aim to combine data-based and physics-
based behavior models, while driven dynamically by real data,
allowing for observation and analysis of processes over time
[3], [4]. The most advanced twins may connect to real-time
data, like an interactive 3D simulation of an active offshore oil
platform, while others, sometimes described as digital siblings,
enable testing hypothetical situations or performing analysis in
an accurate, data-driven environment [2]. This can be partic-
ularly useful in manufacturing processes as product design,
performance, maintenance, parameters, and assessments can
be tested and adjusted in a virtual environment that reacts
like the physical system without posing a risk to safety or
production [3]. Other industries have also found benefits in
using DT environments over simple digital models for the
ability to customize environments to specific situations. How-
ever, 3D modeling relies on manual use of Computer-Aided
Design (CAD) software models that are difficult to acquire,
proprietary, and unavailable for heterogeneous systems. For
example, for an actual deployment of a factory production line,
obtaining a 3D model of each machine is expensive, or not
possible, posing a challenge in building a true DT, requiring
an efficient framework for the 3D models of each machine
combining them with the DT.

Through this paper, we establish a methodology to effi-
ciently build 3D models for digital twinning of Industry 4.0
systems through integration into digital twinning frameworks
like the DT4I4-Secure framework proposed by Lin et al.
[1] as shown in figure 1, using photogrammetry. The main
contributions of this paper:

• The paper presents a methodology to produce 3D models
for building DTs, at scale, accurately, and at an inex-
pensive cost allowing accurate replication of physical
systems in a virtual space.

• The paper showcases the use of stereo-vision photogram-
metry to create an accurate 3D reconstruction of the
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Fig. 1. 3D Scanning and Reconstruction for Industry 4.0 Digital Twin
Framework

physical system.
• The paper highlights procedural considerations and error

rates in results between the ground truth measurements
and the photogrammetry model.

The rest of the paper is organized as follows: In Section II
we discuss literature related DT and photogrammetry. In sec-
tion III we highlight our methodology to use photogrammetry
for building accurate 3D models. In section IV we discuss
experimental evaluation and results. We finally conclude the
paper in section V.

II. LITERATURE REVIEW

This section presents the related work for this paper. The
related work is divided into two subsections: Digital Twins
and Photogrammetry.

A. Digital Twins (DT)

A DT aims to establish a mirrored connection between the
physical and virtual realms, mapping sensor-measured data
onto the virtual model. NASA’s 2010 technology roadmap
draft outlined the utilization of DTs as physical models,
updated through sensor feedback to reflect vehicle conditions
[5]. Tao et al. propose a DT to be five-dimensional: Physical,
Virtual, Connection, Data, and Service. In this five-dimension
model, the DT can be applied for several different applications
including predictive analysis [6], optimization, and security [7]
Lin et al. [1], present a similar five-layered framework to DTs
to address Industry 4.0 Security challenges. Similar to Lin’s
work, DTs find application in system design, optimization,
predictive analysis, and education requiring accurate represen-
tation and visualization of the physical process to improve the
DT’s usability [2]. Photogrammetry is an effective method to
visualize the physical systems of the DT.

B. Photogrammetry

Photogrammetry is the measurement of an object’s distances
from multiple photographs of the same object [8]. Photogram-
metry through stereo-vision detects the depth between images
to generate accurate 3d models of physical objects [9]. While
traditionally restricted to specialized scanning equipment, the
Internet of Things (IoT) revolution has made photogrammetry

accessible through low end/low cost devices and the combina-
tion of digital cameras, LiDAR (Light Detection and Ranging)
scanners, and software (combined with artificial intelligence)
[10]–[12]. Recent breakthroughs have resulted in improvement
in photogrammetry over traditional 3D modeling approaches,
allowing photogrammetry to be cheaper through the usage of
consumer-grade devices like smartphones and cameras rather
than pricey specialized instruments, while allowing greater
flexibility and accessibility through IoT connectivity. Fur-
thermore, photogrammetry automates the modeling process,
allowing for faster and more accurate development of 3D
models, reducing reliance skilled, time-consuming, and man-
ual labor required for traditional approaches [13]. In addition,
the ability to continuously refine and update models over time
enhances iterative processes, making photogrammetry adapt-
able to evolving environments and more effective in real-world
applications. [13]. Photogrammetry methods such as stereo-
vision photogrammetry enable highly accurate 3D modeling
through multiple cameras capturing complex systems from
various angles utilizing two horizontal synchronized cameras
[14]–[16], with research efforts focused on reduction in mea-
surement uncertainty through using quaternions modeling of
the stereo cameras or use of triangulation [17]–[19]. These ad-
vancements allow the usage of stereo-vision photogrammetry
in manufacturing [14]–[16] and robotics [20]–[22].

III. METHODOLOGY

Our methodology aims to leverage photogrammetry to ob-
tain 3D models to integrate with the DT4I4 Framework as
shown in Figure 1. 3D models requiring a reconstruction
of images from 2D to 3D, a process that is broken down
into multiple stages: Camera Calibration Stage, Image Pair
Rectification Stage, and Space Point coordinate calculation
Stage. This section describes each of these stages.

A. Camera Calibration

Camera calibration estimates intrinsic and extrinsic param-
eters to map 2D image points to 3D world points [23], [24].
Intrinsic parameters define internal camera characteristics like
focal length and optical center, while extrinsic parameters
describe the camera’s position and orientation [23], [25]. By
capturing images of a known geometry, calibration enables a
rigid transformation from world to camera coordinates, crucial
for 3D reconstruction [24], [26], [27]. This process shown in
Figure 2 enables accurate camera calibration allowing accurate
reconstruction of the scene’s geometry. [26], [27].

These parameters are configured using a planar pattern-
based camera calibration algorithm [28]. A point on a 2D
plane is represented by ks = [u v]. A point on a 3D plane
is represented by Ks = [Xw, Yw, Zw]. To scale these, 1 is
added to the last element of each of them. k = [u, v, 1] and
K = [Xw, Yw, Zw, 1]. Through the pinhole phenomena, we
gain the relationship between both 3D points and their 2D
projection [28]. Equations (1) and (2) explain that relationship.

cks = b
[
N e

]
Ks (1)
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Fig. 2. Camera Calibration Process
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We denoted the scaling factor as c, the pixel focus as
[αu, αv], which are the scaling factors of images in 2D plane
axes, the distortion parameters as γ, and the principle point
coordinates as [u0, v0]. The camera’s extrinsic parameters
include the rotation matrix N and the translation vector e.
The relative position of both stereo cameras is determined
by calculating the associated external parameters as shown in
equation (3): {

NRL = NrN
−1
l

eRL = er −NrN
−1
l el

(3)

The variables [Nl, el] and [Nr, er] represent the rotation
matrices and translation vectors of the stereo cameras on the
right and left, respectively, with respect to a specific world
coordinate system. Similarly, we denote the rotation matrix
and translation vector between the two cameras as NRL and
eRL respectively.

B. Image Pair Rectification

Image pair rectification aligns points in left and right
images on the same plane through a transmission-projection
transformation [29]. We compute the transformation matrices
and apply them to the images using bilinear interpolation [30],
which linearly interpolates both image variables. The projec-
tion points must satisfy the following fundamental equation:

pT
r b

−T
r [eRL]xNRLb

T
l pl = 0 (4)

We denote the left and right projection points of a point by
pl and pN respectively. We also denote the intrinsic parame-
ters of the right and left cameras by br and bl. Similarly, we
denote the antisymmetric matrix by [eRL]x which we derived
from the translation vector eRL.

C. Space Point Coordinates Calculation

We determine the coordinates of the points in space using
the triangle measuring method, which we defined using equa-
tion (5):



Xw(x, y) =
G×O × (xl − uol)

αul × (xl − xr)

Yw(x, y) =
G×O × (yl − vol)

αvl × (xl − xr)

Zw(x, y) =
G×O

xl − xr

(5)

We denote the variables as follows: the coordinates of
spatial points as (Xw, Yw, Zw); the pixel focal length of the
left camera is represented as [αul, αvl]; the optical center
distance between both cameras as G; the pixel focal length of
the camera is represented as O; the principal point coordinate
of the left camera as (u0l, v0l); and (xl, yl) and (xr, yr) are
the rectified coordinates of the left-right projection points ml

and mr, respectively.
Consequently, by using a triangulation algorithm, we can fit

the spatial point cloud, which is points in space that represent
the 3D shape, to obtain a curved surface after we computed it
using Equation (5) completing the 3-D reconstruction.

IV. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

The section provides an overview of the setup we used to
execute this experiment.

1) UArizona Future Factory: The UArizona Future Factory
is an Industry 4.0 system featuring four SMC Corporation’s
Smart Innovation Factory (SIF) 400 stations, developer sta-
tions, and data collection/attacker stations. It simulates an
automated smart factory using machine-to-machine connec-
tivity for production, assembly, logistics, and management.
The SIF-400 consists of four interconnected modular stations
on a conveyor belt: SIF 401: Stores and transports containers
on RFID-tagged pallets, SIF 402: Fills containers with solid
materials, SIF 405: Attaches caps to containers and SIF 407:
Labels and dispatches containers. The experiments presented
in this paper focus on modeling of the SIF405: Capping
Station.

2) Stereo-Vision Cameras iPhone 15 Pro: The iPhone 15
Pro, with three cameras and a lidar scanner powered by the
A17 Pro chip, is a cost-effective platform for photogrammetry.
Its 6-core CPU, 6-core GPU, and 16-core neural engine
enable real-time data processing [31]. It is the only iPhone

TABLE I
CAMERA SPECIFICATIONS

Camera Specification
24 mm

48MP Main f/1.78
Sensor-Shift OIS
24MP/48MP Photos
13 mm

12MP Ultra Wide f/2.2
120◦ FOV
100 Focus Pixel
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Fig. 3. A. Labeled snapshot for the front section, B. Labeled snapshot for the top section, C. Labeled snapshot for the back section

Fig. 4. A. Reconstructed 3D model of the front section, B. Reconstructed 3D model of the top section, C. Reconstructed 3D model of the back section

capable of using stereo-vision technology for capturing photos
and videos, making it ideal for fast and accurate 3D model
generation [31].

The specifications of each camera are highlighted in Table
I. For this work, we used stereo images and lidar scans from
an iPhone 15 Pro stitched together with AI-assisted tools like
Polycam to create 3D models in Blender.

3) Software for model creation: Polycam stitches stereo
images with lidar scans using AI, lidar, and triangulation
algorithms to create accurate 3D point clouds. This makes
Polycam a valuable tool for creating digital twins on an
iPhone. Blender, an open-source tool, optimizes raw 3D scans
by generating meshes, performing retopology, and applying
textures via UV unwrapping, producing refined and efficient
3D models.

B. Experiments

To create a visual digital twin of the SIF 405, we followed
four steps. First, we recorded ground truth measurements of
the testbed using a tape measure. Next, we captured 3D images
with the iPhone 15 Pro’s stereo-vision technology. Then, we
processed these images in Polycam, using the “full” setting
for detailed texture maps and “Raw” for a single texture
file, and applied object masking to handle environmental
factors. Finally, we imported the Polycam output into Blender,

adjusting the 3D model’s position, scale, and orientation to
precisely compare measurements with the ground truth.

1) Experiment 1: Measuring the accuracy of the front
section: In our first experiment, we measured the length (L),
width (W), and height (H) of key components from the front
view of the SIF 405: Capping Station as baseline data. Lidar
scans imported real-world measurements into Blender, while
photogrammetry scans required alignment for scale, rotation,
and origin. Blender was used to match photogrammetry scans
with lidar data, enabling accurate 3D model measurements for
comparison with the baseline. Figure 3A, 4A show a snapshot
and modeled front view of the capping station respectively for
comparison.

We compared the scanned dimensions to the actual mea-
surements and found error rates detailed in Table II. Some
dimensions, especially small details like I/O buttons, had error
rates of 10-20% due to limitations in the iPhone’s imaging
resolution, which can obscure thin details. Despite this, most
scanned dimensions were accurate within 5-10%, with some,
such as the width of the front rack, height of the actuator frame
pole, and length of the start switch, showing errors under 1%.

2) Experiment 2: Measuring the accuracy of the top sec-
tion: In our second experiment, we measured the length
(L), width (W), and height (H) of major components from
a side view of the testbed station. Figure 3B, 4B show the
snapshot and modeled side view for comparison. We compared
photogrammetry data with ground truth measurements and
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TABLE II
FRONT SECTION MEASUREMENTS

Objects L W H
Actual iPhone 15 Pro Error Actual iPhone 15 Pro Error Actual iPhone 15 Pro Error

Actuator Frame Pole 1.125 1.193 6.04% 1.125 1.184 5.24% 16.84375 16.687 0.93%
Camera Frame 1.125 1.012 10.04% 1.125 1.069 4.98% 6.375 6.318 0.89%
Camera Only 1.75 1.706 2.51% 2.0625 1.943 5.79% 3.5 3.389 3.17%
Start Knob (Red Circle) 1.125 1.395 24.00% 1.63 1.766 8.34% 1.625 1.451 10.71%
Stop Button (Yellow Circle) 2.6875 2.895 7.72% 0 0 0% 2.75 2.934 6.69%
Start Switch (O/1) 1.125 1.133 0.71% 1.07 1.042 2.62% 1.75 1.795 2.57%
Screen 7.875 7.556 4.05% 0.25 0.248 0.80% 5.5 5.21 5.27%
Front Rack 29.155 28.462 2.38% 2.34375 2.336 0.33% 20.65625 20.338 1.54%

TABLE III
TOP SECTION MEASUREMENTS

Objects L W H
Actual iPhone 15 Pro Error Actual iPhone 15 Pro Error Actual iPhone 15 Pro Error

Suction Actuator Whole 12.15625 12.056 0.82% 1.21875 1.311 7.57% 9.125 9.072 0.58%
Suction Actuator Single 4.25 4.306 1.32% 1.21875 1.311 7.57% 9.125 9.072 0.58%
Feeder Lid 2.25 2.332 3.64% 2.09375 2.506 19.69% 9.59375 9.588 0.06%
Feeder Cup 2.125 2.254 6.07% 1.5 1.456 2.93% 10.375 9.593 7.54%
Suction Cups 3.4375 3.46 0.65% 1.375 1.468 6.76% 2.125 2.186 2.87%

TABLE IV
BACK SECTION MEASUREMENTS

Objects L W H
Actual iPhone 15 Pro Error Actual iPhone 15 Pro Error Actual iPhone 15 Pro Error

Top Frame 28.5 28.303 0.69% 20 20.003 0.02% 2.47 1.905 22.87%
Frame Hole 31.5 31.151 1.11% 21.97 18.728 14.76% 28.75 28.452 1.04%
Track Belt 48.375 45.73 5.47% 5.25 5.216 0.65% 2.31 2.048 11.34%
Pump Rack (White) 29.875 29.471 1.35% 2.78125 2.282 17.95% 2.34375 2.313 1.31%
Back Rack 29.375 28.929 1.52% 2.34375 2.276 2.89% 8.34375 8.188 1.87%
Outer Frame 31.75 31.364 1.22% 41.47 37.501 9.57% 34.25 32.294 5.71%

Fig. 5. A. Error heatmap, B. Mean average and standard deviation distribution

error rates are detailed in III. We focused on large compo-

nents, such as the outer frame, interior hole, and track belt.
Most dimensions were within 1-6% error, but measurements
in the W direction had higher errors (10-18%), likely due
to environmental conditions and alignment issues. Some H
measurements, like those for the top frame and track belt, also
had high error rates due to background complexity affecting
the photogrammetry algorithm.

3) Experiment 3: Measuring the accuracy of the back
section: In the final experiment, we measured the length (L),
width (W), and height (H) of major components from a top
view before imaging. Figure 3C, 4C shows the snapshot and
the modeled back view for comparison. Table IV details actual
and scanned measurements with error rates. Most errors were
under 8%, with many below 1%. Some W measurements had
higher errors due to obscured geometry, including a 19% error
for the feeder lid, indicating that the photogrammetry camera’s
shape affects accuracy in tight spaces. We highlighted the error
distribution and focus in the heat map figure 5 showing where
the errors mostly occurred in the 3D model as we discussed
in the experiments. We also provide the overall mean and
standard deviation values of the error in figure 5.

V. CONCLUSION

In conclusion, this experiment highlighted the importance
of accurately replicating physical systems in virtual spaces
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for the benefits provided by Digital Twins in Industry 4.0.
We presented a method for creating visualizations for Smart
Manufacturing Digital Twins using consumer-grade hardware
and software, specifically the iPhone 15 Pro, IoT, networked
scanning, and 3D processing tools. The method achieved
reliable 3D models with an average error of 4.97% and a stan-
dard deviation of 5.54%. While factors like object placement,
background complexity, and tight spaces affected accuracy, the
method still produced 90-95% accurate dimensions, proving
effective for reflecting physical processes in a cyber-physical
system.
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