- ⁴ Zheng Li^{a*}, Sylvia P. Kinosian^{a*}, Shing H. Zhan^{a,b}, and M. S. Barker^a
- ⁶ Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
- 7 85721 USA
- ⁸ ^bBig Data Institute, Li Ka Shing Centre for Health Information and Discovery, University
- 9 of Oxford, OX3 7LF, United Kingdom
- 10 *Co-first authors
- 12 Corresponding author: ¹Sylvia P. Kinosian
- 13 skinosian@arizona.edu

15 Abstract

11

- 16 A longstanding question in plant evolution is why ferns have many more chromosomes
- 17 than angiosperms. The leading hypothesis proposes that ferns have ancient polyploidy
- 18 without chromosome loss or gene deletion to explain the high chromosome numbers
- 19 of ferns. Here, we test this hypothesis by estimating ancient polyploidy frequency,
- 20 chromosome evolution, protein evolution in meiosis genes, and patterns of gene
- 21 retention in ferns. We found similar rates of paleopolyploidy in ferns and angiosperms
- 22 from independent phylogenomic and chromosome number evolution analyses, but
- 23 lower rates of chromosome loss in ferns. We found elevated evolutionary rates in
- 24 meiosis genes in angiosperms, but not in ferns. Finally, we found some evidence of
- 25 parallel and biased gene retention in ferns, but this was comparatively weak to
- 26 patterns in angiosperms. This work provides genomic evidence supporting a
- 27 decades-old hypothesis on fern genome evolution and provides a foundation for future
- 28 work on plant genome structure.

31 Introduction

- A longstanding mystery of plant evolution is the origin of the exceptional
- 33 chromosome number variation observed across the vascular plant phylogeny. Vascular
- 34 plant chromosome numbers range from n = 2 in multiple angiosperms (Rice et al.
- 35 2015) to n = 1,260 in the eusporangiate fern, *Ophioglossum reticulatum* (Abraham and
- 36 Ninan 1954). Reproductive mode is associated with variation in chromosome number

```
37 across vascular plants. Homosporous ferns and lycophytes—plants that reproduce with
38 one type of spore and develop bisexual gametophytes—are notable for their high
39 chromosome numbers with an average gametic chromosome count of n = 57.05
40 (Klekowski and Baker 1966). In contrast, the angiosperms and heterosporous ferns
41 which reproduce via mega- and microspores have an average haploid chromosome
42 number of n = 15.99 (Grant 1963) and 13.62 (Klekowski and Baker 1966),
43 respectively. Although a variety of cytogenetic mechanisms are known to influence
44 chromosome number variation at lower taxonomic scales (Levin 2002; Mayrose and
45 Lysak 2020), it is unclear what processes are responsible for the macroevolutionary
46 pattern observed between homosporous and heterosporous plants.
         Several hypotheses have been proposed to explain the origin and maintenance
47
48 of high chromosome numbers in homosporous ferns (Wagner and Wagner 1980;
49 Haufler and Soltis 1986; Barker and Wolf 2010; Manton 1950; Haufler 1987). The
50 most compelling hypothesis invokes multiple rounds of whole genome duplication
51 (WGD) and limit chromosome loss and limited gene deletion (Haufler and Soltis 1986;
52 Haufler 1987). The alternatives, such as high ancestral chromosome numbers or
53 ascending dysploidy are considered less likely because neopolyploid speciation is
54 common in ferns (Otto and Whitton 2000; Wood et al. 2009) and cytological variation is
55 predominantly euploid (Love, Love, and Pichi Sermolli 1977). An influential early
56 hypothesis argued that most homosporous ferns were polyploids and that repeated
57 cycles of genome doubling provided homoeologous heterozygosity, which was
58 necessary to compensate for putatively high rates of inbreeding (Chapman, Klekowski,
59 and Selander 1979; Klekowski and Baker 1966). However, isozyme studies
60 demonstrated that homosporous ferns with the base chromosome number for their
61 genus are diploid, not polyploid, with inheritance patterns and genetic variation
62 consistent with outcrossing, not inbreeding (Haufler and Soltis 1986; Haufler 1987;
63 Wolf, Haufler, and Sheffield 1987; Gastony and Darrow 1983; Gastony and Gottlieb
64 1982, 1985). To explain this intriguing combination of high chromosome numbers and
65 diploid genetics, Haufler (1987) suggested that ferns experienced multiple rounds of
66 polyploid speciation followed by gene silencing but not chromosome loss. In support of
67 this hypothesis, a few studies have identified multiple silenced copies of nuclear genes
68 in putatively diploid homosporous fern genomes (Pichersky, Soltis, and Soltis 1990;
69 McGrath and Hickok 1999; McGrath, Hickok, and Pichersky 1994), and the active
70 process of gene silencing without chromosome loss in a polyploid genome (Gastony
71 1991). However, linkage mapping of the diploid homosporous fern, Ceratopteris
72 richardii (n = 39) failed to identify homoeologous chromosomes (Nakazato et al. 2006).
```

Here, we explore how cycles of polyploidy have interacted with rates of 83 chromosomal evolution to produce the high numbers of chromosomes observed in 84 homosporous ferns. By incorporating inferences of paleopolyploidy from previous 85 studies (One Thousand Plant Transcriptomes Initiative 2019; Pelosi et al. 2022; Huang 86 et al. 2020; Chen et al. 2022; Shen et al. 2018; F.-W. Li et al. 2018; Marchant et al. 87 2022; Huang et al. 2022), we compared the incidence of WGD in ferns to other 88 lineages of vascular plants. We then evaluated differences in the rates of chromosomal 89 evolution among these clades by estimating the modes and rates of chromosome 90 number evolution among more than 1,900 vascular plant genera. Using these analyses, 91 we test whether ferns have 1) an extraordinary amount of WGD in their history with 92 similar rates of chromosomal evolution as other lineages, 2) a similar rate of WGDs but 93 a relatively slow rate of dysploidy compared to other plants, or if 3) ferns have 94 ancestrally high chromosome numbers and a relatively low number of rounds of 95 polyploidy. Finally, considering the large numbers of chromosomes involved in fern 96 meiosis, we tested whether the rates of protein evolution for meiosis-related genes are 97 significantly different between ferns and angiosperms. Together, our inferences 98 provide complementary views on the evolution of high chromosome numbers in 99 homosporous ferns.

101 Results

100

102 Inferences and frequency of paleopolyploidy

To infer ancient WGDs in ferns, we assembled a transcriptomic data set of 133 104 fern species from published studies (Fig. 1 and Supplementary Table 1). Using gene 105 age distributions, we found evidence for peaks of gene duplication consistent with 106 WGDs in all fern transcriptomes (Supplementary Table 1). We also used ortholog 107 divergence analyses to place some ancient WGDs in ferns in a phylogenetic context. 108 These WGDs were not analyzed by the One Thousand Plant Transcriptomes Initiative

```
109 (Supplementary Table 2). To explore the frequency of paleopolyploidy in ferns, we
incorporated inferences and phylogenetic placements of ancient WGDs from this study
and other published studies (Pelosi et al. 2022; Huang et al. 2020; Chen et al. 2022)
112 (Supplementary Table 3). As tree topology is known to vary between studies with
different markers (e.g., Hasebe et al. 1995; Schneider et al. 2004; Testo and Sundue
114 2016; PPG I 2016; McKibben, Finch, and Barker 2024), the placement of WGDs
115 differed slightly across the studies used here. We used the K<sub>s</sub> values to infer which
116 WGDs matched across studies. If a K_s value was within 0.1 across all studies examined,
117 we considered it to be the same WGD (see Fig. 1). One study (One Thousand Plant
118 Transcriptomes Initiative 2019) inferred a WGD shared by all ferns at the base of the
119 monilophyte phylogeny (WGD 1, see Supplementary Table 3). However, other studies
120 have not inferred this WGD and there is no syntenic evidence for this putative ancient
121 WGD. In order to remain conservative in our estimates, we did not count this in our
122 total estimate of WGDs for ferns. Overall, we found evidence for 30 putative ancient
123 WGDs throughout the evolutionary history of monilophytes (Fig. 1 and Supplementary
124 Fig. 1).
125
          We estimated the frequency of paleopolyploidy by calculating the mean of the
126 number of inferred ancient WGDs in the ancestry of each species (Fig. 2a). On average,
127 fern species experienced 2.81 \pm 0.75 rounds of ancient genome duplication. Similar to
128 ferns, the genome of an angiosperm species went through an average of 3.5–3.9
129 rounds of ancient WGD (One Thousand Plant Transcriptomes Initiative 2019;
130 McKibben, Finch, and Barker 2024). Gymnosperm and lycophyte species experienced
lower numbers of ancient WGDs, with averages of 1.86 \pm 0.34 and 1.52 \pm 1.21 rounds
132 of ancient WGD, respectively (Fig. 2a; One Thousand Plant Transcriptomes Initiative
133 2019). Interestingly, heterosporous ferns experienced 2.4 ± 0.54 rounds of ancient
134 WGD whereas homosporous ferns experienced 2.82 ± 0.75 rounds of ancient WGD. It
135 is important to note that the sample sizes here were very different, with only 5
136 heterosporous taxa compared to 128 homosporous taxa.
          We found a significant difference in the number of ancient WGDs in the ancestry
138 of fern and angiosperm species (U = 14,011.5, p = 0; Mann-Whitney U test) (Fig. 2a).
139 The number of rounds of ancient WGD in ferns was also significantly different
140 compared to gymnosperms (U = 9,307, p < 10^{-15}) and lycophytes (U = 2,262, p < 10^{-6})
141 (Fig. 2a). To account for the impacts of age on the number of ancient WGDs in each
142 lineage, we also estimated the rate of ancient WGD/Ma using the number of ancient
143 genome duplications divided by the minimum crown group age (Fig. 2b). The minimum
144 crown group age used for angiosperms, ferns, gymnosperms, and lycophytes were
```

154 Patterns and rates of chromosome number evolution

153

Using ChromEvol, we explored chromosome number evolution across rbcL 155 156 phylogenies of 1,918 angiosperm, 183 fern, and 50 gymnosperm genera for which 157 chromosome numbers were available. We omitted lycophytes in this analysis because 158 of the small number of genera; however, we used them as an outgroup for the 159 phylogeny. Our ChromEvol rates (from the best models) were similar to our estimates in the genomic analyses, with rates of ancient WGD of 0.0096 WGD/Ma in ferns, 161 0.0129 WGD/Ma in angiosperms, and 0.0010 WGD/Ma in gymnosperms (Fig. 3, 162 Supplementary table 5). As with our estimates from genomic inferences, angiosperms 163 were found to have 1.4 times the rate of polyploidy as ferns and 13.05 times the rate of 164 polyploidy found among gymnosperms (Fig. 3, Supplementary table 5). Angiosperms 165 were also estimated to have higher rates of dysploidy than ferns and gymnosperms, 166 with both descending dysploidy and ascending dysploidy occurring more frequently in 167 angiosperms than ferns and gymnosperms. Overall, the estimated rates for all types of 168 chromosome number evolution in ferns and gymnosperms were lower than in 169 angiosperms, and gymnosperms were the lowest among the vascular plants. To further explore the pattern of chromosome number evolution among seed 170 171 plants and ferns, we plotted the inferred ancestral chromosome numbers at each 172 internal node of the rbcL phylogenies in our phylogenetic reconstruction of 173 chromosome evolution (Fig. 3). Given current tools it is difficult to quantify uncertainty 174 for ChromEvol estimate, but we plotted the posterior complement as a metric of 175 uncertainty (Supplementary Fig. 6). Our reconstructions yielded three different 176 patterns of chromosome number in these lineages. In angiosperms, chromosome 177 numbers appear to be largely maintained over their evolutionary history, with inferred 178 numbers at most nodes near the base chromosome number for the clade. This pattern 179 is recovered even near the tips of the angiosperm phylogeny where signatures of 180 recent polyploidy events are most likely to be observed. These estimates suggest that

192 Rates of protein evolution of meiosis genes in angiosperms and ferns

191

High chromosome numbers in polyploids can lead to multivalent formation and 193 194 failure in chromosome pairing during meiosis (Comai 2005; Bray et al. 2024; Bomblies 195 et al. 2016). It is not known how homosporous ferns overcome these potential 196 challenges in meiotic pairing and stability. Previous studies have found evidence for the 197 adaptive evolution of genes responsible for meiotic stabilization in autotetraploid 198 Arabidopsis arenosa (Yant et al. 2013; Morgan et al. 2020), and kinetochore 199 components in autotetraploid Cochlearia (Bray et al. 2024). A recent study in Solanum 200 also showed elevated rates of protein evolution in reproductive proteins (Moyle, Wu, 201 and Gibson 2021). Considering the challenges of meiosis with such high chromosome 202 numbers in ferns, we hypothesized that ferns may have adapted to larger numbers of 203 chromosomes and we may see increased rates of protein evolution of meiosis-related 204 genes. Leveraging the phylogenomic data available, we tested if the rates of putative 205 meiosis-related genes in ferns were elevated compared to a randomly selected pool of 206 non-meiosis genes. We also conducted a similar analysis in angiosperms as an indirect 207 comparison to ferns.

To build a gene list of putative meiosis-related genes in ferns, we first identified 352 meiosis-associated genes based on the *Arabidopsis* Gene Ontologies (GO) category (GO:0007126). We also randomly selected 500 non-meiosis genes in *Arabidopsis* as a background for comparison. Genes from both lists were used as the query to BLASTP with an E-value of 1e-20 as cutoff against eleven angiosperm genomes and ten fern genomes and transcriptomes as databases. The *Physcomitrella patens* genome was used as an outgroup. Gene families were clustered with Orthofinder 2.3.7 (Emms and Kelly 2015) using the homologous sequences from the initial BLASTP research. We then filtered gene families with the presence of at least

To account for different rates of molecular evolution between angiosperms and 220 221 ferns, we compared the rate of protein evolution for meiosis-related genes to the 222 background set of genes within each lineage. After re-rooting with *Physcomitrella* 223 patens and dropping tips of the outgroup, we estimated the mean, minimum, and 224 maximum root-to-tip distance for each species in each gene tree. We used the 225 Mann-Whitney *U* test to compare the distribution of root-to-tip distance between 226 meiosis and background genes in angiosperms. We then performed the same test 227 between meiosis and background genes in ferns. In angiosperms, we observe a 228 significantly higher rate of protein evolution in meiosis genes compared to the background genes using maximum root-to-tip distance (U = 2,363,289.0, p < 0.001) 230 (Fig. 4, Supplementary table 6). However, we found no significant difference in the rate 231 of protein evolution in meiosis-related genes compared to the background genes in ferns (U = 2,113,199.5, p = 0.1710). This overall pattern was consistent when using 233 the mean, minimum, and maximum root-to-tip distance, and with or without outliers 234 from the distribution (Fig. 4, Supplementary table 6).

236 Biased gene retention and loss following inferred WGDs

235

237 Biased gene retention and loss is a common feature of ancient WGDs (Li et al. 2020), 238 but limited studies have investigated this in monilophytes (Pelosi et al. 2022). To test 239 for biased gene retention and loss among the inferred fern paleopolyploidies, we 240 compared the overall differences between the GO composition of retained paralogs 241 and whole transcriptomes using a principal component analysis (PCA) on the number 242 of genes annotated to each GO category. The PCA found two significantly different 243 clusters (p < 0.001) with some overlap (Fig. 5). The retained paralogs formed a tighter 244 cluster with a narrower 95% confidence interval compared to the whole transcriptome 245 (Fig. 5). We also used a hierarchical clustering approach to assess the overall GO 246 composition similarity of paralogs retained from ancient WGDs. We observed biased 247 retention and loss from all inferred WGDs in monilophytes (Supplementary Fig. 2-3). 248 However, we found little evidence of parallel patterns of gene retention across different 249 ancient genome duplications, similar to the findings of Pelosi et al. (2022). Most 250 paleopolyploidy events were not resolved based on the hierarchical clustering 251 approach (Supplementary Fig. 2). We further used a simulated chi-square test to infer 252 whether any categories were significantly over- or under-retained. Many WGDs in ferns

were significantly enriched for genes associated with transcription factor activity, DNA or RNA binding, and the nucleus (Supplementary Fig. 3). Paralogs retained from these ancient duplications were often significantly under-retained for genes associated with other enzyme activity, hydrolase activity, and transferase activity (Supplementary Fig. 2-3). Overall, all ancient WGDs in ferns had a pattern of biased gene retention and loss, but parallel patterns of retention and loss as predicted by the Dosage Balance Hypothesis (Papp, Pál, and Hurst 2003) were observed in only a few ancient genome duplications.

262 Discussion

261

287

263 Our genomic and phylogenetic analyses provide new tests of long-standing hypotheses 264 of fern genome evolution. Across four studies (Huang et al. 2020; Chen et al. 2022; 265 Pelosi et al. 2022; One Thousand Plant Transcriptomes Initiative 2019) and new 266 analyses, we found evidence for 30 putative ancient WGDs throughout the monilophyte 267 phylogeny (Fig. 1). The phylogenetic placement of these inferred WGDs indicates that 268 ferns, on average, experienced 2.81 rounds of ancient polyploidy in their ancestry or 269 0.0073 WGD/Ma. Strikingly, our phylogenetic reconstruction of chromosome number 270 evolution yielded a similar average rate of ancient polyploidy in ferns—0.0096 271 WGD/Ma—with completely different data. The quantitatively similar estimates from the 272 two different inference methods and datasets suggest these results are robust and 273 complementary. Our genomic and chromosomal phylogenetic analyses also found that 274 angiosperms have the highest rates of ancient WGD and dysploidy among vascular 275 plants. However, the average number of ancient WGDs per species is similar in ferns 276 and angiosperms: 2.81 compared to ~3.7 (One Thousand Plant Transcriptomes 277 Initiative 2019; McKibben, Finch, and Barker 2024). Further, we estimated the average 278 rate of chromosome loss in ferns has been about half the rate for angiosperms across 279 their phylogenies. This lower estimated rate of chromosome loss among ferns is 280 consistent with their much higher number of chromosomes compared to angiosperms 281 (Klekowski and Baker 1966; Carta, Bedini, and Peruzzi 2020; Kinosian, Rowe, and Wolf 282 2022; Nakazato et al. 2008). Taken together, our different inferences support the 283 hypothesis that the high chromosome numbers of homosporous ferns are a product of 284 multiple rounds of ancient polyploidy coupled with a relatively slow rate of 285 chromosome loss (Haufler 1987; Gastony 1991; Haufler and Soltis 1986; Barker 286 2013).

288 Alternative hypotheses have been proposed to explain the high chromosome numbers

289 of homosporous ferns that do not involve polyploidy but instead attribute high numbers 290 as the ancestral state (Duncan and Smith 1978) or the result of ascending 291 chromosomal fission (Wagner and Wagner 1980; Haufler and Soltis 1986; Barker and 292 Wolf 2010). However, these explanations have not gained much support given the high 293 frequency of recent polyploidy in ferns (Wood et al. 2009) and the uniform size and 294 structure of fern chromosomes across genera (Wagner and Wagner 1980; Liu et al. 295 2019). In our study, we observed increases in chromosome number towards the tips of 296 the fern phylogeny (Fig. 3). This result indicates that numbers have increased over time 297 and rejects the hypothesis of ancestrally high chromosome numbers in ferns. The rate 298 of ascending dysploidy was an order of magnitude lower than descending dysploidy in 299 ferns, and both were lower than the rates of dysploidy in angiosperms. These results 300 reject the second alternative hypothesis of ascending chromosomal fission. 301 Considering the frequency of recent and ancient polyploidy among ferns and their 302 relatively slow rates of dysploidy, neither of these alternative hypotheses is well 303 supported by our results. 304 305 Our results do support the hypothesis that reproductive mode may be responsible for 306 chromosome number disparity in ferns (Kinosian and Barker 2024; Kinosian, Rowe, 307 and Wolf 2022). It is well-established that homosporous and heterosporous ferns have 308 significantly different chromosome numbers (e.g., Klekowski and Baker 1966), and 309 here we show that they have a similar number of rounds of WGD, with 2.82 in 310 homosporous ferns and 2.4 in heterosporous ferns. This is consistent with our 311 contention that rapid chromosome loss in heterosporous (pteridophyte or angiosperm) 312 but not homosporous lineages of vascular plants is responsible for the differences in 313 chromosome numbers among these lineages. A potential mechanism for this disparity 314 in chromosome number between heterosporous and homosporous lineages could be 315 female meiotic drive, which would only be able to act in the asymmetrical female 316 meiosis of angiosperms and heterosporous ferns (Pardo-Manuel de Villena and 317 Sapienza 2001). Specially, female meiotic drive can cause rapid evolution of 318 centromere size and structure (Talbert and Henikoff 2022), karyotype (Blackmon et al. 319 2019), and chromosome number (Burt and Trivers 2009; Fishman et al. 2014; 320 Plačková et al. 2024) Meiosis is symmetrical in homosporous ferns, eliminating the 321 possibility for female meiotic drive and any subsequent genomic changes (Kinosian 322 and Barker 2024). Pteridophytes are a perfect natural study system for investigating 323 these dynamics as there are sister clades with heterosporous and homosporous 324 species in both ferns and lycophytes.

325 326 Our analysis of evolutionary rates of meiosis-related genes revealed no evidence that 327 fern meiosis has broadly adapted to accommodate high numbers of chromosomes. We 328 found that meiosis-related genes in flowering plants generally evolved faster compared 329 to other genes in the genome, but this was not the case for meiosis-related genes in 330 ferns (Fig. 4). These results are consistent with recent research that has found 331 evidence for meiotic adaptation to polyploidy among different flowering plant species 332 (e.g., Hollister 2015; Yant et al. 2013; Bomblies 2023; Bray et al. 2024; Morgan et al. 333 2020). Interestingly, there is some evidence of gene family expansion within 334 angiosperm and heterosporous pteridophyte lineages (Dhakal, Wolf, and Harkess 335 2024), but it is unclear the function of these particular gene families. Considering that 336 ferns and flowering plants have similar histories of polyploidy, some of the differences 337 in chromosomal and genome evolution between angiosperms and ferns may be caused 338 by the evolution of meiosis-related genes. It may be that novel meiotic adaptations in 339 angiosperms restore bivalent pairing or stabilize the genome following polyploidy (e.g., 340 (Bomblies and Madlung 2014; Gonzalo 2022) ultimately result in chromosome number 341 reductions during flowering plant diploidization. In contrast, fern meiosis proteins 342 appear to be more broadly conserved than their angiosperm homologs and this 343 conservation could play a role in the slower rate of chromosome loss during 344 homosporous fern diploidization. Notably, the patterns of meiotic gene rate evolution 345 are consistent with meiotic drive; faster meiotic protein evolution in heterosporous 346 lineages with meiotic drive but conserved meiotic proteins in homosporous lineages 347 without meiotic drive (Kinosian and Barker 2024; Zedec et al 2016). Whether or not 348 the broad patterns of post-polyploid genome evolution in flowering plants and ferns 349 result from the differences we observe in the rates of meiotic gene evolution is unclear 350 from our present analyses. Our results do suggest that there are different selection 351 pressures on genes associated with meiosis in ferns and angiosperms. Future work is 352 needed to better understand the fundamental differences between meiosis and 353 meiosis-related gene evolution among lineages of vascular plants, and consider the 354 possible mechanisms causing these differences. 355 356 To further investigate the unique genome evolution in ferns, we evaluated the pattern 357 of gene retention and loss following ancient polyploids. Previous angiosperm studies 358 have found parallel gene retention in single ancient WGDs (Scannell et al. 2007; 359 Mandáková et al. 2017), and multiple independent ancient WGDs (Schranz and 360 Mitchell-Olds 2006; Barker et al. 2008; Mandáková et al. 2017; Z. Li et al. 2018).

361 Fewer studies have investigated biased gene retention in ferns (Zhang et al. 2019; 362 Pelosi et al. 2022). Recent work by Pelosi et al. (2022) found biased gene retention of 363 GO categories using fern transcriptomes. In the present study, we found similar 364 patterns of gene retention and loss in ferns using GO composition analyses and a 365 combination of whole genomes and transcriptomes (Fig. 5). This parallel gene 366 retention found by our study and Pelosi et al. (2022) is not as dramatic as previously 367 observed in flowering plants using a similar statistical framework (Barker et al. 2008; 368 Mandakova et al. 2017). This result may be expected for two reasons. First, the 369 phylogenetic depth of the fern phylogeny might weaken the parallel retention pattern. 370 Extant fern orders share a most recent common ancestor that is estimated to be ~350 371 MYA (Rothfels et al. 2015; Morris et al. 2018). Given that each fern species has 372 experienced 2.81 rounds of ancient WGDs on average, many signals of gene retention 373 might also be imbricated by different types of duplications (Pelosi et al. 2022). Second, 374 a lower chromosome loss rate and lineage specific diploidization in ferns might result 375 in weaker parallel retention compared to angiosperms. Lower rates may drive more 376 lineage specific gene losses in these lineages as gene losses accumulate more slowly 377 and idiosyncratically across the phylogeny rather than rapidly in a common ancestor. 378 Consistent with this pattern, we recently found that the rate of gene loss and 379 fractionation after WGD is not correlated with WGD age in ferns and lycophytes, but it is 380 among angiosperms (Z. Li et al. 2020). The strong parallel retention pattern in 381 angiosperms might be driven by their high rates of chromosome evolution. For 382 example, the parallel pattern of gene loss can be established in only 40 generations in 383 Tragopogon (Buggs et al. 2012). Unlike angiosperms, the slow rate of chromosome loss 384 in ferns may also indicate that many recombination-based deletion mechanisms may 385 not play a significant role in ferns. A caveat to this is the rapid genomic downsizing of 386 the model fern Ceratopteris richardii, which has fractionated rapidly and at a similar 387 rate to many angiosperm taxa (Marchant et al. 2022). However, the general pattern in 388 ferns seems to be similar to the Salmonids and Xenopus, in which diploidization is 389 predominantly driven by pseudogenization (Berthelot et al. 2014; Lien et al. 2016; 390 Session et al. 2016) and a slow rate of chromosomal change (Berthelot et al. 2014; 391 Uno et al. 2013; Parey et al. 2022). Overall, our study provides additional evidence of 392 more modest parallel and biased gene retention and loss following paleopolyploidy in 393 monilophytes. Our observation of retention patterns might be consistent with slow 394 rates of chromosome loss and the unique diploidization process in ferns.

396 Conclusion

397 One of the most distinctive features of homosporous ferns is their high chromosome 398 numbers relative to heterosporous plants (Klekowski and Baker 1966; Manton 1950). 399 Using a comparative genomic framework, we provide confirmation of previous 400 hypotheses that homosporous ferns likely have undergone a similar number of WGD as 401 heterosporous plants, but fundamentally different mechanisms of diploidization. Our 402 study provides structure for future work to reveal the potential processes driving the 403 genomic differences among different lineages of vascular plants. It will be important in 404 future work to include bryophytes in these analyses, as they are an entirely 405 homosporous lineage with their own genome dynamics. Bryophytes have fewer rounds 406 of WGD than angiosperms or pteridophytes (One Thousand Plant Transcriptomes 407 Initiative 2019), but it is unclear how this has impacted their genome structure and 408 chromosome number. Ongoing and future fern genome and transcriptome sequencing 409 projects, especially on homosporous ferns with high chromosome numbers, will 410 provide syntenic evidence to confirm putative ancient WGDs and better place these 411 events in a phylogenetic context, advancing our understanding of the unique aspects of 412 genome evolution in ferns.

416 Methods

413 414 415

417

418 DupPipe analyses of WGDs from transcriptomes of single species

419 For each transcriptome, we used the DupPipe pipeline to construct gene families and
420 estimate the age distribution of gene duplications (Barker et al. 2010, 2008). We
421 translated DNA sequences and identified reading frames by comparing the Genewise
422 (Birney, Clamp, and Durbin 2004) alignment to the best-hit protein from a collection of
423 proteins from 25 plant genomes from Phytozome (Goodstein et al. 2012). For all
424 DupPipe runs, we used protein-guided DNA alignments to align our nucleic acid
425 sequences while maintaining the reading frame. We estimated synonymous divergence
426 (Ks) using PAML with the F3X4 model (Yang 2007) for each node in the gene family
427 phylogenies. We identified peaks of gene duplication as evidence of ancient WGDs in
428 histograms of the age distribution of gene duplications (Ks plots). We identified species
429 with potential WGDs by comparing their paralog age distribution to a simulated null
430 using a Kolmogorov–Smirnov goodness of fit test (Cui et al. 2006). We then used
431 mixture modeling and manual curation to identify significant peaks consistent with a
432 potential WGD and to estimate their median paralog Ks values. Significant peaks were

identified using a likelihood ratio test in the boot.comp function of the mixtools R package(Benaglia et al. 2009).

436 Estimating orthologous divergence

435

450

437 To place putative WGDs in relation to lineage divergence, we estimated the
438 synonymous divergence of orthologs among species pairs that may share a WGD based
439 on their phylogenetic position and evidence from the within-species *Ks* plots. We used
440 the RBH Ortholog pipeline (Barker et al. 2010) to estimate the mean and median
441 synonymous divergence of orthologs and compared those to the synonymous
442 divergence of inferred paleopolyploid peaks. We identified orthologs as reciprocal best
443 blast hits in pairs of transcriptomes. Using protein-guided DNA alignments, we
444 estimated the pairwise synonymous (*Ks*) divergence for each pair of orthologs using
445 PAML with the F3X4 model(Yang 2007). WGDs were interpreted to have occurred after
446 lineage divergence if the median synonymous divergence of WGD paralogs was
447 younger than the median synonymous divergence of orthologs. Similarly, if the
448 synonymous divergence of WGD paralogs was older than that ortholog synonymous
449 divergence, then we interpreted those WGDs as shared.

451 Inference of ancient WGD in ferns

452 We explored the literature for studies that inferred WGD in ferns and lycophytes, and 453 incorporated these findings into our analysis. We used four papers that included 454 different sampling schemes, and therefore had varying estimates of WGD across 455 pteridophytes. The One Thousand Plant Transcriptomes Initiative sequenced 1,124 456 green plants trancriptomes, including 59 fern and lycophyte species. Pelosi et al. 457 (2022) used 247 transcriptomes to assemble 2,884 single-copy nuclear loci and infer 458 WGD using K_s values. Huang et al. (2020) used 127 fern and lycophyte transcriptomes, 459 and inferred genomes duplication using a linear regression of K_s values. Chen et al. 460 (2022) inferred WGD in leptosporangiate ferns using gene tree-species tree 461 reconciliation analyses as well as correcting for substitution rate. These studies 462 detected many of the same WGD as our analyses did, but inferred four additional 463 duplication events. As topology is known to vary between studies with different 464 markers (e.g., (Hasebe et al. 1995; Schneider et al. 2004; Testo and Sundue 2016; PPG 465 I 2016; McKibben, Finch, and Barker 2024), the placement of WGDs differed slightly 466 across the studies used here. We used the K_s values to infer which WGDs matched 467 across studies. If a K_s value was within 0.1 across all studies examined, we considered

it to be the same WGD (see Fig. 1). One study (One Thousand Plant Transcriptomes
Initiative 2019) inferred a WGD shared by all ferns at the base of the monilophyte
phylogeny (WGD 1, see Supplementary Table 3). However, other studies have not
inferred this WGD and there is no syntenic evidence for this putative ancient WGD. In
order to remain conservative in our estimates, we did not count this in our total
estimate of WGDs for ferns.

475 Phylogenetic analysis of chromosome numbers

483

476 To estimate clade-wide rates of chromosome number change and to reconstruct
477 ancestral chromosome numbers across the land plant phylogeny, we applied the
478 likelihood-based phylogenetic method ChromEvol (Mayrose, Barker, and Otto 2010;
479 Glick and Mayrose 2014) on a large combined data set of time-calibrated phylogenetic
480 trees based on the *rbcL* gene (ribulose-1,5-bisphosphate carboxylase/oxygenase, large
481 subunit) and chromosome numbers of the seed plants (angiosperms and
482 gymnosperms) and ferns.

484 We constructed a genus-level phylogenetic data set for seed plants and ferns 485 (Supplementary table 7). For each genus, both rbcL marker gene sequence data and 486 chromosome counts available were represented. First, we retrieved rbcL sequences 487 from NCBI GenBank (accessed Jul., 2011). The longest sequence (after disregarding 488 Ns) among the sequences of the sampled taxa of a genus was used to represent the 489 genus (randomly picking one sequence whenever there were ties). The taxon names 490 were checked and corrected using the online Taxonomic Name Resolution Service 491 version 5 (Boyle et al. 2013). Next, we downloaded chromosome numbers from CCDB 492 version 1.46 (Rice et al. 2015); accessed June, 2020). The gametic chromosome 493 number of a genus was summarized as the lower mode count of the gametic 494 chromosome numbers of the sampled species; the gametic chromosome number of 495 each sampled species was summarized as the lower mode count of the individual 496 entries (including infraspecific entries) (Supplementary table 7). This way to 497 summarize the chromosome count reduced probably erroneous chromosome counts. 498 Also, the lower mode count of a species more likely reflected the common diploid 499 cytotype of the species (Wood et al. 2009). Finally, we matched the rbcL sequence 500 data and the summarized chromosome counts, retaining only the genera with both 501 types of data available. The final data set contained the representative sequences and 502 genus-level chromosome count summaries (aggregated from a total of 276,487 CCDB entries) of 2,531 genera (1,918 angiosperms, 50 gymnosperms, and 183 ferns)

504 (Supplementary table 7). Additionally, the rbcL sequences of four lycophyte taxa were 505 arbitrarily chosen to root the seed plant and fern phylogenies. 506 507 Using the rbcL sequences, we built two phylogenetic trees (seed plants and ferns) 508 using PASTA version 1.7.8 (Mirarab, Nguyen, and Warnow 2014). PASTA was run using 509 MAFFT version 7.149b (Katoh et al. 2002) as the multiple sequence aligner, OPAL 510 version 2.1.3 (Wheeler and Kececioglu 2007) as the alignment merger, FastTree 511 version 2.1.7 (Price, Dehal, and Arkin 2010) as the tree estimator (assuming GTR+G), 512 and RAxML version 7.2.6 (Stamatakis 2014) to obtain the final tree after up to ten 513 iterative refinements without improvement. The seed plant phylogeny contained 1,918 514 angiosperm genera and 50 gymnosperm genera and 15 arbitrarily selected fern and 515 lycophyte outgroups (Supplementary table 7). The fern phylogeny contained 183 fern 516 genera and 15 arbitrarily selected seed plants and lycophyte outgroups 517 (Supplementary table 7). Both the rbcL phylogenetic trees were rooted with 518 lycophytes, which were then pruned out from the phylogeny. Using PATHd8 version 1.0 519 (Britton et al. 2007), we calibrated the *rbcL* phylogenies. We took the fossil ages from 520 four previous studies (Schneider et al. 2004; Smith, Beaulieu, and Donoghue 2010; 521 Magallón et al. 2015; Testo and Sundue 2016), and applied the fossil ages as either 522 fixed age or minimum age constraints in the PATHd8 analysis. We assigned as many of 523 the fossil age constraints as possible to the internal nodes of the phylogenies, which 524 corresponded to the most recent common ancestor of two taxa. Because we used 525 genus-level phylogenetic data sets, fossil ages could not be assigned to the crown or 526 stem group of the families or genera that were represented as a single tip on the 527 phylogenies. Overall, we applied 86 fossil age constraints in the seed plant phylogeny 528 and 17 fossil age constraints in the fern phylogeny (Supplementary table 8, 529 Supplementary Figs. 4-5). For the ChromEvol analyses of each group (ferns, 530 gymnosperms, and angiosperms), we extracted the fern-only subtree from the fern 531 time-calibrated phylogeny and the gymnosperm and angiosperm subtrees from the 532 seed plant time-calibrated phylogeny. 533 534 ChromEvol models chromosome number change as a continuous-time Markov process 535 along a phylogeny, in which observed chromosome numbers were assigned to each 536 taxa. ChromEvol co-estimates the rates of ascending dysploidy (i.e., chromosome 537 number gain or single increment), descending dysploidy (i.e., chromosome number 538 loss or single decrement), duplication, and demi-duplication (i.e., multiplication by 1.5, 539 e.g., the transition between tetraploids and hexaploids) via maximum likelihood. In this 540 study, we employed the four ChromEvol models that assume that the rate of ascending 541 dysploidy, the rate of descending dysploidy, the rate of duplication, and the rate of 542 demi-duplication are constant throughout a given phylogeny. In the "CONST RATE" 543 model, the rate of demi-duplication is fixed to zero while the rates of ascending 544 dysploidy, descending dysploidy, and duplication are allowed to vary; in the "DEMI" 545 model, the rate of duplication is set to equal to the rate of demi-duplication while the 546 rates of gain and loss are allowed to vary; in the "DEMI EST" model, all of the four rate 547 parameters are allowed to vary; and in the "NO DUPL" model, the rates of duplication 548 and demi-duplication are both set to zero while the rates of gain and loss are allowed 549 to vary (i.e., no polyploidy happens). We construe that there was no evidence for 550 polyploidy in a data set if none of the three models allowing for duplication and/or 551 demi-duplication was favored over the "NO DUPL" model. 552 553 We fitted the four ChromEvol models that assumed constant rates of ascending 554 dysploidy, descending dysploidy, duplication, and demi-duplication. ChromEvol version 555 2 was run on the default optimization scheme, setting the minimum allowed 556 chromosome number to one and the maximum allowed chromosome number to be 557 twice the highest chromosome number observed in a given dataset. The upper limit 558 was applied this way to ensure that the transition rate matrix is large enough to capture 559 a plausible range of chromosome numbers (i.e., allowing doubling for the species with 560 the highest chromosome number), while keeping the runs computationally feasible. 561 For each clade, the best-fitting ChromEvol model was defined as the model having the 562 lowest Akaike Information Criterion (AIC) score (Akaike 1974). 563 564 We estimated the clade-wide rates of polyploidy as the sum of the rate of duplication 565 and the rate of demi-duplication and the clade-wide rates of dysploidy as the sum of 566 the rate of descending dysploidy and the rate of ascending dysploidy. The rates of 567 polyploidy and the rates of dysploidy were highly similar when estimated under the full 568 model (i.e., "DEMI EST") and the best-fitting model (which was not necessarily the full 569 model). We used the results obtained under the best-fitting models (1) to assess 570 ChromEvol model support across the clades and (2) to reconstruct ancestral 571 chromosome numbers in the phylogenies of the clades. When comparing the 572 ChromEvol rate estimates across the clades examined, we took the rates obtained 573 under the full model to avoid biases in the rate estimates that could be introduced by 574 forcing the rate of duplication and/or the rate of demi-duplication to be zero. The 575 results of the ChromEvol analyses are presented in Supplemental Table 5.

577 We investigated how ancestral chromosome numbers changed over time in the 578 angiosperms, gymnosperms, and ferns. We took the ancestral chromosome number 579 inferred under the best ChromEvol model at each internal node (which had the highest 580 posterior probability) and plotted the numbers over time (Fig. 3).

582 Rates of protein evolution of meiosis genes in angiosperms and ferns

583 To estimate the rates of protein evolution, we select 352 meiosis-related genes based 584 on GO terms under meiosis and their child genes. To avoid the impact of rate 585 heterogeneity between angiosperms and ferns, we compare the rate of protein 586 evolution for these meiosis genes to 500 randomly selected genes from the 587 Arabidopsis genome. Meiosis-related genes and randomly selected genes are used as 588 queries. Whole genome of 11 angiosperms (Amaranthus hypochondriacus, Amborella 589 trichopoda, Ananas comosus, Aquilegia coerulea, Arabidopsis thaliana, Carica papaya, 590 Eucalyptus grandis, Mimulus guttatus, Oryza sativa, Populus trichocarpa, and Vitis 591 viniferα) were downloaded from Phytozome (Goodstein et al. 2012) used as the 592 angiosperm database. Whole genome of Azolla filiculoides and Salvinia cucullata (F.-W. 593 Li et al. 2018), and transcriptomes of eight ferns (Asplenium formosae, Ceratopteris 594 thalictroides, Dicksonia antarctica, Equisetum diffusum, Microlepia speluncae, 595 Ophioglossum vulgatum, Osmunda javanica, Polypodium hesperium) were used as the 596 database for ferns. Physcomitrella patens are used as an outgroup, and A. thaliana and 597 P. patens were outgroups in fern analyses. Both queries were used to blast against the 598 angiosperm and fern databases using protein BLAST (blastp) with E-value of 1e-20 as 599 a threshold. The hits from each protein blast search were used for gene family 600 clustering with Orthofinder 2.3.7 (Emms and Kelly 2015). Gene families with the 601 presence of at least one *P. patens* sequence and one *A. thaliana* sequence were 602 selected. PASTA (Mirarab, Nguyen, and Warnow 2014) was used to construct gene 603 family phylogenies. Gene trees are re-rooted by the Physcomitrella patens and tips of 604 outgroups are dropped in the gene trees after re-rooting. The root-to-tip distance is 605 extracted with the 'distances' function in ape (Paradis and Schliep 2019). For each 606 gene tree, we estimate the mean, minimum, and maximum root-to-tip distance for 607 each species. To compare the rate of protein evolution, we use the Mann-Whitney U 608 test to compare the distribution of root-to-tip distance between meiosis and randomly 609 selected genes within angiosperms and ferns. To visualize these distributions, we also 610 plot the distributions of each comparison of angiosperms and ferns with ggplot in R.

576

613 To obtain gene ontology (GO) annotations, we followed the methodology of the 614 GOgetter pipeline (Sessa et al. 2023). GO annotations of all fern transcriptomes were 615 obtained through discontiguous MegaBlast searches against annotated Arabidopsis 616 thaliana transcripts from TAIR(Swarbreck et al. 2007) to find the best hit with a length 617 of at least 100 bp and an e-value of at least 0.01. We evaluated the overall differences 618 between the GO composition of transcriptomes and WGD paralogs by principal 619 component analysis (PCA) using the rda function in vegan (Dixon 2003). We tested if 620 the GO category composition was different between transcriptome and WGD paralogs 621 using a permutation test in the vegan envfit function. Ellipses representing the 95% 622 confidence interval of standard deviation of point scores were drawn on the PCA plot 623 using the ordiellipse function in vegan. We further tested for differences among GO 624 annotations using chi-square tests. When chi-square tests were significant (p < 0.05), 625 GO categories with residuals > |2| were implicated as major contributors to the 626 significant chi-square statistic. A category with residual >2 indicates significant 627 over-retention of this category following WGD, whereas residual <-2 indicates 628 significant under-retention (Barker et al. 2008). Using this statistical framework, we 629 tested for significant differences between the overall transcriptome and paralogs from 630 the all paleopolyploid species.

633 Acknowledgments

631 632

637

641642643644645646647

We thank Y. Li for providing the illustrations of ferns. We also thank C. Roman-Palacios and members of the Barker lab for the discussion. S.P.K is funded by a National Science Foundation Postdoctoral Research Fellowship.

638 Author contributions

639 Z. L., S.H.Z., and M.S.B. designed research; Z. L., S.H.Z., S.P.K, and M.S.B. performed research and analyzed data; Z. L., S.P.K, and M.S.B. wrote the paper.

648 Figures

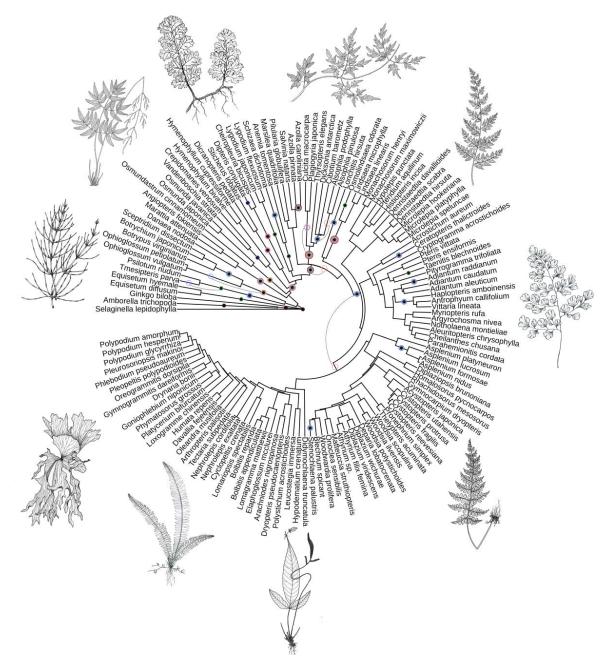
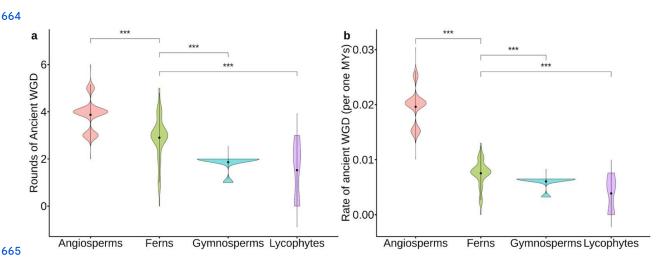



Fig. 1 Phylogenetic placement of ancient WGDs inferred in the phylogeny of
monilophytes. Black dots indicate whole genome duplications inferred for
pteridophytes. The black dots at the base of the tree show WGD in outgroups. Circles
around the dots show support for a duplication from different studies as follows: green,
analyses from this study using 1KP data; blue, Pelosi et al. 2022; pink, Huang et al.
2020; red, Chen et al. 2022. Dotted circles show where previous authors placed WGD

in their trees, but the Ks values of those WGD are very close to what we inferred, so we believe they are the same duplication (dotted lines connect the two). This phylogeny was modified from Testo and Sundue, 2016. Illustrations of ferns are credited to Yifan Li.

661662663

666 Fig. 2 The number of inferred ancient WGDs in vascular plants. a, The number of 667 inferred ancient polyploidization events within each lineage is shown in the violin plots. 668 The sample sizes for angiosperms, ferns, gymnosperms, and lycophytes are 674, 133, 669 81, and 21, respectively. Inferred ancient polyploidization events in angiosperms, 670 gymnosperms, and lycophytes are based on estimates from 1KP. b, The rate of inferred 671 ancient polyploidization events within each lineage is shown in the violin plots. The 672 rate of inferred WGD is estimated by the number of inferred WGD divided by the 673 minimum crown group age of each lineage. The minimum crown group age used for 674 angiosperms, ferns, gymnosperms, and lycophytes are 197.5, 384.9, 308.4, and 392.8 675 million years, respectively. The black dot indicates the mean, the thick black bars 676 represent the standard deviation of the data, the color shading represents the density 677 of data points. The comparisons of the mean of ferns to other lineages by the 678 two-sample Mann-Whitney U test are provided. '***' represents p < 0.0001.

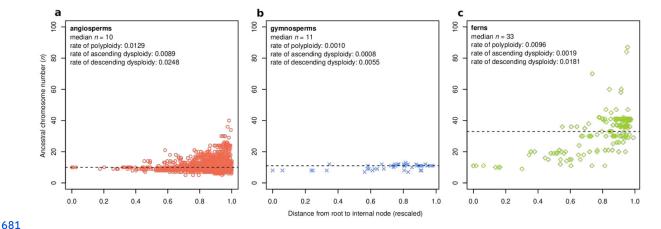


Fig. 3 Patterns of inferred ancestral chromosome number in angiosperms, gymnosperms, and ferns. The x-axis represents the root-to-internal node distance on the phylogenies analyzed using the best model supported by ChromEvol (Supplementary Table 5). The y-axis shows the ancestral chromosome numbers taken from the ChromEvol results. The dotted line shows the median chromosome number for each group. The rate of polyploidy, ascending and descending dysploidy are presented in the figure legends. The pattern in (a) angiosperms, (b) gymnosperms, and (c) ferns is shown by 1,918 data points, 51 data points and 199 data points, respectively.

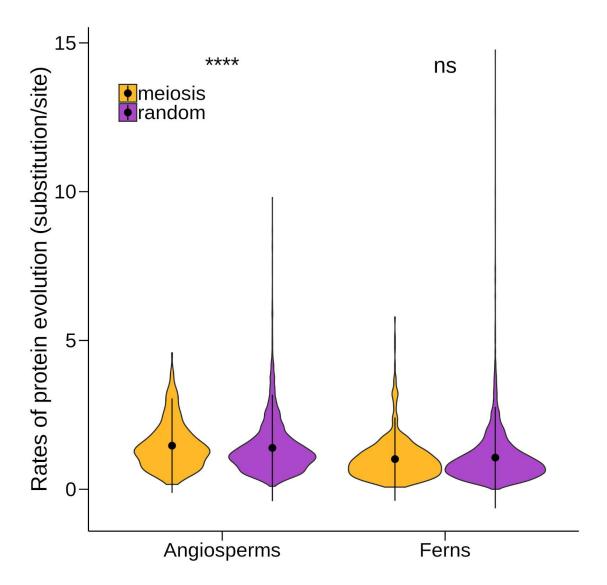


Fig. 4 The rates of protein evolution of meiosis-related genes in angiosperms and ferns. The rates of protein evolution of meiosis-related genes and randomly selected genes of angiosperm and ferns are shown in the violin plots. The black dot indicates the mean, the thick black bars represent the standard deviation of the data, and the color shading represents the density of data points. In total, 129 and 720 gene family phylogenies were constructed for meiosis-related genes and randomly selected genes in angiosperms and ferns. For each gene tree, we estimate the maximum root-to-tip distance for each species. The comparisons of the mean of meiosis and random genes by the two-sample Mann-Whitney U test are provided. '****' represents p < 0.0001.

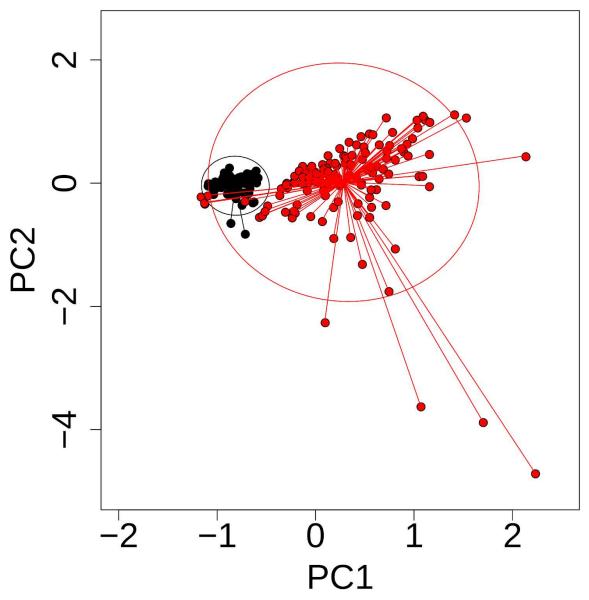


Fig. 5 Principal component analysis of the GO category composition of all genes in each genome/transcriptome and WGD paralogs. Red circles indicate the number of genes annotated to each GO category in the whole transcriptomes; black circles, number of WGD paralogs annotated to each GO category. Ellipses represent the 95% confidence interval of SD of point scores.

712 Supplemental Tables:

720

726

730

736

713 Supplementary Table 1 Summary of Ks distributions of duplicate gene pairs for

714 each species. Species are organized in alphabetical order. Taxa and median Ks for

715 each histogram of the age distribution of gene duplications (Ks plots available at

716 https://gitlab.com/barker-lab/fern-wgds-and-chromosomes), and p-values of the

717 two-sided K-S goodness of fit test is provided for each taxon. The number of inferred

718 WGD in the ancestry of each species is also reported. The phylogenetic placement of

719 each inferred ancient WGD is provided in Figure 1 and Supplementary Fig. 1.

721 Supplementary Table 2 Summary of the synonymous ortholog divergence analyses.

722 The mean, median, and standard deviation of synonymous ortholog divergence (Ks) for

723 each inferred ancient WGD is reported. These statistics are based on the number of

724 ortholog pairs identified for each species pair comparison. The sampling information

725 with taxon code and WGD code is also reported.

727 Supplementary Table 3 Ancient WGDs inferred in the phylogeny of ferns. The

728 phylogenetic placements and support from different studies are provided. The WGD

729 code matches with WGD placements on Supplementary Fig. 1

731 Supplementary Table 4 Rates of ancient genome duplication in ferns and other

732 vascular plants. The rates of ancient WGD/Ma were estimated using the number of

733 ancient genome duplications inferred by the genomic analyses divided by the minimum

734 crown group age for each vascular plant lineage (Fig. 2a). The rates of ancient WGD/Ma

735 estimated by ChromEvol are provided for comparison.

737 Supplementary Table 5 Results of the ChromEvol analyses of angiosperm orders.

738 gymnosperms, and monilophytes. The best-fitting model (out of "NO DUPL", "CONST

739 RATE", "DEMI", and "DEMI EST"; see Methods section for a description of the models)

740 was inferred based on the lowest AIC score. The rates of chromosomal evolution (in

741 events per a million years) estimated under the best-fitting model and the full

742 four-parameter model ("DEMI EST") are provided. The rate of dysploidy was defined as

743 the sum of the rate of chromosome loss (-1) and the rate of gain (+1). The rate of

744 polyploidy was defined as the sum of the rate of duplication (2x) and the rate of

745 demi-duplication (1.5x). Additionally, for each clade, the ancestral chromosome

746 number inferred at the root of the clade's phylogenetic tree under the best-fitting

747 model or the four-parameter model ("DEMI EST") are indicated.

Supplementary Table 6 Sample size and summary statistic for rate of protein evolution of meiosis-related genes in angiosperms and ferns. The distribution of root-to-tip distance between meiosis and background genes in angiosperms and ferns was estimated (see methods). The root-to-tip distances were calculated using maximum, mean, and minimum, with and without excluding outliers. The comparisons of the mean of meiosis and random genes by the two-sample Mann-Whitney U test are provided. The mean, median, standard deviation, U, Z, and p-value are provided for each root-to-tip distance estimate.

758 Supplemental Table 7 *rbcL* accession numbers and gametic count for the seed 759 plant and fern ChromEvol analyses. Genera in the phylogenetic analysis of the seed 760 plants and ferns were used. The taxonomic order (as per APG IV or PPG I 761 classification), family (as per TROPICOS classification), and representative taxon of 762 each genus examined are shown alongside the GenBank accession of the *rbcL* 763 sequence of the representative taxon. Also indicated are the gametic chromosome 764 number of each genus (summarized as the lower mode of species-level gametic 765 chromosome numbers, which were also summarized using the lower mode) and the 766 number of CCDB entries summarized for the genus. Taxonomic name resolution was 767 attempted using TRNS (Taxonomic Name Resolution Services V5.0), and synonymous 768 names were recorded when applicable. The genera used as the outgroup taxa were 769 noted.

771 Supplemental Table 8 Fossil records used in PATHd8 for the seed plant and fern
772 ChromEvol analyses. The fossil ages of the crown or stem group of various clades
773 were taken from Schneider et al. (2004) *Nature*, Magallón et al. (2015) *New Phytol*, and
774 Smith et al. (2010) *PNAS*, Testo and Sundue (2016) *Mol Phylogenet Evol*. In a PATHd8
775 analysis, the fossil ages were employed as a fixed age constraint or minimum age
776 constraint on the internal node representing the most recent common ancestor of a
777 focal clade, which was defined by two tip taxa in the phylogeny. See Supplementary
778 Fig. 3-5 for the placement of the fossil age constraints.

785 Supplementary Fig. 1 Enumerated ancient WGDs inferred in the phylogeny of ferns.

786 Each of the numbered circles corresponds to the WGD shown in Figure 1. These

787 numbers are used to refer to each WGD in Supplementary Tables 1 and 3. Dotted

788 circles show where previous authors placed WGD in their trees, but the Ks values of

789 those WGD are very close to what we inferred, so we believe they are the same

790 duplication (dotted lines connect the two). This phylogeny was modified from Testo

791 and Sundue, 2016.

792

800

812

816

793 Supplementary Fig. 2 GO annotations of whole transcriptomes and genes retained

794 from ancient WGDs. Each column represents the annotated GO categories of pooled

795 whole transcriptomes or genes retained in duplicate following ancient WGD from each

796 analyzed species. Colors of the heatmap represent the percent of the transcriptome

797 represented by a particular GO category. The overall ranking of GO category rows was

798 determined by the ranking of GO annotations among the total pooled transcriptomes.

799 Hierarchical clustering was used to organize the heatmap columns.

801 Supplementary Fig. 3 Pattern of gene retention and loss following ancient WGDs.

802 Each column represents the annotated GO categories of paralogs retained following

803 ancient WGDs from each analyzed species. The order of analyzed species (20

804 hexapods and one outgroup) are based on hierarchical clustering. The overall ranking

805 of GO category rows was determined by the ranking of GO annotations among ancient

806 WGD 10 in Osmundastrum cinnamomeum. Colored boxes indicate GO categories

807 among putative WGD paralogs that were significantly over- (red) or under-retained

808 (blue) relative to the pooled whole transcriptomes, as determined by residuals from

809 chi-square tests. GO categories with gray boxes were not present among WGD

810 paralogs in significantly different numbers relative to their frequency in the pooled

811 whole transcriptomes.

813 Supplementary Fig. 4 rbcl phylogeny of seed plants. We applied 86 fossil age

814 constraints in the seed plant phylogeny and the placements of the fossil age

815 constraints are shown on the phylogeny.

817 Supplementary Fig. 5 rbcl phylogeny of ferns. We applied 17 fossil age constraints in

818 the fern phylogeny and the placements of the fossil age constraints are shown on the

819 phylogeny.

Supplementary Fig. 6 Patterns of inferred ancestral chromosome number and posterior complement values in angiosperms, gymnosperms, and ferns. The right-hand x-axis represents the root-to-internal node distance on the phylogenies analyzed using ChromEvol. The left-hand x-axis shows the respective posterior complement (credible intervale) values for each inferred chromosome number. The y-axis shows the ancestral chromosome numbers taken from the ChromEvol results. The dotted line shows the median chromosome number for each group. The rate of polyploidy, ascending and descending dysploidy are presented in the figure legends. a. 1,918 data points show the pattern in angiosperms, median n=10. b. 51 data points show the pattern in gymnosperms, median n=11. c. 199 data points show the pattern in ferns, median n=33. The decrease in the posterior complement through time for each group suggests that other factors might be contributing to extant chromosome numbers.

835 Data Availability

820

834

836

839

848

855

837 All files for the analyses presented in this paper can be found at 838 https://gitlab.com/barker-lab/fern-wgds-and-chromosomes.

840 Input and output files of the chromosome number analyses

The ChromEvol analyses were conducted in three stages: 1) PASTA, 2) PATHd8, and 3) ChromEvol. First, the maximum-likelihood phylogenies of the ferns and seed plants (angiosperms and gymnosperms) were inferred separately using PASTA. Then, these two ML phylogenies were dated separately using PATHd8. Finally, ChromEvol was run

separately on the fern phylogeny, gymnosperm phylogeny (which was extracted from the dated seed plant phylogeny), and the angiosperm order phylogenies (which were

847 extracted from the dated seed plant phylogeny).

849 Rates of protein evolution of meiosis genes in angiosperms and ferns

To compare the rate of protein evolution, we compared meiosis and randomly selected genes within angiosperms and ferns. We selected 352 meiosis-related genes based on GO terms under meiosis and their child gene. We randomly selected 500 genes from the Arabidopsis genome. Provided are the trees for testing the rates of molecular evolution.

856 Ks distributions of duplicate gene pairs

- 857 140 Histograms of the age distribution of gene duplications (Ks plots) range from Ks 0
- 858 to 2, and (plotted separately) Ks 0 to 5. The phylogenetic placement of each inferred
- 859 ancient WGD is provided in Figure 1 and Supplementary Fig. 1.

862 References

- 863 Abraham, A., and C. A. Ninan. 1954. "Chromosomes of Ophioglossum reticulatum L."
- 864 *Current Science* 23:213–14.
- 865 Akaike, H. 1974. "A New Look at the Statistical Model Identification." IEEE
- Transactions on Automatic Control 19 (6): 716–23.
- 867 Barker, M. S. 2009. "Evolutionary Genomic Analyses of Ferns Reveal That High
- Chromosome Numbers Are a Product of High Retention and Fewer Rounds of
- Polyploidy Relative to Angiosperms." American Fern Journal 99 (2): 136–41.
- 870 ——. 2012. "Karyotype and Genome Evolution in Pteridophytes." In *Plant Genome* 871 *Diversity Volume 2*, 245–53.
- 872 Barker, M. S., K. M. Dlugosch, L. Dinh, R. S. Challa, N. C. Kane, M. G. King, and L. H.
- 873 Rieseberg. 2010. "EvoPipes.net: Bioinformatic Tools for Ecological and
- Evolutionary Genomics." *Evolutionary Bioinformatics Online* 6 (October):143–49.
- 875 Barker, M. S., N. C. Kane, M. Matvienko, A. Kozik, R. W. Michelmore, S. J. Knapp, and L.
- H. Rieseberg. 2008. "Multiple Paleopolyploidizations during the Evolution of the
- 877 Compositae Reveal Parallel Patterns of Duplicate Gene Retention after Millions of
- Years." Molecular Biology and Evolution 25 (11): 2445–55.
- 879 Barker, M. S., and P. G. Wolf. 2010. "Unfurling Fern Biology in the Genomics Age."
- Bioscience 60 (3): 177-85.
- 881 Barker, M. S. 2013. "Karyotype and Genome Evolution in Pteridophytes." Plant Genome
- 882 Diversity Volume 2.
- https://link.springer.com/chapter/10.1007/978-3-7091-1160-4 15.
- 884 Benaglia, T., D. Chauveau, D.Hunter, and D. Young. 2009. "Mixtools: An R Package for
- Analyzing Mixture Models." Journal of Statistical Software, Articles 32 (6): 1–29.
- 886 Berthelot, C., F. Brunet, D. Chalopin, A. Juanchich, M. Bernard, B. Noël, P. Bento, et al.
- 2014. "The Rainbow Trout Genome Provides Novel Insights into Evolution after
- Whole-Genome Duplication in Vertebrates." *Nature Communications* 5
- 889 (April):3657.
- 890 Birney, E., M. Clamp, and R. Durbin. 2004. "GeneWise and Genomewise." Genome
- Research 14 (5): 988–95.
- 892 Blackmon, H., J. Justison, I. Mayrose, and E. E. Goldberg. 2019. "Meiotic Drive Shapes
- Rates of Karyotype Evolution in Mammals." Evolution; International Journal of
- 894 Organic Evolution 73 (3): 511–23.

- 895 Bomblies, K. 2023. "Learning to Tango with Four (or More): The Molecular Basis of Adaptation to Polyploid Meiosis." *Plant Reproduction* 36 (1): 107–24.
- 897 Bomblies, K., G. Jones, C. Franklin, D. Zickler, and N. Kleckner. 2016. "The Challenge of Evolving Stable Polyploidy: Could an Increase in 'crossover Interference Distance'
- Play a Central Role?" *Chromosoma*. https://doi.org/10.1007/s00412-015-0571-4.
- 900 Bomblies, K., and A. Madlung. 2014. "Polyploidy in the Arabidopsis Genus."
- Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology 22 (2): 117–34.
- Boyle, B., N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci, et
 al. 2013. "The Taxonomic Name Resolution Service: An Online Tool for Automated
 Standardization of Plant Names." BMC Bioinformatics 14 (January):16.
- Bray, S. M., T. Hämälä, M. Zhou, S. Busoms, S. Fischer, S. D. Desjardins, T. Mandáková,
 et al. 2024. "Kinetochore and Ionomic Adaptation to Whole-Genome Duplication
 in Cochlearia Shows Evolutionary Convergence in Three Autopolyploids." *Cell Reports* 43 (8): 114576.
- 910 Britton, T., C. L. Anderson, D. Jacquet, S. Lundqvist, and K. Bremer. 2007. "Estimating Divergence Times in Large Phylogenetic Trees." *Systematic Biology* 56 (5): 741–52.
- 912 Buggs, R. J. A., S. Chamala, W. Wu, J. A. Tate, P. S. Schnable, D. E. Soltis, P. S. Soltis,
- and W. B. Barbazuk. 2012. "Rapid, Repeated, and Clustered Loss of Duplicate
- Genes in Allopolyploid Plant Populations of Independent Origin." Current Biology:
- 915 *CB* 22 (3): 248–52.
- 916 Burt, A., and R. Trivers. 2009. Genes in Conflict: The Biology of Selfish Genetic Elements.917 Harvard University Press.
- 918 Carta, A., G. Bedini, and L. Peruzzi. 2020. "A Deep Dive into the Ancestral Chromosome 919 Number and Genome Size of Flowering Plants." *The New Phytologist*, May.
- 920 https://doi.org/10.1111/nph.16668.
- 921 Chapman, R. H., E. J. Klekowski Jr, and R. K. Selander. 1979. "Homoeologous
- Heterozygosity and Recombination in the Fern *Pteridium aquilinum.*" *Science* 204 (4398): 1207–9.
- 924 Chen, H., Y. Fang, A. Zwaenepoel, S. Huang, Y. Van de Peer, and Z. Li. 2022. "Revisiting Ancient Polyploidy in Leptosporangiate Ferns." *The New Phytologist*, November. https://doi.org/10.1111/nph.18607.
- Plant No. 1. W., M. N. Puttick, and P. C. J. Donoghue. 2019. "Origin of Horsetails and the Role of Whole-Genome Duplication in Plant Macroevolution." *Proceedings.*
- Biological Sciences / The Royal Society 286 (1914): 20191662.
- 930 Comai, L. 2005. "The Advantages and Disadvantages of Being Polyploid." *Nature* 931 *Reviews. Genetics* 6 (11): 836–46.
- 932 Cui, L., P. K. Wall, J. H. Leebens-Mack, B. G. Lindsay, D. E. Soltis, J. J. Doyle, P. S. Soltis,
- et al. 2006. "Widespread Genome Duplications throughout the History of
- 934 Flowering Plants." Genome Research 16 (6): 738–49.
- 935 Dhakal, R. R., P. G. Wolf, and A. Harkess. 2024. "Chromosome Numbers and

- Reproductive Life Cycles in Green Plants: A Genomic Perspective." bioRxiv.
- 937 https://doi.org/10.1101/2024.07.23.604804.
- 938 Dixon, P. 2003. "VEGAN, a Package of R Functions for Community Ecology." Journal of
- Vegetation Science: Official Organ of the International Association for Vegetation
- 940 Science 14 (6): 927.
- 941 Emms, D. M., and S. Kelly. 2015. "OrthoFinder: Solving Fundamental Biases in Whole
- Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy."
- 943 Genome Biology 16 (August):157.
- 944 Fang, Y., X. Qin, Q. Liao, R. Du, X. Luo, Q. Zhou, Z. Li, et al. 2022. "The Genome of
- Homosporous Maidenhair Fern Sheds Light on the Euphyllophyte Evolution and
- 946 Defences." *Nature Plants* 8 (9): 1024–37.
- 947 Fishman, L., J. H. Willis, C. A. Wu, and Y-W Lee. 2014. "Comparative Linkage Maps
- Suggest That Fission, Not Polyploidy, Underlies near-Doubling of Chromosome
- Number within Monkeyflowers (*Mimulus*; Phrymaceae)." *Heredity* 112 (5):
- 950 562-68.
- 951 Gastony, G. J., and D. C. Darrow. 1983. "Chloroplastic and Cytosolic Isozymes of the
- Homosporous Fern Athyrium filix-femina L." American Journal of Botany 70 (9):
- 953 1409–15.
- 954 Gastony, G. J., and L. D. Gottlieb. 1985. "Genetic Variation in the Homosporous Fern
- Pellaea andromedifolia." American Journal of Botany 72 (2): 257–67.
- 956 Gastony, G. J., and L. D. Gottlieb. 1982. "Evidence for Genetic Heterozygosity in a
- Homosporous Fern." *American Journal of Botany* 69 (4): 634–37.
- 958 Gastony, G. J. 1991. "Gene Silencing in a Polyploid Homosporous Fern:
- Paleopolyploidy Revisited." Proceedings of the National Academy of Sciences of the
- 960 United States of America 88 (5): 1602–5.
- 961 Glick, Lior, and I. Mayrose. 2014. "ChromEvol: Assessing the Pattern of Chromosome
- Number Evolution and the Inference of Polyploidy along a Phylogeny." Molecular
- 963 Biology and Evolution 31 (7): 1914–22.
- 964 Gonzalo, A. 2022. "All Ways Lead to Rome—Meiotic Stabilization Can Take Many Routes
- in Nascent Polyploid Plants." Genes 13 (1): 147.
- 966 Goodstein, D. M., S. Shu, R. Howson, R. Neupane, R. D. Hayes, J. Fazo, T. Mitros, et al.
- 2012. "Phytozome: A Comparative Platform for Green Plant Genomics." *Nucleic*
- Acids Research 40 (Database issue): D1178–86.
- 969 Grant, V. 1963. The Origin of Adaptations. Columbia University Press.
- 970 Hasebe, M., P. G. Wolf, K. M. Pryer, K. Ueda, M. Ito, R. Sano, G. J. Gastony, et al. 1995.
- "Fern Phylogeny Based on rbcL Nucleotide Sequences." American Fern Journal 85
- 972 (4): 134–81.
- 973 Haufler, C. H. 1987. "Electrophoresis Is Modifying Our Concepts of Evolution in
- Homosporous Pteridophytes." *American Journal of Botany* 74 (6): 953–66.
- 975 Haufler, C. H., and D. E. Soltis. 1986. "Genetic Evidence Suggests That Homosporous
- Ferns with High Chromosome Numbers Are Diploid." Proceedings of the National

- Academy of Sciences of the United States of America 83 (12): 4389–93.
- 978 Hollister, J. D. 2015. "Polyploidy: Adaptation to the Genomic Environment." *The New Phytologist* 205 (3): 1034–39.
- 980 Huang, C.-H., X. Qi, D. Chen, J. Qi, and H. Ma. 2020. "Recurrent Genome Duplication
- Events Likely Contributed to Both the Ancient and Recent Rise of Ferns." *Journal of Integrative Plant Biology* 62 (4): 433–55.
- 983 Huang, X., W. Wang, T. Gong, D. Wickell, L.-Y. Kuo, X. Zhang, J. Wen, et al. 2022. "The
- Flying Spider-Monkey Tree Fern Genome Provides Insights into Fern Evolution and Arborescence." *Nature Plants* 8 (5): 500–512.
- 986 Katoh, K., K. Misawa, K.-I. Kuma, and T. Miyata. 2002. "MAFFT: A Novel Method for
- Rapid Multiple Sequence Alignment Based on Fast Fourier Transform." *Nucleic*
- 988 Acids Research 30 (14): 3059–66.
- 989 Kinosian, S. P. and M. S. Barker. 2024. "Meiotic Drive and Genome Evolution in Vascular
- Land Plants," August. https://ecoevorxiv.org/repository/view/7536/.
- 991 Kinosian, S. P., C. A. Rowe, and P. G. Wolf. 2022. "Why Do Heterosporous Plants Have So Few Chromosomes?" *Frontiers in Plant Science* 13 (February):807302.
- 993 Klekowski, E. J., Jr, and H. G. Baker. 1966. "Evolutionary Significance of Polyploidy in the Pteridophyta." *Science* 153 (3733): 305–7.
- 995 Levin, D. A. 2002. The Role of Chromosomal Change in Plant Evolution. Oxford996 University Press.
- 997 Lien, S., B. F. Koop, S. R. Sandve, J. R. Miller, M. P. Kent, T. Nome, T. R. Hvidsten, et al.
- 2016. "The Atlantic Salmon Genome Provides Insights into Rediploidization."
- *Nature*, April. https://doi.org/10.1038/nature17164.
- Li, F.-W., P. Brouwer, L. Carretero-Paulet, S. Cheng, J. de Vries, P.-M. Delaux, A. Eily, et al. 2018. "Fern Genomes Elucidate Land Plant Evolution and Cyanobacterial
- 1002 Symbioses." *Nature Plants* 4 (7): 460–72.
- 1003 Liu, H.-M., L. Ekrt, P. Koutecky, J. Pellicer, O. Hidalgo, J. Marquardt, F. Pustahija, et al.
- 2019. "Polyploidy Does Not Control All: Lineage-specific Average Chromosome
- Length Constrains Genome Size Evolution in Ferns." *Journal of Systematics and Evolution*. https://doi.org/10.1111/jse.12525.
- 1007 Li, Zheng, M. T. W. McKibben, G. S. Finch, P. D. Blischak, B. L. Sutherland, and M. S.
- Barker. 2020. "Patterns and Processes of Diploidization in Land Plants," July.
- https://doi.org/10.5281/zenodo.3964504.
- 1010 Li, Zheng, G. P. Tiley, Sally R. Galuska, Chris R. Reardon, Thomas I. Kidder, Rebecca J.
- Rundell, and M. S. Barker. 2018. "Multiple Large-Scale Gene and Genome
- Duplications during the Evolution of Hexapods." *Proceedings of the National*
- Academy of Sciences of the United States of America 115 (18): 4713–18.
- Love, A., D. Love, and R. E. Giuseppe Pichi Sermolli. 1977. "Cytotaxonomical Atlas of the Pteridophyta." *Vaduz: J. Cramer 398p. Chromosome Numbers. Geog.* 1–7.
- 1016 Magallón, S., S. Gómez-Acevedo, L. L. Sánchez-Reyes, and T. Hernández-Hernández.
- 1017 2015. "A Metacalibrated Time-tree Documents the Early Rise of Flowering Plant

- Phylogenetic Diversity." New Phytologist. https://doi.org/10.1111/nph.13264.
- 1019 Mandakova, T., Zheng Li, M. S. Barker, and M. A. Lysak. 2017. "Diverse Genome
- Organization Following 13 Independent Mesopolyploid Events in Brassicaceae
- 1021 Contrasts with Convergent Patterns of Gene Retention."
- 1022 https://doi.org/10.1101/120048.
- 1023 Mandáková, T., Z. Li, M. S. Barker, and M. A. Lysak. 2017. "Diverse Genome
- Organization Following 13 Independent Mesopolyploid Events in Brassicaceae
- 1025 Contrasts with Convergent Patterns of Gene Retention." The Plant Journal: For Cell
- and Molecular Biology 91 (1): 3–21.
- 1027 Manton, I. 1950. Problems of Cytology and Evolution in the Pteridophyta.
- 1028 Marchant, D. B., G. Chen, S. Cai, F. Chen, P. Schafran, J. Jenkins, S. Shu, et al. 2022.
- "Dynamic Genome Evolution in a Model Fern." *Nature Plants*, September.
- https://doi.org/10.1038/s41477-022-01226-7.
- 1031 Mayrose, I., M. S. Barker, and S. P. Otto. 2010. "Probabilistic Models of Chromosome
- Number Evolution and the Inference of Polyploidy." Systematic Biology 59 (2):
- 1033 132-44.
- 1034 Mayrose, I., and M. A. Lysak. 2020. "The Evolution of Chromosome Numbers:
- Mechanistic Models and Experimental Approaches." Genome Biology and
- Evolution, October. https://doi.org/10.1093/gbe/evaa220.
- 1037 McGrath, J. M., and L. G. Hickok. 1999. "Multiple Ribosomal RNA Gene Loci in the
- Genome of the Homosporous Fern Ceratopteris richardii." Canadian Journal of
- Botany. Journal Canadien de Botanique 77 (8): 1199–1202.
- 1040 McGrath, J. M., L. G. Hickok, and E. Pichersky. 1994. "Assessment of Gene Copy
- Number in the Homosporous ferns *Ceratopteris thalictroides* and *C. richardii*
- (Parkeriaceae) by Restriction Fragment Length Polymorphisms." *Plant Systematics*
- and Evolution = Entwicklungsgeschichte Und Systematik Der Pflanzen 189 (3-4):
- 1044 203-10.
- 1045 McKibben, M. T. W., Geoffrey Finch, and M. S. Barker. 2024. "Species-Tree Topology
- 1046 Impacts the Inference of Ancient Whole-Genome Duplications across the
- Angiosperm Phylogeny." *American Journal of Botany*, July, e16378.
- 1048 Mirarab, S., N. Nguyen, and T. Warnow. 2014. "PASTA: Ultra-Large Multiple Sequence
- Alignment." In Research in Computational Molecular Biology, edited by Roded
- Sharan, 8394:177–91. Lecture Notes in Computer Science. Cham: Springer
- 1051 International Publishing.
- 1052 Morgan, C., H. Zhang, C. E. Henry, F. C. H. Franklin, and K. Bomblies. 2020. "Derived
- Alleles of Two Axis Proteins Affect Meiotic Traits in Autotetraploid *Arabidopsis*
- arenosa." Proceedings of the National Academy of Sciences.
- https://doi.org/10.1073/pnas.1919459117.
- 1056 Morris, J. L., M. N. Puttick, J. W. Clark, D. Edwards, P. Kenrick, S. Pressel, C. H. Wellman,
- Z. Yang, H. Schneider, and P C. J. Donoghue. 2018. "The Timescale of Early Land
- Plant Evolution." Proceedings of the National Academy of Sciences of the United

- 1059 States of America 115 (10): E2274–83.
- 1060 Moyle, L. C., M. Wu, and M. J. S. Gibson. 2021. "Reproductive Proteins Evolve Faster
- Than Non-Reproductive Proteins Among Species." Frontiers in Plant Science 12
- 1062 (April):635990.
- 1063 Nakazato, T., M. S. Barker, L. H. Rieseberg, and G. J. Gastony. 2008. "Evolution of the
- Nuclear Genome of Ferns and Lycophytes." In Biology and Evolution of Ferns and
- *Lycophytes.* Cambridge University Press.
- 1066 Nakazato, T., M.-K. Jung, E. A. Housworth, L. H. Rieseberg, and G. J. Gastony. 2006.
- "Genetic Map-Based Analysis of Genome Structure in the Homosporous Fern
- 1068 Ceratopteris richardii." Genetics 173 (3): 1585–97.
- 1069 One Thousand Plant Transcriptomes Initiative. 2019. "One Thousand Plant
- 1070 Transcriptomes and the Phylogenomics of Green Plants." *Nature* 574 (7780):
- 1071 679-85.
- 1072 Otto, S. P., and J. Whitton. 2000. "Polyploid Incidence and Evolution." *Annual Review of*
- 1073 Genetics 34 (1): 401–37.
- 1074 Papp, B., C. Pál, and L. D. Hurst. 2003. "Dosage Sensitivity and the Evolution of Gene
- Families in Yeast." *Nature* 424 (6945): 194–97.
- 1076 Paradis, E., and K. Schliep. 2019. "Ape 5.0: An Environment for Modern Phylogenetics
- and Evolutionary Analyses in R." Bioinformatics.
- https://doi.org/10.1093/bioinformatics/bty633.
- 1079 Pardo-Manuel de Villena, F., and C. Sapienza. 2001. "Nonrandom Segregation during
- Meiosis: The Unfairness of Females." Mammalian Genome: Official Journal of the
- International Mammalian Genome Society 12 (5): 331–39.
- 1082 Parey, E., A. Louis, J. Montfort, Y. Guiguen, H. Roest Crollius, and C. Berthelot. 2022.
- "An Atlas of Fish Genome Evolution Reveals Delayed Rediploidization Following
- the Teleost Whole-Genome Duplication." Genome Research, August.
- 1085 https://doi.org/10.1101/gr.276953.122.
- 1086 Pelosi, J. A., E. H. Kim, W. B. Barbazuk, and E. B. Sessa. 2022. "Phylotranscriptomics
- Illuminates the Placement of Whole Genome Duplications and Gene Retention in
- Ferns." Frontiers in Plant Science 13 (July):882441.
- 1089 Pichersky, E., D. Soltis, and P. Soltis. 1990. "Defective Chlorophyll A/b-Binding Protein
- Genes in the Genome of a Homosporous Fern." *Proceedings of the National*
- Academy of Sciences of the United States of America 87 (1): 195–99.
- 1092 Plačková, K., P. Bureš, M. A. Lysak, and F. Zedek. 2024. "Centromere Drive May Propel
- the Evolution of Chromosome and Genome Size in Plants." Annals of Botany,
- August, mcae149.
- 1095 PPG I. 2016. "A Community-Derived Classification for Extant Lycophytes and Ferns:
- 1096 PPG I." Journal of Systematics and Evolution 54 (6): 563–603.
- 1097 Price, M. N., P. S. Dehal, and A. P. Arkin. 2010. "FastTree 2--Approximately
- Maximum-Likelihood Trees for Large Alignments." *PloS One* 5 (3): e9490.
- 1099 Rice, A., L. Glick, S. Abadi, M. Einhorn, N. M. Kopelman, A. Salman-Minkov, J. Mayzel, O.

- Chay, and I. Mayrose. 2015. "The Chromosome Counts Database (CCDB) a
- 1101 Community Resource of Plant Chromosome Numbers." The New Phytologist 206
- 1102 (1): 19–26.
- 1103 Rothfels, C. J., F.-W. Li, E. M. Sigel, L. Huiet, A. Larsson, D. O. Burge, M. Ruhsam, et al.
- 2015. "The Evolutionary History of Ferns Inferred from 25 Low-Copy Nuclear
- 1105 Genes." *American Journal of Botany* 102 (7): 1089–1107.
- 1106 Scannell, D. R., A. C. Frank, G. C. Conant, K. P. Byrne, M. Woolfit, and K. H. Wolfe. 2007.
- "Independent Sorting-out of Thousands of Duplicated Gene Pairs in Two Yeast
- Species Descended from a Whole-Genome Duplication." Proceedings of the
- National Academy of Sciences of the United States of America 104 (20):
- 1110 8397-8402.
- 1111 Schneider, H., E. Schuettpelz, K. M. Pryer, R. Cranfill, S. Magallón, and R. Lupia. 2004.
- "Ferns Diversified in the Shadow of Angiosperms." *Nature* 428 (6982): 553–57.
- 1113 Schranz, M. Eric, and T. Mitchell-Olds. 2006. "Independent Ancient Polyploidy Events
- in the Sister Families Brassicaceae and Cleomaceae." The Plant Cell 18 (5):
- 1115 1152-65.
- 1116 Sessa, E. B., R. R. Masalia, N. Arrigo, M. S. Barker, and J. A. Pelosi. 2023. "GOgetter: A
- Pipeline for Summarizing and Visualizing GO Slim Annotations for Plant Genetic
- Data." Applications in Plant Sciences 11 (4): e11536.
- 1119 Session, A. M., Y. Uno, T. Kwon, J. A. Chapman, A. Toyoda, S. Takahashi, A. Fukui, et al.
- 2016. "Genome Evolution in the Allotetraploid Frog Xenopus laevis." Nature 538
- 1121 (7625): 336–43.
- 1122 Shen, Hui, Dongmei Jin, Jiang-Ping Shu, Xi-Le Zhou, Ming Lei, Ran Wei, Hui Shang, et
- al. 2018. "Large-Scale Phylogenomic Analysis Resolves a Backbone Phylogeny in
- 1124 Ferns." *GigaScience* 7 (2): 1–11.
- 1125 Smith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2010. "An Uncorrelated
- Relaxed-Clock Analysis Suggests an Earlier Origin for Flowering Plants."
- Proceedings of the National Academy of Sciences of the United States of America
- 1128 107 (13): 5897–5902.
- 1129 Stamatakis, A. 2014. "RAxML Version 8: A Tool for Phylogenetic Analysis and
- Post-Analysis of Large Phylogenies." *Bioinformatics* 30 (9): 1312–13.
- 1131 Swarbreck, D., C. Wilks, P. Lamesch, T. Z. Berardini, M. Garcia-Hernandez, H. Foerster,
- D. Li, et al. 2007. "The *Arabidopsis* Information Resource (TAIR): Gene Structure
- and Function Annotation." *Nucleic Acids Research* 36 (Database): D1009–14.
- 1134 Talbert, P., and S. Henikoff. 2022. "Centromere Drive: Chromatin Conflict in Meiosis."
- *Current Opinion in Genetics & Development* 77 (December):102005.
- 1136 Testo, W., and M. Sundue. 2016. "A 4000-Species Dataset Provides New Insight into
- the Evolution of Ferns." Molecular Phylogenetics and Evolution 105
- 1138 (December):200-211.
- 1139 Uno, Y., C. Nishida, C. Takagi, N. Ueno, and Y. Matsuda. 2013. "Homoeologous
- 1140 Chromosomes of *Xenopus laevis* Are Highly Conserved after Whole-Genome

- 1141 Duplication." *Heredity* 111 (5): 430–36.
- 1142 Vanneste, K., L. Sterck, A. Andrew Myburg, Y. Van de Peer, and E. Mizrachi. 2015.
- "Horsetails Are Ancient Polyploids: Evidence from Equisetum giganteum." The
- 1144 Plant Cell 27 (6): 1567–78.
- 1145 Wagner, W. H., and F. S. Wagner. 1980. "Polyploidy in Pteridophytes." In Polyploidy:
- Biological Relevance, edited by Walter H. Lewis, 199–214. Boston, MA: Springer
- 1147 US.
- 1148 Wheeler, T. J., and J. D. Kececioglu. 2007. "Multiple Alignment by Aligning Alignments."
- 1149 Bioinformatics 23 (13): i559–68.
- 1150 Wolf, P. G., C. H. Haufler, and E. Sheffield. 1987. "Electrophoretic Evidence for Genetic
- Diploidy in the Bracken Fern (*Pteridium aquilinum*)." *Science* 236 (4804): 947–49.
- 1152 Wood, T. E., N. Takebayashi, M. S. Barker, Itay Mayrose, Philip B. Greenspoon, and
- Loren H. Rieseberg. 2009. "The Frequency of Polyploid Speciation in Vascular
- Plants." Proceedings of the National Academy of Sciences of the United States of
- 1155 *America* 106 (33): 13875–79.
- 1156 Yang, Z. 2007. "PAML 4: Phylogenetic Analysis by Maximum Likelihood." *Molecular*
- Biology and Evolution 24 (8): 1586–91.
- 1158 Yant, L., J. D. Hollister, K. M. Wright, B. J. Arnold, J. D. Higgins, F. Chris H. Franklin, and
- Kirsten Bomblies. 2013. "Meiotic Adaptation to Genome Duplication in
- Arabidopsis arenosa." Current Biology: CB 23 (21): 2151–56.
- 1161 Zhang, R., F.-G. Wang, J. Zhang, H. Shang, L. Liu, H. Wang, G.-H. Zhao, H. Shen, and
- Y.-H. Yan. 2019. "Dating Whole Genome Duplication in *Ceratopteris thalictroides*
- and Potential Adaptive Values of Retained Gene Duplicates." International Journal
- of Molecular Sciences 20 (8). https://doi.org/10.3390/ijms20081926.