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We consider the thermal behavior of a large number of matrix degrees of freedom in the planar limit. We
work in 0 + 1 dimensions, with D matrices, and use 1/D as an expansion parameter. This can be thought of as
a noncommutative large-D vector model, with two independent quartic couplings for the two different
orderings of the matrices. We compute a thermal two-point correlator to O(1/D) and find that the degeneracy

present at large D is lifted, with energy levels split by an amount ~1/+/D. This implies a timescale for thermal

dissipation ~+v/D. At high temperatures dissipation is predominantly due to one of the two quartic couplings.
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I. THE MODEL

Consider the quantum mechanics of a collection of N x
N Hermitian matrices X'(z), i =1,...,D. We describe
them using a Euclidean action

1 N .
S = / drETr(a,X’GTX’) +Em(2)Tr(X’X’)
1 NP NP
+5 ATr(XXXIXT) - 5 geTr(XIXIXIX7). (1)

Here my is a bare mass parameter, and we have introduced
two quartic couplings gu, gc-

We will study the model (1) for its own sake. However,
as motivation note that if we set my =0 and g, = gc =
gym then the action reduces to

S = / dr%Tr(d,Xier")—%Q%MTr([Xi,Xj}z). (2)

Although the model we consider has no gauge symmetry, the
same potential term appears in the dimensional reduction of
U(N) Yang-Mills theory from D + 1 to 0 + 1 dimensions.
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The commutator-squared potential is also familiar in the
Banks-Fischler-Shenker-Susskind matrix model [1]. In the
model (1) we treat g4 and g, as independent couplings since,
as we will see, they lead to rather different dynamics.

We are interested in the leading large-N limit, in which only
planar diagrams contribute. However, we are also interested in
the behavior for large D. So instead of holding the two
‘t Hooft couplings fixed, we instead consider the limit

a=@N =0 with 1, =,D fixed,
de=geN =0 with e =AcD fixed. (3)

Our goal is to study dissipation in this model at large D.
That is, we are interested in dissipation in a many-matrix
model. This is a tractable problem because the model has an
SO(D) symmetry that acts on the i, j indices, and from that
pointof view itis similar to a large-D vector model and we can
use 1/D as an expansion parameter. However, from the U (N)
point of view we are restricting to planar diagrams, which
means it is not a standard vector model. Instead (1) defines a
sort of “noncommutative” vector model, which lets us
distinguish between the two couplings g4 and gc. Another
perspective on the model is to think of X', as a three-index
object, which means we are dealing with a tensor model [2] in
a particular scaling limit. A different scaling limit was
considered in [3,4]. In the literature the 1/D expansion has
been developed to study correlation functions [5] and the
thermal partition function [6], and it has been applied to a
commuting vector model in [7]. Related techniques were used
to study Lyapunov exponents in scalar field theory in [8].

Published by the American Physical Society
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II. HUBBARD-STRATONOVICH APPROACH

A. Hubbard-Stratonovich transformation

To proceed it is convenient to perform a Hubbard-
Stratonovich transformation and introduce an auxiliary
Hermitian field X,

1 U | N |
S = / d’rETr(()TXIOTX’) + 5mgTr(X’X’) + ETr(Zz)
o1 o
— igyTr(ZX'X") — 3 GETr(X XIXX). (4)

The Gaussian path integral over X is well defined, and the
saddle point fixes ¥ = ig,X'X". Integrating out X using its
algebraic equation of motion recovers (1 ).! This is a standard
step for large-D vector models and as we will see it is the
most convenient way to treat the coupling g,. We set

L=yt m?=md—2igs%, (5)

so that
1 . . [ . 1 5
= dTETr(a,X’aTX’) +§m Tr(X'X") +§Tr(a )

. 1
+%Tr(o) — igaTr(eX'X') — EgCTr(X’XJX’XJ) (6)
We choose the parameter X so that the vacuum expectation
value (VEV) of ¢ vanishes. This fixes®

Zolyun = iga <XiXi> (7)

or equivalently

%) = iga  (Tr(X'X)) (8)
With X fixed in this way, (5) gives an equation that fixes the
mass m of the fields X'. Note that m has been defined so that
the VEVof ¢ vanishes. Atlarge D itis also the location of the
pole in the X' propagator, but as we will see 1/D corrections
to the propagator shift the location of the pole. So in general
m is simply a parameter that characterizes the theory.
Before proceeding it is worth doing some dimensional
analysis. For the action to be dimensionless we have

X' ~ (mass)~!/2,
6,% ~ (mass)'/2,
gi,lA,;lA,gzc,/lc,;lc ~ (mass)?. (9)

'A more careful argument is given in Appendix A.

This condition is a consequence of one of the Schwinger-
Dyson equations of the model (6), namely ( > =0 or equiv-
alently () = igs (X'X") = ZoTyn-

B. Zero-temperature results

We begin by studying the two-point functions in the
model (6) at zero temperature. We do this by self-
consistently solving the Schwinger-Dyson equations of
the model to O(1/D). The condition (7) eliminates tad-
poles, and as a result, the Schwinger-Dyson equations we
need to solve are schematically shown in Fig. 1.

The diagrams in Fig. 1 are schematic in the sense that
numerical factors have been suppressed. To proceed we
introduce bare propagators [with U(N) and SO(D) indices
suppressed]

i ®— i 1
X X Br(w) = ———
(10)
O —
O ----ZZ:-:-z:z2 O BJ(W) 1 (11)

and dressed propagators

Xl :w?:XI DX<W) (12)
o ::?2 ?::: o D0<W)' (13)

These are related through one-particle irreducible (1PI)
self-energies by

Dyl = By — &x (14)

S =B1-£,. (15)

Using Fig. 1 as a guide, the diagrams that contribute to
Ex to O(1/D) are shown in Fig. 2. This leads to

Dyl () = @® + m? — [49 N/deX(k

_2@N / K ek + 0)D, (k)

dk, dk
+4gANPD / L by (kD)

Dyl + ke + )| (16)

(for an explanation of numerical factors see Appendix B).
Likewise the diagrams that contribute to &, to O(1/D) are
shown in Fig. 3 and lead to
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—1 -1
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FIG. 1. Schematic form of the Schwinger-Dyson equations for a theory with three- and four-point couplings but no tadpoles. Solid
blobs are dressed propagators; empty circles are 1PI vertices. In the loop diagrams all numerical factors have been suppressed and all
external lines are understood to be amputated. See for example [9-12].

1

J
&)
J

FIG. 2. Diagrams that contribute to £y to O(1/D). Internal lines are understood to be dressed propagators, external lines are
amputated. There is no sum on i, but there is a sum on j in the last diagram. In double-line notation the first two diagrams also appear in

the flipped forms v + *\\?/ﬁ.

FIG. 3. Diagrams that contribute to &, to O(1/D). Internal lines are understood to be dressed propagators, external lines are
amputated. There is a sum over the vector index i.

dk dk, dk
D3 (@)= 1= [~GND [ 5 DDAk )+ 2N°D [ GG D) Dx)D, (ks k)l + 0)Dx(b + )
dky dk
~272ND [ 1R DDy k) Dy (ks + @)Dy ks + ). (1)

Since we have 1/D as an expansion parameter it is quite easy to solve these equations. At leading order for large D, the
only contribution to the self-energies comes from the first term (the bubble term) in £,. This means that at leading order for
large D we have

D (w)=1+1] /% ! !
? N ) 272k + m? (k+ w)* + m?
Aa
=14+ ——-. 18
+m(w2—|—4m2) (18)
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Thus,
o + 4m?

D,=——— 19
= (19)

where we have defined
m2 = 4m> + J,/m. (20)

We use this result to evaluate the loop integrals in the X' self-energy to O(1/D). The integrals in (16) lead to
7 7 72

DY (@) = + m? 4dc | Aa @ +5m* +mm, +4m’ /m,  30¢ 1 21

2mD  mD

We can evaluate the self-energy on shell, by setting the
Euclidean momentum to w?> = —m?. We see that the self-
energy is real and to O(1/D) the only effect is a small shift
in the physical (pole) mass of the fields X'.

We can also determine the relation between the param-
eter m and the bare parameters of the model (1). The
tadpole condition (7) fixes

dk
%y = igyND / & pe(k) (22)
2w
so that
o rdk
m? = m + 2], / = Dah) (23)
T

At leading order for large D we have Dy (k) = 1/(k* +
m?) so that

m? = m3 + dy/m+ O(1/D). (24)

It is useful to think of the bare mass as a function of m by
writing

m3 = m? —J,/m+ O(1/D). (25)

Neglecting O(1/D) corrections, the entire range —oo <
m} < oo corresponds to m*> > 0, so we always have a
positive dressed mass even if the bare fields are tachyonic.
From (24) we see that m*> > m} and from (20) we see
that m2 > 4m?.

It is the leading large-D behavior of the dressed mass that
will be most relevant for us, especially in Sec. III. We
denote this leading large-D behavior by m;, with

m? =m3 + dy/m,. (26)

Thus, m, agrees with m up to O(1/D) corrections.

@ + (m +m,)?

2D @? + 9m?’

[
C. Finite-temperature results
We now study the model at finite temperature, with the
goal of understanding dissipation in the 1/D expansion. We
do this using a Euclidean formalism, by discretizing the
loop integrals to Matsubara sums,

(27)

/Z:»;En:. (28)

We will repeat the steps in the previous section: first
determine the ¢ propagator at leading order for large D,
then determine the X’ propagator to O(1/D).

For o this gives the leading-order propagator

~ 1 1 1
D! =14A4- .
c (Cl)n) + Aﬁ;k% T "2 (kn T a)n)z T m2

(29)

Following the standard Saclay technique [13-15] we
switch to writing the propagators in position space,

1 s 1 1 —mt mt

1

where N, = —z— is a Bose distribution. Then we do the

Matsubara sum using
1 . ,
526’2””(7_7 b = 25(1 -7 = pw). (31)

The 6 function kills one of the integrals over Euclidean
time, and the remaining time integral leads to
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I 4m
D;'(w,) =1 N2 2%m
[ ( ) + (2m) m |:w% + 4m2 (6 )
+ Zﬂeﬂ’"ﬁn,o} . (32)

The last term, proportional to 6, o, comes from the cross
terms between e~ and e""*. We take the inverse to get the
propagator itself. This gives a rather complicated expres-
sion which for convenience we write in the form

2 _ 4 2
D,(w,) =1—-—2""" _ As,,. (33)

w? + m?2
Here we have defined a thermally corrected ¢ mass

Iy e¥m—1
2 _gmr 4 34
m2 m +m(eﬂ"’—1)2 (34)
We have also introduced a parameter A to obtain the correct
propagator for the zero mode. It is fixed by requiring that
(32) and (33) are consistent when n = 0,

4m?
> —A. (35)

(e

[Da (wnzﬂ) from (32)] =

The parameter A is a way of accounting for the o, term in
(32). Note that the 6, term makes a positive contribution
to the right-hand side of (32), so it decreases the value of
D (®,—), which means that A is positive.

Next we evaluate the X’ propagator to O(1/D). In terms
of Matsubara sums we have

1 1
2_72(/( + o) +m* k2 +m?

Dy (w) = @* + m? — Z

k2+m

/1 1 1
B Dﬁzzkz +m? K, +m?
1
X k k 3 5.
(kn, + Ky, + @)* +m

(36)

The advantage of writing the ¢ propagator in the form (33)
is that the Matsubara sums are all straightforward,
following the steps used to obtain (32). To O(1/D) we
find

J 2]
K ——it

) (m2 — 4m?)S,

(37)

1 1 1
Si= B; 2+m: 2m tanh(fm/2) (38)

NNy, m 1 1
e [(eﬂ( + J)_1)< —

iw+ms+m iw—(m,+m

iy 1
S5 = g k3]+m2k2 +m? (ky, + &y, + @)% +m?

ny,ny

N; 1 1
_ m3 (e3ﬁm — 1) - —-
(2m) iw+3m iw—3m

Our goal is to study dissipation. To this end, since we are
working in Euclidean space, we examine the behavior of
the propagator in the vicinity of @? + m? = 0. Most of the
loop corrections in (37) are small and make an O(1/D)
shift in the location of the pole, but two terms (highlighted
in magenta) are dangerous since they diverge at @ = *im.
Retaining just the dangerous terms we approximate the
inverse propagator as

1 1
) + 3efm(efm - 1) ( - )] (40)
iw+m w—m
|
D' (w) = @ + m? — 5 (41)
w* + m?

The expression for S, is valid provided m # m,, which is the
case in our model. If one sets m = m, in (39) there is an
additional contribution to the sum proportional to J,  that can be
seen in (32).
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where

N2,ePm, 42
C N3 (42)

In terms of the parameters of the model, the explicit
expression for B that follows from (35) and (42) is

32 2/1A 1
TE D[ (v )
ﬁ 1 + 4m?3 tanhﬂ”’ + 25mh2””’

4Dm?sin

1
A
4m? tanh/}Tm

1+

Taking the inverse of (41), the propagator is

1 1 1
DX(w):§<w2+m2+\/E+w2+m2—\/E>' (44)

Recall that A is positive, which means that B is also
positive. Also note that A is O(1) while B is O(1/D).
So we see that at finite temperature the single pole at
@* +m?> =0 is split into a pair of nearby poles at
@* +m?++v/B=0.

To see the physical consequences we turn to the retarded
Green’s function Dg(w), which can be obtained from a
Euclidean correlator by analytically continuing [15,16]*

Dg(w) = Dy(w, — —i(w + ic)). (45)

This leads to

1 1
DR(CU):E<—(a)+i€)2+mi+—(w+i€)2+m%> o

m% = m*+ VB. (47)

At finite temperature effectively there are two nearby
energy levels. The consequences are clearest if we trans-
form back to position space, where

4 . .
Our conventions for Wick
FHOEyclidean and IMinkowski —

rotating  are  Ominkowski =
—UByclidean-

- [ewni

o)} (— sin(n 1)+ -sin(on)

~0(1) 1 sin(mt) cos (@) : (48)

m m

The model behaves as though it were a discrete quantum
mechanical system. Although there is no true dissipation,
the two nearby energy levels lead to destructive interference
on a timescale given by

T=—. 49
VB 4
We define an effective width for the excitation by
1 B
r_l_VB (50)
T am

This is exponentially suppressed at low temperatures,
where

B~e P T ~e P2, (51)
In contrast the width grows linearly at high temperatures,
where

VA

Finally we examine thermal corrections to the relation
between the parameter m and the bare parameters of the

model (1). At finite temperature the tadpole condition (7)
fixes

Yo = igaND— ZDX(k) (53)
thus, from (5),
-1
M:%+%?Zm@y (54)

At leading order for large D we have Dy (k) =1/(k* +m?)
so that

mz—mg—i—m—f—(’)(l/D) (55)

We can think of the bare mass as a function of m by writing

2 2 Aa
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FIG. 4. Schwinger-Dyson equation in the leading order of 1/D
expansion. In this leading order, only the snail diagrams con-
tribute.

The entire range —oo < m3 < oo corresponds to m* > 0, s0

we always have a positive dressed mass even if the bare
fields are tachyonic. This suggests there is no phase
transition in the model.
III. DIRECT APPROACH
The same results can be obtained by directly analyzing
the action (1).

A. Zero-temperature results

1. Leading order in 1/D

The two-point function for X;; field is
(Xij(1) X1 (0)) = G(7)8ud 1 (57)

and its Fourier transformation is

G(z)= / 9 G (@)e=ior,

2 Glw) = / drG(z)e.  (58)

The bare propagator is Gy(w), and the Schwinger-Dyson
equation for the dressed propagator G(w) in the leading
order in 1/D expansion becomes

1 1

w*+m}’

=Gy(w) -

G():

@ +m3’

6() [So6(@). (59

This is obtained from the snail Feynman diagrams shown in
Fig. 4. Here, c; is a constant determined by counting Wick
contractions, and it turns out ¢; = 2 (see Appendix C 1).
The one-loop integral can be performed

1 T
do'G(0) = | do/ —— = — 60
/a) () /ww’2+m% m; (60)

w
\ﬂ 1 ,,,
\\\ /,/
~\ Bubble k
v N,
/'L \\\
S/ W2 N

FIG. 5. Bubble chain diagram with a momentum flow @, —
obtained in (61).

G(w) CMA Go(w

@,. The black circle propagator represents G(w

Go(w) ' =Glo) ' === ml=mj+—=. (61)
This matches with (26).

2. A bubble chain diagram for 1/D corrections

To evaluate 1/D corrections, we will have to take into
account diagrams with a “bubble chain.” The bubble
chain Feynman diagrams are defined in Fig. 5. We denote
them by B(w), where B(w) is the amplitude of the bubble
chain diagrams such that there is a momentum flow
W =W — W) =W_).

From Fig. 5, in Euclidean signature B(w) satisfies

Blan_y) = / X 6(0) G2~ )

— @)B(w).

(62)

dw
—CB/IAD/ZG((U)G(Q)I_z

Here cp is a coefficient. This shows that the bubble chain
diagrams have a geometric sum structure as

fde G(w_, — o)

B(lw,_,) = .
( ! 2) 1+CBJ'AI%G G(a)l_z—a))

(63)

In Appendix C2, we count Wick contractions and show
that cg = 1. One can compute the integral using

1
G(r) = g (O™ " +6(=r)e™)  (64)

as

dw
[ 5266w
— / dTG(T)2ei(u],21
— L dTL (9(7)6—211111 + 9(_T)ezmlf)eiwl_2.,

m] 4m1

1 1

- 65
my @?_, + 4m? (65)

A RCOCK

) which we already

025003-7
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From this, B(w) can be determined as

11 A
B(w) = ————. where m2 =4m} + .
my; o~ + mg m

(66)

This expression for m, agrees with (20) up to O(1/D)

corrections coming from the difference between m and m;.

Likewise the bubble chain propagator B(w) is related to

D,(w) obtained in (19) as

. a1

1-MBw)=1-— =
A (a)) m a)2 + m¢27

2 2
my — 4mj

- wz_l_mg :Da(w)

(67)
again up to O(1/D) corrections coming from the difference

between m and m,. For 1, > 0 note that mg > 2m;. For
future reference the Fourier transform of B(w) is

1
B(z) = 2mym

(O(z)e™" + O(=z)e™7).  (68)

3. Ay /D corrections for dissipation

Now we can evaluate the 1/D corrections to a two-point
function which are responsible for dissipation. We will only
be interested in diagrams that introduce @ dependence.
There are additional self-energy diagrams that shift the
mass; we ignore these diagrams for now and return to them
in Sec. [IT A'S.

There are two types of 1/D corrections, one is propor-
tional to A, /D and the other is proportional to A-/D. We
first consider only the contribution of 1,. In other words,
we set Ac = 0 for a moment. Then the Feynman diagram
proportional to 1,/D that contributes to dissipation, i.e.,
which produces a pole, is shown in Fig. 6.

Again we denote G(w) as the leading dressed correlator
in the large-D limit, i.e., the propagator without 1/D
correction given by (59). Its mass m; is determined by
(61) in the zero-temperature limit. We denote G(w) as the
dressed correlator including 1/D corrections. The
Schwinger-Dyson equation taking into account A,/D
corrections becomes

Bubble

-@ @

FIG. 6. The self-energy diagram proportional to 4,/D which
contributes to dissipation. The black circle propagators are
dressed propagators G(w) which we already obtained in (61)
and do not include any 1/D corrections. “Bubble” means the
bubble chain diagram from Fig. 5. This diagram makes an
w-dependent contribution.

+omy+ O (é) . (69)

Here we are focusing on the self-energy correction shown
in Fig. 6, since as we will see it has a pole. In addition 6m,
represents the w-independent (’)(ZA /D) contributions com-
ing from tadpole diagrams that are responsible for the
O(14/D) mass shift, ie., they are parts of the mass
difference m —m,. c4 is a combinatoric constant that
has the value ¢, = 2, as shown in Appendix C 3.
Since

my + my 1
G(7)B(7) =
(7)B(v) 2mim, 2(m; + m,)
X (6(7)6‘<’”1+’”ﬂ)1 + 9(—1)6('"‘+’"")T) (70)
we obtain

/dz_a;zlG(wl)B(w—wl) _/dTG(T)B(T)eimT

_my+my, 1
C2mim, @+ (my +m,)?
(71)
Thus,
—— [ —G(w)B(w —w
D 2n ! !
;1/24 my + my 1
D mim, @+ (m+m,)?
1

The fact that it has a pole at m; + m, is important.
Thus, the Schwinger-Dyson equation becomes

s 1 1
Glw)'' =w*+m+ BHA(a)) + 6my + O(F) (73)

where

;1A ;IA my + mg 1
II =—-—— 74
A(@) Dmy mym, a)2+(m1 +m0)2 4)

a1 (4m3 = m2)(my 4 m,)
@® + (m; +m,)?

=— 75
D mym, (75)

In the second equality, we use (66) that relates 1, by m, and

m;. This equation can be compared with 1, term in (21),
where
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da @* 4 Sm* 4+ mm, + 4m3 /m,
mD @® + (m +m,)?

a1 (4m? — m2)(m + m,)
= — . 76
D mm,, <m(, L + (m+m,)? (76)

Thus, the pole and its residue match completely. We also
see certain O(1/D) contributions to the mass differ-
ence m —m; = O(1/D).

4. A¢/D contributions for dissipation

For a complete computation of the 1/D correction to a two-
point function, we must incorporate the effect of Ao = g2ND
as well. Then the Schwinger-Dyson equation becomes

Gl =+t + 5 (I () + T (@)
+omy + ome + O<D12> (77)

Here the melon diagram of Fig. 7 contributes to the self-
energy as

lnc B cc/lz/da)l/da)z

X G(0,)G(w — 0, — w,) (78)
colz ;

- CD/IC/“’Tl(G(Tl))%’“”‘ (79)

_ Bedde 1 (80)

4Dm? w* + 9m?

where c¢ is a combinatoric constant and ¢ = 4 which we
show in Appendix C 4. Comparing to the term proportional to
Jc/D in (21), we see that the pole and its residue match
completely. We also see certain O(1./D) contributions to the
mass difference m — m;.

Note that there is also a melon diagram proportional to
J4 = g5ND. This melon diagram is obtained by replacing
the bubble chain diagram in Fig. 6 by the first term on the
right-hand side of Fig. 5. However, note that the results from
the two melon diagrams are very different. The melon

FIG.7. Melon diagram which contributes in Ac/D corrections.

diagram in Fig. 7 proportional to A gives a pole at
w? = —(3m;)?. On the other hand, the melon diagram in
Fig. 6 proportional to 1, gives a pole at w?> = —(m, + m,)>.

5. 1/D contributions to the mass shift

Recall that we have introduced two slightly different
definitions of dressed mass. In Sec. II, m is defined by the
no-tadpole condition which leads to (23). In Sec. [Il A 1 we
defined a leading large-D dressed mass m; by solving a
Schwinger-Dyson equation which leads to (26). The two
definitions (23) and (26) differ by O(1/D) corrections.

In the direct approach of Sec. III, there are many
diagrams that are responsible for O(1/D) corrections to
the mass. We should take into account these O(1/D) mass
shift corrections for comparison with the results in Sec. IL.

For example, the snail diagrams in Fig. 4 make a
subleading O(1/D) correction to the mass. It comes from
the following Wick contraction:

2 D — —
9 5% 3T XXOXEXPXO)XT (81)
2 jk=1

which gives part of the O(1/D) mass shift, 5m,, in (73) [or
in (77)] as
N Dm1

+-. (82)

This mass shift can be compared with the w-independent
term in (21) or equivalently in (76).

Similarly, there is an additional mass shift contribution of
O(l¢/D), which is the snail diagram in Fig. 4 but it is
obtained by the A- term where all indices are the same.
More explicitly,

g& Do = 1.
—F XA x2x > OX(XIXIXIX)XT(83)

j=1

where 4 is because of four X/’s and 2 is because of two
choices for XTX j. The self-energy from such a diagram
gives

4,16 do 4hc

3O+ = (84)

Again this mass shift can be compared with the -
independent term in (21).

In addition to these O(1/D) snail diagrams, many other
diagrams are responsible for the mass shift. Examples of
such diagrams are shown in Fig. 8. Since our main interests
are in dissipation in many-matrix models, we will not
evaluate these mass shift contributions any further.
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Bubble

O

FIG. 8. Examples of diagrams which contribute to the mass
shift at order 14 /D. These tadpole diagrams are @ independent.
They contribute to the mass shift at O(1/D).

B. Finite-temperature results

1. Leading order in 1/D

At finite temperature, momentum is discretized as in (27)
by Matsubara frequency and the integral becomes summa-
tion as in (28). The Schwinger-Dyson equation in the
leading order in 1/D becomes

Aa

G(wn) = GO(wn) —CL ?GO(wn)G(wn)zG(wk) (85)
k

with ¢; = 2. This becomes

Ay pm,
m} = mf + m—lcothT. (86)

In zero-temperature limit mf > 1, this becomes
2
P=md+ 4 87
my = mg + my (87)
which matches with (26).

On the other hand, in high temperature limit m,f < 1,
this becomes

s 2 2]
mj~ A= (88)
my fm; ﬂml

4pm}

2. A bubble chain diagram for 1/D corrections

Let us perform a similar analysis for nonzero tempera-
ture. The analysis becomes complicated, but physically, the
effective mass changes in finite temperature. First, let us see
the bubble chain diagram for nonzero temperature. We can
rewrite the Schwinger-Dyson equation as one with finite
temperature,

Bl(@1-2),) = 53 G(0)Gl(@12), — )
k

CBl

;D S G (@) Gl(@1-2), — )
k

x B((01-2),)- (89)

Again, cy = 1 and this yields

_ %ZkG(wk)G((a’l—z)n—wk)
1+ 5L Gly)G((@1-2), —or)

B((01-2),) (90)

This summation can be computed as follows:

fesch? ™l

1 coth™’ =L
2 2 511.0'

}j;aww(wn Cw) =

my w3 + 4m? 8m?

o1
Therefore, separated contributions due to zero mode appear
in a bubble chain diagram as well. We can simply write

them as follows:

1 coth# A

B =——=5+=96 92
(wn) m, a)%l I m(zy )vA n,0 ( )
where m, is f-dependent mass,
)
m2 = 4m? + m—f‘l coth mTlﬂ , (93)

and A is a complicated f-dependent function,

(94)

Note that A is positive since 1, > 0.
Since limgy_,A(f) — 0,

A4
m2 — 4m? + =,
nm

A
Ju (4m3 + 2y coth(Zm)) (4md(cosh (fmy) — 1) + A4 (Bmy + sinh(Bm,)))”

B(w,) = ——————-
"M @h + 4m? +

1
—, as mf - oo. (95)
M

Note also that m, > 2 at any temperature as long as the theory is not free, i.e., 1, > 0.
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We also have

3 SN St il 1 _aak
1 AAB(a)n) 1 m w%_"_m% A(Sn,O BHA(CO” = e AZG (Uk 0),1) (98)

which matches with D, (w,) in (33) up to O(1/D) correc-
tions coming from the mass difference m —m; = O(1/D).

1 Ccﬂ
3. 1/D corrections for dissipation BHC(wn) = _E’B_EZG(wk)G(wk’)G(wn —opy)  (99)
Similar to the zero-temperature case, the Schwinger- K

Dyson equation can be rewritten as

G(a)n)_l = G(a)n)‘l 4 l (T (w,,) + T (w,)) where ¢4, = 2, ¢ = 4. Il and Il contributions are given
D by Figs. 6 and 7, respectively.
1 Contribution for I, yields
|
1 call
Bl = =5 S Gl ~0)
Ca 5 my B mg coth(P54) (—=m3 + mZ + w}) + my coth(%5=) (m} — m?2 + w}) B,
= ——"2; coth—= 2, 2 3 5. (100)
D 2 2mlmﬂ((m1 6) +wn)((ml +mo’) +wn) a)n+ml
where ¢, = 2 and
21
B, =="2A. (101)
D p
Contribution for Il yields
1 Cc Z%
BHC(wn) = _BE;G(M)G(%/)G(% — Opyr)
Cczé

mf 2mp
cc Az 1 coth==~ pesch” =5
= _BFZGQ‘)k) (_ B 2 =+ 2 5n—k,0

z ml (l)n_k + 4m1 8m1
_ e b (P 3 It B _cc B b g,
D 16m} \w} +m} @, + 9mi D
B, 3¢cAz 4 + 3csch? mT'ﬁ
LB e o Bt (102)
wy, + ml 16Dm1 wy + 9m1
where ¢ = 4 and
B — 3ccle esch? mip _ 3ccle 1 2eﬁm| (103)
> = 1o 2~ aput (1)

Combining (103) with (101), we obtain the propagator in the vicinity of w® + m% =0as
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Glw,)™" = Gla)™ + -

5 (HA(a)n) + HC(a)n))

1

where

L (My(@,) + Te(@,) P+ (105)

g [0} (0] [ S

D A n C n w%,‘i‘m%
B—B,+By—— 2’L‘A+3Zlé L R (106)
= = — _ — e .

TTTD\ B T mi\ePmi—t

This matches the previous results (41) and (42), neglecting
the additional O(1/D) corrections coming from the
mass difference m — m; = O(1/D). Thus, the rest of the
argument that, at finite temperature, the single pole at
w? +m3 = 0 splits into a pair of nearby poles is the same
as Sec. I

IV. CONCLUSIONS

We studied a simple model of many-matrix quantum
mechanics. From the matrix point of view we worked in the
planar limit, sending N — oo first. Physical quantities can
then be calculated as an expansion in 1/D, where D is the
number of matrices. This can be thought of as a particular
scaling limit of a tensor model. It can also be thought of as a
noncommutative generalization of an O(D) vector model.

We focused on dissipation at finite temperature, which
we extracted from a two-point correlator. A curious fact is
that dissipation arises at O(1/v/D). We expect that this is
generically true in many-matrix models. Another curious
fact is that at high temperature the leading dissipative
effects are due to the coupling g., while g, only makes
subleading contributions. If we set g- = 0 and then expand
the width (50) for high temperatures, then unlike the linear
growth (52) we find that the leading behavior is temper-
ature independent,

V2m
[0 = /D

It would be interesting to understand why the couplings
gc and g4 lead to such different behaviors. As a possible
explanation, note that for any N and D the potential of the
model (1) can be written as

+Op). (107)

1 R o
V= 5mgTr(Xlx’) - Zg2CTr([X’, X7)?)
1 o

+3 (g% — g2)Tr(X X' X X). (108)

The mass term dominates near the origin. The
(commutator)? term is stable, but has flat directions

corresponding to commuting matrices. The last term is
stable if g4 > gc, but if g4 < gc it makes the potential
unstable at large fields. Thus we see that

(1) For g4 > gc the model is stable.

(ii) For g4 = g the quartic potential has flat directions.
The model is stable for m2 > 0.’

(iii) For g4 < g the model has an instability at large
fields.

This behavior appears to be independent of N and D. The
instability for g4 < g- may be related to the different
behaviors of the two couplings.

It would also be interesting to explore higher orders in

perturbation theory.

(i) To O(1/D), in the retarded propagator (45), we have
seen that the pole at @*> = m? that is present at tree
level splits into a pair of poles at w*> = m?%. Pre-
sumably at higher orders in 1/D the splitting
continues and additional poles develop. Does the
width T remain O(1/v/D)?

(i) At O(1/D) the correlator (48) undergoes a “recur-
rence” when ¢ =4zm/\/B. As additional poles
develop, does the recurrence timescale get longer?

(iii) Perhaps one can study the large-order behavior of
perturbation theory. Does the model develop a
continuous spectrum? Is there a sign of the insta-
bility which is present when g- > g4? Is the 1/D
expansion convergent, or can it be resummed?

Another interesting direction is to add a massive vector

as a probe [17,18]. It is known that, for a single free matrix
coupled to a vector, the out-of-time-ordered correlators
(OTOCs) for the vector do not grow exponentially in time
[19,20]. This is because the matrix is free. For the
interacting many-matrix model we studied in this paper,
the matrices themselves have nontrivial dissipation. Thus,
OTOCs for a vector coupled to our interacting matrices
might show nontrivial behavior. It would be interesting to
investigate this direction further.
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APPENDIX A: AUXILIARY FIELDS

We briefly review the introduction of the auxiliary field X
via a Hubbard-Stratonovich transformation [21]. Consider
the 1D integral

0 1 1
7 = / d¢€_SE SE = §m2¢2 + 592454. (Al)
Introduce 1 in the path integral, represented as
1 i Ly 12\2
l=—= [ dZe=z39), A2
vV 2 /—oo ( )

Up to a normalization this leads to
1 1
Z= / dpdZe e SE:§m2¢2+522—ig2¢2. (A3)

This action is analogous to (4). Note that in this form both ¢
and X are integrated over real values. In the literature one
sometimes redefines X to absorb a factor of i.

APPENDIX B: COMBINATORICS FOR
HUBBARD-STRATONOVICH APPROACH

In this appendix we fix the numerical factors that appear
in the diagrams of Fig. 2, including the flipped forms
mentioned in the caption. These factors are displayed in
(16). The strategy is simple: We invert (16) and expand in
powers of the couplings. Numerical factors are fixed by
matching to ordinary perturbation theory.

In perturbation theory the two-point function is (with no
sum on Z, and with integrals over Euclidean time suppressed)

(X XieSm), (B1)

The first diagram in Fig. 2, including its flipped form, comes
from

1 . 4 4 ,
3 GH(X Tr(X X XTX*)XT). (B2)
Restricting to planar diagrams there are four possible con-
tractions for the X’ on the left, and two possible contractions
for the X' on the right. There is one closed matrix index loop,
so the diagram comes with a numerical factor

1
Eg%-4-2-N:4g’éN.

The second diagram in Fig. 2, including its flipped form,
arises at second order in perturbation theory. It comes from

(B3)

L (iga)> (X Tr(e X/ X)) Tr(eX* X*) X1).

o (B4)

+ + ...
@ —

FIG. 9. Perturbative snail diagrams to two loops.

Again restricting to planar diagrams, there are two ways to
contract the X fields in which the ¢ contraction runs below an
X contraction. There are also two ways to contract the X fields
in which the ¢ contraction runs above an X contraction. This
gives a total of four possible contractions. There is one closed
matrix index loop, so the diagram comes with a numerical
factor

1.
—(igy)?-4-N = =2¢5N.

o (B5)

The third diagram in Fig. 2 arises at second order in
perturbation theory. It comes from

1 /1 2 . : 4
5 (5 g2c> (X' Tr(X/XEXIX*)Tr(Xm X" X" X")X').  (B6)
For a planar diagram there are eight possible contractions for
the X’ on the left, followed by four possible contractions for

the X’ on the right. There are two closed matrix index loops
and one closed vector index loop, so the numerical factor is

1 /1 2
2'<2g2c> -8-4-N2.D = 4g:N?D. (B7)

The numerical factors (B3), (BS), and (B7) appear inside the
square brackets in (16).

APPENDIX C: COMBINATORICS FOR DIRECT
APPROACH

In this appendix, we will calculate various combinatoric
coefficients in various diagrams.7

1. Coefficient ¢; =2

This coefficient can be obtained by Wick contraction as
follows. In perturbation theory, the snail diagrams are
shown in Fig. 9 through two loops. The one-loop diagram
in Fig. 9 is

"In this appendix, we use a,b,c = 1, --- D for flavor indices
and i, j,k=1,--- N for color indices.
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X4 (— = ZT XbXbXCXC)) x¢, (C1)
where X“ represents an external line. Considering the Trace cyclic property, the possible Wick contractions are as follows:

A x4 x Z X%Xb Xb X xe Xp o —IA g Z XeXb NP X X Xg
b,c=1 b,c=1

. ~ (c2)

= =205 > 00810 jmOniGorGombpp = —2X 466

b,c=1

Here “—” means we maintain only the leading contributions and neglect all subleading contributions. The number 4 is
because there are four X’s in X?X?X“X¢. This determines

oL =2. (C3)

To simplify the notation, let us write only the subscripts of the matrix, such as a = X“. Then the two-loop diagram in
Fig. 9 is

l _% ? a(ybybycyc dydyeye\ya — l _é :
5 < 2) b%;ex (XPXPXX) (XXX X)X = 5 (=5 b;ea(bbcc)(ddee)a (C4)
_a2)2 232
= ( 5314) X 8 X Z %acc)(ddee)a — ( §;> X 8 X Z %W (C5)
c,d,e c,d,e

—

(_293"24)2XSXZXZ%W+(_§§)2X8X2XZ%CW (c6)
c,d cd

where 8 is because there are eight X’s in bbccddee and 2 is because there are two choices d and e to pair up with c¢. The last

term is also planar due to the trace cyclicity. Thus, in this two-loop diagram, the final coefficient is (=24, D)?. This also
justifies (C3).

2. Coefficient cp =1 in the bubble chain diagram

The coefficient cp in a bubble diagram can be obtained similarly. First, we will calculate the coefficients in the
perturbative bubble diagram as in Fig. 10.
The first term on the right-hand side of Fig. 10 is

1 2
5 ( ) > XIX(XeXaXPXP) (XX XX XPXT (C7)
: ab,c,d

., . S . \,
/
\\ " \\ " \\ V2
N, 4 \, / N, e
N 4 b P AN 4
S, 4 —_— N 4 \ 4
L Bubble N = e . + e * +
N,
N, N,
e AN e S, e N
k4 \ a N /
/ N R4 . e ~
S .

FIG. 10. Bubble chain diagrams.
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and in the simplified notation, only the following Wick
contraction needs to be considered if we distinguish
between two external lines I’s and the others F’s:

—g2)2 [— 1
( 2954) X 8 X 4 X ]ITctabb)(ccchFF (C8)

where 8 is because there are eight X’s in aabbccdd, and 4

_ 2 = = =
( ;’;9 < 8 x4 x TT(abb) (Mdd)FF (©9)

[— |

(—93)° 1

is to choose one in ccdd. 93 x 8 x 4 x II(aabb)(ccdd)FF . (C10)
Then there are two choices to contract between
b and c’s, The first one is a planar diagram,
|
[ ] T | [
]iin’j’(amnanobopbpm>(qucrsdstdtq)Flek’l’ (Cll)
= > Giobin 6imbrm  GosOpr + OprOmg - svOurs + Sudgp = N 66 ki
m,n,0,p,q,r,s,t
but the second one is nonplanar suppressed by 1/N,
— | T—F T —
[iin’j/ <amnanobopbpm)(qucrsdstdtq)Flek’l’ (CIZ)
= Z 5i06jn : 5i’n5j'm : éor(qu : psémr : 651’5lk’ ’ 5115qk = 6ij’5ji’5lk’6kl" (C13)
m,n,o0,p.q.r,s,t
Thus, the leading coefficient is
—2)2N —.D)? { { { |
COPN gua—ax TR0 ey 1p o T (b)) g FE (19
The second term on the right-hand side of Fig. 10 is
1/ ¢&\° l { W |
3 (—f) bzd: II(aabb)(ccdd)(eegg)FF. (CI15) 12.8.2. Uﬁ(ac‘zbb)'—(hccdd)ﬁ(e‘eg‘]g)ﬁFF (C19)
ab,c,d.e,g
The contractions of I and F, respectively, can be written as
follows: | ‘ | v—h | ‘ |
] el 12-8-2- Uﬁ(aabb)(ccdd)(eeggm?F (C20)
12 - 8 - I1(aabb)(ccdd)(eegg) F F (C16)
where 2 is because of two choices between ¢

where 12 is because of 12X°’s in aabbccddeegg and 8 is
because of eight X’s in ccddeegg.
And there are four ways to contract,

[ [ { \
12.8. 2. T (0Abb) (dd) (g FE - (€17

and d. However, one can check that only (C17) is
a planar,

T — | T ] T — ] | 1
[ijli’j’(amnanobopbpm)(qucrsdstdtq>(euvevwnggzu)Flek’l/

(c21)
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= Z 5i05jn : 5i’n5j’m : 50551” ! 5pr5mq : 5sw5t1) : 5tv5qu : 5wl’5xk’ : 5x15uk

ML,0,D.,G TS LU D,W,X

= N?6i8; 510 (C23)

and the rest are nonplanar. Thus, the leading coefficient is

1/ qa\’ _ . (=4D)}
Comparison between (C14) and (C24) gives
cg=1 (C25)

for the bubble chain contribution given by the geometry
sum as (63).
|

(=93 5~ [0l e

(bbee)a(deed)

b,c,d,e

where 4 is for four choices in bede and 2 is for two choices
in de, and the rest of the contractions are subleading.
From these two, we obtain

Y 1D
4x2x gg‘) x2x N2p = 2 D)

(C28)

FIG. 11. One-loop bubble diagram, proportional to
2

2(=14D)?* 3.

FIG. 12. Two-loop bubble
2(=14D)* 5.

diagram, proportional to

(C22)

3. Coefficient ¢4, =2 for Fig. 6

We would like to consider the contribution from resumed
bubbles as in Fig. 6. For that purpose, let us first consider
those with just one loop or two loops as in Figs. 11 and 12.

Let us consider Fig. 11 first. This is obtained from the
term

17 @A\
2'( 2> bg(;ea(bbcc)(ddee)a (C26)
by the following Wick contractions:
—a2)2 —
49y (794) T S(bech) (deed)d (C27)
23

Next, let us consider Fig. 12,

% (_ %) | bﬁ;ﬂga(bbc c)(ddee)(ffgg)a.  (C29)

We have the following Wick contractions in the leading
order:

villiviYN

S a(bbec)(dded)(f fgg)a

b,e,d,e,f,g
(C30)

3 =
or 6x4x2x <_g§,> Z ah(bccb)ﬁ(gffgva(eedd)
' b,e,d,e,f.g
(C31)

where 6 is for six choices in bedef g, 4 is for four choices in
defg, and 2 is for two choices in de. Therefore, the
coefficient is determined as

1/ @\3 —J,D)?
6xax2xA (1) xaxn3p? =2 TP o3
3\ 2 D
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From the above, we see that the overall coefficients of both Figs. 11 and 12 is 2. Thus, we can write down these diagram
contributions as

d

+CB(—/1AD)/

dC()]

= % (=24D)*Gy(w)G(w) / ——G(w))B(w — )

2r

with
cy = 2. (C34)

4. Coefficient cc =4

Let us consider the melon diagram, which plays an
important role in the two-point function. From Fig. 13, this
can be obtained from

% (%)2 S~ albebe)(dede)a.

b,c.d,e

Melon diagram proportional to Ac.

(C35)

FIG. 13.

o dw
> G0 )G —w+ a)l)/ e

(C33)

|
From the cyclic property, all ways of contraction can be
written as

1 /g2\’ ” N
8 x 4 x a0 (?> b%:e a(bcbe)(dede)a  (C36)

where 8 is because of eight X’s in bcbcdede and 4 is
because of four X’s in dede. From this, there is only one
way to contract in the leading order as

C37
8 x 4 x 4(bebl)(dede)a . (C37)
Therefore, the coefficient is
1 92C 2 27y (}”CD)2
Thus,
cc=4. (C39)
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