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We consider the thermal behavior of a large number of matrix degrees of freedom in the planar limit. We
work in 0þ 1 dimensions,withDmatrices, and use 1=D as an expansion parameter. This can be thought of as
a noncommutative large-D vector model, with two independent quartic couplings for the two different
orderings of thematrices.We compute a thermal two-point correlator toOð1=DÞ and find that the degeneracy
present at largeD is lifted, with energy levels split by an amount∼1=

ffiffiffiffi
D

p
. This implies a timescale for thermal

dissipation∼
ffiffiffiffi
D

p
. At high temperatures dissipation is predominantly due to one of the two quartic couplings.
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I. THE MODEL

Consider the quantum mechanics of a collection of N ×
N Hermitian matrices XiðτÞ, i ¼ 1;…; D. We describe
them using a Euclidean action

S ¼
Z

dτ
1

2
Trð∂τXi∂τXiÞ þ 1

2
m2

0TrðXiXiÞ

þ 1

2
g2ATrðXiXiXjXjÞ − 1

2
g2CTrðXiXjXiXjÞ: ð1Þ

Here m0 is a bare mass parameter, and we have introduced
two quartic couplings gA, gC.
We will study the model (1) for its own sake. However,

as motivation note that if we set m0 ¼ 0 and gA ¼ gC ¼
gYM then the action reduces to

S ¼
Z

dτ
1

2
Trð∂τXi∂τXiÞ − 1

4
g2YMTrð½Xi; Xj&2Þ: ð2Þ

Although themodel we consider has no gauge symmetry, the
same potential term appears in the dimensional reduction of
UðNÞ Yang-Mills theory from Dþ 1 to 0þ 1 dimensions.

The commutator-squared potential is also familiar in the
Banks-Fischler-Shenker-Susskind matrix model [1]. In the
model (1) we treat gA and gC as independent couplings since,
as we will see, they lead to rather different dynamics.
Weare interested in the leading large-N limit, inwhichonly

planar diagramscontribute.However,we are also interested in
the behavior for large D. So instead of holding the two
‘t Hooft couplings fixed, we instead consider the limit

λA ¼ g2AN → 0 with λ̃A ¼ λAD fixed;

λC ¼ g2CN → 0 with λ̃C ¼ λCD fixed: ð3Þ

Our goal is to study dissipation in this model at large D.
That is, we are interested in dissipation in a many-matrix
model. This is a tractable problem because the model has an
SOðDÞ symmetry that acts on the i, j indices, and from that
point of view it is similar to a large-D vectormodel andwe can
use 1=D as an expansion parameter. However, from theUðNÞ
point of view we are restricting to planar diagrams, which
means it is not a standard vector model. Instead (1) defines a
sort of “noncommutative” vector model, which lets us
distinguish between the two couplings gA and gC. Another
perspective on the model is to think of Xi

AB as a three-index
object, whichmeanswe are dealingwith a tensormodel [2] in
a particular scaling limit. A different scaling limit was
considered in [3,4]. In the literature the 1=D expansion has
been developed to study correlation functions [5] and the
thermal partition function [6], and it has been applied to a
commutingvectormodel in [7]. Related techniqueswereused
to study Lyapunov exponents in scalar field theory in [8].
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II. HUBBARD-STRATONOVICH APPROACH

A. Hubbard-Stratonovich transformation

To proceed it is convenient to perform a Hubbard-
Stratonovich transformation and introduce an auxiliary
Hermitian field Σ,

S ¼
Z

dτ
1

2
Trð∂τXi∂τXiÞ þ 1

2
m2

0TrðXiXiÞ þ 1

2
TrðΣ2Þ

− igATrðΣXiXiÞ − 1

2
g2CTrðXiXjXiXjÞ: ð4Þ

The Gaussian path integral over Σ is well defined, and the
saddle point fixes Σ ¼ igAXiXi. Integrating out Σ using its
algebraic equation ofmotion recovers (1).1 This is a standard
step for large-D vector models and as we will see it is the
most convenient way to treat the coupling gA. We set

Σ ¼ Σ01N×N þ σ m2 ¼ m2
0 − 2igAΣ0 ð5Þ

so that

S ¼
Z

dτ
1

2
Trð∂τXi∂τXiÞ þ 1

2
m2TrðXiXiÞ þ 1

2
Trðσ2Þ

þ Σ0TrðσÞ − igATrðσXiXiÞ − 1

2
g2CTrðXiXjXiXjÞ: ð6Þ

We choose the parameter Σ0 so that the vacuum expectation
value (VEV) of σ vanishes. This fixes2

Σ01N×N ¼ igAhXiXii ð7Þ

or equivalently

Σ0 ¼ igA
1

N
hTrðXiXiÞi: ð8Þ

With Σ0 fixed in this way, (5) gives an equation that fixes the
massm of the fieldsXi. Note thatm has been defined so that
theVEVof σ vanishes. At largeD it is also the location of the
pole in theXi propagator, but as wewill see 1=D corrections
to the propagator shift the location of the pole. So in general
m is simply a parameter that characterizes the theory.
Before proceeding it is worth doing some dimensional

analysis. For the action to be dimensionless we have

Xi ∼ ðmassÞ−1=2;
σ;Σ0 ∼ ðmassÞ1=2;

g2A; λA; λ̃A; g
2
C; λC; λ̃C ∼ ðmassÞ3: ð9Þ

B. Zero-temperature results

We begin by studying the two-point functions in the
model (6) at zero temperature. We do this by self-
consistently solving the Schwinger-Dyson equations of
the model to Oð1=DÞ. The condition (7) eliminates tad-
poles, and as a result, the Schwinger-Dyson equations we
need to solve are schematically shown in Fig. 1.
The diagrams in Fig. 1 are schematic in the sense that

numerical factors have been suppressed. To proceed we
introduce bare propagators [with UðNÞ and SOðDÞ indices
suppressed]

ð10Þ

ð11Þ

and dressed propagators

ð12Þ

ð13Þ

These are related through one-particle irreducible (1PI)
self-energies by

D−1
X ¼ B−1

X − EX ð14Þ

D−1
σ ¼ B−1

σ − Eσ: ð15Þ

Using Fig. 1 as a guide, the diagrams that contribute to
EX to Oð1=DÞ are shown in Fig. 2. This leads to

D−1
X ðωÞ ¼ ω2 þm2 −

"
4g2cN

Z
dk
2π

DXðkÞ

− 2g2AN
Z

dk
2π

DXðkþ ωÞDσðkÞ

þ 4g4CN
2D

Z
dk1
2π

dk2
2π

DXðk1ÞDXðk2Þ

×DXðk1 þ k2 þ ωÞ
#

ð16Þ

(for an explanation of numerical factors see Appendix B).
Likewise the diagrams that contribute to Eσ to Oð1=DÞ are
shown in Fig. 3 and lead to

1A more careful argument is given in Appendix A.
2This condition is a consequence of one of the Schwinger-

Dyson equations of the model (6), namely hδSδσi ¼ 0 or equiv-
alently hσi ¼ igAhXiXii − Σ01N×N.
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D−1
σ ðωÞ ¼ 1−

"
−g2AND

Z
dk
2π

DXðkÞDXðkþωÞ þ 2g4AN
2D

Z
dk1
2π

dk2
2π

DXðk1ÞDXðk2ÞDσðk1 − k2ÞDXðk1 þωÞDXðk2 þωÞ

− 2g2Ag
2
CN

2D
Z

dk1
2π

dk2
2π

DXðk1ÞDXðk2ÞDXðk1 þωÞDXðk2 þωÞ
#
: ð17Þ

Since we have 1=D as an expansion parameter it is quite easy to solve these equations. At leading order for large D, the
only contribution to the self-energies comes from the first term (the bubble term) in Eσ . This means that at leading order for
large D we have

D−1
σ ðωÞ ¼ 1þ λ̃A

Z
dk
2π

1

k2 þm2

1

ðkþ ωÞ2 þm2

¼ 1þ λ̃A
mðω2 þ 4m2Þ

: ð18Þ

i+ +i

i

i i i

j

j

i i

FIG. 2. Diagrams that contribute to EX to Oð1=DÞ. Internal lines are understood to be dressed propagators, external lines are
amputated. There is no sum on i, but there is a sum on j in the last diagram. In double-line notation the first two diagrams also appear in

the flipped forms + .

i
+ +

i

i

i

i

i

i

i

i

i

FIG. 3. Diagrams that contribute to Eσ to Oð1=DÞ. Internal lines are understood to be dressed propagators, external lines are
amputated. There is a sum over the vector index i.

−1 −1
= + +

+ +

FIG. 1. Schematic form of the Schwinger-Dyson equations for a theory with three- and four-point couplings but no tadpoles. Solid
blobs are dressed propagators; empty circles are 1PI vertices. In the loop diagrams all numerical factors have been suppressed and all
external lines are understood to be amputated. See for example [9–12].
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Thus,

Dσ ¼
ω2 þ 4m2

ω2 þm2
σ

ð19Þ

where we have defined

m2
σ ¼ 4m2 þ λ̃A=m: ð20Þ

We use this result to evaluate the loop integrals in the Xi self-energy to Oð1=DÞ. The integrals in (16) lead to

D−1
X ðωÞ ¼ ω2 þm2 −

4λ̃C
2mD

þ λ̃A
mD

ω2 þ 5m2 þmmσ þ 4m3=mσ

ω2 þ ðmþmσÞ2
−

3λ̃2C
m2D

1

ω2 þ 9m2
: ð21Þ

We can evaluate the self-energy on shell, by setting the
Euclidean momentum to ω2 ¼ −m2. We see that the self-
energy is real and to Oð1=DÞ the only effect is a small shift
in the physical (pole) mass of the fields Xi.
We can also determine the relation between the param-

eter m and the bare parameters of the model (1). The
tadpole condition (7) fixes

Σ0 ¼ igAND
Z

dk
2π

DXðkÞ ð22Þ

so that

m2 ¼ m2
0 þ 2λ̃A

Z
dk
2π

DXðkÞ: ð23Þ

At leading order for large D we have DXðkÞ ¼ 1=ðk2 þ
m2Þ so that

m2 ¼ m2
0 þ λ̃A=mþOð1=DÞ: ð24Þ

It is useful to think of the bare mass as a function of m by
writing

m2
0 ¼ m2 − λ̃A=mþOð1=DÞ: ð25Þ

Neglecting Oð1=DÞ corrections, the entire range −∞ <
m2

0 < ∞ corresponds to m2 > 0, so we always have a
positive dressed mass even if the bare fields are tachyonic.
From (24) we see that m2 > m2

0 and from (20) we see
that m2

σ > 4m2.
It is the leading large-D behavior of the dressed mass that

will be most relevant for us, especially in Sec. III. We
denote this leading large-D behavior by m1, with

m2
1 ¼ m2

0 þ λ̃A=m1: ð26Þ

Thus, m1 agrees with m up to Oð1=DÞ corrections.

C. Finite-temperature results

We now study the model at finite temperature, with the
goal of understanding dissipation in the 1=D expansion. We
do this using a Euclidean formalism, by discretizing the
loop integrals to Matsubara sums,

ω → ωn ¼
2πn
β

ð27Þ

Z
dω
2π

→
1

β

X

n

: ð28Þ

We will repeat the steps in the previous section: first
determine the σ propagator at leading order for large D,
then determine the Xi propagator to Oð1=DÞ.
For σ this gives the leading-order propagator

D−1
σ ðωnÞ ¼ 1þ λ̃A

1

β

X

n

1

k2n þm2

1

ðkn þ ωnÞ2 þm2
: ð29Þ

Following the standard Saclay technique [13–15] we
switch to writing the propagators in position space,

1

ω2 þm2
¼

Z
β

0
dτ eiωτ

1

2m
½ð1þ NmÞe−mτ þ Nmemτ& ð30Þ

where Nm ¼ 1
eβm−1 is a Bose distribution. Then we do the

Matsubara sum using

1

β

X

n

ei2πnðτ−τ
0Þ=β ¼

X

w

δðτ − τ0 − βwÞ: ð31Þ

The δ function kills one of the integrals over Euclidean
time, and the remaining time integral leads to
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D−1
σ ðωnÞ ¼ 1þ λ̃A

ð2mÞ2
N2

m

"
4m

ω2
n þ 4m2

ðe2βm − 1Þ

þ 2βeβmδn;0

#
: ð32Þ

The last term, proportional to δn;0, comes from the cross
terms between e−mτ and eþmτ. We take the inverse to get the
propagator itself. This gives a rather complicated expres-
sion which for convenience we write in the form

DσðωnÞ ¼ 1 −
m2

σ − 4m2

ω2
n þm2

σ
− Aδn;0: ð33Þ

Here we have defined a thermally corrected σ mass

m2
σ ¼ 4m2 þ λ̃A

m
e2βm − 1

ðeβm − 1Þ2
: ð34Þ

We have also introduced a parameter A to obtain the correct
propagator for the zero mode. It is fixed by requiring that
(32) and (33) are consistent when n ¼ 0,

½Dσðωn¼0Þ from ð32Þ& ¼ 4m2

m2
σ
− A: ð35Þ

The parameter A is a way of accounting for the δn;0 term in
(32). Note that the δn;0 term makes a positive contribution
to the right-hand side of (32), so it decreases the value of
Dσðωn¼0Þ, which means that A is positive.
Next we evaluate the Xi propagator to Oð1=DÞ. In terms

of Matsubara sums we have

D−1
X ðωÞ ¼ ω2 þm2 − 4

λ̃C
D

1

β

X

n

1

k2n þm2

þ 2
λ̃A
D

1

β

X

n

1

ðkn þ ωÞ2 þm2
DσðknÞ

− 4
λ̃2C
D

1

β2
X

n1;n2

1

k2n1 þm2

1

k2n2 þm2

×
1

ðkn1 þ kn2 þ ωÞ2 þm2
: ð36Þ

The advantage of writing the σ propagator in the form (33)
is that the Matsubara sums are all straightforward,
following the steps used to obtain (32). To Oð1=DÞ we
find

D−1
X ðωÞ ¼ ω2 þm2 þ 2λ̃A − 4λ̃C

D
S1 −

2λ̃A
D

ðm2
σ − 4m2ÞS2

−
2λ̃A
D

A
β

1

ω2 þm2
−
4λ̃2C
D

S3 ð37Þ

where the sums (valid for Matsubara frequencies, ω∈ 2π
β Z)

are3

S1 ¼
1

β

X

n

1

k2n þm2
¼ 1

2m tanhðβm=2Þ
ð38Þ

S2¼
1

β

X

n

1

ðknþωÞ2þm2

1

k2nþm2
σ

¼
NmNmσ

4mmσ

"
ðeβðmþmσÞ−1Þ

$
1

iωþmσþm
−

1

iω−ðmσþmÞ

%
þðeβmσ −eβmÞ

$
1

iωþmσ−m
−

1

iω−ðmσ−mÞ

%#
ð39Þ

S3 ¼
1

β2
X

n1;n2

1

k2n1 þm2

1

k2n2 þm2

1

ðkn1 þ kn2 þ ωÞ2 þm2

¼ N3
m

ð2mÞ3

"
ðe3βm − 1Þ

$
1

iωþ 3m
−

1

iω − 3m

%
þ 3eβmðeβm − 1Þ

$
1

iωþm
−

1

iω −m

%#
: ð40Þ

Our goal is to study dissipation. To this end, since we are
working in Euclidean space, we examine the behavior of
the propagator in the vicinity of ω2 þm2 ¼ 0. Most of the
loop corrections in (37) are small and make an Oð1=DÞ
shift in the location of the pole, but two terms (highlighted
in magenta) are dangerous since they diverge at ω ¼ 'im.
Retaining just the dangerous terms we approximate the
inverse propagator as

D−1
X ðωÞ ¼ ω2 þm2 −

B
ω2 þm2

ð41Þ

3The expression for S2 is valid provided m ≠ mσ , which is the
case in our model. If one sets m ¼ mσ in (39) there is an
additional contribution to the sum proportional to δn;0 that can be
seen in (32).
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where

B ¼ 2λ̃A
D

A
β
þ 3λ̃2C
Dm2

N2
meβm: ð42Þ

In terms of the parameters of the model, the explicit
expression for B that follows from (35) and (42) is

B ¼ 3λ̃2C
4Dm2sinh2 βm

2

−
2λ̃A
Dβ

2

64
1

1þ λ̃A
4m3

&
1

tanhβm2
þ βm

2sinh2βm2

'

−
1

1þ λ̃A
4m3 tanhβm2

3

75: ð43Þ

Taking the inverse of (41), the propagator is

DXðωÞ ¼
1

2

$
1

ω2 þm2 þ
ffiffiffiffi
B

p þ 1

ω2 þm2 −
ffiffiffiffi
B

p
%
: ð44Þ

Recall that A is positive, which means that B is also
positive. Also note that A is Oð1Þ while B is Oð1=DÞ.
So we see that at finite temperature the single pole at
ω2 þm2 ¼ 0 is split into a pair of nearby poles at
ω2 þm2 '

ffiffiffiffi
B

p
¼ 0.

To see the physical consequences we turn to the retarded
Green’s function DRðωÞ, which can be obtained from a
Euclidean correlator by analytically continuing [15,16]4

DRðωÞ ¼ DXðωn → −iðωþ iϵÞÞ: ð45Þ

This leads to

DRðωÞ¼
1

2

$
1

−ðωþ iϵÞ2þm2
þ
þ 1

−ðωþ iϵÞ2þm2
−

%
ð46Þ

where

m2
' ¼ m2 '

ffiffiffiffi
B

p
: ð47Þ

At finite temperature effectively there are two nearby
energy levels. The consequences are clearest if we trans-
form back to position space, where

DRðtÞ ¼
Z

dω
2π

e−iωtDRðωÞ

¼ θðtÞ 1
2

$
1

mþ
sinðmþtÞ þ

1

m−
sinðm−tÞ

%

≈ θðtÞ 1
m
sinðmtÞ cos

$ ffiffiffiffi
B

p
t

2m

%
: ð48Þ

The model behaves as though it were a discrete quantum
mechanical system. Although there is no true dissipation,
the two nearby energy levels lead to destructive interference
on a timescale given by

τ ¼ πmffiffiffiffi
B

p : ð49Þ

We define an effective width for the excitation by

Γ ¼ 1

τ
¼

ffiffiffiffi
B

p

πm
: ð50Þ

This is exponentially suppressed at low temperatures,
where

B ∼ e−βm Γ ∼ e−βm=2: ð51Þ

In contrast the width grows linearly at high temperatures,
where

Γ ¼
ffiffiffi
3

p
λ̃C

πm3
ffiffiffiffi
D

p
β
þOðβÞ: ð52Þ

Finally we examine thermal corrections to the relation
between the parameter m and the bare parameters of the
model (1). At finite temperature the tadpole condition (7)
fixes

Σ0 ¼ igAND
1

β

X

n

DXðknÞ ð53Þ

thus, from (5),

m2 ¼ m2
0 þ 2λ̃A

1

β

X

n

DXðknÞ: ð54Þ

At leading order for large D we have DXðkÞ¼1=ðk2þm2Þ
so that

m2 ¼ m2
0 þ

λ̃A
m tanhðβm=2Þ

þOð1=DÞ: ð55Þ

We can think of the bare mass as a function ofm by writing

m2
0 ¼ m2 −

λ̃A
m tanhðβm=2Þ

þOð1=DÞ: ð56Þ4Our conventions for Wick rotating are ωMinkowski ¼
þiωEuclidean and tMinkowski ¼ −itEuclidean.
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The entire range−∞ < m2
0 < ∞ corresponds tom2 > 0, so

we always have a positive dressed mass even if the bare
fields are tachyonic. This suggests there is no phase
transition in the model.

III. DIRECT APPROACH

The same results can be obtained by directly analyzing
the action (1).

A. Zero-temperature results

1. Leading order in 1=D

The two-point function for Xij field is

hXijðτÞXklð0Þi ¼ GðτÞδilδjk ð57Þ

and its Fourier transformation is

GðτÞ¼
Z

dω
2π

GðωÞe−iωτ; GðωÞ¼
Z

dτGðτÞeiωτ: ð58Þ

The bare propagator is G0ðωÞ, and the Schwinger-Dyson
equation for the dressed propagator GðωÞ in the leading
order in 1=D expansion becomes

G0¼
1

ω2þm2
0

; G¼ 1

ω2þm2
1

;

GðωÞ¼G0ðωÞ−cLλ̃AG0ðωÞGðωÞ
Z

dω0

2π
Gðω0Þ: ð59Þ

This is obtained from the snail Feynman diagrams shown in
Fig. 4. Here, cL is a constant determined by counting Wick
contractions, and it turns out cL ¼ 2 (see Appendix C 1).
The one-loop integral can be performed

Z
dω0Gðω0Þ ¼

Z
dω0 1

ω02 þm2
1

¼ π
m1

ð60Þ

and thus,

G0ðωÞ−1 ¼ GðωÞ−1 − λ̃A
m1

⇒ m2
1 ¼ m2

0 þ
λ̃A
m1

: ð61Þ

This matches with (26).

2. A bubble chain diagram for 1=D corrections

To evaluate 1=D corrections, we will have to take into
account diagrams with a “bubble chain.” The bubble
chain Feynman diagrams are defined in Fig. 5. We denote
them by BðωÞ, where BðωÞ is the amplitude of the bubble
chain diagrams such that there is a momentum flow
ω ¼ ω1 − ω2 ≡ ω1−2.
From Fig. 5, in Euclidean signature BðωÞ satisfies

Bðω1−2Þ ¼
Z

dω
2π

GðωÞGðω1−2 − ωÞ

− cBλAD
Z

dω
2π

GðωÞGðω1−2 − ωÞBðω1−2Þ:

ð62Þ

Here cB is a coefficient. This shows that the bubble chain
diagrams have a geometric sum structure as

Bðω1−2Þ ¼
R

dω
2π GðωÞGðω1−2 − ωÞ

1þ cBλ̃A
R

dω
2π GðωÞGðω1−2 − ωÞ

: ð63Þ

In Appendix C 2, we count Wick contractions and show
that cB ¼ 1. One can compute the integral using

GðτÞ ¼ 1

2m1

ðθðτÞe−m1τ þ θð−τÞem1τÞ ð64Þ

as
Z

dω
2π

GðωÞGðω1−2 − ωÞ

¼
Z

dτGðτÞ2eiω1−2τ

¼ 1

m1

Z
dτ

1

4m1

ðθðτÞe−2m1τ þ θð−τÞe2m1τÞeiω1−2τ

¼ 1

m1

1

ω2
1−2 þ 4m2

1

: ð65Þ

FIG. 4. Schwinger-Dyson equation in the leading order of 1=D
expansion. In this leading order, only the snail diagrams con-
tribute.

FIG. 5. Bubble chain diagram with a momentum flow ω1 − ω2. The black circle propagator represents GðωÞ which we already
obtained in (61).

DISSIPATION IN THE 1=D EXPANSION FOR PLANAR … PHYS. REV. D 111, 025003 (2025)

025003-7



From this, BðωÞ can be determined as

BðωÞ ¼ 1

m1

1

ω2 þm2
σ
; where m2

σ ¼ 4m2
1 þ

λ̃A
m1

: ð66Þ

This expression for mσ agrees with (20) up to Oð1=DÞ
corrections coming from the difference between m and m1.
Likewise the bubble chain propagator BðωÞ is related to
DσðωÞ obtained in (19) as

1 − λ̃ABðωÞ ¼ 1 −
λ̃A
m1

1

ω2 þm2
σ
¼ 1 −

m2
σ − 4m2

1

ω2 þm2
σ
¼ DσðωÞ

ð67Þ

again up toOð1=DÞ corrections coming from the difference
between m and m1. For λ̃A > 0 note that mσ > 2m1. For
future reference the Fourier transform of BðωÞ is

BðτÞ ¼ 1

2m1mσ
ðθðτÞe−mστ þ θð−τÞemστÞ: ð68Þ

3. λ̃A=D corrections for dissipation

Now we can evaluate the 1=D corrections to a two-point
function which are responsible for dissipation. Wewill only
be interested in diagrams that introduce ω dependence.
There are additional self-energy diagrams that shift the
mass; we ignore these diagrams for now and return to them
in Sec. III A 5.
There are two types of 1=D corrections, one is propor-

tional to λ̃A=D and the other is proportional to λ̃C=D. We
first consider only the contribution of λ̃A. In other words,
we set λ̃C ¼ 0 for a moment. Then the Feynman diagram
proportional to λ̃A=D that contributes to dissipation, i.e.,
which produces a pole, is shown in Fig. 6.
Again we denote GðωÞ as the leading dressed correlator

in the large-D limit, i.e., the propagator without 1=D
correction given by (59). Its mass m1 is determined by
(61) in the zero-temperature limit. We denote G̃ðωÞ as the
dressed correlator including 1=D corrections. The
Schwinger-Dyson equation taking into account λ̃A=D
corrections becomes

G̃ðωÞ−1 ¼ GðωÞ−1 − cAλ̃2A
D

Z
dω1

2π
Gðω1ÞBðω − ω1Þ

þ δmA þO
$

1

D2

%
: ð69Þ

Here we are focusing on the self-energy correction shown
in Fig. 6, since as we will see it has a pole. In addition δmA

represents the ω-independent Oðλ̃A=DÞ contributions com-
ing from tadpole diagrams that are responsible for the
Oðλ̃A=DÞ mass shift, i.e., they are parts of the mass
difference m −m1. cA is a combinatoric constant that
has the value cA ¼ 2, as shown in Appendix C 3.
Since

GðτÞBðτÞ ¼ m1 þmσ

2m2
1mσ

1

2ðm1 þmσÞ
× ðθðτÞe−ðm1þmσÞτ þ θð−τÞeðm1þmσÞτÞ ð70Þ

we obtain
Z

dω1

2π
Gðω1ÞBðω − ω1Þ ¼

Z
dτGðτÞBðτÞeiωτ

¼ m1 þmσ

2m2
1mσ

1

ω2 þ ðm1 þmσÞ2
:

ð71Þ

Thus,

−
2λ̃2A
D

Z
dω1

2π
Gðω1ÞBðω − ω1Þ

¼ −
λ̃2A
D

m1 þmσ

m2
1mσ

1

ω2 þ ðm1 þmσÞ2

≡ 1

D
ΠAðωÞ: ð72Þ

The fact that it has a pole at m1 þmσ is important.
Thus, the Schwinger-Dyson equation becomes

G̃ðωÞ−1 ¼ ω2 þm2
1 þ

1

D
ΠAðωÞ þ δmA þO

$
1

D2

%
ð73Þ

where

1

D
ΠAðωÞ ¼ −

λ̃A
D

λ̃A
m1

m1 þmσ

m1mσ

1

ω2 þ ðm1 þmσÞ2
ð74Þ

¼ λ̃A
D

1

m1mσ

ð4m2
1 −m2

σÞðm1 þmσÞ
ω2 þ ðm1 þmσÞ2

: ð75Þ

In the second equality, we use (66) that relates λ̃A bymσ and
m1. This equation can be compared with λ̃A term in (21),
where

FIG. 6. The self-energy diagram proportional to λ̃A=D which
contributes to dissipation. The black circle propagators are
dressed propagators GðωÞ which we already obtained in (61)
and do not include any 1=D corrections. “Bubble” means the
bubble chain diagram from Fig. 5. This diagram makes an
ω-dependent contribution.
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λ̃A
mD

ω2 þ 5m2 þmmσ þ 4m3=mσ

ω2 þ ðmþmσÞ2

¼ λ̃A
D

1

mmσ

$
mσ þ

ð4m2 −m2
σÞðmþmσÞ

ω2 þ ðmþmσÞ2

%
: ð76Þ

Thus, the pole and its residue match completely. We also
see certain Oð1=DÞ contributions to the mass differ-
ence m −m1 ¼ Oð1=DÞ.

4. λ̃C=D contributions for dissipation

For a complete computationof the1=D correction to a two-
point function, wemust incorporate the effect of λ̃C ¼ g2CND
as well. Then the Schwinger-Dyson equation becomes

G̃ðωÞ−1 ¼ ω2 þm2
1 þ

1

D
ðΠAðωÞ þ ΠCðωÞÞ

þ δmA þ δmC þO
$

1

D2

%
: ð77Þ

Here the melon diagram of Fig. 7 contributes to the self-
energy as

1

D
ΠCðωÞ ¼ −

cCλ̃2C
D

Z
dω1

2π

Z
dω2

2π
Gðω1Þ

×Gðω2ÞGðω − ω1 − ω2Þ ð78Þ

¼ −
cCλ̃2C
D

Z
dτ1ðGðτ1ÞÞ3eiωτ1 ð79Þ

¼ −
3cCλ̃2C
4Dm2

1

1

ω2 þ 9m2
1

ð80Þ

where cC is a combinatoric constant and cC ¼ 4 which we
show inAppendixC 4. Comparing to the termproportional to
λ̃C=D in (21), we see that the pole and its residue match
completely.We also see certainOðλ̃C=DÞ contributions to the
mass difference m −m1.
Note that there is also a melon diagram proportional to

λ̃A ¼ g2AND. This melon diagram is obtained by replacing
the bubble chain diagram in Fig. 6 by the first term on the
right-hand side of Fig. 5. However, note that the results from
the two melon diagrams are very different. The melon

diagram in Fig. 7 proportional to λ̃C gives a pole at
ω2 ¼ −ð3m1Þ2. On the other hand, the melon diagram in
Fig. 6 proportional to λ̃A gives a pole atω2 ¼ −ðm1 þmσÞ2.

5. 1=D contributions to the mass shift

Recall that we have introduced two slightly different
definitions of dressed mass. In Sec. II, m is defined by the
no-tadpole condition which leads to (23). In Sec. III A 1 we
defined a leading large-D dressed mass m1 by solving a
Schwinger-Dyson equation which leads to (26). The two
definitions (23) and (26) differ by Oð1=DÞ corrections.
In the direct approach of Sec. III, there are many

diagrams that are responsible for Oð1=DÞ corrections to
the mass. We should take into account these Oð1=DÞ mass
shift corrections for comparison with the results in Sec. II.
For example, the snail diagrams in Fig. 4 make a

subleading Oð1=DÞ correction to the mass. It comes from
the following Wick contraction:

ð81Þ

which gives part of theOð1=DÞmass shift, δmA, in (73) [or
in (77)] as

δmA ¼ 2λ̃A
D

Z
dω1

2π
Gðω1Þ þ ( ( ( ¼ λ̃A

Dm1

þ ( ( ( : ð82Þ

This mass shift can be compared with the ω-independent
term in (21) or equivalently in (76).
Similarly, there is an additional mass shift contribution of

Oðλ̃C=DÞ, which is the snail diagram in Fig. 4 but it is
obtained by the λC term where all indices are the same.
More explicitly,

ð83Þ

where 4 is because of four Xj’s and 2 is because of two
choices for . The self-energy from such a diagram
gives

δmC ¼ −
4λ̃C
D

Z
dω
2π

GðωÞ þ ( ( ( ¼ −
4λ̃C
2m1D

þ ( ( ( : ð84Þ

Again this mass shift can be compared with the ω-
independent term in (21).
In addition to these Oð1=DÞ snail diagrams, many other

diagrams are responsible for the mass shift. Examples of
such diagrams are shown in Fig. 8. Since our main interests
are in dissipation in many-matrix models, we will not
evaluate these mass shift contributions any further.FIG. 7. Melon diagram which contributes in λ̃C=D corrections.
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B. Finite-temperature results

1. Leading order in 1=D

At finite temperature, momentum is discretized as in (27)
by Matsubara frequency and the integral becomes summa-
tion as in (28). The Schwinger-Dyson equation in the
leading order in 1=D becomes

GðωnÞ ¼ G0ðωnÞ − cL
λ̃A
β
G0ðωnÞGðωnÞ

X

k

GðωkÞ ð85Þ

with cL ¼ 2. This becomes

m2
1 ¼ m2

0 þ
λ̃A
m1

coth
βm1

2
: ð86Þ

In zero-temperature limit m1β ≫ 1, this becomes

m2
1 ¼ m2

0 þ
λ̃A
m1

ð87Þ

which matches with (26).
On the other hand, in high temperature limit m1β ≪ 1,

this becomes

m2
1 ∼

λ̃A
m1

2

βm1

¼ 2λ̃A
βm2

1

: ð88Þ

2. A bubble chain diagram for 1=D corrections

Let us perform a similar analysis for nonzero tempera-
ture. The analysis becomes complicated, but physically, the
effective mass changes in finite temperature. First, let us see
the bubble chain diagram for nonzero temperature. We can
rewrite the Schwinger-Dyson equation as one with finite
temperature,

Bððω1−2ÞnÞ ¼
1

β

X

k

GðωkÞGððω1−2Þn − ωkÞ

−
cBλAD

β

X

k

GðωkÞGððω1−2Þn − ωkÞ

× Bððω1−2ÞnÞ: ð89Þ

Again, cB ¼ 1 and this yields

Bððω1−2ÞnÞ¼
1
β

P
kGðωkÞGððω1−2Þn−ωkÞ

1þ cBλAD
β

P
kGðωkÞGððω1−2Þn−ωkÞ

: ð90Þ

This summation can be computed as follows:

1

β

X

k

GðωkÞGðωn − ωkÞ ¼
1

m1

coth m1β
2

ω2
n þ 4m2

1

þ
βcsch2 m1β

2

8m2
1

δn;0:

ð91Þ

Therefore, separated contributions due to zero mode appear
in a bubble chain diagram as well. We can simply write
them as follows:

BðωnÞ ¼
1

m1

cothm1β
2

ω2
n þm2

σ
þ A
λ̃A

δn;0 ð92Þ

where mσ is β-dependent mass,

m2
σ ¼ 4m2

1 þ
λ̃A
m1

coth
m1β
2

; ð93Þ

and A is a complicated β-dependent function,

A
λ̃A

¼ 4βm4
1

ð4m3
1 þ λ̃A cothðβm1

2 ÞÞð4m3
1ðcosh ðβm1Þ − 1Þ þ λ̃Aðβm1 þ sinhðβm1ÞÞÞ

: ð94Þ

Note that A is positive since λ̃A > 0.
Since limβ→∞AðβÞ → 0,

m2
σ → 4m2

1 þ
λ̃A
m1

; BðωnÞ →
1

m1

1

ω2
n þ 4m2

1 þ
λ̃A
m1

; as m1β → ∞: ð95Þ

Note also that mσ > 2 at any temperature as long as the theory is not free, i.e., λ̃A > 0.

FIG. 8. Examples of diagrams which contribute to the mass
shift at order λ̃A=D. These tadpole diagrams are ω independent.
They contribute to the mass shift at Oð1=DÞ.
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We also have

1 − λ̃ABðωnÞ ¼ 1 −
λ̃A
m1

coth m1β
2

ω2
n þm2

σ
− Aδn;0

¼ 1 −
m2

σ − 4m2
1

ω2
n þm2

σ
− Aδn;0 ¼ DσðωnÞ ð96Þ

which matches with DσðωnÞ in (33) up to Oð1=DÞ correc-
tions coming from the mass difference m −m1 ¼ Oð1=DÞ.

3. 1=D corrections for dissipation

Similar to the zero-temperature case, the Schwinger-
Dyson equation can be rewritten as

G̃ðωnÞ−1 ¼ GðωnÞ−1 þ
1

D
ðΠAðωnÞ þ ΠCðωnÞÞ

þ δmA þ δmC þO
$

1

D2

%
ð97Þ

1

D
ΠAðωnÞ ¼ −

cA
D

λ̃2A
β

X

k

GðωkÞBðωk − ωnÞ ð98Þ

1

D
ΠCðωnÞ¼−

cC
D
λ̃2C
β2

X

k;k0
GðωkÞGðωk0ÞGðωn−ωkþk0Þ ð99Þ

where cA ¼ 2, cC ¼ 4. ΠA and ΠC contributions are given
by Figs. 6 and 7, respectively.
Contribution for ΠA yields

1

D
ΠAðωnÞ ¼ −

cA
D

λ̃2A
β

X

k

GðωkÞBðωn − ωkÞ

¼ −
cA
D

λ̃2A coth
m1β
2

mσ cothðBm1

2 Þð−m2
1 þm2

σ þ ω2
nÞ þm1 cothðBmσ

2 Þðm2
1 −m2

σ þ ω2
nÞ

2m2
1mσððm1 −mσÞ2 þ ω2

nÞððm1 þmσÞ2 þ ω2
nÞ

−
B1

ω2
n þm2

1

; ð100Þ

where cA ¼ 2 and

B1 ¼
2

D
λ̃A
β
A: ð101Þ

Contribution for ΠC yields

1

D
ΠCðωnÞ ¼ −

cC
D

λ̃2C
β2

X

k;k0
GðωkÞGðωk0ÞGðωn − ωkþk0Þ

¼ −
cC
D

λ̃2C
β

X

k

GðωkÞ
$
1

β

X

k0
Gðωk0ÞGðωn − ωkþk0Þ

%

¼ − cC
D

λ̃2C
β

X

k

GðωkÞ
$

1

m1

cothm1β
2

ω2
n−k þ 4m2

1

þ
βcsch2 m1β

2

8m2
1

δn−k;0

%

¼ − cC
D

λ̃2C
16m2

1

$
csch2 m1β

2

ω2
n þm2

1

þ
3ð4þ 3csch2 m1β

2 Þ
ω2
n þ 9m2

1

%
− cC

D
λ̃2C
8m2

1

csch2
m1β
2

GðωnÞ

¼ −
B2

ω2
n þm2

1

−
3cCλ̃2C
16Dm2

1

4þ 3csch2 m1β
2

ω2
n þ 9m2

1

ð102Þ

where cC ¼ 4 and

B2 ¼
3cCλ̃2C
16Dm2

1

csch2
m1β
2

¼ 3cCλ̃2C
4Dm2

1

$
1

eβm1 − 1

%
2

eβm1 : ð103Þ

Combining (103) with (101), we obtain the propagator in the vicinity of ω2 þm2
1 ¼ 0 as
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G̃ðωnÞ−1 ¼ GðωnÞ−1 þ
1

D
ðΠAðωnÞ þ ΠCðωnÞÞ

þ δmA þ δmC þO
$

1

D2

%
ð104Þ

where

1

D
ðΠAðωnÞ þ ΠCðωnÞÞ ¼ −

B
ω2
n þm2

1

þ ( ( ( ; ð105Þ

B¼B1þB2¼
1

D

$
2λ̃AA
β

þ3λ̃2C
m2

1

$
1

eβm1 −1

%
2

eβm1

%
: ð106Þ

This matches the previous results (41) and (42), neglecting
the additional Oð1=DÞ corrections coming from the
mass difference m −m1 ¼ Oð1=DÞ. Thus, the rest of the
argument that, at finite temperature, the single pole at
ω2 þm2

1 ¼ 0 splits into a pair of nearby poles is the same
as Sec. II.

IV. CONCLUSIONS

We studied a simple model of many-matrix quantum
mechanics. From the matrix point of view we worked in the
planar limit, sending N → ∞ first. Physical quantities can
then be calculated as an expansion in 1=D, where D is the
number of matrices. This can be thought of as a particular
scaling limit of a tensor model. It can also be thought of as a
noncommutative generalization of an OðDÞ vector model.
We focused on dissipation at finite temperature, which

we extracted from a two-point correlator. A curious fact is
that dissipation arises at Oð1=

ffiffiffiffi
D

p
Þ. We expect that this is

generically true in many-matrix models. Another curious
fact is that at high temperature the leading dissipative
effects are due to the coupling gC, while gA only makes
subleading contributions. If we set gC ¼ 0 and then expand
the width (50) for high temperatures, then unlike the linear
growth (52) we find that the leading behavior is temper-
ature independent,

Γjλ̃C¼0 ¼
ffiffiffi
2

p
m

π
ffiffiffiffi
D

p þOðβÞ: ð107Þ

It would be interesting to understand why the couplings
gC and gA lead to such different behaviors. As a possible
explanation, note that for any N and D the potential of the
model (1) can be written as

V ¼ 1

2
m2

0TrðXiXiÞ − 1

4
g2CTrð½Xi; Xj&2Þ

þ 1

2
ðg2A − g2CÞTrðXiXiXjXjÞ: ð108Þ

The mass term dominates near the origin. The
ðcommutatorÞ2 term is stable, but has flat directions

corresponding to commuting matrices. The last term is
stable if gA > gC, but if gA < gC it makes the potential
unstable at large fields. Thus we see that

(i) For gA > gC the model is stable.
(ii) For gA ¼ gC the quartic potential has flat directions.

The model is stable for m2
0 ≥ 0.5

(iii) For gA < gC the model has an instability at large
fields.

This behavior appears to be independent of N and D. The
instability for gA < gC may be related to the different
behaviors of the two couplings.6

It would also be interesting to explore higher orders in
perturbation theory.

(i) ToOð1=DÞ, in the retarded propagator (45), we have
seen that the pole at ω2 ¼ m2 that is present at tree
level splits into a pair of poles at ω2 ¼ m2

'. Pre-
sumably at higher orders in 1=D the splitting
continues and additional poles develop. Does the
width Γ remain Oð1=

ffiffiffiffi
D

p
Þ?

(ii) At Oð1=DÞ the correlator (48) undergoes a “recur-
rence” when t ¼ 4πm=

ffiffiffiffi
B

p
. As additional poles

develop, does the recurrence timescale get longer?
(iii) Perhaps one can study the large-order behavior of

perturbation theory. Does the model develop a
continuous spectrum? Is there a sign of the insta-
bility which is present when gC > gA? Is the 1=D
expansion convergent, or can it be resummed?

Another interesting direction is to add a massive vector
as a probe [17,18]. It is known that, for a single free matrix
coupled to a vector, the out-of-time-ordered correlators
(OTOCs) for the vector do not grow exponentially in time
[19,20]. This is because the matrix is free. For the
interacting many-matrix model we studied in this paper,
the matrices themselves have nontrivial dissipation. Thus,
OTOCs for a vector coupled to our interacting matrices
might show nontrivial behavior. It would be interesting to
investigate this direction further.
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APPENDIX A: AUXILIARY FIELDS

We briefly review the introduction of the auxiliary field Σ
via a Hubbard-Stratonovich transformation [21]. Consider
the 1D integral

Z ¼
Z

∞

−∞
dϕe−SE SE ¼ 1

2
m2ϕ2 þ 1

2
g2ϕ4: ðA1Þ

Introduce 1 in the path integral, represented as

1 ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dΣe−1

2ðΣ−igϕ
2Þ2 : ðA2Þ

Up to a normalization this leads to

Z¼
Z

dϕdΣe−SE SE¼
1

2
m2ϕ2þ1

2
Σ2− igΣϕ2: ðA3Þ

This action is analogous to (4). Note that in this form both ϕ
and Σ are integrated over real values. In the literature one
sometimes redefines Σ to absorb a factor of i.

APPENDIX B: COMBINATORICS FOR
HUBBARD-STRATONOVICH APPROACH

In this appendix we fix the numerical factors that appear
in the diagrams of Fig. 2, including the flipped forms
mentioned in the caption. These factors are displayed in
(16). The strategy is simple: We invert (16) and expand in
powers of the couplings. Numerical factors are fixed by
matching to ordinary perturbation theory.
In perturbation theory the two-point function is (with no

sumon i, andwith integrals over Euclidean time suppressed)

hXiXie−Sinti: ðB1Þ

The first diagram in Fig. 2, including its flipped form, comes
from

1

2
g2ChXiTrðXjXkXjXkÞXii: ðB2Þ

Restricting to planar diagrams there are four possible con-
tractions for the Xi on the left, and two possible contractions
for the Xi on the right. There is one closed matrix index loop,
so the diagram comes with a numerical factor

1

2
g2C · 4 · 2 · N ¼ 4g2CN: ðB3Þ

The second diagram in Fig. 2, including its flipped form,
arises at second order in perturbation theory. It comes from

1

2!
ðigAÞ2hXiTrðσXjXjÞTrðσXkXkÞXii: ðB4Þ

Again restricting to planar diagrams, there are two ways to
contract theX fields in which the σ contraction runs below an
X contraction. There are also twoways to contract theX fields
in which the σ contraction runs above an X contraction. This
gives a total of four possible contractions. There is one closed
matrix index loop, so the diagram comes with a numerical
factor

1

2!
ðigAÞ2 · 4 · N ¼ −2g2AN: ðB5Þ

The third diagram in Fig. 2 arises at second order in
perturbation theory. It comes from

1

2!

$
1

2
g2C

%
2

hXiTrðXjXkXjXkÞTrðXmXnXmXnÞXii: ðB6Þ

For a planar diagram there are eight possible contractions for
the Xi on the left, followed by four possible contractions for
the Xi on the right. There are two closed matrix index loops
and one closed vector index loop, so the numerical factor is

1

2!

$
1

2
g2C

%
2

· 8 · 4 · N2 ·D ¼ 4g4CN
2D: ðB7Þ

The numerical factors (B3), (B5), and (B7) appear inside the
square brackets in (16).

APPENDIX C: COMBINATORICS FOR DIRECT
APPROACH

In this appendix, we will calculate various combinatoric
coefficients in various diagrams.7

1. Coefficient cL = 2

This coefficient can be obtained by Wick contraction as
follows. In perturbation theory, the snail diagrams are
shown in Fig. 9 through two loops. The one-loop diagram
in Fig. 9 is

FIG. 9. Perturbative snail diagrams to two loops.

7In this appendix, we use a; b; c ¼ 1; ( ( (D for flavor indices
and i; j; k ¼ 1; ( ( (N for color indices.
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Xa
ij

$
−
g2A
2

X

b;c

TrðXbXbXcXcÞ
%
Xa
kl ðC1Þ

where Xa represents an external line. Considering the Trace cyclic property, the possible Wick contractions are as follows:

ðC2Þ

Here “→” means we maintain only the leading contributions and neglect all subleading contributions. The number 4 is
because there are four X’s in XbXbXcXc. This determines

cL ¼ 2: ðC3Þ

To simplify the notation, let us write only the subscripts of the matrix, such as a≡ Xa. Then the two-loop diagram in
Fig. 9 is

1

2!

$
−
g2A
2

%
2 X

b;c;d;e

XaðXbXbXcXcÞðXdXdXeXeÞXa ¼ 1

2!

$
−
g2A
2

%
2 X

b;c;d;e

aðbbccÞðddeeÞa ðC4Þ

ðC5Þ

ðC6Þ

where 8 is because there are eight X’s in bbccddee and 2 is because there are two choices d and e to pair up with c. The last
term is also planar due to the trace cyclicity. Thus, in this two-loop diagram, the final coefficient is ð−2λADÞ2. This also
justifies (C3).

2. Coefficient cB = 1 in the bubble chain diagram

The coefficient cB in a bubble diagram can be obtained similarly. First, we will calculate the coefficients in the
perturbative bubble diagram as in Fig. 10.
The first term on the right-hand side of Fig. 10 is

1

2!

$
− g2A

2

%
2 X

a;b;c;d

XIXIðXaXaXbXbÞðXcXcXdXdÞXFXF ðC7Þ

FIG. 10. Bubble chain diagrams.
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and in the simplified notation, only the following Wick
contraction needs to be considered if we distinguish
between two external lines I’s and the others F’s:

ðC8Þ

where 8 is because there are eight X’s in aabbccdd, and 4
is to choose one in ccdd.
Then there are two choices to contract between

b and c’s,

ðC9Þ

ðC10Þ

The first one is a planar diagram,

ðC11Þ

but the second one is nonplanar suppressed by 1=N,

ðC12Þ

¼
X

m;n;o;p;q;r;s;t

δioδjn · δi0nδj0m · δorδpq · δpsδmr · δsl0δtk0 · δtlδqk ¼ δij0δji0δlk0δkl0 : ðC13Þ

Thus, the leading coefficient is

ð−g2AÞ2N
23

× 8 × 4 ¼ 4 ×
ð−λADÞ2

ND
: ðC14Þ

The second term on the right-hand side of Fig. 10 is

1

3!

$
−
g2A
2

%
3 X

a;b;c;d;e;g

IIðaabbÞðccddÞðeeggÞFF: ðC15Þ

The contractions of I and F, respectively, can be written as
follows:

ðC16Þ

where 12 is because of 12X’s in aabbccddeegg and 8 is
because of eight X’s in ccddeegg.
And there are four ways to contract,

ðC17Þ

ðC18Þ

ðC19Þ

ðC20Þ

where 2 is because of two choices between c
and d. However, one can check that only (C17) is
a planar,

ðC21Þ
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¼
X

m;n;o;p;q;r;s;t;u;v;w;x

δioδjn · δi0nδj0m · δosδpr · δprδmq · δswδtv · δtvδqu · δwl0δxk0 · δxlδuk ðC22Þ

¼ N2δil0δji0δj0kδlk0 ðC23Þ

and the rest are nonplanar. Thus, the leading coefficient is

1

3!

$
−
g2A
2

%
3

× 12 × 8 × 2 ¼ 4 ×
ð−λADÞ3

ND
: ðC24Þ

Comparison between (C14) and (C24) gives

cB ¼ 1 ðC25Þ

for the bubble chain contribution given by the geometry
sum as (63).

3. Coefficient cA = 2 for Fig. 6

Wewould like to consider the contribution from resumed
bubbles as in Fig. 6. For that purpose, let us first consider
those with just one loop or two loops as in Figs. 11 and 12.
Let us consider Fig. 11 first. This is obtained from the

term

1

2!

$
−
g2A
2

%
2 X

b;c;d;e

aðbbccÞðddeeÞa ðC26Þ

by the following Wick contractions:

ðC27Þ

where 4 is for four choices in bcde and 2 is for two choices
in de, and the rest of the contractions are subleading.
From these two, we obtain

4 × 2 ×
ð−g2AÞ2

23
× 2 × N2D ¼ 2

ð−λADÞ2

D
: ðC28Þ

Next, let us consider Fig. 12,

1

3!

$
−
g2A
2

%
3 X

b;c;d;e;f;g

aðbbccÞðddeeÞðffggÞa: ðC29Þ

We have the following Wick contractions in the leading
order:

ðC30Þ

ðC31Þ

where 6 is for six choices in bcdefg, 4 is for four choices in
defg, and 2 is for two choices in de. Therefore, the
coefficient is determined as

6×4×2×
1

3!

$
−
g2A
2

%
3

×2×N3D2¼2
ð−λADÞ3

D
: ðC32Þ

FIG. 11. One-loop bubble diagram, proportional to
2ð−λADÞ2 1

D.

FIG. 12. Two-loop bubble diagram, proportional to
2ð−λADÞ3 1

D.
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From the above, we see that the overall coefficients of both Figs. 11 and 12 is 2. Thus, we can write down these diagram
contributions as

2

D
ð−λADÞ2G0ðωÞGðωÞ

Z
dω1

2π
Gðω1Þ

"Z
dω0

2π
Gðω0ÞGðω0 − ωþ ω1Þ

þcBð−λADÞ
Z

dω0

2π
Gðω0ÞGðω0 − ωþ ω1Þ

Z
dω00

2π
Gðω00ÞGðω00 − ωþ ω1Þ þ ( ( (

#

¼ 2

D
ð−λADÞ2G0ðωÞGðωÞ

Z
dω1

2π
Gðω1ÞBðω − ω1Þ ðC33Þ

with

cA ¼ 2: ðC34Þ

4. Coefficient cC = 4

Let us consider the melon diagram, which plays an
important role in the two-point function. From Fig. 13, this
can be obtained from

1

2!

$
g2C
2

%
2 X

b;c;d;e

aðbcbcÞðdedeÞa: ðC35Þ

From the cyclic property, all ways of contraction can be
written as

ðC36Þ

where 8 is because of eight X’s in bcbcdede and 4 is
because of four X’s in dede. From this, there is only one
way to contract in the leading order as

ðC37Þ

Therefore, the coefficient is

8 × 4 ×
1

2!

$
g2C
2

%
2

× N2D ¼ 4
ðλCDÞ2

D
: ðC38Þ

Thus,

cC ¼ 4: ðC39Þ
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