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Abstract

We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown celestial
target small body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph,
facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we
achieve improved performance over a baseline SLAM solution and outperform state-of-the-art methods predicated on pre-
integrated inertial measurement unit factors. We incorporate orbital motion constraints into the factor graph by devising a novel
relative dynamics—RelDyn—factor, which links the relative pose of the spacecraft to the problem of predicting trajectories
stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate AstroSLAM s performance and
compare against the state-of-the-art methods using both real legacy mission imagery and trajectory data courtesy of NASA's
Planetary Data System, as well as real in-lab imagery data produced on a 3 degree-of-freedom spacecraft simulator test-bed.
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1. Introduction

Precise relative navigation techniques, incorporating in-
creased levels of autonomy, will be a key enabling element of
future small-body orbiter missions (Christian and Lightsey,
2012; Delpech et al., 2015; Nesnas et al., 2021). Firstly, good
navigation can inform safe and efficient path planning, control
execution, and maneuvering (Bhaskaran and Kennedy, 2014).
In near-small-body deep space missions, achieving fuel-
efficiency during non-critical maneuvers and guaranteeing
execution of safety-critical maneuvers requires precise
knowledge of the relative position and orientation of the
spacecraft with respect to the small-body. Secondly, precise
navigation situates the acquired science data. Indeed, scien-
tists and mission planners design science acquisition phases
based on the expected scientific value of instrument data
acquired at predetermined times, on specific orbits and with
specific spacecraft orientations (Miller, 2002). Thirdly, precise
navigation facilitates the detailed mapping and shape re-
construction of the target small-body, since good knowledge
of the spacecraft relative position and orientation with respect
to the target, as well as a good knowledge of the Sun light
direction, are crucial in commonly used shape reconstruction
solutions (Gaskell et al., 2008). Finally, good estimates of the
spacecraft state enable precise characterization of the target

small-body’s spin state, mass moment values and gravitational
model (Miller, 2002).

In recent years, with ever-improving navigation solutions,
space missions have successfully performed daring firsts in
navigation around small celestial bodies. Orbiter Near-Earth
Asteroid Rendezvous (NEAR) Shoemaker’s controlled as-
teroid touchdown (1996) (Prockter et al., 2002), Hayabusa I
& 1I’s touchdown and successful sample return (2003) (Terui
et al., 2020; Yoshikawa et al., 2015), Dawn’s orbiting of two
celestial bodies in a single mission (2007) (Konopliv et al.,
2014) and the recent Origins, Spectral Interpretation, Re-
source Identification, Security—Regolith Explorer’s (OSI-
RIS-REx’s) Touch-and-Go (TAG) operation leveraging
Natural Feature Tracking (NFT) relying on high navigation
solution accuracy during descent (Berry et al., 2022; Lauretta
2021), are only few of the most notable feats accomplished
thanks to autonomous navigation.
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The OSIRIS-REx proximity operations at the near-
Earth asteroid (101955) Bennu, in particular, pushed the
boundaries of what can be accomplished using primarily
ground-in-the-loop navigation techniques (Antreasian et al.,
2022). Like similar small-body missions, OSIRIS-REx’s
proximity to Bennu, as well as the asteroid’s small size and
low gravitational attraction relative to perturbing forces,
drove the need for frequent and timely navigation updates in
order to achieve mission objectives (Leonard et al., 2022b).
These updates drove operation complexity and cadence,
challenging the flight team, and heavily utilizing Deep
Space Network (DSN) assets. OSIRIS-REx proximity op-
erations navigation and TAG also relied on detailed local
and global topographic maps constructed from image and
LiDAR data, with ground sample distances ranging from
75 cm down to 8 mm (Barnouin et al., 2020). Building these
maps required dedicated, months-long observation and data
collection campaigns and a substantial amount of effort by
the Altimetry Working Group on the ground, as well as
multiple iterations with the navigation team (Leonard et al.,
2020). It also required downlinking tens of thousands of
images and hundreds of gigabytes of LIDAR data from the
spacecraft through the DSN.

It is recognized that the high-risk nature of missions in the
proximity of small celestial bodies, along with a lack of au-
tonomy in current mission procedures, severely limits the pos-
sibilities in mission design (Starek et al., 2016). Indeed, ground-
segment operators are intimately involved in all in-situ tasks,
which ultimately rely on extensive human-in-the-loop verifica-
tion, as well as ground-based computations for estimation,
guidance, and control (Nesnas et al., 2021; Williams, 2002). In
addition, long round-trip light times and severely limited bit-rate
in communications render ground-in-the-loop processes ex-
tremely tedious. In tandem, we expect that the incorporation of
autonomous capabilities has the potential to improve navigation
performance and reduce operational complexity for future
missions (Getzandanner et al., 2022; Nesnas et al., 2021).

In this paper, we build on our previous work (Dor et al.,
2021), and present a holistic application of a factor graph-
based incremental smoothing solution for monocular visual
SLAM around a small-body, referred to as AstroSLAM.
Using the GTSAM library (Dellaert and Kaess, 2017) and
the iISAM2 solver (Kaess et al., 2012), we perform multi-
sensor fusion and constraint enforcement on-the-fly. We
incorporate inertial attitude measurements from a star
tracker and Earth-relative DSN radiometric data to obtain an
initial pose prior, and then we leverage image-based
measurements and dynamic motion constraints for subse-
quent trajectory estimation. Crucially, we incorporate the
equations of the relative motion between the spacecraft and
the small-body into the problem, given that these are strong
odometric constraints. We do so by writing and im-
plementing a new factor node called RelDyn, which en-
codes the constraints derived from the relative dynamics and
kinematics.

In order to demonstrate the improvement in performance
brought about by incorporating dynamics in the SLAM

problem, which usually suffers from incorrect data asso-
ciation in real-world applications, we tested AstroSLAM
using actual 2D-2D and 2D-3D correspondence mappings
from real-world imagery.

Specifically, we tested our algorithm on an image se-
quence from NASA’s Dawn mission, as well as on a sequence
of realistic asteroid images produced in the lab. We compare
the estimated solution against archived navigational data
from the Dawn mission for the first demonstration and also
compare the estimated solution to ground-truth data from an
in-lab produce sequence. It is shown that AstroSLAM sur-
passes the state-of-the-art performance in both cases in terms
of navigational error and velocity estimates.

1.1. Related work

Filter-based methods (Nakath et al., 2018), such as the
Extended Kalman Filter (EKF), have traditionally been ap-
plied to perform on-the-fly multi-sensor fusion for precise
navigation purposes. Bercovici and McMahon (2019b)
proposed a Flash-LiDAR-based pose estimation and shape
reconstruction approach, by solving a maximum likelihood
estimation problem via particle-swarm optimization, fol-
lowed by a least-squares filter providing measurements for
the spacecraft position and orientation in the small-body
frame coordinates. Other recent works in the field have es-
tablished proof-of-concepts for online implementation of
batch optimization and graph-based approaches for precise
near-small-body navigation, like real-time SLAM. Notably,
Nakath et al. (2020) presents an active SLAM framework
which also employs Flash-LiDAR as the base measurement
of the SLAM formulation, with sensor fusion of data from an
inertial measurement unit and star tracker, tested with sim-
ulated data. However, the limited range of Flash-LiDAR
instruments restricts the spacecraft’s orbit to unrealistically
small radii, reducing the use scenarios to either navigation
near very small bodies or to the touchdown phase for larger
target small-bodies. For example, the OSIRIS-REx Guid-
ance, Navigation, and Control (GNC) Flash-LiDAR, which
is mentioned by both Nakath and Bercovici, has a reliable
maximum range of approximately 1 km (Church et al., 2020;
Leonard et al., 2022a). In contrast, an approach that uses
long-range optical imagery, like the one we propose in this
paper, enables detailed characterization of the small-body
early in the approach phase of the mission, at which point
knowledge about the target small-body may still be poor.
Several prior works have applied visual SLAM solutions
for spacecraft relative navigation. However, much fewer
works have directly applied visual SLAM to the small-body
navigation problem. Among the most interesting works in
this area, we note Cocaud and Kubota (2010), which le-
verages SURF (Bay et al., 2006) visual cues and range
measurements, and Cocaud and Kubota (2012), which
focuses on image feature-only formulation, and solves the
relative pose estimation problem using a Rao-Blackwellized
particle filter. However, the latter works only tested the
algorithm on simulated imagery of asteroid Itokawa.
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Additionally, particle filters are notoriously compute-
intensive, and not directly amenable to on-the-fly im-
plementation. Similarly, Baldini et al. (2018) implemented
OpenSFM on simulated images of comet 67P/Chur-
yuomov-Gerasimenko, while Takeishi et al. (2015) per-
formed a particle filter minimization of the observation error
and used both simulated landmarks and SIFT (Lowe 2004)
features extracted and tracked across a sequence of real
images of a simple asteroid mock-up, with albeit unrealistic
motion. Most recently, Villa et al. (2022) successfully
implemented an autonomous navigation and dense recon-
struction predicated on visual-only landmark observation
batch optimization and stereophotogrammetry. However,
the implied batch optimization methods require intensive
on-board compute power, which is not easily amenable to
on-the-fly autonomous navigation.

The SLAM problem can be assimilated to a discrete-time
sequential state estimation and static scene mapping
problem, and it is known that the inclusion of odometric
constraints allows for some filtering to be worked into the
SLAM solution. However, the ability of the odometric
constraint to improve the SLAM solution depends directly
on the validity of the motion model in the application case
and on the uncertainties associated with perturbations and
un-modeled effects.

We postulate that an odometric constraint should indeed
be incorporated into the near-small-body monocular SLAM
navigation problem, but that a simplistic motion model is
not enough to validate the algorithm on real data. The
odometric constraint should, instead, be based on a high-
fidelity description of the dynamics of the spacecraft-small-
body system. Indeed, the orbital motion of the spacecraft in
the vicinity of a small-body can be modeled with very high
fidelity, owing to careful and accurate modeling of the
perturbing forces at play. Additionally, the orbital motion of
a typical small-body in the solar system targeted for further
probing is typically estimated with high precision due to
tracking and Orbit Determination (OD) throughout a long
period via ground observations, as well as during the ap-
proach phase via Optical Navigation (OpNav). It follows
that an accurate and highly certain relative motion model
between the spacecraft and the small-body can be derived
and used in formulating a strong odometric constraint.
Nevertheless, parameters that affect the description of the
relative position of the spacecraft with respect to the small-
body, such as the true size of the small-body, the relative
distance to its center of mass, its gravitational potential, its
spin state, or the forces on the spacecraft due to its albedo
radiation, are not well-known a priori, and must be esti-
mated in-situ. We have incorporated the estimation of the
spin state, gravitational parameter, and center-of-mass po-
sition into our estimation procedure. We note that since our
formulation is strictly for monocular SLAM without the
ability to incorporate typical visual-inertial cues which al-
low to estimate the scale, the well-known scale ambiguity
issue remains. As a simplifying step, we assume the scale to
be known a priori, but discuss later the impact of this

assumption on the obtained trajectory and parameter so-
lution. Future work will incorporate additional measure-
ment modalities and algorithms to estimate the scale and
other parameters, such as inertia ratios, on-the-fly in an
autonomous fashion.

Modern SLAM solutions are predicated on the formu-
lation of the estimation or smoothing problems using a

factor graph (Dellaert, 2021). As such, several works have

incorporated dynamics-derived constraints into the SLAM
factor graph problem. Most works incorporate a constant
velocity with white-noise odometric constraint (Anderson
and Barfoot, 2015; Matsuzaki et al., 2000) or a linear dy-
namical model with white-noise odometric constraint
(Anderson et al., 2015), modeled as a Gaussian process.
These approaches are often referred to as Simultaneous
Trajectory Estimation And Mapping (STEAM) and fall
within the realm of batch optimization methods, which for
large problems can be compute-intensive. Notably, Yan
et al. (2017) provides an extension by transforming the
batch STEAM optimization into an incremental method
using efficient variable re-ordering at every optimization
step, while still exploiting a continuous-time Gaussian
process odometric constraint. In these works, the estimated
Gaussian process provides a time-based support to evaluate
the trajectory at any desired query time within the sampling
interval. However, the accuracy of the solution is predicated
on interpolation of the estimated state and covariance be-
tween the selected optimization times using the Gaussian
process model in an iterative fashion. Therefore, it is re-
quired that the time steps for optimization be chosen close to
each other, thus increasing computations. This disadvantage
offsets the advantage of the use of a continuous Gaussian
process-based method for the purpose of small-body nav-
igation, since optimization times can be significantly spread
apart along the trajectory around the small-body given the
limited on-board resources in a real mission. Instead, we
propose to use a high-fidelity dynamical model, paired with
an on-manifold integration method, to obtain accurate
predictions of the state with large time steps, thus reducing
the density of the selected optimization points in time.

As opposed to the aforementioned works, where the
factor encodes the error of the dynamic prediction by ex-
ploiting the solution to the piecewise-constant input locally
linearized model, Xie et al. (2020) formulates the dynamics
factor using the non-linear differential equation directly. It
follows that the resulting factor graph has “non-state”
variables, such as linear and angular accelerations, as
well as wrenches. To avoid an underconstrained problem,
these dynamics-related accelerations each need an indi-
vidual measurement or prior factor. This solution, although
simple and useful for reference trajectory planning, is un-
realistic for the purpose of estimation, since real-world
measured acceleration and wrench signals are generally
fraught with high-frequency noise and poor signal-to-noise
ratio.

The factor graph-based formulation using stereo SLAM
and smoothing approach first implemented and tested on the
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SPHERES platforms (Tweddle, 2013) is most closely re-
lated to our work. Indeed, Tweddle (2013) incorporated
non-specific dynamic constraints into the problem by im-
plementing a factor that captures the residual of the inte-
grated equations of motion. It is noteworthy that in the latter
work, the observing agent has no inertial motion and has a
static viewing direction. Several works have since ex-
tended Tweddle’s procedure, and have tackled the
problems of trajectory smoothing, object surface map-
ping, and inertial parameter estimation using factor graph
formulations in spacecraft relative navigation scenarios.
Chiefly, we denote the works by Setterfield et al., starting
with Setterfield et al. (2017), in which inertial odometric
factors in the form of the pre-integrated inertial mea-
surement unit (IMU) factors of Forster et al. (2016) and
spacecraft star tracker measurements were incorporated
into a factor graph to complement visual odometry
measurements obtained from a 3D visual sensor data,
albeit in the vicinity of a passive target object. Later, in
Setterfield et al. (2018a), additional kinematic factors
were introduced on top of the inertial odometric factors to
allow for the motion of the target and to estimate the
center of mass of the target, along with visual odometry
factors introduced by virtue of tracking and mapping
surface features points on the spinning target object. In
the latter approach, since the position of the center-of-
mass of the target object is an unknown variable con-
nected to all the introduced kinematic factors, to avoid an
explosion of complexity during optimization, the factor
graph was separated into two parallel procedures, one
incrementally solved at every time step involving the
inertial factors and visual odometry factors, and another
one solved in batch-style sporadically involving the ki-
nematic rotation factors.

Finally, in Setterfield et al. (2018b), the results of the
previous work were exploited to estimate the target body’s
angular velocity by incorporating additional kinematic con-
straints, and then to deduce the target principal moments of
inertia by polehode analysis. All these procedures were suc-
cessfully demonstrated on simulated and real-life data, in-
cluding demonstration aboard the International Space Station
using the SPHERES-VERTIGO and Astrobee platforms
(Oestreich et al., 2021). Later, in Teran Espinoza (2021), a
Bayes tree representation was exploited, along with message
passing techniques, to improve sparsity in the graph structure
and reduce the computational load incurred when solving for
global parameters, such as the target’s center-of-mass location.
Since introducing such a parameter significantly increases the
size of cliques (fully connected sub-graphs), we may solve for
them through a secondary and separate batch optimization
using the time history of angular velocity measurements
produced from the underlying visual-intertial odometry pro-
cess, as in Setterfield et al. (2018a).

Similarly, in our work, both the observing spacecraft and
the target have inertial translational and rotational motion,
and are subject to specific dynamics as a consequence of the
driving forces. We capture these constraints in the form of

relative kinematics and relative dynamics yielding equa-
tions describing the relative motion between the spacecraft
and the small-body. We have incorporated many of the ideas
from Setterfield et al. (2018a) into our own, notably the
kinematic rotation factor, allowing us to estimate the center-
of-mass of the target small-body. Several deviations exist
between our work and that of Setterfield et al. (2018a): (1)
we opt for a dynamic modeling of the gravitational inter-
actions instead of exploiting inertial pre-integrated IMU
factors, with the rationale of this choice further detailed in
Section 3. Another deviation is that we do not estimate the
target body’s principal moments of inertia (more specifi-
cally, its inertia ratios). As stated in Setterfield et al. (2018b),
in scenarios where the target body’s motion is torque free
and is single-axis, the inertia ratios are not observable. This
is indeed the case for many small-bodies (Russell and
Raymond, 2012a; Scheeres, 2016). Rather than motion ob-
servation, most methods currently used for estimating the
inertia ratios of the target small-body, such as space carving
(Driver et al., 2020), sterephotoclinometry (Gaskell et al.,
2008), or geometric representation as Bezier curves
(Bercovici and McMahon, 2019a), are instead based on shape
reconstruction, from which inertias may be inferred. For the
scope of this work, we therefore make the simplifying as-
sumption that the rotational motion of the target is in single-
axis configuration. Future work will amend this to allow for
multiple-axis rotation scenarios to also be included.

Several works incorporate some form of dynamics-based
modeling in SLAM for the purpose of improving the
baseline SLAM solution in near-small-body celestial nav-
igation. For example, Delpech et al. (2015) propose to
perform an EKF step integrating the inertial equations of
motion in between steps involving bundle adjustment for
SLAM, in an alternating fashion. Most notably, the work by
Rathinam and Dempster (2017), which has important
parallels to our own, incorporates orbital motion priors as
factors into the SLAM smoothing problem factor graph
directly, arguably for the purpose of estimating the relative
pose with respect to a small-body. Nevertheless, there are
several key differences and shortcomings with respect to our
work, which we detail next.

The first difference lies in the fidelity and accuracy of the
modeled spacecraft-small-body system dynamics with re-
spect to the real-mission setting. In Rathinam and Dempster
(2017) the inertial equations of motion of the spacecraft and
of the small-body are implemented separately, whereby the
spacecraft is subject to a massive central body gravitational
force and the small-body is subject to only a zero-mean
perturbation force. However, it is generally known that, due
to the relatively small gravitational force of the small-body,
the solar gravitational force and the solar radiation pressure
forces intervene in a significant way to affect the trajectory
of the spacecraft (Scheeres, 2016) around the small-body,
and therefore these forces should not be neglected during
modeling. This is true for most missions to small celestial
bodies of interest in the solar system, especially smaller
asteroids, such as Itokawa, which Rathinam and Dempster
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(2017) specifically consider in their work as an illustrative
example. In addition, Rathinam and Dempster (2017) omit
to incorporate spacecraft control forces in the modeling, as
well as any spacecraft inertial attitude and angular velocity
measurements. Such a choice severely restricts the possible
use cases of their formulation. We chose, instead, to model
the relative kinematics and dynamics between the
spacecraft and the small-body, predicated on the fact that in
the SLAM problem, without added dynamics-related
factors, the measurement is innately a function of the
relative position and attitude of the camera (here the
spacecraft) with respect to the static scene (here the rigid
small-body surface) through the 3D point projection
measurement function. It then suffices to propagate the
relative position and orientation in the kinematics and
dynamics. In addition, we also include spacecraft control
forces, spacecraft attitude and angular velocity measure-
ments and the above-mentioned Sun-related perturbing
forces in our modeling framework.

The second difference stems from the approach to en-
code the chosen dynamics in factors to be included in the
factor-graph. Specifically, Rathinam and Dempster (2017)
encode the dynamics into two separate factors without any
specific discussion about the identification or quantification
of the disturbances on which the factors’ residual error
function is predicated. Yet, it is obvious from their for-
mulation that the dynamics of the spacecraft and of the
small-body are actually coupled through the noise. Indeed,
there is a link through the dynamics between the disturbance
considered in the inertial motion model of the small-body
and the small-body gravitational force affecting the
spacecraft, which is itself a function of the relative position
vector between the spacecraft and the small-body. Hence,
we postulate that the equations of motion of the spacecraft-
small-body system cannot be decoupled and, consequently,
should not be encoded by two separate factors. As the
quantification of the noise sources and the way they enter
the equations of motion impact the feasibility of smoothing,
based on the concept of smoothability (Gelb etal., 1974), we
expose the effect of these noise sources in a full develop-
ment of the stochastic differential equations in Section 4. We
discuss the factor error function in Section 4.3 and assess
their impact on smoothability in Section 4.7.

The third difference pertains to our use of a “front-end”
system processing actual image data towards the SLAM so-
lution, and their lack thereof. In Rathinam and Dempster
(2017), randomly sampled idealized 3D points from a
shape model are used to simulate camera feature point mea-
surements. However, this simulation fails to mimic real-life
effects encountered in small-body surveying missions. These
effects include, among others, small-body surface shadowing,
landmark visibility restricted by view-cone or occlusions, local
image quality variations and image blurring, etc, which all
affect the number of tracked surface features, the reliability of
the matched features and, in turn, the overall error in the
SLAM solution. Crucially, the use of a real front-end system in
our work allows us to quantify the real improvement brought

about by the incorporation of motion priors. Indeed, the ability
to appropriately match features directly depends on knowledge
of the relative pose, which, in turn, is improved by the use of
motion priors, a result we detail in Section 6.1.

Finally, we use real-mission imagery and trajectory data
to validate our overall system, demonstrating impressive
performance, further supporting our choice to model the
forces missing from Rathinam and Dempster (2017) and to
use dynamical vehicle modeling, instead of implementing
inertial sensor-based constraints as proposed by Setterfield
et al. (2017, 2018a).

1.2. Contributions

In contrast to the traditional ground-in-the-loop mindset,
this paper proposes AstroSLAM, a viable autonomous
navigation approach for near-small-body operations based
on small-body imagery collected by the spacecraft on-board
cameras and on inertial sensor data, such as an inertial star
tracker and a rate gyro.

The assumptions made in the modeling in the works by
Setterfield et al. (2017, 2018a), although well-suited for
short-duration spacecraft proximity operations navigation,
are not ideal for small-body circumnavigation, as we further
argue in Section 3. We have consequently adapted Setter-
field’s kinematic rotation factor—a simple motion model—
and incorporated it into our procedure. We call this adapted
factor RelKin, since it models the relative kinematics of the
spacecraft-small-body pair, and works in conjunction with
the RelDyn factor, which we discuss in Section 4. Since the
IMU preintegration factors considered in Setterfield et al.
(2017, 2018a) are not well-suited for our scenario we instead
leverage explicit vehicle dynamical modeling predicated on
the gravitational interaction. We further discuss this dis-
crepancy with the work in Setterfield et al. (2017, 2018a) in
Section 3. We also compare our RelDyn results to the original
procedure from Setterfield et al. (2017) running on the same
datasets. This comparison demonstrates improved navigation
performance, further supporting our approach, as demon-
strated experimentally in Section 7.

Specifically, the contributions of this work are the fol-
lowing: (a) we adapt the kinematic factor described in
Setterfield et al. (2018a) to the situation where the target
object undergoes significant motion between time instances;
(b) we model and incorporate orbital motion constraints
specific to the small-body circumnavigation problem to make
the SLAM solution more robust to outliers and drift in the
form of the RelDyn factor, predicated on the relative motion
constraints, as opposed to the typical inertial approach; (c) we
demonstrate our algorithm on real imagery obtained in-situ
from a previously flown small-body orbiter mission, as well
as using imagery and trajectory data produced in our ex-
perimental lab facility; such a theoretical procedure and
experimental validation for the small-body navigation
problem is, to our knowledge, a first among works con-
cerning near-small-body SLAM algorithms and constitutes a
significant novelty of this work.
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The paper is organized as follows: Section 2 introduces
the problem and summarizes the notation used. Section 3
discusses in more detail why the use of pre-integrated IMU
measurements is inadequate for our purposes, and Section 4
focuses on the novel relative orbital odometric constraint
calculations utilized in the factor graph estimation en-
gine. Details of the technical approach in terms of im-
plementation are given in Section 5. Section 6.1 validates
the algorithm against real asteroid imagery from prior
NASA missions, and Section 7 presents the results from
experiments carried out in a realistic laboratory facility
where the ground truth relative pose is available. Lastly,
Section § provides some conclusions along with possible
avenues of future work.

2. Problem statement

In this section, we discuss the relevant theory, and establish
the problem statement pertaining to the asteroid relative
navigation problem incorporating monocular SLAM, an
appropriate motion prior and sensor fusion.

Firstly, we summarize the notation conventions
used throughout the paper in Section 2.1. Secondly, we
contextualize the defined notation within the problem
of a spacecraft navigating around an asteroid in
Section 2.2.

2.1. Notation

Given the affine space (E*, R?), the translation vector between
any two points X, Y €E® is denoted ryx 2 (Y — X) € R?,
read “from X to Y.” Any frame X is a tuple (X, {X;}}_,)
where the point X € E* denotes the origin of the frame and the
set of unit directions {?i}?zl, where x; €S, i=1,...,3,
constitutes the right-handed orthonormal basis of the frame.

The expression of any vector VER® in a
given frame X =(,{X,};_,) is denoted by
vXé[V.}{l v-xyv-x3] €R>.  For any two
frames X and ), we denote the rotation

X X X
nyé [ Y Y2 Y3 ] €S0(3) such that v* = Ryyv”

for any vcR>? This notation is consistent with the
composition rule Ryz = RyyRyz for any three frames
X, Y, Z. Given a coordinate vector v¥ eR3 expressed in
frame X, we denote the corresponding homogeneous coor-
dinates v¥ 2 [ (v¥) T 1 ]T €P3. For any two frames X’ =

(X, {x;}._,) and Y = (Y,{y,;}._,), we denote the homo-
geneous transformation 7vy € SE(3) by

T
V00, 1

such that rpy = Tyyryy for any point P € E*. This notation
is consistent with the composition rule Tyz = TyyTyz for
any three frames X, ), Z.

Given a Lie algebra g of dimension n associated (at the
identity) to a matrix Lie group &, and given a set of basis
vectors {E;}_, of the matrix Lie algebra g(n), we denote

the hat operator [-]" : R" — @ which maps any n-vector x =

[xi ... x,]' €R" to an element [x]"egq, by
[x]* =37 \x;E;.. We denote its inverse vee operator
[]Y:q—R",  which extracts the  coordinates

X =[x x,]" from [x]* € q(n) in terms of E, We
denote the exponential map exp : g — &, mapping an ele-
ment [x]" €q to the element exp([x]") € ® in the neigh-
borhood of the identity element. Specifically, for the SO(3)
group of rotations, the exponential map at the identity exp:
s0(3) — SO(3) which associates any tangent vector (skew-
symmetric matrix) [x]" € so(3) to a 3D rotation as the
matrix exponential, is given by

exp(]") = bs + I + 5" + () + .
sinfix| 1= coslxl o
= Lo+ S+

Finally, we denote the logarithm map (at the identity)
by log:® — g, which maps an element in the neigh-
borhood of the identity element of group & to an ele-
ment in the associated Lie algebra ®. In the case when
& =S0(3) and g =s0(3), the logarithm map log:
SO(3) — so(3) is the inverse of the operation given in
(2), and is a bijective mapping as long as x| < =
(Chirikjian, 2011).

The following facts are useful in deriving first-order
approximations for the effect of noise on the stochastic
differential equations presented in Section 4.6, as well as for
deriving partial derivatives of functions of elements of
SO(3). Further information may be found in Forster et al.
(2016); Wang and Chirikjian (2008).

Fact 1. Given the hat operator [-]" : R*> — so(3), for any
R € SO(3), and coordinate vector x € R®,

(D) R[x]"RT = [Rx]",
(2) R[x]" = [Rx]"R,
(3) [x)"R = R[RT x]".

Note that Fact 1 is a consequence of the rotational in-
variance of the cross product in R>.

Fact 2. Given the exponential map exp: so(3) — SO(3),

for any R € SO(3) and any coordinate vector x € R>,

(1) Rexp([x]")RT = exp([Rx]"),
(2) Rexp([x]") = exp([Rx]")R,
(3) exp([x]")R = Rexp([R"x]").

Note that Fact 2 is a direct consequence of Fact 1 applied
to the matrix exponential expansion in (2).
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Fact 3. Given the exponential map exp: so(3) — SO(3),
for any vector x € R* having sufficiently small length, it
follows that

exp([x]") =15 + [x]". ©)

Note that Fact 3 is a consequence of dropping higher order

terms in the matrix exponential expansion of equation (2).
Fact 4. Let T:SO(3) xR* — SE(3) be a function that
produces the pose corresponding to a rotation matrix
and a translation vector pair, such that

R r

T(R,r)é[o {

},Re SO(3),reR’.

Define the perturbation vectors, 5, or € R>. We may write
the perturbed pose

T(Rexp([6d]"),r + or) = {Rexp(o[écb]A) r -|1 51-] .

Multiplying the inverse of the pose T(R, r) on the left, we
obtain the perturbation pose

0T = (T(R,r))” ' T(Rexp([6d]"),r + or)
[

B RT —R'r||[Rexp([6d]") r+dr
o 1 0 1
 [exp(l66)") R or

B 0 1

Taking the logarithm map of the SE(3) followed by the vee
operator, we obtain the corresponding pose perturbation
vector

op = log(6T)" = [ Ridgr},

thus yielding the Jacobian

1k _ |03
JR—[OM},and Jr_[RT}

1t then follows that
ob| | 0
{&} - {0 R}ép

2.2. Problem definitions

Let A,S,0, W € E? and assume that the point A corre-
sponds to the center of mass of the small-body, S cor-
responds to the center of mass of the spacecraft, O
corresponds to the center-of-mass of the Sun, and W
corresponds to an inertial point in space, for exam-
ple, non-accelerating, constant velocity. Initially, we
distinguish three frames of interest: the inertial frame

A .3

I=(W,{n;},_,), and the spacecraft body-fixed frame
.3

S2£(S,{s:}._,), as well as an arbitrarily chosen small

body-fixed frame G2 (G, {gi};), useful for the de-
scription of geometry pertaining to the small-body. Note that
since frame G is fixed with respect to small-body, and as-
suming that the small body is a rigid body, the position of the
small-body’s center of mass point A with respect to the point G
in frame G coordinates, denoted rgG, is fixed.

Given an inertial point W, the inertial absolute position
vector of the observing spacecraft is denoted rsyw and that of
the small-body raw. The relative position vector of the
observing spacecraft is then given as rgy = rgw — raw- The
inertial relative velocity vector of the observing spacecraft is

denoted by vga éz% (rsa). In the same fashion, the inertial

relative acceleration is denoted aSAéI% (Vsa).

To later exploit knowledge of the relative orbital pose,
we decompose the relative position vector rga using the
intermediary point G fixed in the G-frame coordinates, such
that rgp = rsg + rga = I'sg — rag- Expressing in the body-
fixed G-frame coordinates and writing as a function of the
relative position vector, we get the relative pose translation
vector

l'gG = RQSRSZI%A —+ l’iG. (4)

Any reference hereafter to the relative pose of the space-

.3
craft, for a given spacecraft frame S = (S, {s;},_,), desig-
nates the transformation

Rgs 15
Tgs = , 5
as [ 0 1 (5)
which encodes the relative rotation
—~G =G =g T .
Rgs=[s, s, s3] €SO(3) of the spacecraft with re-
spect to the G frame and the coordinates

ré = lrso - g rsg- g, rsg-g3] €R’ of the space-
craft position vector relative to the point G as expressed in
the G frame. Figure 1 provides an illustration of the
problem’s relevant points, vectors, and frames, as defined
above.

2.3. Scene mapping considerations

Let 7, be the initial time, let 7 > #, let (#);_, C [fo, ] be the
sequence of sensor acquisition times, and let 7g,s, = Tgs (#)
describe the pose of the spacecraft as expressed in the G
frame at each time index 0 < k < n. Then, the sequence
(Tg,s.)j—o € I} _ SE(3) describes the discrete trajectory of
the relative pose of the spacecraft. We define the camera
-3
sensor frame C = (S,{ ¢;},_,), with fixed pose Tsc with
respect to the spacecraft frame S, and obtain the sequence

(Tg.c,);—, of all camera poses, also known as frames,
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n

Figure 1. Relative navigation problem frame definitions and
vector quantities.

where the relative camera pose is Tg.c, = 1g.s.Ts.c, =

Tgknggc, (k = 0, ceey I’l)

A landmark L € E? is defined as a notable 3D point in
the scene, which is potentially triangulated during
SLAM using camera observations. We denote by ¥ =
{LiEES,iz 1,...,m} the set of all landmarks accu-
mulated up until time index k=0, ..., n, also called the
map at time index k. To each landmark L € ¥, corre-
sponds a position vector r g € R, whose coordinates in
the G frame, denoted G, are fixed since the small body is
presumed to be a rigid body. Let ;. be the total number of
image feature points detected in the camera image
captured at time #;, k=0, ..., n. We collect all detected
feature points in the set 1 = {P,€Pi=1,....r.}
where, to each P; € I'; are associated the ideal 2D image
coordinates y;, € R?.

Assume a point P; € ¥'; corresponds to the image pro-
jection of a scene landmark L; € W), as captured at time
index k. The 2D image coordinates y; relate to the 3D
position coordinates rgiG through the pinhole camera model
relationship, given by

AvV.
[ 1k] — KoY ©

where 4 > 0 is a scaling factor, and where

fo 0 ¢ O
K20 f, ¢, 0
0 0 1 0

is the camera intrinsic matrix, with f,, f, c,, ¢, scalars
corresponding to the known camera focal lengths and op-
tical center offsets along the two image dimensions. The real
measured feature point coordinates yJ; are then defined such
that

™)

where vy ~N(0,X") corresponds to the feature point
measurement noise, with associated 2 x 2 covariance
matrix E‘yn. We collect all real camera frame-landmark

m __
Yie =Y Ty

observations up until time index k =0, ...,n in the set
yké{y;‘ €R*:i=1,...,r,j=0,...,k}. We also define
Xy 2{Tgs €SE(3):i=0,...,k} as the set of all possible
spacecraft relative poses discretized at times (#);_,, and
define £ 2 {r{, €R®:L € ¥} as the set of all landmark
coordinates mapped up until time index k =0, ...,n.

By exploiting the multi-view geometry constraints de-
rived by capturing observations ), of the landmarks ¥, at
poses X, as well as the constraints derived from the in-
trinsic motion of the spacecraft around the small body and
other sensor measurements, further detailed in Section 4, we
wish to find a solution to the trajectory X’y along with the set
of mapped landmark coordinates L, on-the-fly, for £ =
0,...,n in a sequential and incremental manner. We detail
the method employed to solve this problem in Section 5.
First, we provide a brief primer on the Bayesian estimation,
the SLAM problem formulated in the Bayesian framework,
and the relevance of representing the structure of the
problem using a factor graph.

3. Estimating relative motion using
IMU measurements

‘We now further explain the discrepancies between our work
and Setterfield’s procedure in Setterfield et al. (2018a),
specifically: (a) why the IMU preintegration scheme is
inadequate and why relative dynamics need to be consid-
ered; and (b) why the kinematic rotation factor introduced in
Setterfield et al. (2018a) needs to be modified to account for
non-inertial and large motion of the target center-of-mass
point.

3.1. Using IMU accelerometer measurements to
perform dead-reckoning in the presence of
unknown gravity vector

As stated in Setterfield et al. (2017) “[a]lthough the IMU
preintegration factor was intended to accept gyroscope and
accelerometer inputs and operate in the influence of Earth’s
gravity field, the mathematics and open source im-
plementation accept any valid angular rate and acceleration
measurements in any desired gravitational field. [...]
Herein, gyroscope measurements are used for the angular
rate measurements, the gravitational field strength is set to
zero, and thruster forces #” divided by vehicle mass m are
used in lieu of accelerometer measurements.” This may be
true in the specific context of spacecraft relative navigation
in Earth orbit, but would not hold if the gravitational effect is
not known a priori, as we explain below.

Specifically, in our scenario: (1) in terms of gravitational
forces, the observing spacecraft is affected by the combined
pull of the target small-body and of the Sun, while the small-
body is only affected by the gravitational acceleration of the
Sun. This results in a net non-negligible relative gravita-
tional interaction between the “chief” (the small-body) and
the “deputy” (the observer S/C), which, in turn, affects the
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relative motion of the observer spacecraft. However, an
IMU accelerometer is insensitive to gravitational forces.
The double integrator dynamics assumed in Setterfield et al.
(2018a) do not hold over extended arcs of time, and a full
non-linear treatment provides higher precision; (2) there are
persistent external non-gravitational forces acting on the
observer spacecraft which are small in magnitude, and
consequently may not be detectable given the signal-to-
noise ratio (SNR) of an IMU measurement signal, but which
may still affect the long-term trajectory of the observing
spacecraft over an inspection arc. The IMU measurements
required for the IMU factors incorporated in Setterfield et al.
(2017, 2018a) may not capture the accumulated effect of
such small-scale non-gravitational forces; (3) unlike
spacecraft inspection arcs, the duration of small-body in-
spection arcs is typically extended—that is, their length is a
non-negligible portion of the period of revolution of the
spacecraft around the small-body. Assuming, similarly to
Setterfield et al. (2018a), that the center-of-mass of the target
body only moves negligibly between time instances, or that
its motion is inertial throughout the inspection arc, may
induce considerable relative navigation errors during
estimation.

When we analyze the SPHERES-VERTIGO platform-
inspired problem formulation described in Setterfield
(2017); Setterfield et al. (2017, 2018a), we note that the
inspector spacecraft (deputy) and the ISS habitat module in
which the experiment is run (chief) are both subjected to
the same Earth gravitational acceleration which maintains
them in orbit, without any other gravitational interaction
between the two. The ISS frame, being nadir-pointing,
may be assimilated to the Hill frame, and consequently the
relative motion of the observer spacecraft with respect to
the Hill frame is fundamentally described by the
Clohessey-Wiltshire (CW) equations of motion (Schaub
and Junkins, 2003). We note that the target spacecraft
(another deputy) has a similar relationship to the ISS frame
(chief), but its coordinate is coincident with that of the Hill
frame (called world frame in Setterfield et al. (2018a) and
assumed to be inertial, as explained in Setterfield et al.
(2017). In this specific context, given the very small
difference in Earth-centered inertial position between the
chief (ISS module) and the deputy (observer) spacecraft,
and the short time-frame of the considered experiment (60-
160 s in Setterfield et al. (2018a), the Hill frame may be
considered as quasi-inertial and the motion of the observer
may indeed be approximated by the solution to double-
integrator dynamics. Only in this limited scenario, the
simple accelerometer model discussed in Setterfield et al.
(2017), where gravity is set to zero and acceleration
measurements are simulated as thruster-specific forces,
seems valid.

In the latter case, the accelerometer measurements may
be used to perform “dead-reckoning,” that is, to compute the
change in the inertial velocity and the inertial position of the
observer spacecraft with respect to the quasi-inertial world
frame due to the influence of external accelerations, such as

the action of thruster firing. Such dead-reckoning may be
performed using the preintegration factor of Forster et al.
(2016), which attempts to encode the residual between the
current state estimate and the state obtained by preinte-
gration of these accelerometer measurements starting from
the previous navigational state.

However, as is generally known (Goel et al., 2021), an
IMU’s accelerometer does not measure pure accelerations,
but rather externally applied non-gravitational specific
forces, that is, inertial accelerations sans gravity-induced
accelerations.

The IMU measurements do not provide any information
about the direction or the magnitude of the gravity vector in
freefall (unforced orbital) motion. We can intuit this fact by
considering a simple model for the measurement ngém ofan
accelerometer centered at point M and with frame M, given
as

M,m
Mo

@®)

where O is an inertial point, Z is an inertial frame, c is a
measurement sensitivity constant, Rz is the rotation be-
tween frames M and Z, and v is a Gaussian noise term. It
follows that, in an unforced (freefall) motion, while as-
suming the IMU frame M is coincident with the spacecraft
body frame S, only gravity affects the IMU, that is,
al,o = g7, and thus the accelerometer measurement over
time is null on average. In other words, the IMU acceler-
ometer is unusable for the purpose of generating estimates
of inertial velocity and change in inertial position by dead-
reckoning in the presence of unknown gravitational ac-
celerations. To obtain an accurate estimate of inertial mo-

tion, g’ needs to be known.

= cRmz (af,lo - gz) +v,

3.2. Using IMU accelerometer measurements to
perform dead-reckoning of motion owing to
small-scale persistent perturbing forces

Admittedly, accelerometer measurements may be used in
our work to obtain estimates of motion owing only to non-
gravitational external forces being applied on the S/C, such
as actuated thruster profiles. However, such forces need to
be strong enough to generate a large enough signal-to-noise
ratio to be useful. One common external force which does
not meet the latter requirement, but whose effect on the
trajectory is non-negligible over the length of an inspection
arc, is solar radiation pressure (SRP). Its magnitude is
typically orders of magnitude smaller than the gravitational
effect (Russell and Raymond, 2012a; Scheeres, 2016), and
it does not meet the criterion of having enough SNR to be
detectable by the accelerometer.

In light of these caveats, incorporating IMU factors to
process such IMU measurements, given that we need to
augment the state with the additional IMU bias states and
incur additional computation time, may not be justifiable.
Therefore, an admissible “odometric” factor for our sce-
nario would then have to rely on explicitly modeling and
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tracking the gravity vector, to ascertain the true relative
motion between the observer spacecraft and the target
small-body. Moreover, since the center-of-mass of the
small-body may not be considered as inertial owing to the
gravitational pull by the Sun over the inspection arc, and its
inertial velocity may not be known with good precision
during proximity operations, it is preferable to model the
relative dynamics of the spacecraft-small-body pair, by
avoiding the modeling of the inertial dynamics of both
spacecraft and target small-body separately, as is done in
Rathinam and Dempster (2017).

4. Relative kinematic and orbital
odometric factors

In this section, we detail the theoretical approach for de-
vising an adaptation of Setterfield’s kinematic rotation
factor (Setterfield et al., 2018a) as well as our new RelDyn
factor, which enforces a strong odometric constraint,
namely, the equations governing the motion of the space-
craft relative to the small-body, and which incorporates
fusion of other sensor measurements. We also discuss the
relevant sources of noise, and the propagated system of
equations.

4.1. Factor graph encoding and
iISAM?2 algorithm

In modern renditions of SLAM (Dellaert and Kaess, 2017),
the problem stated in Section 2.2 is formulated using a
probabilistic inference framework, predicated on Bayesian
estimation, which we evoke for our solution in this section.
The use of the factor graph formulation for modeling the
small body navigation problem is motivated by the fact that
the typical Bayesian estimation method used to solve the
SLAM estimation problem is amenable to a graph repre-
sentation due to the sparsity in the structure of the cost.
Factor graphs are un-directed bi-partite probabilistic
graphical models constituted of factor nodes and variable
nodes, with edges connecting variable-factor pairs (Dellaert,
2021). The structure captured by the edges and nodes of the
factor graph encodes the structure of the estimation prob-
lem’s posterior probability density function, by exploiting
the fact that the latter can be factorized as a product of many
functions, each depending on a subset of the variables of the
problem. By exploiting sparsity in the structure of the joint
density function, the factor graph formulation can render
very large estimation problems tractable in terms of com-
putation. Factor functions can be derived and emplaced in
the factor graph based on the problem-specific constraints
which we wish to include.

Given a constructed factor graph and a specific variable
ordering, variable elimination is performed, transforming
the factor graph into a chordal Bayes net. We note that, in
theory, the chordal Bayes net may then be written as an
equivalent square root information matrix, which may then

be solved using algebra (back-substitution) when the factors
are linear, and by Gauss-Newton iteration when the factors
are non-linear. The procedure creates the resulting Gauss-
Newton iteration directly from the factor graph and then
attempts to solve for updated values of the variable set.

However, in more recent and efficient renditions (Kaess
et al., 2012); (Fourie et al., 2021) of factor graph solvers,
Bayes trees are used to store internally the structure of the
problem, while the factor graph is used principally as an
intermediary for modeling. A Bayes tree is a type of directed
junction tree in which the nodes store the cliques of the
chordal Bayes net it represents and the edges are the sep-
arator set of variables which separate the cliques.

In iSAM2 (Kaess et al., 2012), specifically, after a first
step variable elimination step is performed on the initial
factor graph, a Bayes tree is constructed from the chordal
Bayes net and stored for the next time step, contrary to the
classical approach of storing the factor graph itself for the
next stage. When a new subgraph relating to a set of new
variables and measurements is available for insertion,
iSAM?2 updates the Bayes tree by (1) converting the part of
the Bayes tree relating to this new subgraph into a factor
graph, (2) appending the new factor subgraph—usually at
the top of the tree, that is, affecting the most recent cliques—
then (3) eliminating the factor subgraph to produce a new
Bayes net, and (4) reassesses the affected cliques, (5) up-
dates the appropriate variables. iSAM2 updates variables
involved in non-linear factors by performing a non-linear
optimization step at a current linearization point. To select
which variables undergo optimization update, iISAM?2 first
marks all variables in a subset of the graph variables—that
is, the ones being added to the graph—which clear the
“wildfire” threshold to update, after which a new lineari-
zation point is computed and subsequent all cliques which
involve the updated variable get marked for update as well.

These points of the procedure are important in that they
dictate the effect on the iISAM2 runtime and complexity
when we insert variables which may render the graph fully
connected, greatly affecting the size of the cliques marked
for update and optimization. We further discuss these in
Section 5.1.

Next, we devise the factor which serves as a motion
constraint in the small body circumnavigation problem.

4.2. The relative kinematic factor formulation

We modified the kinematic rotation factor introduced in
Setterfield et al. (2018a) and incorporated it in the problem
factor graph. Unlike the formulation of the kinematic ro-
tation factor in Setterfield et al. (2018a), however, we do not
assume that the target’s center-of-mass point A is inertial or
that the motion of the target’s center-of-mass between two
successive time indices is negligible. Therefore, for any two
time indices i, j, i #J/, raa 70, and we can write

©

Iss, = s, T TG, + Yaa, T Fac + I'Gs;-
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We rewrite the left-hand side of equation (9) by tran-
siting through points A; and A; in the vector chain, such
that

(10)

We replace equation (10) into the equation (9), cancel out
terms, and manipulate to obtain the kinematic relationship,
stated as

rS/S,‘ = rSjAj + rAjA,’ + l.A,‘S,,

(11)

We note that in lieu of the inertial position vectors rg,w with
respect to an inertial world frame origin W used for the
kinematic factor in Setterfield et al. (2018a), we have the
relative vector rg,a,. While acknowledging that the center-
of-mass vector rg is fixed when expressed in the G-frame

Isa, — Isa, = I's;; + Yga, T Tac + 1Gs,.

: Gi _ 9 - 3
coordinates, such that r; =r AG = TaG and expressing

all vectors in the inertial frame, we get the kinematic

relationship
— vt =RysRsc(rV. —x9
siar — SRS G\ U6 T TAG

rg/A/
+RzsRs,6, (g — rde,)

(12)

Further assuming that we have access to a filtered es-

timate ﬁzs of the inertial attitude Rzs :IAQIS exp([vz]"),
vr.i ~N(0,Zg) from the spacecraft’s inertial star tracker at
any desired time, we may rewrite equation (12) as

rg/Aj - rg[A,’
= Ras exp([-ve)")Rsg (1, ~ o).

+ ﬁIS; exp([_vR,i}/\)RSigi (riG - rg’G )

(13)

Using Facts 1 and 3, and manipulating equation (13), we
obtain the translation residual

RelKin, r A
gl'j - r%’A,’ - rg A;
—RIS,RS,Q, (rs G )
~RzsRsg, (rlg —r¢ ') (14)
g g A~
RIS Rs. G l's G I'\g RIS,-VR,A/'

A~
+ [RZSiRSig[ (riG - rg;G,~):| RISivR,i'

While assuming that E {vR, ivl;r’j} = 03x3, i#J, and using the
shorthand B; £ [IAQIS Rs, g‘(riG - rg{’Gi)]A,

the covariance of gRele " may be found by computing

an expression for

E [ RelKin,r ( RelKin, r) T ]
ij ij

= BB + BjZRBjT (15)

In parallel, and similarly to Setterfield et al. (2018b), we
can write the rotation kinematic relationship using the ro-
tation composition rule, given as

= Rg.s,RszRzsRs;q, (16)

We rewrite the left-hand side of the equation using the
intermediary Z frame, such that

Rgigj

(17

Using an Euler on-manifold integration scheme with
the simplifying assumption of piecewise constant
gz (t) = ogz, t€[t;, 1), a kinematic relationship be-
tween Rzg, and Rzg, holds, such that

Rg,g, = RgzR1g,

Rrg, = Regexp ([0 (5~ 1)]"). (18)

Substituting equation (18) into equation (17), and then
substituting that result into equation (16), we obtain the
kinematic relationship

eXp ( [(Dg'z ([ fi)] A) = RQ;S[RS;IRZSJ'RS/QJ- (19)

Further assuming that we have access to a filtered estimate
Ezs, of the inertial attitude Rzs, = IA?IS‘. exp([vr.i|"),
vr.i ~N(0,Zr) from the spacecraft’s inertial star tracker, we
may rewrite equation (19) as

eXp ([‘”gz (45— ti)]A) = Rgs, eXP([VR,i]A)ﬁs[I

x EIS/ exp( [_VRJ] A)Rsfg/
Using Fact 2, and manipulating the right-hand side of the
latter equation, we obtain

Rg,-s,ﬁs_,zﬁzs,Rs,-gi exXp ([mgil (tj - ti)} A)
= exp ( |:jo$]§5/1§15[‘)1?,1':| /\)
x exp ([~Rgsvr,]")-

Taking the logarithm map followed by the vee operator on
both sides of the equation, and then applying the Baker-
Campbell-Hausdorff formula (Chirikjian, 2011) while
omitting any second-order noise term, we obtain the
residual

RelKin,R A
81‘]‘ =

~ ~ \
log (jos,RsszzsiRSigi exp ( [wgz (4 —1)] A) )

= jo‘%stzRISivR,i — RQIS/VRJ'

(20)

Since (a) rotation matrices are full rank and norm pre-
serving, (b) the star tracker measurement noise is typi-
cally isotropic, for example, Xz = a,%h, and (c) that the
star tracker measurement noises vz ;, Vg ;are independent
for i # j, that is E[vg,vg ] = O3, it follows that
};ele,R ~ (0’ 22R)

We combine the two residuals to obtain the full relative
kinematic factor

M
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ERelKin, R
gRelKin _ ij
i gRelKin, r

y

o 2% 0
- 10 BIRBT + BB

@1

).

We incorporated this adapted factor into our factor graph
formulation.

4.3. The RelDyn factor formulation

Similarly to Dong et al. (2016), which implements
STEAM using a Gaussian Process with a linear time-
varying stochastic differential equation, we derive a
relative dynamics factor based on the moments of the
distribution describing the dispersion of the solution
realizations of a system of non-linear stochastic differ-
ential equations, evaluated at discrete times, for the
purpose of improving the performance of baseline SLAM
for small-body imagery.

Given a sequence of spacecraft states =, = (xx);_, at
discrete times (# );_,, we want to devise factors which relate
to the odometric probability distribution p(x;, x;+;). Note
that, using Bayes’ rule, the joint distribution p(xy, x+1) can
be rewritten as either p(xy, Xi+1) = pOors1xp(xr) or p(xy,
Xit1) = POXxie1)p(x4+1), depending on which prior, p(x;) or
P(xg+1), 1s readily available at the time of computation. In
our case, we typically know the state of the spacecraft and
the distribution of the uncertainty of that state at the be-
ginning of a segment, and therefore we pick
pxo) ~N (X0, Zo) as a known prior, where X is the known
state mean and X, is the known state covariance. We as-

sociate the factor ¢2" (xo) to the prior p(xo) accordingly.
RelDyn

Now, the RelDyn factor ¢, can be formulated as

;I:elDyn(xk,ka) OCP(ka |xk) = N(O,Pk), (22)

where P, is a covariance matrix derived from the propa-
gation of the moments of the distribution describing the
realizations of the stochastic differential equations.

Along with projection factors, denoted ¢!™,i=
1, ..., rk, a factor graph of the SLAM problem with motion
priors can be constructed, as conceptually illustrated in
Figure 2. In light of this goal, a brief discussion of the
RelDyn factor is provided throughout this section. To
compute the value of the RelDyn, we need to model the
equations of the relative motion induced by the relative
navigation problem in the presence of gravitational at-
traction between the observer and target bodies.

4.4. Equations of relative motion

Recalling the vectors and frames in Figure 1, we assume that
the frame Z is inertially fixed, the frames G and S are ro-
tating with associated inertial angular velocity vectors @gz,
and oz, and that frame G is a target small body body-fixed
frame. The relative angular velocity between the spacecraft

¢pl>r0]

prior
0

Figure 2. A factor graph encoding the SLAM problem and the
RelDyn odometric factors conceptually.

frame S and frame G is ®sg = wsz — @gz. The orientation
of the frame S relative to the frame G is encoded in the
rotation matrix Rgs € SO(3), which satisfies the kinematic
relationship

Rgs = [0gg] Res. (23)

where wgg € R? is the relative angular velocity, expressed in
the G frame. Rewriting (23) in terms of the frame S and
frame G angular velocities, and using Fact 1, we obtain

[Rgs3; — 0] " Rgs

Rgg [(Dgz] h_ [(021] ARgg.

Ros = 4)

We can derive the position vector of the spacecraft at
point S relative to the arbitrary point G by writing

I'sg = I'sa + I'ag-

Taking the time derivative in the G frame gives

94 94 94 !
T (rsg) = T (rsa) + i
z
= & (I’SA) — Wgz X TIS8A-
Expressing in the G coordinates, we get

AG)

. A

rgG = Rgngzng — [(Dgz] RQSRSI SA* (25)
Finally, we derive the translational dynamics of the

spacecraft relative to the small body center of mass. Our

equations of motion for the relative position and relative

velocity are then given as

fsp = Via (26)
Vi =25 @7

It thus suffices to find an expression for aZ,.

We assume herein that the spacecraft is subjected to the
gravitation force of the small body, denoted by Fy,, the
gravitation of the Sun, denoted by F, o, the solar radiation
pressure (SRP), denoted by Fgrp, as well as the spacecraft
actuation thrust force, denoted by F,. Assuming that the
spacecraft’s known mass, denoted by m, is fixed, the linear
acceleration of the spacecraft with respect to the Sun’s



1782

The International Journal of Robotics Research 43(11)

origin O, is given by ago = 1/my(F,, + F,o + Fgrp + F)).
The small-body’s gravitation force is obtained by
computing

28
or rersa (28)
for an appropriate gravity field potential function U(r).
Assume that U(r) is parameterized using spherical har-
monics. Then, when the probe is relatively distant from the
small body, the spherical term of the potential dominates, in
which case the attractive force is given by F,, = —u,my/
Irsall’rsa. Consider the Sun as a point-mass central body.
Then, Fyo = —ugmy/ ||rso||3rso, where rgg is the position
vector of the spacecraft center of mass S with respect to the
Sun origin O. Assume that the solar radiation pressure is a
function of its position vector with respect to the Sun,
Fsrp=Fsrp(rso).

In turn, we assume that the mass of the small body,
denoted m,, is fixed, and that the only force acting on the
small body is the Sun’s gravitational force. Then, the linear
acceleration of the small body center of mass with respect to
the Sun’s origin O, is given by ayo = 1/m,F,o, where
F,o = —ttom||raol|’rao. The relative dynamics of the
spacecraft-small-body system are obtained computing ags =
ago — a0, leading to the relationship

agy = Ha FLsa — - srso + —Fsrp(rso)
[[rsall [[rsoll my
1 (29)
+—F, + o 3T AO-
ms [raoll

Assume that rsg = rpao, given the very large distance
between the spacecraft-small-body system and the Sun, and
rewrite equation (29) by making explicit in terms of the state
variables and input variables of interest, yielding

Hqy /uO
ajS:A = <—3+—3>1%A
[[rsall l[raoll

1 1
—FZ% (¥t —R;sF;°
"’ms SRP( A0)+ms Z8Ts

(30)

Additionally, for the sake of readability, we hereafter
define the shorthand notation Q2 Rgs, q = rds, wémgI,
rarl,, v&vl,, RERzs, sfof, d2ri, c2r,
g(d) £ 1/mFLp(d), 2 1/mFS, which allow us to restate

the equations of motion as

0= 0ls]" — [w]"0. 31)

q=0R"v—[w]"OR'r (32)

vz—<““3+“®3>r+g(d)+Rf. (33)
[rll”  [dl

i=v. (34)

4.5. Modeling assumptions

We note that we may view R and s, along with f, as inputs to
the dynamical system described in (31)-(34). Here we

consider R = ﬁexp([vR]A) as the already-filtered estimate

value R of the spacecraft’s orientation provided by the
inertial star tracker instrument, perturbed on the right by its
associated uncertainty vz, and s =S + vy is the filtered and
unbiased estimate value § of its angular velocity, provided
by the rate gyro instrument, perturbed by the associated
uncertainty vs. This inclusion allows us to fuse the known
filtered measurements of a star tracker system and a rate
gyro into the overall navigation solution. Moreover, attitude
and angular rate filtered measurements may be obtained at
high rate and may therefore be associated in time so to
closely coincide with the moment an image is taken and
processed.

By modeling the sensor dynamics we avoid having to
represent the Newton-Euler dynamics of the spacecraft.
Indeed, attitude control inputs, such as the actual actuated
torques applied on the spacecraft, are often not known
with precision at the instant when they are applied on
the spacecraft, but may be estimated a-posteriori. Yet,
these would be required at the moment of integrating the
vehicle’s Newton-Euler equations of motion if implemented
on-the-fly.

Furthermore, following our assumption that the small-
body is in single-axis rotation, we set the spin state
vector wo=w(z). Along with the unknown gravity pa-
rameter /,, We may view wy as a parameter of the dynamical
system.

For the purposes of the RelDyn factor modeling, we may
now define the state tuple x=(Q,q,v,r)€SO(3)x
R¥xR¥xR3*2£X, the input tuple u=(R,s,f)€SO(3) x
R} xR? x R*£ U, and the parameter tuple p= (w, 1) € R?
x R = P. To be consistent with earlier representations, we
note that by virtue of Fact 4, given any O, q, we may
construct the corresponding pose 7' = T(Q, q).

Recall that the RelDyn factor function encodes the
odometric constraint by means of a likelihood or prior
distribution function predicated on the state and the known
accumulated observations at discrete times. Therefore, we
proceed as follows: (1) first, we identify and quantify the
probability distribution which relates the dispersion of the
state evolving over time. We wish to be able to evaluate this
distribution at a sequence of a priori unknown discrete times
along the trajectory. We conserve two moments of this
distribution, as is classically done in Gaussian process
procedures (Dong et al., 2016); (2) we propagate the first
moment (the mean state) by using the non-linear equations
of motion, through an on-manifold integration technique;
This provides us a means to evaluate the residual of the
factor by comparing the propagated state against the next
state; (3) we propagate the process covariance by linearizing
the model dynamics around specific points, using a
piecewise constant assumption, and then integrate the linear
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model in the Lie algebra of the manifold. This provides us
with a discrete process covariance matrix, which we use as a
weighting in the factor formulation.

4.6. Stochastic differential equations of motion

We assume that the dispersion of the state at any given time
is due to the accumulated effect of exogenous perturbations
on the trajectory across time. Specifically, we wish to exploit
the stochastic form of the equations of motion to derive the
distribution of trajectories as a function of time. Further-
more, to be able to evaluate the distribution at any desired
time, we require the stochastic differential equations to be in
continuous form. Finally, we desire to obtain the relevant
stochastic differential equations directly from the equations
of motion, as further detailed below, by admitting realistic
and physical perturbations through the input channels.

To this end, let the 3-dimensional white-noise Gaussian
process v« () (where * = R,s,f), such that E[v«(1)] =0
and E [v*(t)v,;r (r)] = Wxd(t — 1), where Wi is the spectral
density matrix of the continuous-time noise v«. Addition-
ally, we assume that v« for all * = R,s,f are mutually
uncorrelated.

Consider the equations of motion given in (31)-(34) and
substitute in u, where for 2 (R,,f) € U, we have

u= (ﬁexp([vR]A),§+ v, f + vf).

To establish the governing stochastic differential equa-
tions of the system (Sage and Melsa, 1971), we first define
the 3-dimensional Wiener process &x(¢), (* = R, s,f), such
that

t
g (f) = / va(2)dz, £x(0) =0, (39)
0
with the increment dex () = €« (¢ + df) — &x(¢) = v« (¢)ds,
satisfying ~ Elex()] =0,  E[(ex(r) — ex(7)) (ex(¢)—
£x(7)) '] = Wit — 7|, which when 7 — ¢ yields the rela-

tionship ]E{ds*dsl ] = Wxdt. Note also that de«ds = 0.

Given any two states x; = (02, qy,V2,12) €X and
x1 = (01,9q;,v1,r1) €X, we  define the error
Ax(x1,x2) € T, X between x; and x, centered at x; (Speyer
and Chung, 2008) such that

log(QlT Qz)V
Ax(x1,3) 2 ‘Vh - ‘Vll (36)
2 V]
r, —r;

To obtain the stochastic differential equations resulting from
this noise injection in the input, we evaluate the stochastic
increment dx = Ax (x(z),x(¢ + d¢)), we use Facts 2, 3, and
4 and we separate the equations, while dropping the time
dependence for readability, yielding

1783
de = (07dQ)" = (5 - Q'w)dr +de,,  (37)
dq = (QﬁTV - [W]AQIAQTr)dt
~T A A ~T A > (38)
+(Q[R v} — [w] Q{R r} )daR
dv = (—( Po 4 'u®3>r—|—g(d)+f2?>dt
Il o)
—ﬁ |:?i| /\dSR +ﬁd£f,
dr = vdr. (40)

By decomposition of the covariances Wx = LsxLy!,
(* = R, s, f), and by defining the standard Wiener process ¢,
where E[de(¢)] = 0 and E[de(¢)de(¢) " | = Iodt, obtain the
system of stochastic differential equations (41).

dk = fo(x,u,p)dt + [033 Lo 03.3]ds,
dq = fo(x,u,p)dt + [Lgg 033 033 de, 1)
dv =fi(x,u,p)dt + [Lyg 033 Lyt |de,
dr = £;(x)dt,
where x=(0,q,v,r)eX, u= (IAQ,E,?) €U, and

p = (Wo,1,) € P, and where
~T~TA -
LQS =1I;, Lyg = —R |:f:| , Ly =R,
~T A A ~T A
b= 0[] - ol

Collecting into dx = [dk"dqTdvTdrT]", and into
S@p) = [fg (6@p) f7 (8p) AT (v ip) £ ()]

we can rewrite (41) in succinct form as

dx = f(x,u,p)dt + L(x,u, p)de. (42)
where
033 Ls  Osx3
Logg 033 0353
L= |t 43
LVR 03><3 va ( )
033 03x3 033

Due to the non-linearity of the considered dynamical
system in equation (42), the distribution of the It6 process
x(f) may require more than two moments to fully describe
at any time. However, as a stepping stone to obtain a
practical representation of the distribution p(x(¢)x(ty)), we
are interested in computing the first two moments x(¢) =
(0(1), (1), (1), F()) 2E(r)] and (1) 2 E[Ax (%(1),x)
Ay (X(t),x)] at each time .

Naturally, we want the relative dynamics factor to be
proportional to the distribution p(xy.lx;), as shown in the
beginning of the Section 4.3. Noting that the time step
between ¢ and #., is not known a-priori during the navi-
gation segment, it is crucial to compute a process noise
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covariance Py, which appropriately scales with the time step
length, using a discretization scheme. Such a treatment is
similar to the prediction step of an Extended Kalman Filter
with first-order approximation assumptions, and can be
referenced in Sage and Melsa (1971).

First, for the continuous case, we define the RelDyn
factor residual eRePY" such that

%P (x(1),x(¢ + dt)) £ dx(¢) — f (x(¢), u(t), p)dt.

Then, the factor ¢R'®>" as a function proportional to
N(0,dP(z)), where

dP(t) = E[(dx(t) — f (x(0), a(),p)) (- ) "],
may be simply defined as

" (x(2), x(t + dr))
éexp((eRelDy“ (x(2), x( + d))) " dP~! (t)gRe'Dy"(*)) :

Let the partition {#};_, of the time interval [fo, 7] be
such that #p <1 < ... <# < ... <ty =tz Given some
u(t),t € [to, tr], we generate the sequence of predictions
{Z 1Y, such that

AX(/x\k+1 732/()
1

= [ S((@),u(x),p)de,

/3

) =5, Y

is a valid discretization of the first-order approximation
(Gelbetal., 1974) x(¢) =f (x(¢),u(t),p) forallk=1,...,N—
1, and such that

b /k+l L(}(T),ﬁ(r),P)LT (x(z),u(z), p)dt,

73

(45)
X (lk) = Xk,

characterizes the discrete process noise over the time-span

[#, t+1]- Then, using the definition in equation (36) and the

equation (44), we define the RelDyn residual e?emyn for the
discrete case, as

EﬁelDyn (Xks Xps1)
i O] v T
tog((0/ 0x1) " ™)
T+
Qi1 — U — Ja(x(2),u(z), p)de
A 4 (46)
= 41 N 5
Vi+1 — Vi — So(x(7),u(z),p)dr
74
/38
iy — T — fe(x(7),p)de
L Ik J

where x(tx) = (Ok, Q. Vi, k) and where Q) is defined
such that, for a partition #;, = sg < s < ... <S8, = tj+1,

o2 tim Tleso( [ fote(o)ate).) ).

n—ow i
x(tk) = Xk,

and is dubbed the McKean-Gangolli injection method
(Chirikjian, 2011), allowing for the stochastic process on the
Lie group SO(3) to be written as a product integral. With
appropriate correction factors, the limit can be truncated to
numerically perform on-manifold integration with minimal
error accumulation stemming from the approximation (Andrle
and Crassidis, 2013), as discussed in Section 5.6 below.
The factor ¢ for the discrete case may now be

written as

2

Pﬂ)'

4.7. Smoothability of chosen state variables

RelDyn

k (ks Xpet1) = exp(

gﬁelDyn (ks Xpt1)

It has been shown in Sage and Melsa (1971) that batch-style
maximum a-posteriori solution to the factorization of a joint
distribution over the variables to be estimated, which was
discussed in Section 4, is equivalent to the solution obtained
from optimal fixed-interval smoothing. Typically, the op-
timal smoothed state is defined as a linear combination of
the state of the forward filter and the state of the backward
filter at each time, with optimally chosen weights. A state is
said to be smoothable if an optimal smoother provides a
state estimate superior to that obtained when the final op-
timal filter estimate is extrapolated backwards in time (Gelb
et al., 1974). Furthermore, Fraser (1967) has shown that,
given linear forward and backward filters, only those states
which are controllable by the noise driving the system state
vector are smoothable.

In this context, we evaluate the relevance of our choice of
state variables and the noise input and derived stochastic
equations of motion in Section 4.6 in terms of smoothability.
However, since the concept of smoothability pertains to linear
smoothing, direct application of the criterion to our problem is
not possible. Instead, by demonstrating small-time local con-
trollability through the noise by analyzing a local linearization of
the equations (31) to (33) at some (X, ¢ ), we can assess the
smoothability of our chosen state variables at that point.

Specifically, we can compute the local linearization
matrices

9o
22 0 0 0
oK
.
of Jda g % %
FE g =|w & & @ . @
U= Uy 0 0 0 2
p=r 0 0 % ol _

r
L
N R o=
Il
SRR
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where
Yo _ 107w W] €To80(3),
OK
Yo _ _Q[RTV + [W'O[R" 1]’
oK
%y T 4 AP T
S8 = ORT. U= —[w]'OR
T = R, %0 w0,
Z Lo L (T ) - L2,
ov Vor |’ ||d||
and Ly = L(X, ux,p), where L is as defined in (43).

We now apply the PBH controllability test (Fraser, 1967;
Williams and Lawrence, 2007) to show that our system does
have small-time local smoothability at all points of interest
in the state space X.

For simplifying purposes, since both Q and R are full

rank, next we assume Q R= I3 without loss of generality.
Specifically, we see that the matrix f,f = [w]" is skew-
symmetric and is therefore of rank 2. It follows that A =
0 is an eigenvalue of F;. We compute the matrix

[Fy — Als, L], which for 2 = 0 takes the form

w

[Fi, Li] =

MY 0 L WY =W 00

We observe by inspection that, as long as V and w are not
null at the same time, that is, that the spacecraft has some
non-null relative velocity in the small-body fixed frame,
then the PBH controllability matrix has rank 12, and thus the
system is small-time locally controllable through the noise.

Therefore, it is crucial to include appropriate and
physically justified noise terms in the considered dynamics
to support smoothability. Furthermore, the inclusion of such
noise avoids the degeneracy of the discrete process noise
Gaussian distribution, with covariance Py, as computed in
Section 4.3. This argument supports the injection of noise
through the input channel in the derivation of the stochastic
equations of motion in Section 4.3.

5. Algorithm and implementation details

We are now ready to finally state the full solution to the
problem and provide the key implementation details.
Equations (44) and (45) constitute constraints on the evo-
lution of the mean system state and its associated system
noise covariance between time instances f;, and f..,. We
wish to enforce these constraints. Practically, at each time
instance #;, k = 1, ..., Ny we let x; be the current best guess

of X and Py be the current best guess of P. Given Xy, X411
and #u(t),t € [tk, tr+1], we compute the residual due to
equation (44), then the guess matrix Py, and finally the value

of the factor d)R 1Dyn (X, Xx+1)- Note that the integrals in
equations (46) and (45) are computed numerically using an
on-manifold integration scheme, detailed later in this sec-
tion. We note that the inclusion of the RelDyn factor in-
troduces the spin state w, and the gravity parameter y, as
variables into the factor graph.

As both the prior and projection factors are developed in
detail in other works (see Dellaert and Kaess, (2017), for
example), we simply restate them here using our notation,
such that

2
5! )

! priOr(x ) = CXp <HAX (Ax(), XO)
2 >
(Z“]’") ya

where each yj} € V; is obtained as per the relationship in
equation (6). We incorporate these prior factors on the initial
state tuple. We finally incorporate the relative kinematics
factors introducing the center-of-mass position parameter
vector .

The structure of the problem may now be organically
schematized and analyzed as a factor graph. We have il-
lustrated two initial steps of the AstroSLAM factor graph in
Figure 3, where the RelKin factors and their related de-
pendencies are highlighted in red, and the RelDyn factors
and their related dependencies are highlighted in blue.

Next, we provide the implementation details of the al-
gorithm, while underlining the specificities of the asteroid
navigation problem. We first discuss the issue of complexity
growth in the graph induced by the inclusion of global
parameters. Then we discuss the state and map initialization
steps of the algorithm, in which we insert prior factors for
initial poses and kinematic variables of both the spacecraft
and small-body, as well as generate an initial estimate for the
map ;.

Finally, we discuss the overall architecture of As-
troSLAM. Our processing pipeline consists of a “front-end”
system and a “back-end” system predicated on the
iSAM?2 engine and GTSAM library, along with an initial-
ization step and a loop closure detection step. We further
illustrate the overall architecture of the front-end, back-end,
and loop closure subsystems in Figure 6 for the convenience
of the reader.

Y (i, 6) 2 exp (‘ Vit — Y

5.1. Considerations regarding
complexity growth

Since we want to estimate the navigational states and si-
multaneously update the center of mass position ¢, the spin
vector wy, and the gravity parameter z, estimates on-the-fly,
we have introduced these as variables in the factor graph, by
means of the relative kinematic factor and RelDyn factor
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formulations. It is clear, however, that the inserted edges
render the graph fully connected, since each state tuple x;, i =

1, ..., n is linked to the single parameter y, by means
of the RelDyn factor ¢f|>" and the factor ¢ """ Due to

Figure 3. Full AstroSLAM factor graph. Red edges correspond to
dependencies related to the relative kinematic factor, denoted as
RelKin, and blue edges correspond to the dependencies related to
the RelDyn factor.

prior

o

Time index O

Time index 1

Figure 4. Initialization steps of the SLAM problem.

this, the clique sizes in the Bayes tree determined at each
solution step of iSAM2 would get larger as the graph
grows incrementally, and the updates in the Bayes tree
would involve cliques that are ever more deep in the tree.
If not addressed, this issue essentially forces iSAM2 to
perform expensive batch optimization at every time step,
with the size of the batch update growing at every time
step (Setterfield et al., 2018a; Teran Espinoza, 2021). One
intuitive workaround, as implemented in Setterfield et al.
(2018a), is to solve for the variables related to the inertial
factors in an incremental fashion at every step, but only
sporadically optimize the kinematic rotation factors
using a batch solve step, so to avoid the repeated and
expensive batch optimization. However, we cannot im-
plement such a method for our procedure, as our relative
odometry RelDyn factor also depends on the global pa-
rameter [,.

In our approach, we somewhat emulate the procedure of
a fixed-lag smoother, by defining epochs i = 1, ..., m to
which we associate specific global variables ¢, w(()i) and
,uy). Over the epoch, the iISAM2 optimizer performs a batch
update of the variable only related to that epoch at each time
step, by virtue of the fully connected property of the graph
induced by the relative kinematic factor and the RelDyn
factors. At every new epoch i, we mar%inalize the global
parameter variables ¢/, Wg_]), and u{ ™" from the pre-
vious epoch, and insert a new prior factor for each of the
current global parameter variables ¢, wg), and ,ug). When
inserting relative kinematic factors or RelDyn factors during
epoch i, we associate these factors to their corresponding
epoch’s global parameter variables ¢; and y,, ;. A new epoch
is induced at a fixed time step interval (e.g., every 10 steps).

5.2. State initialization

We leverage estimates from pre-encounter Earth-based
measurements and approach phase sensor measurements
to perform the initialization of both the spacecraft and small-
body states. Inertial position measurements rg;g’ of the
spacecraft, modeled as r;ﬁg' 21l o+ Ve Ve ~N (0300, Z7),
are based on Earth-relative radiometric ranging and bear-
ing measurements, a method of localization widely

Figure 5. Front-end pipeline factor-graph following the initialization of SLAM. On the left is factor graph at time step index 2, with the
subgraph related projection factors added, and on the right for time steps 3 and beyond. The edges, factors and variables colored in
green relate to the generic projection factors added for newly triangulated landmarks, while those in blue relate to projection factors
added for previously known landmarks. In gray are the potential landmarks that have had sightings in the past, but which have not been

initialized yet.
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practiced in deep space mission spacecraft tracking using
communication station networks, such as the DSN. Acurate
ground-based navigation estimates using Earth-relative
range and bearing measurements, such as uplink-
downlink pulse ranging and Delta-Differenced One-Way
Ranging (DDOR), a type of Very Long Baseline Interfer-
ometry (VLBI) (Miller, 2019; Miller and Rourke, 1977), are
available to be used for initialization. It is important to note
that our algorithm requires DSN-type measurements only
during the initialization phase, to anchor the initial pose as
described below.

Inertial position estimates of the small-body, denoted
by ?gko, are predicated on orbit determination (OD)
performed using Earth-based telescopic measurements.
An initial relative position vector Ts,g estimate may be
obtained by differencing spacecraft and small-body in-
ertial position estimates. Alternatively, relative optical
navigation (OpNAV) performed using pre-encounter
sensor measurements, accurate in the order of several
hundreds of meters for large small-bodies and tens of
meters for small small-bodies (Bhaskaran et al., 2011),
may be used to provide such an initial prior on the relative
position.

To further simplify the initialization step, we assume
that the small body is a stable single-axis rotator. Thus, we
align the arbitrary frame G such that mg,z = wy 53, where
wy is the magnitude of the angular velocity vector of the

small-body. The unit vector gf is classically parameter-
ized by the spin pole tilt angles relative to the
J2000 ecliptic plane. If sufficient pre-encounter obser-
vations are available, a prior for these angles can be es-
timated and their associated uncertainty computed
(Thomas et al., 1997).

Typically, a prominent and salient feature on the surface
is hand-picked as the prime meridian direction, thus fixing

the g, axis. In our case, given the initial prior rg g, dis-

cussed earlier, the prime meridian g, may be initialized by
- . T TN
first computing g, following g, = [g;] i ¢ /|Irsc,|

I I ALT
and then computing g, = [g,] g5.Consequently, R7g, =

[Ef gf gf] is determined. Note that, for this method

to work, the spacecraft relative position at initialization time
cannot be coincident with the small-body spin axis. In
practice, an on-board star tracker system is leveraged to
obtain an orientation measurement R?Sk, modeled as
R =Rzs, exp([ve]"), ve ~ N (0341, Z}). Orientation
measurements are usually known with very good accuracy
and little uncertainty.

We may now establish the prior factor for relative pose
Tg,s, by combining the information we have available at
initialization. We first define the relative measurement at
time £ = 0, using (4), given by

>
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[T . ST o7
Tm — RIQQRIS() RIggrgogo
GoSo
L 01><3 1
[~T ~T
_ | Ryg,Razs, exp([ve]") rggoo + Ryg,vr
| 03 1
[~T
_ | RygRes, 1, {eXp(["R]A) RITSO"r]
01><3 1 01X3 1

where rgogl is the relative position vector at time k =
0 obtained by differencing inertial position estimates of the
spacecraft and the small-body, or by means of an OpNav
solution. It then follows that

1 om _ exp(fa]Y) &
Tg(]S(iTgOSU - |:01X3 101

(48)
whereg; = v, andg, = RIT 5 Vr Using the logarithm map of the
SE(3) group of homogeneous transformations at the identity and
the vee operator, as detailed in Section 2.1, we can write

— m v 8 m
[log(TgogoTQOSO)} = |: : :| ~ (06”’2'1",0)’

&

(49)

where, by first-order linear approximation, we have
~T ~T
P = RERJR + Je(Ryg RYs, ) E0, (Rrg,RYs,),  com-
puted using Fact 4 where R € SO(3). A prior factor
0" (Tg,s,) is emplaced in the graph. This factor encodes
the residual between the pose 7g,s, € SE(3) and the mea-
surement 77, , with covariance E%O,

5.3. Map initialization

Initialization of the map is delayed until time index k=1, at
which point at least two images of the target with sufficient
parallax are captured. Local image features Yy and Y are
extracted and undergo data association, with outlier rejec-
tion, producing a set of 2D-2D correspondences. A strict
outlier rejection criterion is used to obtain a subset of re-
liable correspondences. It is now possible to apply a typical
8-point algorithm (Hartley and Zisserman, 2004) using the
inlier 2D-2D correspondences to find a guess pose trans-

formation 7° € SE(3) such that

?Oéﬁo/fo
0o 1)

where R°€SO(3) and © €R>, describe the estimated
change in relative orientation and relative position between
the poses of the camera frame at time indices k=0 and k= 1.
From the frame kinematics and composition rules, and
knowing that R° = ﬁcocl, it follows that ﬁglgl =
ﬁgl goﬁgogoRgcﬁoch . We that
([—(T)gnlAtO]A). It follows that Rg,s, :exp([&ggIAto]A)

ﬁgojﬁ?SORS(jkoRcs. Additionally, we know that

note ﬁgog, ~exp
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4 G
= ARes (res + RsyaRana Tsi6 — (rds + Rsyotse))
~ R A
= /IRCSRSOQO (exp( [mgﬁIAto} )rg]lG — rggg) 5
(50)

with 4 > 0, an unknown scaling factor.We see that the
ambiguity in the scale parameter 4 still remains. Typically,
scale can be established using off-nadir altimeter mea-
surements over a range of orbital configurations in a multi-
arc solution, as performed by the OSIRIS-REx mission
around asteroid Bennu (Goossens et al., 2021). However,
the latter solution, in its current format, is not amenable to
on-the-fly autonomy, as the batch estimation process
requires a compilation of data from multiple mission
arcs. Furthermore, altimeter measurements have to be
used at close range to the target small-body, again re-
stricting autonomy since judiciously pre-designed ma-
neuvers have to be executed to first obtain the necessary
altimeter measurements at close range. If a good initial
estimate of the angular velocity w, of the small-body is
available, the map scale can be determined by combining
DSN-like inertial position measurements with the ori-
entation matrix and position vectors extracted from the
relative poses T, and T, as shown in equation (50). The
availability of such prior knowledge currently depends
heavily on Earth-based and pre-encounter measurements
of the target small-body. Regarding this matter, as de-
tailed in Goossens et al. (2021), the ambiguity in scale
due to the parameter 4 is determining in the estimation of
an appropriate spherical gravity parameter term i,. An
error in p, will then affect the propagation step of the
smoothing process. For the purpose of this work, we
have assumed that the scale parameter 4 is well-known.
Future work will develop novel autonomous methods to
estimate the scale. R R

Having an estimate of poses 7y and 71, we compute the
triangulation of the landmarks ¥ using measurements Yy and
Y. We then generate guess values for the estimated landmark
positions {rﬁG}Le%. At this step, all appropriate factors are
inserted based on the 2D-to-3D correspondences, resulting in
the factor graphs illustrated in Figure 4, where the shorthands
&érgiG, L€YY, and T, 2Tg,s,k =0,...,n are used for
brevity.

5.4. Front-end

The front-end system includes feature detection and
matching, and encodes the structure of a typical monocular
bundle adjustment pipeline in a factor graph based on index
mappings defined in Section 2.3.

At every new image acquisition, first, we store the
corresponding wall clock time, as the difference between
two consecutive image acquisition times is necessary for

propagating the RelDyn factors inserted later in the factor
graph. We then detect ORB features (Rublee et al., 2011) in
the new image. ORB features perform well in practice and
they are fast to compute. These are also good placeholders
for more robust automatic features to be implemented in the
future. We use brute force nearest neighbor search based on
the Hamming distance for binary feature descriptors to
perform feature matching against previous image frames
(e.g., n — 1, n — 2) and populate an initial 2D-to-2D
correspondence map. We also enforce an essential matrix
constraint as a geometric check for matched features per a
RANSAC procedure, thus eliminating outlier associations
in the 2D-to-2D correspondence map. We append the
corresponding matches to a list of feature tracks maintained
since the beginning of the algorithm procedure.

All tracked feature points in the current frame » may be
separated into three subsets: a set of sightings for new land-
mark points to be triangulated, a set of sightings of known
landmark points to be tracked, and a set of outlier points to be
rejected. The outlier set of feature points is discarded.

The first subset of the tracked features corresponds to
measurements of surface point landmarks that have not been
previously sighted and which need to be triangulated using
all accumulated sightings in the feature track. Leveraging
the latest guess pose T g.c,» a guess value for the 3D position
of the landmarks is generated using triangulation. We delay
triangulation and insertion of new landmarks into the graph
based on the number of sightings of the associated land-
mark. If that number is above a predetermined threshold,
say 3, then we attempt triangulation of the point using all of
the measurements in the sighting of that surface point. If the
landmark point has been successfully triangulated using the
feature point sightings that were used for the triangulation,
appropriate 2D-to-3D correspondences capturing the new
data association are accumulated. Projection factors be-
tween the new landmark variable and all camera poses
where the landmark was sighted are added to the factor
graph.

The second subset of tracked features corresponds to
new sightings of surface point landmarks previously tri-
angulated. This subset is populated by verifying if the
currently tracked feature has an associated landmark already
in the 2D-to-3D correspondences maps. The feature-
landmark matched pairs undergo a reprojection error test,
after which the surviving pairs establish new GTSAM
projection factors inserted into the graph between known
landmarks and relating to the most recent frame n. If there
are enough tracked features from time index k=n — 1,
then visual tracking is successful and the well-known PrP
algorithm (Lepetit et al., 2009) is used to guess the
camera pose Tg,c, value from matched correspondences.
Alternatively, when RelDyn factors are included and if
the PrnP solution is of poor quality, we use the prediction
from the motion model at time 7, to guess a new camera

pose Tgncﬂ.
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5.5. Back-end

For every new frame inserted, the graph is incrementally
augmented with the new variables and factors by the front-
end, as is illustrated in Figure 5.

The underlying structure of the navigation problem is
thus captured by encoding visual SLAM measurement
constraints, relative kinematic constraints, Earth-relative
inertial position measurement constraints as factors, and
RelDyn factors in a single factor graph, as we explained in
Section 4.1.

In practice, the optimization associated with the small-
body relative navigation problem is performed incre-
mentally in the factor graph framework using the iISAM2
(Kaess et al., 2012) algorithm. The back-end implements
iSAM2 algorithm’s procedure, which was discussed
earlier in Section 4.1. iISAM2 evaluates the losses at each
factor marked for update, computes the associated Ja-
cobians at the guess values, and performs the minimi-
zation for inference (Dellaert and Kaess, 2017), yielding a
new estimate solution. Note that since the process noise
covariance related to the RelDyn factor, as detailed in
Section 4.6, is not fixed, but is rather the solution to a
dynamical equation, the out-of-the-box GTSAM factor
template had to be modified to allow for a variable
process noise covariance to be incorporated accordingly.
This procedure deviates from the pre-integrated IMU
accelerometer factor (Forster et al., 2016), since our case,
the integrated quantities are non-linear in terms of the
state. Indeed, at each evaluation of the factor error, the
discrete process noise covariance, also a non-linear
function of the state, is propagated accordingly. This
covariance is associated with a Gaussian process distri-
bution, and once computed, we replace GTSAM’s in-
ternal representation of the covariance of the factor error
with new process noise covariance.

5.6. Computation of the RelDyn factor residual

Inspired by the procedure in Forster et al. (2016), we wish to
compute numerically integrated quantities between suc-
cessive states, so to evaluate the RelDyn factor error es-
tablished in Section 4.3. To this end, we perform on-
manifold discrete Crouch-Grossman geometric integration
as detailed by Andrle and Crassidis (2013) to obtain ac-
curate predictions which also respect the constraints of the
relative rotation matrix Q(f) € SO(3). Given {tk}szo, for
everyk=0,...,N—1,let At; £ t;,, — t;, we use an N,-stage
Crouch-Grossman geometric integration scheme and
compute the propagated quantities

()Zmp £ lif[l exp ( [b[At,jg)] A) , (51)

1789
7
AG™® v S ok
AV | A Z bt | 77 (52)
Af_grop i=1 ~(i)
r,k
whereby the shorthands
A x—0 53
N k %k 7p > > q3 v, r ( )
~(i =) ~() ~() ~(i
/({)é(Qk 7q/({)9vl(()7r/({>)ﬂ (54)
) 20(t + ciAt), (55)
) ax = =) 1
e =0k 1_11 exp aijAtka,k > (56)
=
L i 20
ql(c) Ay i—1 fq’_k
WOl R e[+ aAn | 7Y (57)
0! e =1 =)
rk r.k

are defined and computed for every i = 1, ..., N,. The
coefficients a;, b;, ¢;, j <i=1, ..., N, are obtained from an
appropriate Butcher table (Andrle and Crassidis, 2013),
with the coefficients for the 3rd order 3-stage Crouch-
Grossman method provided in the Table 1 below. The
number of rows in the table represents the number of time
stages, with the {c;} column representing the coefficients of
steps in time ¢; = t; + ¢;At; where are functions are to be
evaluated, the number of columns is representing the
number of half-steps, with {c;} representing the weight of
each half-step, and the coefficients {a;} representing the
weight of the intermediary stage i when computing the half-

step J.

Table 1. Crouch-Grossman 3rd Order 3-Stage Butcher Table.

C1 aiy a2 a1,N

C2 a2 a22 a2 N
CN, | N1 GN.2 AN, N,

‘ by bo e bx,
0
3/4 3/4
17/24 | 119/216 17/108
| 13/51  —2/3  24/17
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The RelDyn residual e?emyn (Xk, Xk+1) is now computed
such that

" (X K1)
~ T ~ T~ prop v
log ( (Qk Qk+1) Qk )
B _ ~ oo (58)
£ Uiy — Q@ — AG™

= = ~prop
Vil — Vi — AV,

= = ~prop
rpy — I — Ark

5.7. Process noise propagation

To compute P, we introduce the matrix Ay, such that, given
any pair (X, uy),

= q)(lk+1, tk)Ax(x([k),fk)
+ / " O DL(E (). p) (1),

= O(t1, 1) Ax (x(14), Xi) + Axsy,

Ax (X(tir1), %)

with initial conditions X(#) =X, and u(#;) =, and
where & ~N(0,19) and ®(¢,#) = F(x(¢),u(t),p)d(t, 1),
O(t, ) = lg. We see that P, = AtA, . It follows that

P = / Ot LR, )L (3(0).p)

Iy
X (DT(lk+1,T)dT, 5(?\(1‘1{) :5(7\1{, it\(lk) = Ak.

We further approximate the linearized system by as-
suming that the matrices F, L shown in Section 4.7 are
piecewise constant over the interval [f;, #-,], that is,
Fe2F(&(t),u(ty).p), Li=L(X(t),1(t),p). Then, we
construct the following matrix (Van Loan, 1978)

Fe Ll

C =
012x12 FkT

take the matrix exponential, yielding

Dy Iy
0112 @

eCAtk _

>

and we extract from the right-hand side the desired sub-
matrices, that is, the discrete state transition matrix @, =
®(#41, %) of the piecewise-constant linearization, as well as
the covariance of the discretized process noise Ajg;, given
as Pk = qu);— .

5.8. Loop closure

As we further illustrate with an example in Section 6.1,
opportunities for revisiting and remeasuring surface feature
points of the small-body exist owing to the fact that the
target small-body is typically rotating, while the spacecraft
maintains a hovering positing. As is well-known in the

computer vision community, loop-closure constraints allow
for eliminating drift in navigation and mapping solutions
caused by the accumulation of 2D-3D measurement errors
in successive robot poses, especially when these are a result
of incremental smoothing SLAM solutions. We therefore
expect the inclusion of loop-closure constraints to improve
the overall solution of both the pure visual odometry (VO)
solution, and to a lesser extent, the VO + RelDyn solution.
Indeed we expect that the inclusion of the odometric factor
would be to have a corrective effect on the accumulating VO
projection errors and therefore for the drift in the solution to
be less prevalent.

To perform loop closure, we leverage the bag-of-words
(BoW) representation developed by Galvez-Lopez and
Tardos (2012). Specifically, we convert each image
i=1,...,N to a bag-of-words vector v; and compute the
similarity metric

(59

We compare all prior images that are at least 10 frames
away from the current frame. When the similarity score
for two images is greater than a threshold #, we perform
an additional geometric check and then add a factor—in
the form of a GTSAM BetweenFactor—between the
poses corresponding to the detected loop. The Be-
tweenFactor requires an error model, which we pick as a
Gaussian distribution with associated covariance Xjc
given as

z:LC - JRZRLCJI;F + Jr (RLC)ErLCJrT (RLC)’ (60)
where Xp, . = 0'123]_,:13 and X = le‘l_cl3'

5.9. Overall architecture

We now present the overall architecture of AstroSLAM
algorithm in Figure 6, demonstrating the flow of infor-
mation from input images and time stamps, all the way to
the output estimates of state. We distinguish the three
main components of the algorithm, as discussed above in
this section, that is the Front-end subsystem, the Back-
end subsystem and the Loop closure subsystem. In ad-
dition, we’ve explicitly illustrated the locations in the
pipeline where the RelDyn formulation—and its corre-
sponding odometric factor—intervene. Notably, the
guess values for the current camera pose may either be
obtained from the EPnP algorithm or the RelDyn prop-
agator by integrating the state since the last time
step. Nominally, the EPnP-derived pose is selected as
candidate guess for the current camera pose, from which
preliminary triangulation and known landmark associa-
tion are performed, as explained earlier in Section 5.4.
The selection is predicated on the number of successfully
tracked features previously associated to known
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landmarks. If the EPnP algorithm fails, such as in the case
where there are too few 2D-2D matches, we select the
RelDyn-derived instead for this process.

We’ve modeled the Front-end subsystem, the Back-end
subsystem and the Loop closure subsystem as separate
subsystems and capable of working in parallel, provided
multiple worker threads, shared data and mutual execution
exclusions. Note that, although possible, no attempt at
multi-threading has been undertaken for improving the
performance of the algorithm in AstroSLAM. Future work
incorporating further optimizations to the code may also
focus on this aspect.

6. Validation on legacy mission imagery

In this section, we discuss the design of the validation process
for the proposed algorithm. We provide the details of a
validation test case using imagery and data pertaining to a
previously flown mission. Since access to real ground-truth
data for a flown mission is impossible, in the next session we
also test our algorithm using data generated in a controlled lab
environment, allowing us to compare the results of the es-
timation problem against actual ground-truth.

6.1. PDS small body imagery dataset

We use real imagery (Nathues et al., 2011) of Asteroid (4)
Vesta acquired during the Rotation Characterization 3
(RC3) observation phase of the Dawn mission (Russell
and Raymond, 2012), and archived in the Small Bodies
Node of the NASA Planetary Data System (PDS),
to validate the algorithm. In the chosen sequence, the

1024 x 1024 pixel size images were captured, while the
spacecraft performed one apparent revolution around
Vesta in the asteroid body-fixed frame, with a mean or-
bital radius of 5,470 km. The images thus provide a spatial
resolution of 0.5 km/pixel of the surface (see Figure 7 for
sample images). We display the optical flow of the de-
tected features, indicating that an apparent revolution
around the small body over the course of the image se-
quence would allow revisiting regions of the surface
previously seen. This sequence therefore enables possible
loop-closures to be tested as well. We discuss the effects
of loop closure in Section 6.6.

Three tests were conducted for the PDS Dawn
RC3 dataset, each with the same prior uncertainty on poses
Tg,s, and Tg, s,, that is, the covariance X o of the initial pose
measurements. The first test uses our pure visual od-
ometry (VO) algorithm, where we excluded the RelDyn
factors. The second uses the VO algorithm, with included
RelDyn and RelKin factors. The third tests uses the
approach developed in Setterfield et al. (2018a), using
pre-integrated IMU measurements and the kinematic
rotational factors.

For the third case, IMU measurements where simulated
by sampling a zero-mean Gaussian distribution, mimicking
the scenario described in Section 3. The values are chosen as
0 = 6213 and " = o2l3, with o = 1 x 10~ rad and o, =
0.05 km.The intrinsic parameters of the Dawn Framing
Camera (FC) were taken to be those computed during
calibration (Russell and Raymond, 2012). In the conducted
tests, the algorithm was set to extract and describe
2,500 ORB features where eight scale pyramid levels are
explored for detection.

[ Image & Timestamp }

Compute
BoW Vector

Loop
Closure
Detection

New Landmark
Triangulation
(Three Sightings)

Camera Pose Estimation

Choose Best Pose

Known
Landmark
Association
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Between Projection Factor
Factor Insertion
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| Update Graph
AstroSLAM (iSAM2)
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Figure 6. Architecture of the AstroSLAM algorithm, with the interactions of the components detailed in Section 5 made explicit.
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6.2. Determining the ground truth data for the
NASA PDS dataset

To validate the estimated spacecraft relative trajectory,
we use the archival SPICE kernel datasets maintained by
NASA’s Navigation and Ancillary Information Facil-
ity (NAIF). For the missions archived, SPICE kernels
may be queried to provide Spacecraft ephemeris and
asteroid (Planetary) ephemeris as a function of time, as
well as Instrument descriptive data, Camera orientation
matrix data and Events information, such as mission
phases.

To validate the reconstructed map, we use an archival
shape model of Vesta (Preusker et al., 2016) courtesy of
the PDS Small Bodies Node. This shape model was
derived using stereo photogrammetry (SPG) from a
subset of DAWN mission Framing Camera 2 (FC2)
images captured during the High-Altitude Mapping Orbit
(HAMO) mission segment. The model comprises ap-
proximately 100k vertices and 197k triangular faces and
is shown in Figure 7.

6.3. Quantitative evaluation of trajectory
estimation and reconstructed map

We analyze the errors in the spacecraft’s local-horizontal-
local-vertical (LHLV) frame L to better reveal the

performance of the algorithm. For this purpose, we define
the frame A = (A, {3,-}?20) assumed to be the ground truth
frame centered at the true center-of-mass of the small-body,
and oriented such that {a i}?:o correspond to the small-
body’s principal axes. This ground truth frame is provided
by a combination of the NAIF SPICE kernels and the PDS
shape model of the small-body. By virtue of the assumed
true (e.g., NAIF SPICE kernel) position vector rga and true
velocity vsa vector, further define the LVLH frame
L2 (S;{¢;}}) such that ¢32rsa/|[rsal| corresponds to
the radial direction, ;= (rsa X vsa)/|| rsa X Vsa \L corre-
sponds to the cross-track direction, and ¢ = £, % /5
corresponds to the along-track direction. Further, using the
NAIF SPICE data, we know the small-body’s principal axes
{a;},, leadingz to the definition of the rotation

s o
(RAL),]: a; - (. For each time index k =1,...,n we
compute the position error

(61)

A pT ~Ax Ay
o =Ry, ., (rskAk - rSkA/,>’

where ?gt"Ak =R Ag(?’;":Gk — 1Y), the constant parameter

?ﬁG is estimated, and where the constant rotation R 4 is

assumed to be known from ground truth (NAIF SPICE)
for the purpose of this error analysis. The error in relative
orientation is then better described by making use of the
SO(3) logarithm map followed by the vee operator, as

(a) Image ORB feature point tracking over 2 consecutive images. Lines
of different colors indicate different feature point tracks.

(b) Image ORB feature point matching between two consecutive image
frames. Green lines show inlier matches (kept) and red lines show
outlier matches (rejected) by virtue of RANSAC geometric check.

Figure 7. Visualizing the image feature tracking performance of the front-end subsystem on the NASA DAWN RC3 legacy mission
image sequence. (a) Image ORB feature point tracking over two consecutive images. Lines of different colors indicate different feature
point tracks. (b) Image ORB feature point matching between two consecutive image frames. Green lines show inlier matches (kept) and
red lines show outlier matches (rejected) by virtue of RANSAC geometric check.
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detailed in Section 2.1, to produce the error between the
ground-truth NAIF SPICE rotation R4,s, and the esti-

mated rotation R A,S,» such that

~ \
5K = log (R;kskRAksk) . (62)

The results of this evaluation are presented in Section
6.4 for the DAWN RC3 sequence and in Section 7.4 for the
in-lab experiment sequence.

Given the map Wy at the final time k£ = N and the set of
ground truth 3D shape model vertices V, we evaluate the
quality of the estimated landmarks by computing the dis-
tances {d(L,V)}, cy,, Where

dlL,V)& mln | | i, — (63)

which, in our case, minimizes the 2-norm. The results of this
evaluation are presented in Figure 13, where the estimated

———————— NAIF SPICE Ground Truth
VO
VO+RelDyn
Setterfield et al. (2018a)

E 1000
=,

landmarks are colored as a function of their distance to the
closest point in the ground-truth set of vertices. Note that
this distance metric is one-sided. Thus, choosing to instead
search over the set Wy would yield different distance values
{d(V,¥n)}yey- Nevertheless, given the much higher
vertex density of the ground truth shape model as compared
to the estimated landmarks, we deem the described point-to-
set distance d(L, V), L € Py to be an appropriate measure of
the deviation of our solution landmarks from the 3D shape.

6.4. Trajectory estimation results and discussion

In this section, we illustrate and discuss the results of the
real-mission dataset We visualize in Figure 8 the estimated
3D trajectory {rsk ‘S i_or We compare the visual odometry
(VO), the VO + RelDyn and the (Setterfield et al., 2018a)
solutions at the final incremental smoothing iteration with
the trajectory extracted from the DAWN mission SPICE
kernel, assumed to be the ground truth relative position

500
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30000 > Jog 000
e\ 7\\\\\\‘“00 1y 5{,{){ ) )
S =3
A0S0
r1 (km) ry (km)
(b) — — — — NAIF SPICE Ground Truth
VO
50007 ' VO-+RelDyn
= Setterfield et al. (2018a)
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= 1000F y
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Figure 8. The relative position trajectory estimates obtained following the final incremental smoothing solution, as expressed in the small-

body’s ground truth principal axes frame. In this figure, we compare the obtained relative position vectors r“s“A = [r1,r2,73] T

from visual

odometry alone (VO) in red, from VO + RelDyn in blue and from the approach of Setterfield et al. (2018a) in cyan against the ground truth
trajectory taken as the NAIF SPICE relative positions. Note that these solutions are without loop closure. We see from the time history plots that
the estimated components of the trajectories aligned with the body-fixed orbital plane (ry, ,) are virtually indistinguishable when the relative
position are expressed in the small body principal axes frame. This is why we opt to present the errors in the LHLV frame in Figure 9. (a) 3D
visualization of the relative position vector expressed in the Vesta’s principal axes frame. (b) Time history of the relative position vector.
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N
vectors {r“si"Ak },_o- At the scale necessary to show the en-

tirety of the circumnavigating trajectory in three di-
mensions, the difference in the estimated solutions
appears too small to adequately establish which algorithm
is best performing by mere visual inspection. Instead, we
opt to analyze the relative position navigation error ex-
pressed in the LHLV frame coordinates, as presented in
Figure 9. Note that the cases shown exclude any loop
closure constraints, as we desire to assess the corrective
nature of the odometric factors alone. We separately
provide further analysis using loop-closures in Section
6.6. In addition, note that the estimate of the small body
center of mass location ?Agg used in the trajectory
analysis is the one we obtain at the last incremental
smoothing step, as is further discussed in Section 6.5.

When comparing VO, VO + RelDyn, and the (Setterfield
et al., 2018a) cases in Figure 9, we observe a clear im-
provement in terms of radial navigation error drrap and
cross-track error 0rxt for the VO + RelDyn approach.
Specifically, considering that the orbit radius is roughly
5,470 km throughout the sequence, we calculate from the
errors in the radial direction (67rap) shown in Figure 9, an
average error of 1.29%, with a worst case of 1.5% for the pure
VO case, an average of 0.17%, with a worst case of 0.33% for
the VO + RelDyn case, and an average of 0.48%, with a worst
case of 1.01% for the (Setterfield et al., 2018a) case.

The improvement in the cross-track error is even starker,
with the VO case showing an average of 75 km error, with a
worst case of 218 km error, while the VO + RelDyn shows
an average of 12.3 km error, with a worst case of 23 km

0 ==

Time (s) x10*

error, and an average of 68 km for the (Setterfield et al.,
2018a) case, with a worst case of 140 km deviation.

The improvements can be summarily explained by
considering the corrective nature of the encoded orbital
mechanics in the odometric factor on components of the
relative position estimate. Specifically, (a) in the radial
direction—which typically also corresponds to the camera
boresite direction—the error is improved owing to the
better description of the velocity vector, since we account
for gravitational acceleration, (b) in the cross-track direction,
the error is improved since the orbital plane of the motion is
restricted by the orbital angular momentum being constrained.
Furthermore, the large cross-track error (6rxt ~ 50 — 100km)
of the pure VO solution can be explained by the fact that the
sequence images provide little change in perspective in the
actual cross-track direction, leading to poor estimate correction
in that direction. In fact, as can also be seen in Figure 9, we
observe that this component is the major contributor to the
overall navigation error norm in the VO case. We note that the
Setterfield solution provides no improvement in the cross-track
direction, yet the VO + RelDyn solution provides the best
improvement, reducing cross-track error by a full order of
magnitude. Therefore, by constraining the solution using
RelDyn factors, which encourages a solution where the
modulus of the radius changes little due to the large distance to
the asteroid during the approach phase, and where the motion
of the spacecraft is quasi-planar due to a quasi-Keplerian
configuration of the orbit, we improve the error consider-
ably in both of these directions.

In the VO + RelDyn case, we additionally obtain esti-
mates of the relative linear velocity ’\%A, which we show in

VO
VO+RelDyn
Setterfield et al. (2018a)

—_
o
=)

07t (km)
S

orxr (km)
c 8

drgap (km)

[[62]] (km)
<

0 1 2
Time (s) x10*

Figure 9. Time history of navigation errors following the final incremental smoothing step—without loop closure—expressed in the
LHLYV coordinate frame. Here we compare the navigation errors of visual odometry alone (VO) in red, visual odometry with RelDyn in
blue, and the (Setterfield et al., 2018a) approach in cyan against the NAIF SPICE relative position and attitude kernels, chosen as the
ground truth. We compare the attitude error local coordinate vector dx = [0k, ok, 5K3]T and the position error vector

Or = [0Fat, 0Fxt, OFraD] | » as well as their respective 2-norm, across the three procedures considered.
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overlay to ground truth NAIF SPICE velocity estimates in
Figure 10. We note that in the Setterfield et al. (2018a) case,
the inertial linear velocity vy, of the observing spacecraft is
estimated, but not the inertial velocity of the target and,
therefore, there is no direct way of computing the relative
velocity for comparison to the velocities in Figure 10. Instead,
we obtain a comparable relative velocity by performing a
numerical derivative by finite differencing of the estimated
relative position vectors ?gk A Rzs,Rs,q, (/l:gl]:Gk - ?iG). As
is obvious in Figure 10, (a) there is non-negligible velocity
variation over the length of the sequence owing to the
gravitational interaction and weak external forces (SRP); (b)
the VO + RelDyn algorithm adequately captures this inter-
action while the Setterfield et al. (2018a) method struggles to
do so, at times performing no better than the pure VO case.
This is an expected result of smoothing predicated on the pre-
integrated IMU factors in Setterfield et al. (2018a), since these
are insensitive to the gravitational attraction.

6.5. Dynamical parameter estimation results
and discussion

In this section, we present and discuss the on-the-fly esti-
mation results of key dynamical parameters obtained from
the NASA DAWN RC3 real sequence. Recall that the full
factor graph presented in Section 5 allows us to estimate
several parameters inherent to the dynamical system on-the-
fly. Specifically, we want the two first components ¢y, ¢, of
the location of the center-of-mass (these are components
perpendicular to the spin axis), the target small-body’s
standard gravity parameter z, and the spin rate wy of the
single-axis rotator configuration of the target object. The
time history of the values estimated for these parameters are
reported in Figure 11.

When comparing the VO + RelDyn procedure to the
approach of Setterfield et al. (2018a) in Figure 11, we notice
a quicker and more accurate convergence of the center-of-
mass parameters cj, ¢, using our method. Moreover, we

obtain an estimate of the gravity parameter with the RelDyn
factor, in contrast to the Setterfield et al. (2018a) method,
which does not inherently provide such an estimate on-the-
fly. The initial conditions considered for the parameters
were ,ul(,o) = 0.1km’s™? and [c(lo),cgo)] = [0km, 0 km]. We
note that these values are not close guesses of the true values
e =17.29 km®s™2 and [¢1, ¢,] = [200 km, 125 km]. Yet, our
procedure converges to within 1% error of the actual values
¢y, ¢, within 20 steps and to within 5% error of the actual
value y, within 50 steps.

The faster settling time and better precision of these pa-
rameter estimates is explained by the fact that our dynamical
model is in agreement with the true physics of the problem
owing to the modeling of the gravitational interactions, while
the procedure proposed in Setterfield et al. (2018a) is insen-
sitive to the gravity vector, as discussed in Section 3.

In fact, it is crucial to note at this point that to merely
obtain a workable run of our implementation of the
Setterfield et al. (2018a) approach, we had to relax the
process noise covariances of the pre-integrated IMU factors
and the fixed covariance of the kinematic rotation factors
proposed in Setterfield et al. (2018a). Restricting the co-
variances in order to obtain a higher “smoothing” effect
resulted in convergence issues, with each estimation step
taking up to a minute to solve, as well as several unsuc-
cessful runs, during which the iSAM2 solver would be
unable to find a plausible gradient descent direction for
the non-linear optimization step. Consequently, we have
omitted comparing the timing results of our algorithm—
which we show in Section 6.8—against our im-
plementation of the Setterfield et al. (2018a) approach.

As a side note, we should remark that we do not estimate

?iG based on a physical model in the pure VO case.

However, solely for the purpose of providing a comparison
point for the VO case, a cursory, but fair value for the
center-of-mass position may be instead predicated on the
mapping solution, such as the uniformly weighted average
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Figure 10. Relative linear VClOCi?’ estimates versus NAIF SPICE kernel ground truth for DAWN RC3 sequence. Here, we compare the
relative linear velocity estimate Vg, = [vi, vz, v3] T of the VO, VO + RelDyn and Setterfield et al. (2018a) solutions, noting that the
values for VO and Setterfield et al. (2018a) are obtained by finite-differencing.
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Figure 11. Estimation of dynamical parameters at every algorithm step. The estimated parameters are the two first components ¢;, ¢, of

the center-of-mass position vector ?iG = [?1,22,?3]T, the standard gravity parameter i, of Asteroid (4) Vesta, and the small-body

angular velocity magnitude #,, such that Wy g3 = @¢z. For the VO case, we show in red the position of the center-of-mass location
obtained from averaging all of the successfully initialized landmarks up to the current algorithm time step.

of the estimated landmark positions, the combined solution
to image centroiding or the center of a bounding box of the
map landmarks. We choose here to use the averaging of the
latest smoothing solution of the mapped landmark positions
at every time step, as shown in red in Figure 11.

6.6. Loop closure results and discussion

In this section, we discuss and illustrate the effect of in-
corporating loop closure constraints for the NASA DAWN
RC3 dataset. Specifically, we compare the improvement in
navigation error for the visual odometry (VO) case and the
VO + RelDyn case, when a loop closure factor—in the
form of a GTSAM BetweenFactor—using loop detection
activated at the last frame of the sequence, since features
similar to the ones detected in the first image of the se-
quence are detected in the last frame. As observed in
Figure 12, the drift due to the accumulation of errors
inherent to incremental SLAM algorithms manifests itself
in a cross-track error (6rxr) and, particularly, in the norm
of the relative position error (||0r]). As expected, under the
effect of loop closure constraints, this drift is eliminated in
the VO case, reducing cross-track error by an order of
magnitude, with little change in the along-track and radial
direction errors (07at,d7rap). We further note the re-
duction by an order of magnitude in the drift of the attitude
error around the spacecraft body axis s, captured in the
error term ok;.

Similarly to the VO case, the VO + RelDyn case solution
obtained after the last incremental smoothing step shows

little to no change as a consequence of the incorporation of
loop closure constraints, except for the error in cross track
direction position. In fact, as can be seen in Figure 12, the
norm of the relative position error vector is barely affected
by loop closure, with negligible correction in the radial
direction as well. This is an expected behavior since the
strong odometric constraints encoded in the RelDyn and the
RelKin factors already compensate for the drift in scale and
the subsequent compounding mapping errors which typi-
cally beset the pure VO SLAM solution.

6.7. Mapping results and discussion

For the purpose of evaluating the landmark mapping quality,
we compare the estimated landmark positions to the ground
truth shape model obtained by stereophotoclinometry (SPC) of
Gaskell et al. (2008). We perform this comparison for the VO,
VO + RelDyn and Setterfield et al. (2018a) solutions. We note
that the shape model is centered at the center-of-mass point A
and the coordinates of its vertices are expressed in the asteroid
principal axes frame .4. On the other hand, the positions of the
mapped landmarks from our solution are with respect to the
target geometric frame origin G and are expressed in the G
-frame coordinates. To eliminate the effect of the center-of-
mass location estimation on the mapped coordinates of the
landmarks and to provide a common baseline for the three
algorithms compared, we subtract the ground truth value of
center-of-mass lever arm vector 1Y, and rotate the points into
the ground truth frame A coordinates, such that, for all

landmarks {L}; .y , we have Ty =Ry (?EG —195).
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Figure 12. Effect of loop closure on navigation errors from smoothing solution, expressed in the LHLV coordinate frame. Here, we show
the effect of incorporating a loop closure factor between the last frame and the first frame of the sequences by virtue of place recognition
(loop detection) using the BoW vectors described in Section 5.8. We compare the attitude error local coordinate vector dx =

[0%1, 0, OK3] T and the position error vector df = [0FaT, O7xT, OFRAD] T as well as their respective 2-norm, with the inclusion (solid line)

and without the inclusion (dashed line) of loop closure constraints.

We observe considerable improvement in terms of the
mapping results between the pure VO case baseline and the two
odometric factor aided methods VO + RelDyn and Setterfield
et al. (2018a). The landmarks shown in Figure 13 and color-
coded in terms of their error with respect to the surface of the
ground truth shape model demonstrate that, due to the tightly
coupled relationship between camera poses and estimated
landmark depth in the bundle adjustment setup, the inclusion of
an odometric factor which improves the pose estimates will in
turn cause an improved triangulation of new landmarks and
improved known landmark measurement constraints. Conse-
quently, the estimated location of landmarks is also improved
after optimization. Specifically, we observe that the distribution
of landmark position errors for the VO + RelDyn case is more
tightly spread around its mean value of 2.34 km and a standard
deviation of 1.36 km when compared to the Setterfield et al.
(2018a) method, were the error is more spread out around its
higher mean value of 4.36 km with a standard deviation of
2.61 km or when compared to the pure VO case where the error
is spread out around its mean of 3.26 km with a standard
deviation of 1.87 km. This is due to the RelDyn odometric factor
providing a more realistic motion constraint as compared to the
factor proposed in Setterfield et al. (2018a).

As seen in the color-coded histogram of errors in
Figure 13, both the VO and Setterfield et al. (2018a)
methods present a secondary bulge in the errors not con-
centrated around 2 km error value. From the color coding,
we observe that these bulges correspond to the same area
mapped in the +y axis direction for both VO and for
Setterfield et al. (2018a). This seems to indicate that drift

and compounding mapping errors have accumulated in this
area, but are not corrected by the odometric constraints of
the method in Setterfield et al. (2018a) due to the relaxed
process covariances that had to be considered for a successful
run, as mentioned in Section 6.5. In turn, these higher errors in
mapping adversely affect the trajectory errors as shown in
Figure 9. In contrast, the VO + RelDyn method errors only
present a singular bulge centered around 2 km, and we see
from the color coding that the landmark position errors are not
higher in any preferential body-centered direction. We note,
overall, that the VO + RelDyn also presented 23,739 suc-
cessfully triangulated and tracked landmarks, the most among
the three when compared to 10,460 landmarks for the
(Setterfield et al., 2018a) method, and 23,191 landmarks for
the pure VO case. Again, the relaxations required to have a
successful trial in the (Setterfield et al., 2018a) method severely
hinder the successful triangulation of landmarks.

6.8. Timing results and discussion

In this section, we provide a brief description of the timing
performances of the algorithm using the DAWN
RC3 dataset. The algorithm is run on a desktop computer,
with an AMD CPU core x58003D, with 64 GB of RAM. We
note that the algorithm’s front-end does not make use of any
GPU-offloaded computations for an increase in speed, nor
does it make use of multi-threading for the main pipeline.
The breakdown of the timing for the 63-frame NASA
DAWN RC3 sequence, obtained by profiling the C++ code
using simple time counters, is as provided in Table 2. We



1798

The International Journal of Robotics Research 43(11)

z (km)

VO+RelDyn

z (km)

Setterfield et al. (2018a)

z (km)

-400

-200

12

d(Li, V) (km)
(=
I

-

0
0 100 200
Population

12

10+

.V} (km)

d{L;

0 200 400
Population

z (km) 0 50
Population

Figure 13. Estimated landmark positions and errors with respect to SPC-derived PDS shape model. The estimated map of landmarks
corresponding to the VO, VO + RelDyn and Setterfield et al. (2018a) methods are plotted against the stereophotoclinometry (SPC)-
derived shape model. The color coding corresponds to the magnitude of the position error of the landmark with respect to its closest point
on the surface of the shape model, as given by equation (63), with hotter colors representing larger deviations from the shape model
surface. The histogram to the right illustrates the distribution of the errors.

note that a large portion (76%) of the total algorithm time is
spent in the triangulation of new landmarks. This is due to
the strict thresholding of the RANSAC-based outlier re-
jection we use in the PnP DAWN RC3 case to guess the
current frame pose, so that this better pose may be used to
triangulate reliable landmarks.

The timing results presented in Table 2 strongly support
the feasibility of an incremental and online implementation.
Specifically, in this sequence, there is a constant 300 s image
time stamp separation, which means that, with the hardware
considered—and without any specific attempt at opti-
mizating the code runtime—the algorithm may be executed
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Table 2. Timing Results of the VO+RelDyn+Loop Closure Procedure in AstroSLAM for Obtaining the Incremental Smoothing Solution
to the Totality of the 63-Frame NASA DAWN RC3 Image-Dataset Sequence.

Percentage of total time

Task Total task time (s) (%)

Detect and describe features, detect loop-closures 2.404 11.3
Match features 1.222 5.7
Triangulate 16.347 76.7
Build Graph 0.052 0.2
Solve (iISAM2) 1.289 6.0
Total 21.314 100

up to 14 times on the on-board computer before the next
image is input. We did not perform a benchmarking of our
algorithm against the cited Setterfield et al. (2018a) ap-
proach, since we did not have access to the original im-
plementation of that algorithm.

Nevertheless, we note that our implementation of the
approach in (Setterfield et al., 2018a) using the same VO
front-end and GTSAM and iSAM?2 solvers, is very slow,
with upwards of 30 s required to process a new solution
since the moment a new frame is inserted. We believe that
the sluggish behavior of the Setterfield et al. (2018a) ap-
proach is owed to the inability of the IMU preintegration
factors to capture the change in velocity under the influence
of gravitational attraction. This means that the optimizer is
unable to perform efficient optimization since the error does
not diminish when taking a step at the linearization point
using the prescribed IMU factor Jacobian.

7. Experimental validation using in-lab
generated imagery

To perform additional validation of the proposed As-
troSLAM algorithm, we use image and ground-truth data
generated at the Autonomous Spacecraft Robotic Opera-
tions in Space (ASTROS) experimental facility (Cho et al.,
2009), located at the Dynamics and Control Systems
Laboratory of the Georgia Institute of Technology.

7.1. Experimental setup

The ASTROS facility houses an eponymous 5 degree-of-
freedom spacecraft simulator test-bed, a 7 degree-of-
freedom robotic manipulator system (RMS) consisting of
a Schenck™ linear stage and a Universal Robots"™ UR10e
robotic arm, a 12-camera VICON ™ motion capture system, as
well as a dedicated control room. Mechanically, the ASTROS
platform is composed of two structures, called the upper and
lower stages, allowing for motion in a 5 degree-of-freedom
motion (Cho et al., 2009). For the purposes of this experiment,
however, the hemispherical joint between the two stages is
maintained fixed at a preset attitude, and hence the test-bed is
in 2 + 1 configuration, that is, providing two degrees of planar
translation plus one degree of rotation around the vertical axis.
A linear air-bearing system between the lower stage and the

floor levitates its lower stage off the near-perfectly flat floor for
this purpose, as shown in Figure 14.

The platform is fitted with 12 cold-air gas thrusters which,
when firing, generate forces and torques allowing it to actively
maneuver in the test arena. The ASTROS test-bed also possesses
an inertial measurement unit and a rate gyro, which when paired
with an extended Kalman filter, allow it to estimate the position,
attitude, linear velocity and angular velocity of the upper stage.
The actuation of the thrusters is performed by dedicated power
electronics in response to control computed on an embedded
SpeedGoat™ computer. The computer compiles and executes a
program derived from a prototyped Simulink™ model incor-
porating sensor measurement acquisition, control computation,
actuator allocation and input-output communications with de-
vices on the platform in real-time.

As target small-body, we use a mock asteroid affixed to
the RMS end-effector. Its motion is scheduled in open-loop
control mode. Using the linear stage and robotic arm joint
encoder values only, we achieve sub-millimeter end-effector
positioning error in the test arena with respect to an arbi-
trarily pre-defined inertial frame.

Throughout the experiment, the motion capture system’s
UDP data stream was used to save the position and attitude
of the ASTROS upper stage at a frequency of 100 Hz. The
frame number index of the data stream was subsequently
used to synchronize and time stamp all signal histories
across the multiple devices, thus providing a single clock
baseline for all the acquired data.

7.2. Establishing a ground truth by simulating
and tracking an idealized orbital trajectory
using the ASTROS test-bed

To emulate a true unforced orbital motion as ground truth, an
idealized trajectories was generated. The re-scaled version of
this trajectory, performed via non-dimensionalization and re-
dimensionalization to fit the physical limits of the arena and
the safe allowable velocities, was tracked in the ASTROS
facility test arena. The goal is to achieve a reasonably long
segment duration and speed-to-downrange-distance ratio
which emulate the real in-space mission scenario. We use
the vectors and dimensions provided in Table 3 to perform
the non-dimensionalization of the ideal orbital trajectory,
and the re-dimensionalization for the lab. limits. The data
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chosen for the orbital case corresponds to the initial data
point of the DAWN RC3 sequence.By tracking the desired
trajectory with small enough errors while accumulating
high-rate and precise measurements, we assume that the
actual trajectory accomplished closely mimics the ideal
trajectory. In theory, if this tracking is successful, the
difference between the actual and desired trajectories
yields a white-noise process, which we may characterize
a-posteriori. Consequently, the ideal trajectory of the ma-
neuver may now be viewed as a reasonable ground truth,
with an associated “process noise.”

We used the dataset of the ASTROS on-board state
estimates, along with the sequence of images acquired over
this lab experiment segment to evaluate and validate the
performance of AstroSLAM. The details are given next.

Arena

(a) Disposition of Devices in Arena (b) ASTROS in Arena

(d) Collimated-Beam Light Source and VICON Motion (e) Small FOV camera optics

Capture System

Let the desired camera frame, denoted by &, be asso-
ciated to the real camera frame C, and the desired ASTROS
upper stage frame, denoted by D, be associated to the real
ASTROS upper stage frame S°. The camera is fixed on the
ASTROS platform’s upper stage, yielding a constant ro-
tation matrix Rse¢c (Rpg) and a constant translation vector
rig (rEy), which are both estimated along with the camera
intrinsic parameters by non-linear calibration. To respect the
proportions of the emulated scenario, we assume that the
modeled ideal spacecraft frame S, as defined in Section 2.2,
is coincident and aligned with the experimental camera

.3
frame C.We want the desired camera frame €= {E;{e;},_,}

to trace a trajectory described by the tuple
(Rze(),xEA (), 0k (1), VEA(2)), 1 € [to, 2], such that
s Camera
Stage NVidia
Jetson TX1

SpeedGoat
Computer

Thruster
Pack

Lower
Stage

(e) Main Components of ASTROS Test Bed

B

(f) RMS and mock asteroid

Figure 14. AstroSLAM experiment setup. (a) Disposition of Devices in Arena. (b) ASTROS in Arena. (c) Main Components of
ASTROS Test-Bed. (d) Collimated-Beam Light Source and VICON Motion Capture System. (¢) Small FOV camera optics. (f) RMS

and mock asteroid.

Table 3. Parameters Used for Non-dimensionalization of the Idealized Orbital Trajectory.

Mass of small body m,

2.5907 x 10*° kg

Gravity parameter u,,

Dist. to the Sun ||raol|

Unit of distance in orbit LUy,

Unit of velocity in orbit VU,

Unit of time in orbit TU.y, = VU /LU

17.29km>s >

3.3368 x 10° km

[Irsa(0)]| = 5479.4 km

[Vsa(0)]| = 5.687 x 1072 kms™"
9.635 x 10% (26.76 h)
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is satisfied, Whlle maintaining line-of-sight with the mock
asteroid throughout the segment. Assuming FZ(¢)=0, we
can find a solution rf, (¢) and vi, (¢) readily, without re-
quiring Rz¢(¢). Subsequently, we pick a center pointing
strategy, such that, at any time ¢ € [to, #,

€5 (0) = L (1) /|| ¥l 0)
& =|¢

>

&) AviEm/ 1[e5 0] Vaeo]

G =[e0)e
and we construct Rz¢(¢)
0% (t) = (Rze(t)Rs(1)
Rze(t)Rep (1), 1o (1)
o7 (1) = 0f(1),
Rep()rip (1) -

The tuple (Rrp(t), 1o (1), 0h (1), vho (1)), £ € [to, 1]
constitutes the reference trajectory, which is tracked by the

=[ () (0 () md
)" Fmally, we obtain Rrp(f) =
= ria(0) + 130 (1) = Reo(1)rEy (1),

A A

and Vbo = Via(f) = [0 (1)]"

tuple (Rzse, I, @57, Vieq) of frame S° by means of a
feedback controller. The resulting actual trajectory of the
camera, given as the tuple (Rz¢, e, @y, Vo) of frame C,
if executed with small enough error, provides a ground
truth dataset for the purpose of validating AstroSLAM’s
VO + RelDyn procedure. We provide the idealized
trajectory tracking results, including the error in posi-
tion and in attitude between the ideal and actual trajec-
tories, as they pertain to the ASTROS-generated
sequence, in Figure 15. We note in this figure that the
worst case positional error in the radial direction is less
than 0.2% for the segment of time considered in the
sequence, between ¢ = 50s and ¢ = 178s. This error is less
than the average error of 0.48% obtained in the DAWN
RC3 sequence navigation solution results reported in
Section 6.4.

For simplicity, we fix the position of the asteroid in
the test arena, thus r§ (1) = rio o, and we rotate it at a
constant angular Velocity around a single body axis,
hence %, () = wAI 0=10 0 w,], starting from
some initial orientation Rz 4 . To further simplify the
planned maneuver in the ASTROS arena, we devise a
planar orbital trajectory. We restrict the motion of the
test-bed to the 2 + 1 planar case, by fixing the rotation of
the upper stage and freeing the lower stage to move
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Figure 15. ASTROS lab expenment idealized orbital trajectory and tracking errors for the purpose of establishing a ground truth. Here we
show the error state oré; = [0r51, 1%y, Ok op] between the desired idealized orbital trajectory 1%, and the actual trajectory rco obtained in
the lab experiment from the on-board ASTROS EKF, which uses VICON and IMU measurements to establish a state estimate. We additionally
keep track of the error between the maintained attitude and the schedule attitude by analyzing the error dy of the yaw heading angle.
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along the inertial x-y directions, and rotate around the
inertial z direction. We impose that the vertical com-
ponent of the asteroid’s inertial position corresponds to
the vertical component of the inertial position of the
camera frame, expressed in inertial frame coordinates,
or simply put, rca(?) - ﬁ3 =0. This guarantees that, once
the upper stage attitude is locked, the camera frame can
only move in an x-y aligned plane and that this plane
always intersects the center of the asteroid, itself ma-
nipulated by the robotic arm. It can now be assumed that
the desired camera frame mimics the motion of the
spacecraft frame in an emulated orbital motion. We
mention the parameters of the tracked trajectory in Table 4,
and we present, in Figure 15, sub-millimeter tracking error
in the along-track direction and sub-5-millimeter tracking
error in the radial direction.

Table 4. Parameters of the Tracked Ideal Trajectory.

Parameter Values

rioo [3.1150 —0.9719 —1.2228]" m

vEo.0 [—0.0165 —0.0010 0.0000]" m/s

ho.0 [3.083 —3.839 —1.223]" m

o7, [0 0 4/180z]" rad

Rza0 [—0.8761 0.0084 —0.4820
—0.1041 0.9730 0.2061
104707 0.2308 —0.8516

D [0.3744 —0.1278 —0.1898]"

Rpe,o [0.1088 —0.0016 0.9940
0.9940  0.0038  —0.1088
| —0.0036 1.0000  0.0020

To achieve the level of precision required to simulate
orbital motion, all of the parameters relevant to the ex-
periment were estimated using an accurate calibration
scheme. Specifically, we carried out the accurate determi-
nation of the asteroid mounting boom length, the estimation
of the RMS home position and attitude, the simultaneous
calibration of the camera position and attitude relative to the
upper stage and of the camera intrinsic parameters, using
2D-t0-3D correspondences induced by taking images of a
known 3D calibration target.

7.3. Lab experiment image-dataset

To capture the images, we used a Teledyne FLIR™
Flea3 visible-spectrum global-shutter camera along with a
MegaPixel 25-135 mm tele-objective lens. When set at around
100 mm focal length, the lens produces a field-of-view angle of
about 5° mimicking the navigation camera of a typical asteroid
surveying mission. The camera imager captures images of
array size 1600 x 1200 pixels. The size of the mock asteroid
and working distance were chosen accordingly to produce an
apparent size of the mock asteroid in the image corresponding
to 700-800 pixels in the horizontal direction. Given the 10 cm
diameter of the mock asteroid and the radial distance to the
target of 2.84 m, this choice results in a ground resolution of 1,
25 x 10~ m/pixel. An on-board NVidia TX1 computer ac-
quired images of the mock asteroid as the ASTROS platform
maneuvered in the arena.

To emulate space-like lighting, typically characterized by
collimated light rays arriving from a source infinitely far
away, a tight-beam stage lighting source was used. The light
source, a Source 4™ Ellipsoidal with a 5° beam angle

(a) Image ORB feature point tracking over 2 consecutive images on
imagery of the in-lab mock asteroid. Lines of different colors indicate

different feature point tracks.

(b) Image ORB feature point matching between two consecutive image
frames. Green lines show inlier matches (kept) and red lines show
outlier matches (rejected) by virtue of RANSAC geometric check.

Figure 16. Visualizing the image feature tracking performance of the front-end subsystem on the ASTROS in-lab generated sequence.
(a) Image ORB feature point tracking over two consecutive images on imagery of the in-lab mock asteroid. Lines of different colors
indicate different feature point tracks. (b) Image ORB feature point matching between two consecutive image frames. Green lines show
inlier matches (kept) and red lines show outlier matches (rejected) by virtue of RANSAC geometric check.
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constrained by dedicated optics, illuminated the target mock
asteroid throughout the experiment. Note that the light source
is fixed inertially. This mimics the scenario in space where, for
the short duration of the navigation segment, there is negligible
angular change in sunlight direction, when viewed inertially.
Although the challenge of light back-scattering still persists
due to the presence of atmosphere in the facility, the tight-beam
light source produces very crisp and harsh shadowing in the
captured images. A sample of the images captured in the
ASTROS experiment and being processed by the front-end
can be viewed in Figure 16.

7.4. Quantitative evaluation results
Figure 17 shows the trajectory of the AstroSLAM-estimated
3D position ?’;A’ ok =1,...,N,as derived from the solution

(T Aksk}kN:O and relating to the idealized simulated space-
craft frame Sy, k = 1,...,N, overlayed on top of the tra-
jectory of the EKF-estimated 3D position ?’C‘lAﬂ > relating to
the ASTROS camera frame. We thus assume that the

. s N .
EKF-estimated pose {7 4,¢, },_, of the experimental camera

corresponds to the ground truth simulated spacecraft pose

{T4.5.}1—p» allowing us to compare the AstroSLAM solution
to the millimeter precision ground truth estimate. The pro-
cedure used here to obtain the quantitative evaluation of the
trajectory error is similar to the one detailed in Section 6.3.
We note that, unlike the results of the DAWN
RC3 sequence, when the RelDyn factors are included along
with the VO solution, the navigation errors are not improved
in terms of position and attitude errors, as may be observed
in Figure 18. Specifically, the norms of both the position and
attitude errors are similar in order of magnitude to those of
the VO-only solution. The relative scale of the errors with
respect to the orbital radius is telling, however. With a mean
radius of ~2.8m over the segment arc, the radial error
represents a 0.98% percentage error on average, with a
worst case of 2.1% for the VO + RelDyn solution, whereas,
for the pure VO case, we have an average of 0.86% and a
worse case of 1.6% percentage error. Nevertheless, we
observe that the relative velocity, as illustrated in Figure 19,
is affected by the odometric factor since its variation is
prescribed in large part by the gravitational interaction. At
the same time, due to the fact that these variations in velocity

-VO

— — — = ASTROS+RMS Ground Truth

VO+RelDyn

—

r (m)

79 (m)

(a) 3D visualization of the relative position vector expressed in the target
body’s center-of-rotation-centered fixed frame
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Figure 17. Relative position trajectory estimate versus ASTROS sequence ground truth obtained following the final incremental
smoothing step. Here we compare the obtained relative position vectors ré“A = [r1,72,73] T from visual odometry alone (VO) in red and
from VO + RelDyn in blue against the ground truth trajectory taken as the ASTROS + RMS-End-Effector relative position and attitude.
(a) 3D visualization of the relative position vector expressed in the target body’s center-of-rotation-centered fixed frame
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Figure 18. Time history of navigational errors with respect to the ground truth for the ASTROS lab sequence after final incremental
smoothing step. In this figure, we compare the change in navigational errors for the VO and the VO + Reldyn cases when loop closure is

included using the ASTROS dataset.
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Figure 19. Relative velocity estimates versus estimated ground truth for ASTROS sequence. We note that the velocity estimates for pure
VO, as drawn in red, are produce by means of taking a numerical derivative by finite differencing.

are captured by the odometric factor, we observe in Figure 20,
that we have simultaneous convergence of both the standard
gravity parameter u, — 7.5 x 10 2km’s 2 and the planar
location of the center-of-mass [c;, ¢;] — [0.0246 m,
0.0076 m]. We notice, however, that the ¢; parameter has not
quite settled around the expected value. This may be due to a
combination of insufficient segment length observation and
un-modelled deviations from the expected kinematic model
during the experiment; indeed, there may be additional mis-
alignments in the lab experimental setup which were not
considered. These may be overcome by further perfecting the
precision of the in-lab experiment.

Figure 21 illustrates the obtained map of the landmarks
for the ASTROS sequence. We note here that a ground truth
shape model is not available for this mock asteroid, and
unlike the case of target asteroid Vesta in the last section, we
forgo any analysis of the deviations of the estimated
landmark positions.

7.5. Timing results for the ASTROS in-lab
generated image-data sequence

In this section, we analyze the timing performance of the
AstroSLAM algorithm with the ASTROS-generated image-
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obtained from averaging all of the successfully initialized landmarks up to the most recent algorithm time step.

z (mun)

x (mm) y (mm)

-50

-50 0 50

Figure 21. Estimated Landmark Positions for ASTROS
Experiment. The color coding in these plots are not indicative of
deviation or error, but are instead for providing a sense of depth to
visualize the estimated landmark map, here viewed as a colored
point cloud.

data sequence, as presented in Table 5. We immediately
notice that the time spent in triangulation is a much
smaller portion (18.4%) of the total time of the algo-
rithm when compared to the DAWN RC3 scenario. This
is due to the more lax threshold in the PnP RANSAC-
based outlier rejection. We observe, however, that the
solver time is similar to the DAWN RC3 scenario.
Moreover, the overall run time on the hardware men-
tioned in Section 6.8, is sufficiently small to support

Table 5. Timing Results of the VO+RelDyn+Loop Closure
Procedure in AstroSLAM for Obtaining the Incremental
Smoothing Solution to the Totality of the 52-Frame ASTROS
Image-Dataset Sequence.

Total task time Percentage of total time

Task (s) (%)
Detect and describe 2.080 29.3
features
Match features 1.407 19.8
Triangulate 1.308 18.4
Build Graph 0.047 0.7
Solve (ISAM2) 2.264 31.9
Total 7.106 100

online implementation. Indeed, in the considered ide-
alized orbital scenario, the image arrival time difference
is 134 s, which leaves ample time to perform at least one
iteration of the algorithm.

8. Conclusions

A comprehensive vision-based relative navigation solu-
tion, called AstroSLAM, is proposed for the motion of a
spacecraft in the vicinity of a celestial small-body. As-
troSLAM solves for the navigation solution of a space-
craft under motion in the vicinity of a small body by
exploiting monocular SLAM, sensor fusion, and relative
motion priors. The developed motion priors are based on
the dynamics of the spacecraft-small-body-Sun system,
incorporating realistic perturbing effects, which affect the
motion of the spacecraft in a non-negligible manner. We
show how RelDyn, a vehicle dynamics model-based
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factor, out-performs the state-of-the-art pre-integrated
IMU factors commonly used in visual-inertial SLAM
solutions. We further show that the appropriate inclusion
of noise terms in the stochastic modeling can impact the
smoothability of the state. The algorithm utilizes the
factor graph formalism to cast the vision-based naviga-
tion problem as a SLAM smoothing problem that is
solved efficiently using the iSAM2 solver (Kaess et al.,
2012) and the GTSAM library (Dellaert and Kaess,
2017). The factor graph approach allows the incorpora-
tion of asynchronous measurements of diverse modali-
ties, as well as the inclusion of kinematic and dynamic
constraints, thus explicitly specifying the structure of the
likelihood function. The algorithm was tested and its
performance was validated using both real imagery and
trajectory data sequences pertaining to the DAWN mis-
sion and in a controlled lab. environment. For the DAWN
mission, the results demonstrate good baseline perfor-
mance of AstroSLAM in a typical real-world mission
scenario and also shows an improvement in terms of
navigation error, landmark map reconstruction error, and
global parameter estimation errors when compared to the
state-of-the-art procedure of Setterfield et al. (2018a).
The AstroSLAM algorithm was also tested against im-
agery and data produced in the ASTROS spacecraft
simulation facility at Georgia Tech by emulating realistic
lighting and motion conditions. The results of the in-lab
validation further support the claim that appropriate
modeling of the forces affecting the spacecraft is key to
exploiting the odometric factor for corrective and
smoothing effects once these are incorporated into the
estimation problem.
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