)

Check for
updates

FSLearning: An Efficient Federated Split
Learning Framework
for Privacy-Preserving Disease Prediction

Bin Li', Xiaoqian Jiang?, Yu-Chun Hsu?, Arif O. Harmanci?,
Hongchang Gao', and Xinghua Shi' ()

! Department of Computer and Information Sciences, College of Science and
Technology, Temple University, Philadelphia, PA 19122, USA
mindyshi@temple.edu
2 D. Bradley McWilliams School of Biomedical Informatics, The University of Texas
Health Science Center at Houston, Houston, TX 77030, USA

Abstract. Federated learning (FL) and split learning (SL) are two
prominent distributed learning approaches that enable model training
without raw data sharing. SL offers better model privacy than FL by
splitting the model architecture between clients and the server, making it
preferable for resource-constrained environments. However, SL is slower
due to relay-based training across multiple clients. This paper intro-
duces federated split learning, FSLearning, which combines the strengths
of both FL and SL, eliminating their inherent drawbacks. FSLearning
integrates tensor regression to reduce communication costs and improve
training efficiency. Our analysis and empirical results show that FSLearn-
ing achieves similar test accuracy and communication efficiency as SL
while significantly reducing computation time for multiple clients. Empir-
ical results show that FSLearning reduces transmitted parameters by
up to 50% using ResNet3D. By incorporating tensor regression layers
(TRLs), FSLearning compresses activations, enabling efficient Homomor-
phic Encryption (HE) integration. Privacy evaluations confirm that DP
achieves the lowest total variation distance (TVD), reducing membership
inference risks.

Keywords: Split Learning + Federated Learning - Homomorphic
Encryption + Tensor Regression

1 Introduction

Collaborative deep learning methodologies [16], such as federated learning (FL),
enable multi-institutional model training without direct data sharing [4,9]. How-
ever, traditional deep learning approaches face challenges due to the high dimen-
sionality, scarcity, and privacy-sensitive nature of biomedical datasets. The dis-
tributed nature of healthcare further complicates secure data exchange, requiring
solutions that balance computational efficiency with rigorous privacy preserva-
tion.
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Split learning (SL) [5] has emerged as an alternative to FL, enabling col-
laborative model training while limiting data exposure to intermediate repre-
sentations. This is particularly beneficial in privacy-sensitive medical imaging
applications, such as MRI-based diagnostics, where leveraging diverse datasets
improves model performance while preserving data locality. Unlike FL, which
requires frequent exchanges of model weights, SL reduces communication over-
head by transmitting only activations and gradients. Whether SL is a sub-class
of FL or a distinct paradigm remains debated; following the taxonomy in [7] we
treat them as orthogonal, which clarifies how privacy, communication cost, and
compute load differ. Prior studies [1,11,12] have demonstrated SL’s effective-
ness in preserving data privacy using Differential Privacy (DP) across multi-
institutional MRI analysis. However, its relay-based training structure often
leads to resource underutilization, as only one party interacts with the server
at a time. More critically, despite its privacy advantages, SL’s communication
constraints make it impractical for integrating computationally intensive cryp-
tographic techniques such as Homomorphic Encryption (HE), which provides
strong privacy guarantees but introduces significant computational overhead.

Addressing these limitations, this paper introduces FSLearning, a hybrid
framework that integrates FL’s decentralized coordination with SL’s privacy-
preserving model partitioning, enabling efficient multi-institutional learning
while reducing communication costs. A key innovation of FSLearning is its incor-
poration of Tensor Regression Layers (TRLs) [8,17], which compress transmitted
activations, reducing bandwidth requirements and making it feasible to deploy
HE in real-world biomedical applications.

2 Method

The proposed method employs a split learning scheme tailored for collaborative
MRI imaging analysis across multiple healthcare institutions, ensuring privacy
preservation and data security while enabling the development of robust diagnos-
tic models. The methodology is designed to harness the distributed data without
direct sharing of raw MRI images or patient information, thereby addressing the
critical concerns of privacy and data security in biomedical research.

2.1 Architecture

Figurel illustrates the FSLearning pipeline, which integrates FL and SL to
enable collaborative model training while preserving data privacy. Each health-
care institution retains MRI data locally, processing it through the initial layers
of a 3D CNN. To reduce communication overhead, a tensor decomposition layer
compresses feature representations before transmitting the abstracted activa-
tions (“smashed data”) to a central server. The server continues the forward pass
using deeper CNN layers and computes partial gradients, which are returned
to local parties for updating their model segments. This ensures that raw MRI
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data remains within each institution, while the server lacks access to local model
parameters, reinforcing privacy preservation.

Unlike FL, which requires exchanging full model weights, FSLearning min-
imizes communication by transmitting only activations and gradients. Similar
to SL, local parties retain early network layers and, in label-less configurations,
maintain final classification layers and labels. The server orchestrates sequen-
tial updates across sites, optimizing communication efficiency while maintaining
model integrity. This hybrid approach enables scalable and privacy-preserving
training across multiple institutions.

For each 3D backbone we tested LeNet3D, AlexNet3D, and ResNet3D, cut
the network immediately after the shallow convolutional blocks, push the deeper
feature-extractor plus a TRL to the server, and keep the final fully-connected
classifier on the local site. This partition leaves the labels and the first 20-40%
of parameters inside each hospital while off-loading 60-80% of the FLOPs to the
server; the only data crossing the boundary is a single, low-dimensional (<4096)
encrypted activation vector. Each site transmits activations forward and receives
gradients back, iterating through mini-batches. The server processes updates
sequentially across sites, typically in a randomized order per epoch, optimizing
communication efficiency while reducing reliance on full model synchronization.
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Fig. 1. Overview of the proposed multi-institutional split learning workflow. local
parties process raw MRI data through early layers and then send lower-dimensional
“smashed data” to the central server. The server refines these representations with
additional network layers with a Tensor regression layer, updates its parameters, and
returns gradients to each site, preserving data locality and patient privacy.

2.2 Privacy Protection

FSLearning reduces privacy risks by splitting the model so that each healthcare
site retains raw patient data and (optionally) the final classification layer, while
the central server operates only on intermediate representations. This archi-
tectural partition complicates attempts to reconstruct original MRI images or
reverse-engineer local models, especially if sufficient dimensionality reduction
and non-linear transformations occur early in the network. A label-less config-
uration further hides class information from the server, ensuring it never has
direct access to patient outcomes.
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Beyond this structural safeguard, FSLearning can incorporate additional
security methods commonly seen in federated learning. For instance, DP can
introduce noise to the smashed activations or returned gradients, obscuring indi-
vidual patient data within the statistics of the model updates. HE libraries (e.g.,
Zama, SEAL) can also encrypt the intermediate representations while still allow-
ing arithmetic operations on ciphertexts.

A key advantage of FSLearning over traditional FL is its use of a tensor
regression layer (TRL) for dimensionality reduction. By compressing the high-
volume MRI feature maps into smaller core tensors, the amount of data requiring
encryption is substantially reduced, thus mitigating the computational overhead
typically associated with HE. Since HE operations grow expensive with data
size, lowering the dimensionality of transmissions makes encrypted computa-
tions more feasible in large-scale medical applications. Combining TRL-driven
compression with label-less split learning can thereby yield a robust, multi-layer
privacy defense without excessively sacrificing training efficiency.

3 Experiments
3.1 Datasets

Brain MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
are used for this study. Specifically, we used 2268 MRI scans from the ADNI3
category to train the LeNet3D, AlexNet3D, and ResNet3D to classify MRI scans
for Alzheimer’s disease (AD), mild cognitive impairment (MCI), and cognitively
normal (CN). Each brain MRI scan is a 3D tensor of intensity values with size
256x256x256. As a result, 1053 scans from CN, 1051 scans from MCI, and 164
scans from AD are selected for this study.

Pre-processing: In our study on fairness modeling using the ADNI III
dataset [6], we employed ANTsPy [2,13|, the Python interface for Advanced
Normalization Tools (ANTS), to standardize and preprocess brain MRI scans.
The preprocessing pipeline started with image registration, aligning individual
scans to a common anatomical template to ensure consistency across subjects
and facilitate comparative analysis. Next, ANTsPy was used for tissue segmenta-
tion, delineating distinct brain regions for detailed structural assessment. Corti-
cal thickness was then computed and incorporated as supplementary features to
enrich the training data with structural biomarkers relevant to disease progres-
sion. To ensure fairness and minimize technical biases, all scans were uniformly
processed, preserving data integrity across sites. The dataset was stratified by
diagnostic categories (AD, MCI, CN) to ensure equal representation across train-
ing and testing sets. To prevent data leakage, we enforced strict subject-level sep-
aration, ensuring that no subject’s scans appeared in both training and validation
folds in cross-validation experiments. This preprocessing framework enhances
both the robustness and fairness of our predictive model by mitigating con-
founding variations and preserving biological relevance.
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3.2 Experimental Settings

Experiments are carried out on uniformly distributed and horizontally parti-
tioned image datasets among parties. For quicker experiments and developments,
we use the High-Performance Computing (HPC) platform with 4 A5000 GPUs.
We run parties and servers on different computing nodes of the cluster provided
by HPC.

In our setup, we consider that all participants update the model in each
global epoch (i.e., C = 1 during training). We choose ML network architectures
and datasets based on their performance and their need to include proportionate
participation in our studies. The learning rate is 0.0001 for training models.

3.3 Performance of FSLearning

FSLearning demonstrates notable efficiency improvements over traditional SL
and FL by integrating TRL. The inclusion of tensor regression not only com-
presses feature representations but also enhances computational efficiency, reduc-
ing the communication cost per epoch. Additionally, the architecture of FSLearn-
ing minimizes the need for full model exchanges, significantly lowering commu-
nication overhead compared to FL.

Table1 provides a side-by-side comparison of FL and FSLearning for
LeNet3D, AlexNet3D, and ResNet3D in terms of classification accuracy, total
model size (MB), and the number of exchanged parameters per round. For
LeNet3D, FL achieves a 0.54 accuracy but requires a large 2680.77MB model
and transmits over 435 million parameters each round. In contrast, FSLearn-
ing’s accuracy is slightly lower at 0.50, yet it drastically reduces both model
size (0.11MB) and communication overhead (around 103k parameters). A sim-
ilar trend holds for AlexNet3D, where FL’s higher accuracy of 0.66 comes
with 255 million exchanged parameters per round, whereas FSLearning trades
a modest drop in accuracy (0.61) for a large reduction in exchanged parame-
ters (46k). Notably, while the overall model size remains the same (609.14MB)
for AlexNet3D under both strategies, FSLearning’s partial-architecture updates
and smashed data transmission still lower the communication volume. Finally,
for ResNet3D, FL achieves 0.89 accuracy but transmits more than 32 million
parameters per round, whereas FSLearning yields 0.87 accuracy with only 1024
parameters exchanged each round, and both methods use a 1210.84MB model.
These results confirm that FSLearning substantially reduces communication
costs while retaining competitive accuracy, especially beneficial for large-scale
or bandwidth-constrained federated settings.

Effect of Numbers of Users. Figure 2 shows how accuracy and overall train-
ing time evolve as the number of parties increases from 1 to 10 in a federated
learning setting. We observe that accuracy generally rises with more parties,
reflecting the benefit of leveraging a broader data distribution. In particular, the
model’s accuracy improves from around 0.78 with a single party to approximately
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Table 1. Comparison of FL and FSLearning for three 3D CNN architectures, showing
classification accuracy (Acc), total model size (in MB), and the number of uploaded
parameters (per party per round).

Architecture|FL FSLearning

Acc Model Size|Uploaded Param. Acc Model Size Uploaded Param.
LeNet3D  |0.54/2680.77 435,827,426 0.50/ 0.11 103,191
AlexNet3D |0.66| 609.14 255,812,426 0.61/609.14 46,275
ResNet3D 0.89/1210.84 32,054,402 0.87/1210.84 1,024

0.89 by eight or more parties, indicating a saturation point in performance gains
beyond which adding parties offers minimal accuracy improvements.

Conversely, overall training time increases at an accelerating rate due to com-
munication and synchronization overheads that grow with more parties. While
smaller increases in the number of parties (e.g., up to three or four) can still
benefit from some parallel speedup, subsequent increments see more pronounced
jumps in training time as overhead begins to dominate.

These results underscore the trade-off between accuracy gains and training
overhead. As the number of parties increases, the computational and communica-
tion costs rise faster than the associated improvements in accuracy. Although fed-
erated collaboration remains essential for harnessing diverse datasets, we observe
that beyond a certain threshold, the overhead begins to eclipse the incremental
accuracy benefits. Practitioners should carefully weigh these factors in real-world
implementations, ensuring that the added complexity of involving more parties
does not undermine the overall efficiency and scalability of the learning process.

Accuracy and Training Time vs. Number of Parties in FSLearning
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Fig. 2. Accuracy and overall training time as a function of the number of parties in
FSLearning. The blue curve represents accuracy and the red curve denotes the over-
all training time. The results highlight the trade-off between improved model perfor-
mance and higher training costs in multi-party federated learning settings. (Color figure
online)
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3.4 Privacy Protection

FSLearning Supports HE and DP. We assessed two privacy mechanisms,
HE and DP, inside the FSLearning pipeline, measuring (i) classification accu-
racy, (ii) resistance to membership-inference attacks (MIA), and (iii) computa-
tional /communication overhead. HE keeps every activation encrypted in transit
(implemented with the Zama-concrete library [15]); DP injects calibrated Gaus-
sian noise into gradient updates with (e=2.0, §=107°).

Table 2 reports ResNet3D results on ADNI III with 95% bootstrap confi-
dence intervals (1000 resamples). DP attains 0.875 accuracy—only 0.6 pp below
HE and 0.2 pp below the non-private baseline—while offering the strongest MIA
protection, cutting F1/precision/recall scores to 0.42/0.45/0.40. HE preserves
the highest accuracy (0.881) but affords markedly weaker MIA defence (F1 =
0.55) and amplifies training time (3.6x vs. baseline) and bandwidth (50 MB
vs. 20 MB per round). Because DP achieves near-par accuracy with the low-
est privacy-attack scores and halves communication load relative to HE, we
regard DP-enhanced FSLearning as the more practical choice for real-world,
multi-site biomedical deployments, whereas HE remains advantageous in set-
tings that mandate end-to-end encrypted transport—a practicality enabled by
the tensor-regression layer’s substantial parameter compression. Furthermore,
Table 3 shows that FSLearning with DP excels on the majority MCI class (recall
0.86, precision 0.84) and maintains high performance on CN (0.92, 0.93), while
still achieving a respectable 0.68 recall for the minority AD class. This result
indicates that the framework boosts early-stage (MCI) detection while main-
taining acceptable accuracy for the much rarer AD class, underscoring its utility
for clinical screening under class-imbalanced conditions.

Table 2. ResNet3D on ADNI: privacy mechanisms versus the unprotected baseline.
Values in brackets are 95 % bootstrap CIs (N=1000).

Metric HE DP Baseline

Accuracy | 0.881[0.870, 0.892]10.875 [0.864, 0.887]0.877 [0.866, 0.889]
F1 (MIA) | 0.55[0.51, 0.59]  0.42[0.38, 0.46] 0.68]0.63, 0.72]
Precision (MIA) | 0.58[0.54, 0.62]  10.45[0.40, 0.49] 0.75[0.70, 0.78|
Recall (MIA)] 0.53[0.49, 0.58]  10.40[0.36, 0.44] 0.62[0.57, 0.66]
Training time (s/epoch) | 320 130 90
Communication (MB/round) |50 25 20

FSLearning Defends Against MIA. MIA attempt to decide whether a par-
ticular sample participated in training, posing serious risks when re-identification
would violate medical confidentiality. FSLearning lowers that risk by keeping raw
data on-site and exchanging only compressed or encrypted activations. When
layered with DP or HE this partitioning further obscures clues an adversary
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Table 3. Per-class recall and F1 of FSLearning with DP on ADNI (95 % bootstrap

CTs, N = 1000).

Metric

AD

MCI

CN

Recall

0.68[0.63, 0.73]

0.86 [0.83, 0.89)

0.92[0.89, 0.95]

Precision

0.66[0.61, 0.71]

0.8410.80, 0.88]

0.93[0.90, 0.95]

F1

0.67[0.62, 0.72]

0.85[0.82, 0.88]

0.93[0.91, 0.95]

AUC

0.90[0.88, 0.92]/0.95 [0.93, 0.97]0.97[0.95, 0.98]

could exploit. Figure 3 illustrates train (member) versus holdout (non-member)
accuracy distributions under three privacy settings (Baseline, DP, and HE) for
different numbers of parties (P = 5,7,9). Each subplot shows histograms of the
accuracy achieved on train and holdout samples, along with the corresponding
total variation distance (TVD) [3,14].

In the baseline row, train accuracies are clearly shifted higher than holdout,
yielding large total-variation distances (TVD: 106.12 at P=5; 132.36 at P=9),
evidence that an attacker could reliably infer membership. With DP (middle
row) calibrated noise blurs individual contributions, shrinking the gap between
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Fig. 3. Membership inference attack (MIA) results on a multi-institutional MRI
dataset under three privacy settings: Baseline, DP, and HE. Each subplot compares the
train (member) and holdout (non-member) accuracy distributions for P =5, P = 7,
and P = 9 parties, where P denotes the number of participating institutions. The
total variation distance (T'VD) reported in each subplot quantifies how separable the
two distributions are, with higher TVD indicating greater vulnerability to membership
inference.
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train and holdout. TVD drops to 67.18 at P=>5 and 46.51 at P=9, the lowest
values across all settings. The broader train histogram reflects the randomness
injected into gradients, and accuracy declines only modestly (see Table2). In
the HE setting (bottom row), raw activations remain encrypted in transit, so an
attacker cannot observe them directly; however, once decrypted on the server
they still contain detailed signal, giving a TVD (e.g., 93.43 at P=5, 89.92 at
P=9) that lies between DP and the baseline. Thus HE improves privacy relative
to no protection but is less effective than DP for mitigating MIA.

Finally, increasing the number of parties P without privacy (baseline) tends
to amplify overfitting and raise TVD, while both DP and HE benefit from addi-
tional parties, further narrowing the train-holdout gap. Overall, these results con-
firm that privacy-enhancing techniques, especially differential privacy, meaning-
fully reduce membership-inference risk, and that wider collaboration can enhance
generalization under secure training protocols.

4 Conclusion

This paper introduced FSLearning, a Federated Split Learning framework that
integrates tensor regression to improve communication efficiency while ensuring
privacy preservation. By combining FL. and SL, FSLearning mitigates FL’s high
communication costs and SL’s computational inefficiencies, offering a scalable
and efficient solution for multi-client settings. Experimental results demonstrated
that FSLearning achieves accuracy comparable to FL while significantly reducing
communication overhead by up to 50%. Furthermore, the TRL-induced 90%
reduction in transmitted activation size makes HE feasible on commodity GPUs.

However, challenges remain, such as the computational overhead introduced
by HE, which may limit its real-time applicability, and potential trade-offs in
model complexity due to tensor regression compression. Addressing these chal-
lenges is key to optimizing the framework for broader real-world deployment.

Future work will explore adaptive tensor compression [10] to further enhance
efficiency and hybrid privacy mechanisms that dynamically switch between HE
and DP based on computational constraints. Additionally, expanding FSLearn-
ing to multi-modal biomedical datasets and integrating it into real-world clinical
applications will be critical to validating its effectiveness in broader healthcare
domains.
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