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Abstract. We introduce a novel model-agnostic post-hoc Explainable
AT method that provides meaningful interpretations for hidden neuron
activations in a Convolutional Neural Network. Our approach uses a
Wikipedia-derived concept hierarchy with approx. 2 million classes as
background knowledge, and deductive reasoning based Concept Induc-
tion for explanation generation. Additionally, we explore and compare
the capabilities of off-the-shelf pre-trained multimodal-based explainable
methods. Our evaluation shows that our neurosymbolic method holds a
competitive edge in both quantitative and qualitative aspects.
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1 Introduction

While there has been significant progress on Explainable Al, the current state of
the art is mostly restricted to explanation analyses based on a relatively small
number of predefined explanation categories. This is problematic from a prin-
cipled perspective, as it relies on the assumption that explanation categories
pre-selected by humans would be viable explanation categories for deep learning
systems — an as-yet unfounded conjecture. Other approaches rely on deep learn-
ing itself, e.g., Large Language Models (LLMs), to produce explanations [25]
— which means that the explanation generation method in turn is yet another
black box. Others rely on modified deep learning architectures, usually leading
to a decrease in system performance compared to unmodified systems [43].

Others rely on low-level features such as Pixel attribution [3,38,36], thus not
providing clear and explicit explanation concepts for human users.

For concept-based explanations, the lack of systematic approaches to consider
a wide range of potential concepts that may influence the model appears to be a
bottleneck. In some techniques [25], a list of frequently occurring English words
has been utilized to represent a broad concept pool, which may suffice for general
applications but lacks granularity for specialized fields.

Herein, we address several common shortcomings in the state of the art:
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i. Concepts should not be hand-picked in light of completeness.
ii. Concept extraction methods should be inherently explainable.
iii. Explanations should be understandable without deep learning expertise.
iv. Candidate concepts pools should include meaningful relationships between
concepts, that are made use of by the explanation approach.

We address these points by using Concept Induction as core mechanism, which
is based on formal logic reasoning (in the Web Ontology Language OWL) and
has originally been developed for Semantic Web applications [19].

We hypothesize that background knowledge coupled with inherently explain-
able deductive reasoning (here, Concept Induction) should be capable of gener-
ating meaningful explanations for the deep learning model we wish to explain.

To show that our approach can indeed provide meaningful explanations for
hidden neuron activation, we instantiate it with a Convolutional Neural Network
(CNN) architecture for image scene classification and a class hierarchy (i.e., a
simple ontology) of approx. 2106 classes derived from Wikipedia as the pool of
explanation categories [32].3 We demonstrate that our method performs compet-
itively, as assessed through two separate evaluation methods, one statistical, one
using Concept Activation analysis [17,7], when compared with other techniques
such as CLIP-Dissect [25] and GPT-4 [1] as concept generation methods.

Core contributions of the paper are as follows.

1. A novel zero-shot model-agnostic Explainable AT method that explains ex-
isting pre-trained deep learning models through high-level concepts, utilizing
symbolic reasoning over background knowledge as the source of explanation,
which achieves state-of-the-art performance and is explainable by its nature.

2. A method to automatically extract relevant concepts through Concept In-
duction for any concept-based Explainable AT method, eliminating the need
for manual selection of candidate concepts.

3. An in-depth comparison of explanation sources using statistical analysis for
the hidden neuron perspective and Concept Activation analysis for the hid-
den layer perspective of our approach, namely with a pre-trained multimodal
Explainable AT method (CLIP-Dissect [25]), and an LLM (GPT-4 [1]).

A significantly longer version of this paper is available online [8], which also
includes a discussion of related work.

2 Concept Extraction

We explore and evaluate three concrete methods to generate high-level concepts
for explaining hidden neuron activations. Fig. 1 is a high-level depiction of our
workflow. Components are further discussed below and throughout the paper.

3 See  https://anonymous.4open.science/r/xai-using-wikidataAndEcii-91D9/
for source code, input data, raw result files, and parameter settings for replication.
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Fig. 1: An overview of the complete pipeline explored in this paper where Concept
Extraction outlines the methods used to extract Target Concepts and Concept
Evaluation outlines the evaluation methods.

Preparations: Scenario and CNN Training We use a scene classifica-
tion from images scenario to demonstrate our approach, using the ADE20K
dataset [46] which contains more than 27,000 images over 365 scenes, annotated
with pixel-level objects and object part labels. This dataset provides a compre-
hensive resource for scene parsing, encompassing a diverse range of environments
including urban, rural, indoor, and outdoor scenes. Though the distribution of
these annotations naturally varies based on the prevalence of objects in real-
world environments, this diversity in annotations still provides a rich foundation
for our concept induction method. The annotations are not used for CNN train-
ing, but only for generating label hypotheses as described below.

We trained Resnet50V2 for the scene categories “bathroom”, “bedroom”,
“building facade”, “conference room”, “dining room”, “highway”, “kitchen”,
“living room”, “skyscraper”, and “street”. We chose scene categories with high
numbers of images and such that some scene categories would have overlapping
annotated objects — as this should make the hidden node activation analysis more
interesting. We did not conduct any experiments on any other scene selections,
i.e., we did not change our scene selection based on any preliminary analyses.
It is important to note that the ResNet50V2 model employed in our study is
pre-trained on the ImageNet dataset [9], allowing us to leverage transfer learning
and to benefit from its comprehensive feature recognition capabilities. We then
utilize this same pre-trained model to extract activation values for evaluating
concept relevance.

We used Resnet50V2 because it achieved the highest accuracy (86.46%)
among the networks we tested. Note that for our investigations of explainability
of hidden neuron activations, achieving a very high accuracy for the scene clas-
sification task is not essential, but a reasonably high accuracy is necessary when
considering models which would be useful in practice.

In the following, we detail the components shown in Fig. 1. We explain our
use of Concept Induction for generating explanatory concepts, followed by our
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utilization of CLIP-Dissect and GPT-4 for the same. We describe our two eval-
uation approaches in Section 3.

Concept Induction [19] is based on deductive reasoning over description log-
ics, i.e., over logics relevant to ontologies, knowledge graphs, and generally the
Semantic Web field [16,15] including the W3C OWL standard [30]. Concept In-
duction has already been shown, in other scenarios, to be capable of producing
labels that are meaningful for humans inspecting the data [41]. A Concept In-
duction system accepts three inputs: (1) a set of positive examples P, (2) a set of
negative examples N, and (3) a knowledge base (or ontology) K, all expressed
as description logic theories, and all examples * € P U N occur as individu-
als (constants) in K. It returns description logic class expressions E such that
K E E(p) for all p e P and K [~ E(q) for all ¢ € N. If no such class expressions
exist, then it returns approximations for E together with a number of accuracy
measures.

For scalability reasons, we use the heuristic Concept Induction system ECII
[31] together with a background knowledge base that consists only of a hier-
archy of approximately 2 million classes, curated from the Wikipedia concept
hierarchy and presented in [32]. We use coverage as accuracy measure, defined
as coverage(F) = %, where Zy = {pe P | K E E(p)}, Zo ={n € N |
K £ E(n)}, and P, N, K as above.

For our setting, positive and negative example sets contain images from
ADE20K, i.e., we include the images in the background knowledge by linking
them to the class hierarchy. For this, we use the object annotations available for
the ADE20K images, but only part of the annotations for simplicity and scala-
bility. More precisely, we only use the information that certain objects (such as
windows) occur in certain images, and we do not make use of any of the richer
annotations such as those related to segmentation.* All objects from all images
are then mapped to classes in the class hierarchy using the Levenshtein string
similarity metric [20] with edit distance 0. Mapping is in fact automated using
the “combine ontologies” function of ECII.

The general idea for generating label hypotheses using Concept Induction is
as follows: given a hidden neuron, P is a set of inputs (i.e., in this case, images) to
the deep learning system that activate the neuron, and NV is a set of inputs that
do not activate the neuron (where P and N are the sets of positive and negative
examples, respectively). As mentioned above, inputs are annotated with classes
from the background knowledge for Concept Induction, but these annotations
and the background knowledge are not part of the input to the deep learning
system. ECII generates a label hypothesis® for the given neuron on inputs P, N,
and the background knowledge.

4 In principle, complex annotations in the form of sets of OWL axioms could of course
be used, if a Concept Induction system is used that can deal with them, such as
DL-Learner [19]. However DL-Learner does not quite scale to our size of background
knowledge and task [33].

5 In fact, it generates several, ranked, but we use only the highest ranked one for now.
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Fig. 2: Example of images that were used for generating and confirming the label
hypothesis for neuron 1.

We first feed 1,370 ADE20K images to our trained Resnet50V2 and retrieve
the activations of the dense layer. We chose to look at the dense layer because
previous studies indicate [26] that earlier layers of a CNN respond to low level
features such as lines, stripes, textures, colors, while layers near the final layer
respond to higher-level features such as face, box, road, etc. The higher-level
features align better with the nature of our background knowledge. The dense
layer consists of 64 neurons, and we analyze each separately. Activation patterns
involving more than one neuron are likely also informative in the sense that
information may be distributed among several neurons, but this will be part of
future investigations.

For each neuron, we calculate the maximum activation value across all im-
ages. We then take the positive example set P to consist of all images that
activate the neuron with at least 80% of the maximum activation value, and the
negative example set N to consist of all images that activate the neuron with
at most 20% of the maximum activation value (or do not activate it at all).
The highest scoring response of running ECII on these sets, together with the
background knowledge described above, is shown in Table 1 for each neuron,
together with the coverage of the ECII response. For each neuron, we call its
corresponding label the target label, e.g., neuron 0 has target label “building.”
Note that some target labels consist of two concepts, e.g., “footboard, chain”
for neuron 49 — this occurs if the corresponding ECII response carries two class
expressions joined by a logical conjunction, i.e., in this example “footboard M
chain” (as description logic expression) or footboard(x) A chain(z) expressed in
first-order predicate logic.

We give an example, depicted in Figure 2, for neuron 1. The green and
red boxed images show positive and negative examples for neuron 1. Concept
Induction yields ”cross_walk” as target label. The example is continued below.

CLIP-Dissect [25]is a zero-shot Explainable AT method that associates high-
level concepts with individual neurons in a designated layer. It utilizes the pre-
trained multimodal model CLIP [28] to project a set of concepts and a set of
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images into shared embedding space. Using Weighted Pointwise Mutual Infor-
mation, it assesses the similarities between concepts and images in the hidden
layer activation space to assign a concept to a neuron.

First, CLIP-Dissect uses a set of the most common 20,000 English vocabu-
lary words as concepts. Then, we collect activations from our ResNet50v2 trained
model for the ADE20K test images. This results in a matrix of dimensions (Num-
ber of Images x 64), where each row in the matrix represents an image through
its 64 hidden neuron activation values. With these two sets of input, CLIP-
Dissect assigns a label to each neuron such that the neuron is most activated
when the corresponding concept is present in the image. This yields 22 unique
concepts for the 64 neurons, with duplicate concepts for several neurons.

GPT-4 We leverage GPT-4’s ability in generating concepts to distinguish be-
tween different image classes [24]. We use the same positive (P) and negative
(N) example sets as for the Concept Induction approach, with some minor ad-
justments: while for Concept Induction, the negative example set (N) includes
all images that activate the neuron with at most 20% of the maximum activation
value, here we select only one image per class of images for each neuron to create
the negative example set (N) due to GPT-4’s input constraints.

The annotations of these images are passed to GPT-4 using prompts to iden-
tify concepts present in P but such that they are absent in N. We obtain a list
of 3 concepts per neuron (wherein, 1 concept per class is randomly selected for
evaluation) using the following zero-shot prompt: Generate the top three classes
of objects or general scenario that better represent what images in the positive
set (P) have but the images in the negative set (N ) do not.

We acknowledge the influence of parameters such as: Temperature (set to 0)
and Cumulative Probability Threshold (top_p, set to 1) in the output diversity of
GPT-4. More detailed information regarding the experimental setup and prompt
can be found in [4].

3 Evaluation

Confirming Label Hypotheses The three approaches described above pro-
duce label hypotheses for all investigated neurons — hypotheses that we will
confirm or reject by testing the labels with new images. We use each of the
target labels to search Google Images with the labels as keywords (requiring
responses to be returns for both keywords if the label is a conjunction of classes,
for Concept Induction). We call each such image a target image for the corre-
sponding label or neuron. We use Imageye® to automatically retrieve the images,
collecting up to 200 images that appear first in the Google Images search results,
filtering for images in JPEG format and with a minimum size of 224x224 pixels
(conforming to the size and format of ADE20K images).

5 https://chrome.google.com/webstore/detail/image-downloader-imageye/
agionbommeaifngbhincahgmoflcikhm
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Table 1: Selected representative data from all three approaches as discussed
throughout the text (the full version can be found in Appendix A). Images:
Number of images used per label. Target %: Percentage of target images ac-
tivating the neuron. Non-Target %: The same, but for all other images. Bold
denotes neurons whose labels are considered confirmed.

Concept Induction

Neuron Obtained Label(s) Images Coverage Target % Non-Target %

0 building 164 0.997 89.024 72.328
1 cross_walk 186 0.994 88.710 28.923
3 night_table 157 0.987 90.446 56.714
6 dishcloth, toaster 106 0.999 16.038 39.078
11 river_water 157 0.995 31.847 22.309
CLIP-Dissect
0 restaurants 140 55.000 59.295
3 dresser 171 95.322 66.199
6 dining 153 7.190 50.195
7 bathroom 153 93.333 44.113
11 highway 153 14.063 25.153
GPT-4
0 Urban Landscape 176 54.545 59.078
1 Street Scene 164 92.073 29.884
3 Bedroom 165 97.576 62.967
8 Bathroom 164 98.780 47.897
12 Indoor Home Setting 164 62.805 47.205

For each retrieval label, we use 80% of the obtained images, reserving the
remaining 20% for the statistical evaluation described later in the section. The
number of images used in the hypothesis confirmation step, for each label, is
given in the tables. These images are fed to the network to check (a) whether
the target neuron (with the retrieval label as target label) activates, and (b)
whether any other neurons activate. The Target % column of Tables 1 show the
percentage of the target images that activate each neuron.

Returning to our example neuron 1 in the Concept Induction case (Fig. 2),
88.710% of the images retrieved with the label “cross_walk” activate it. However,
this neuron activates only for 28.923% (indicated in the Non-Target % column)
of images retrieved using all other labels excluding “cross_walk.”

We define a target label for a neuron to be confirmed if it activates for
> 80% of its target images regardless of how much or how often it activates for
non-target images. The cut-offs for neuron activation and label hypothesis con-
firmation are chosen to ensure strong association and responsiveness to images
retrieved under the target label, but 80% is somewhat arbitrary and could be
chosen differently. For our example neuron 1, we consider the label “cross_walk”
confirmed for neuron 1 since 88.710 > &0.

We obtain 19, 5, and 14 (distinct) confirmed concepts from Concept In-
duction, CLIP-Dissect, and GPT-4, respectively; see Table 2 and Appendix A.2.
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Statistical Evaluation After generating the confirmed labels (as above), we
evaluate the node labeling using the remaining images from those retrieved from
Google Images as described earlier. Table 2 shows the results, omitting neurons
that were not activated by any image, i.e., their maximum activation was 0.

We consider each neuron-label pair (rows in Table 2) to be a hypothesis,
e.g., for neuron 1, from Concept Induction the hypothesis is that it activates
more strongly for images retrieved using the keyword “cross_walk” than for im-
ages retrieved using other keywords. The corresponding null hypothesis is that
activation values are not different. Table 2 shows partial results, from Concept
Induction we get 20 hypotheses to test, corresponding to the 20 neurons with con-
firmed labels (recall that a double label such as neuron 16’s “mountain, bushes”
is treated as one label consisting of the conjunction of the two keywords). For
CLIP-Dissect, we get 8 hypotheses to test, reflecting 8 confirmed labels. GPT-4
yields 27 hypotheses, representing 27 confirmed labels. Full details of Table 2
are in the Appendix A.2.

There is no reason to assume that activation values would follow a normal
distribution, or that the preconditions of the central limit theorem would be
satisfied. We therefore base our statistical assessment on the Mann-Whitney U
test [22] which is a non-parametric test that does not require a normal distribu-
tion. Essentially, by comparing the ranks of the observations in the two groups,
the test allows us to determine if there is a statistically significant difference in
the activation percentages between the target and non-target labels.

The resulting z-scores and p-values are shown in Table 2 and are further
discussed in Section 4. For our running example (neuron 1), we analyze the
remaining 47 target images (20% of the images retrieved during the label hy-
pothesis confirmation step). Of these, 43 (91.49%) activate the neuron with a
mean and median activation of 4.17 and 4.13, respectively. Of the remaining
(non-target) images in the evaluation (the sum of the image column in Table 2
minus 47), only 28.94% activate neuron 1 for a mean of 0.67 and a median of
0.00. The Mann-Whitney U test yields a z-score of -8.92 and p < 0.00001. The
negative z-score indicates that the activation values for non-target images are
indeed lower than for the target images, rejecting the null hypothesis.

Concept Activation Analysis We employ Concept Activation [17,7], a con-
cept-based explainable AT technique which works with a pre-defined set of con-
cepts. It explains a pre-trained model by measuring the presence of concepts
in hidden-layer activations of a given image for a particular layer. We evaluate
the label hypotheses obtained from all three methods using Concept Activation
Analysis. Note that we do not restrict this analysis to only confirmed concepts,
as the Concept Activation Analysis approach has not been developed with such
a confirmation step as part of it.

For each concept, a set of images are collected using Imageye (exactly as
described above) and a concept classifier (Support Vector Machine (SVM)) is
trained. The dataset given to the concept classifier requires some pre-processing;:
(a) The dataset for each concept classifier consists of images that exhibit the pres-
ence of the concept (label=1) and images where the concept is absent (label=0),
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Table 2: Statistical Evaluation details for all three approaches(full version
can be found in Appendix A.2). Images: Number of images.# Activations:
(targ(et)): Percentage of target images activating the neuron;(non-t):Same for
all other images used in the evaluation. Mean/Median (targ(et)/non-t(arget)):
Mean/median activation value for target and non-target images, respectively.

Concept Induction

Neuron Label(s) Tmages # Activations (%) Mean Median z-score  p-value
targ non-t | targ mnon-t | targ non-t
0 building 42 80.95 73.40 | 2.08  1.81 | 2.00  1.50 -1.28 0.0995
1 cross_walk 47 91.49 28.94 | 4.17 0.67 | 4.13 0.00 -8.92  <.00001
18 slope 35 91.43 68.85 | 1.59 1.37 | 1.44 1.00 -2.03 0.0209
19 wardrobe, air_conditioning 28 89.29 65.81 | 2.30 1.28 | 2.30 0.84 -4.00 <.00001
48 road 42 100.00 7446 | 6.15  2.68 | 6.65  2.30 -7.78  <.00001
49 footboard, chain 32 84.38 66.41 | 2.63  1.67 | 230  1.17 -2.58 0.0049
CLIP-Dissect
3 dresser 43 93.02 64.61 | 2.59  1.42 | 2.62  0.68 5.01 <0.0001
7 bathroom 46 89.47 41.56 | 2.02 1.01 | 2.15 0.00 5.45 <0.0001
18 dining 36 94.87 76.82 | 3.01 1.85 | 3.11 1.44 4.52  <0.0001
GPT-4
1 Street Scene 42 90.50 30.40 | 3.80 0.70 | 4.20 0.00 -9.62  <0.0001
14 Living Room 41 78.00 67.50 | 1.40  1.30 | 1.20  0.90 -0.77 0.4413
17 Dining Room 40 97.50 45.90 | 220 0.60 | 2.50  0.00 -8.29  <0.0001
18 Outdoor Scenery 41 100.00 76.10 | 230  1.50 | 220  1.20 -3.96  <0.0001
30 Kitchen 43 86.00 38.60 | 2.60  0.80 | 2.70  0.00 =722 <0.0001
31 Urban Street Scene 41 80.50 65.70 | 1.80 1.30 | 1.70 0.90 -2.4 0.164

(b) as we are interested in validating the concepts in the hidden layer activation
space the dataset is passed through the ResNet50V2 pre-trained model. The
activation values of each image in the dense layer is saved.

The transformed dataset is split into train (80%) and test (20%) datasets.
Thereafter, an SVM classifier is trained using the train split. We have used both
linear (Concept Activation Vector, CAV) and non-linear (Concept Activation
Region, CAR) kernels to assess which decision boundary separates the pres-
ence/absence of a concept best. Subsequently, the test dataset is used to see to
what extent the concept classifier can classify the existence of concepts.

4 Results

We evaluate the concepts extracted by Concept Induction, CLIP-Dissect, and
GPT-4 on ADE20K Test dataset split from two different perspectives (Section 3):

i. For each neuron of the dense layer, we identify the concepts that activate
them the most (Statistical Evaluation).

ii. For each concept, we measure its degree of relevance across the entire
dense layer activation space (Concept Activation Analysis).

Our findings suggest that Concept Induction consistently performs well in
both sets of evaluations. From the statistical evaluation, it is evident that Con-
cept Induction achieves better performance over the other methods. In the Con-
cept Activation Analysis, quantitative measures reveal that Concept Induction
achieves comparable performance to CLIP-Dissect, with GPT-4 exhibiting the
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Table 3: Concept Accuracy in Hidden Layer Activation Space of selected Con-
cepts (the full version can be found in Appendix A.3) extracted using Concept
Induction, CLIP-Dissect, and GPT-4

Concept Induction

Concept Name CAR CAV

Train Acc. Test Acc. | Train Acc. Test Acc.
Air Conditioner 0.8994 0.8415 0.811 0.8659
Baseboard 0.875 0.8717 0.8846 0.9102
Body 0.9035 0.8857 0.8642 0.9

CLIP-Dissect
Bathroom 0.9700 0.9474 0.9400 0.9474
Bed 0.9587 0.9500 0.9437 0.9125
Bedroom 0.9167 0.9167 0.9137 0.9048
GPT-4

Bedroom 0.9851 0.9761 0.9660 0.9523
Bathroom 0.9176 0.9024 0.9068 0.8902
Bathroom Interior 0.9273 0.9146 0.9241 0.9268

lowest performance. Moreover, the Concept Induction approach demonstrates
several notable qualitative advantages over both CLIP-Dissect and GPT-4:

— CLIP-Dissect and GPT-4 are black-box models used as a concept extraction
method to explain a probing network. This approach to explainability is
itself not readily explainable. In contrast, Concept Induction, serving as a
concept extraction method, inherently offers explainability as it operates on
deductive reasoning principles.

— CLIP-Dissect relies on a common 20K English vocabulary as the pool of
concepts, whereas Concept Induction is supported by a carefully constructed
background knowledge (with about 2M concepts), affording greater control
over the pool of possible explanations through hierarchical relationships.

— While GPT-4/CLIP-Dissect emulate intuitive and rapid decision-making
processes, Concept Induction follows a systematic and logical decision-mak-
ing approach — thereby rendering our approach to be explainable by nature.

Table 2 shows that Concept Induction analysis with large-scale background
knowledge yields meaningful labels that stably explain neuron activation. Of
the 20 null hypotheses from Concept Induction, 19 are rejected at p < 0.05,
but most (all except neurons 0, 18 and 49) are rejected at much lower p-values.
Only neuron 0’s null hypothesis could not be rejected. With CLIP-Dissect, all
8 null hypotheses are rejected at p < 0.05, and with GPT-4, 25 out of 27 null
hypotheses are rejected at p < 0.05, with exceptions for neurons 14 and 31.
Excluding repeating concepts, Concept Induction yields 18 statistically validated
hypotheses, CLIP-Dissect yields 5, and GPT-4 yields 12.

Mann-Whitney U results show that, for most neurons listed in Tables 2 (with
p < 0.00001), activation values of target images are overwhelmingly higher than
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Method 90-100% | 80-89% | <80%
Concept Induction | 14 6 0
GPT-4 10 4 0
CLIP-Dissect 4 1 0

Table 4: Count of statistically confirmed Concepts from each method (Table 2) such
that their percentage of target activation is binned into 3 regions based on their degree
of relevance.

Method CAV CAR Count of Concepts
Mean Median SD | Mean Median SD | 90-100% 80-89% <80%
Concept Induction | 0.9154  0.9230 0.0449 | 0.9150  0.9310 0.0465 46 22 1
CLIP-Dissect 0.9160  0.9146 0.0389 | 0.9259  0.9293 0.0443 17 5 0
GPT-4 0.8757 0.8863 0.0817 | 0.8887 0.9024 0.0690 11 9 1

Table 5: Mean, Median, and Standard Deviation (SD) of Concept Activation Analysis
Test Accuracies, and Count of Concepts with their Concept Classifier Test Accuracies
binned into 3 regions — High (90-100%), Medium (80-89%), and Low (<80%) relevance

that of non-target images. The negative z-scores with high absolute values in-
formally indicate the same, as do the mean and median values. Neurons 16 and
49 of Concept Induction method in Table 2, for which the hypotheses also hold
but with p < 0.05 and p < 0.01, respectively, still exhibit statistically significant
higher activation values for target than for non-target images, but not over-
whelmingly so. This can also be informally seen from lower absolute values of
the z-scores, and from smaller differences between the means and the medians.

Although, solely based on the values of Mean Test Accuracy, CLIP-Dissect
demonstrates a slightly superior performance compared to Concept Induction,
and GPT-4 performs the least (in Table 5), we contend that the substantially
higher number of concepts generated by Concept Induction allows CLIP-Dissect
to achieve a marginally higher mean test accuracy. In the top 22 (equal to the
number of concepts generated by CLIP-Dissect) test accuracies of concepts ex-
tracted by Concept Induction, the Mean Test Accuracies are 0.9599 (CAV) and
0.9584 (CAR). In k-fold cross validation tests, all concepts in Concept Activa-
tion analysis achieve p < 0.05. Using Mann-Whitney U test, we ascertain that
CLIP-Dissect outperforms GPT-4 on CAR, and Concept Induction surpasses
GPT-4 on CAV, while Concept Induction and CLIP-Dissect show now statisti-
cally significant difference (see Table 7).

5 Discussion

From the statistical evaluation, based on the percentage of target activation and
from Concept Activation Analysis, based on the concepts’ test accuracies, we
categorize all confirmed concepts into three regions: high (90-100%), medium
(80-89%), and low (< 80%) relevance concepts. Tables 4 and 5 show that Con-
cept Induction produces a notably larger number of high-relevance concepts
compared to other methods. Table 2, shows 8 and 27 statistically confirmed con-
cepts from the CLIP-Dissect and GPT-4 method, respectively. However, upon



12 Dalal, Rayan, Barua, Vasserman, Sarker, Hitzler

closer examination, it becomes evident that some concepts are duplicated across
the tables.

Disregarding the duplicates, we have only 5 and 14 confirmed concepts, re-
spectively, as opposed to 18 from Concept Induction.

This difference is likely due to Concept Induction’s reliance on rich back-
ground knowledge, necessitating additional preprocessing but offering additional
value. While a candidate concept pool of 20K English vocabulary words or off-
the-shelf GPT-4 may not be universally effective, Concept Induction’s ability
to generate extensive, high-relevance concepts underscores the importance of
well-engineered background knowledge.

If an application does not require comprehensive concept-based explanations,
CLIP-Dissect/GPT-4 may serve as a useful solution, especially when time is lim-
ited. However, for detailed concept-based analysis, preparing background knowl-
edge and leveraging Concept Induction is crucial. For CLIP-Dissect/GPT-4, it is
unclear how to meticulously craft the pool of candidate concepts. By employing
a background knowledge base, it is possible to define a large pool of potential
explanations, tailored to the application scenario, with additional relationships
among concepts. Concept Induction facilitates deductive reasoning utilizing this
background knowledge, inherently offering transparency and flexibility in shap-
ing the candidate concept pool.

While it is important to investigate methods that assess the relevance of con-
cepts in hidden layer computations within a given candidate pool, it is equally,
if not more, vital to thoughtfully design this pool. Neglecting this aspect could
result in overlooking crucial concepts essential for gaining insights into hidden
layer computations. Our approach offers a way to integrate rich background
knowledge and extract meaningful concepts from it.

Our focus on dense layer activations, while providing valuable insights, rep-
resents only a part of what the deep representation encodes. The dense layer
likely relates to clear-cut concepts that separate output classes, aligning well
with our goal of identifying high-level, interpretable concepts. However, these
concepts are influenced by combinations of features from previous layers. This
limitation underscores the complex nature of deep neural networks, where con-
cepts identified at the dense layer result from hierarchical feature compositions
throughout the network. While our method offers meaningful insights into these
high-level concepts, it may not fully capture the nuanced feature interactions
in earlier layers. Nonetheless, focusing on the dense layer allows us to extract
concepts more directly relevant to the network’s final decision-making process,
balancing interpretability with the complexity of internal representations. Fu-
ture work could explore extending our method to analyze concept formation
across multiple layers, potentially revealing a more comprehensive picture of the
network’s decision-making process.

One drawback of utilizing Concept Induction (and GPT-4) is its dependency
on object annotations, which serve as data points in the background knowledge.
In contrast, CLIP-Dissect operates without the need for labels and can function
with any provided set of images.
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We view this as a trade-off that must be carefully considered based on the
application scenario. If the application is broad and does not demand a meticu-
lous design of candidate concepts, then employing approaches like CLIP-Dissect
can be advantageous. Conversely, for applications that are focused or specialized,
CLIP-Dissect may only provide broadly relevant concepts.

Our focus has been primarily on assessing the comparative effectiveness of
Concept Induction within the confines of Convolutional Neural Network archi-
tecture using ADE20K Image data. Nevertheless, it is imperative to investigate
its suitability across different architectures and with diverse datasets. Given the
model-agnostic nature of our approach, our results suggest its potential applica-
bility across a range of neural network architectures, datasets, and modalities.
While we utilized a Wikipedia Concept Hierarchy comprising 2 million concepts,
it would be intriguing to observe the outcomes of our approach when powered
by a domain-specific Knowledge Graph in specialized domains such as Medical
Diagnosis.

6 Conclusion

Concept Induction on background knowledge results in meaningful labeling of
hidden neuron activations, confirmed by statistical analysis. This enables us to
identify concepts that trigger pronounced responses from neurons, thus ” explain-
ing” neuron activations. Additionally, Concept Activation Analysis measures the
relevance of each concept across the dense layer activation space. This combined
approach provides a comprehensive understanding of hidden layer computations.
To our knowledge, this approach, particularly the use of large-scale background
knowledge, is novel, allowing for diverse label categories. Our research compares
the performance of approaches like CLIP-Dissect and GPT-4, demonstrating
that Concept Induction has an edge in our setting where labeled data is avail-
able. However, trade-offs between methods are acknowledged (Section 5). Over-
all, our line of work aims for comprehensive hidden layer analysis in deep learning
systems, facilitating interpretation of activations as implicit input features, thus
explaining system input-output behavior.
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A Appendices

A.1 Related work

Efforts to demystify deep learning [14,2,23] are underway. Explainable methods
can be categorized based on understanding input data e.g., feature summariz-
ing [35,29] or the model’s internal representation e.g., node summarizing [45,5].
These methods further classify into model-specific [35] or model-agnostic [29]
approaches. Some methods rely on human interpretation of explanatory data,
such as counterfactual questions [40].

Model-agnostic feature attribution techniques, like LIME [29] and SHAP [21],
aim to clarify model predictions by assessing individual feature influence. How-
ever, they face challenges such as explanation instability [3] and susceptibility to
biased classifiers [38]. Pixel attribution, seeks to understand predictions by at-
tributing significance to individual pixels [37,34,39]. However, it has notable lim-
itations, especially with ReLU activation [36] and adversarial perturbations [18],
leading to interpretability inconsistencies.

[17,7] developed explanations using supervised learning and hand-picked
concepts. These methods utilize classifiers on target concepts, with weights serv-
ing as Concept Activation Vectors (CAVs). [12] employs image segmentation
and clustering for concept curation, though this approach may lose informa-
tion and only works with visible concepts. [44] proposed enhancements using
Non-negative Matrix Factorization to address information loss. Individual Con-
ditional Expectation (ICE) plots [13] and Partial Dependency Plots [11] offer
local and global perspectives on prediction-feature relationships but struggle
with complex feature interactions.

Previous studies suggest that hidden neurons may represent high-level con-
cepts [45,5], but these methods often require semantic segmentation [42] (resource-
intensive) or explicit concept annotations [17]. Some research have utilized Se-
mantic Web data for explaining deep learning models [6,10], and Concept Induc-
tion for providing explanations [33,27]. However, their focus was on analyzing
input-output behavior, generating explanations for the overall system.

CLIP-Dissect [25] represents work similar to ours, employing a different ap-
proach. They utilize the CLIP pre-trained model, employing zero-shot learning
to associate images with labels. Label-Free Concept Bottleneck Models [24],
building upon CLIP-Dissect, use GPT-4 [1] for concept set generation. How-
ever, CLIP-Dissect has limitations that may be challenging to overcome without
significant changes to the approach. These include limited accuracy in predict-
ing output labels based on concepts in the last hidden layer and difficulty in
transferring to other modalities or domain-specific applications. The Label-Free
approach inherits these limitations and may compromise explainability, as it uses
a concept derivation method that is not inherently explainable.
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A.2 Detailed results of Statistical Evaluation
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Table 6: Evaluation details for all three approaches as discussed in Section 3.
Images: Number of images used for evaluation. # Activations: (targ(et)): Per-
centage of target images activating the neuron;(non-t):Same for all other images
used in the evaluation. Mean/Median (targ(et)/non-t(arget)): Mean/median ac-

tivation value for target and non-target images, respectively.

Concept Induction

Neuron Label(s) Images # Activations (%) Mean Median z-score  p-value
targ non-t | targ non-t | targ non-t
0 building 42 80.95 73.40 | 2.08 1.81 | 2.00  1.50 -1.28 0.0995
1 cross_walk 47 91.49 28.94 | 4.17 0.67 | 4.13 0.00 -8.92  <.00001
3 night_table 40 100.00 55.71 | 2.52  1.05 | 2.50  0.35 -6.84  <.00001
8 shower_stall, cistern 35 100.00 54.40 | 5.26 1.35 | 5.34 0.32 -8.30  <.00001
16 mountain, bushes 27 100.00 2542 | 233 0.67 | 217 0.00 -6.72  <.00001
18 slope 35 91.43 68.85 | 1.59  1.37 | 1.44  1.00 -2.03 0.0209
19 wardrobe, air_conditioning 28 89.29 65.81 | 230 1.28 | 2.30 0.84 -4.00  <.00001
22 skyscraper 39 97.44 56.16 | 3.97 1.28 | 442 033 -7.74  <.00001
29 lid, soap_dispenser 33 100.00 80.47 | 4.38 2.14 | 4.15 1.74 -5.92  <.00001
30 teapot, saucepan 27 85.19 49.93 | 2.52 1.05 | 2.23 0.00 -4.28  <.00001
36 tap, crapper 23 91.30 70.78 | 3.24  1.75 | 2.82  1.29 -3.59  <.00001
41 open_fireplace, coffee_table 31 80.65 15.11 | 2.03  0.14 | 2.12  0.00 -7.15  <.00001
43 central reservation 40 97.50 85.42 | 7.43 3.71 | 8.08 3.60 -5.94  <.00001
48 road 42 100.00 74.46 | 6.15  2.68 | 6.65  2.30 -7.78  <.00001
49 footboard, chain 32 84.38 66.41 | 2.63 1.67 | 2.30 1.17 -2.58 0.0049
51 road, car 21 100.00 47.65 | 5.32 1.52 | 5.62 0.00 -6.03  <.00001
54 skyscraper 39 100.00 71.78 | 414  1.61 | 4.08 1.12 -7.60  <.00001
56 flusher, soap_dish 53 92.45 64.29 | 3.47 148 | 3.08  0.86 -6.47  <.00001
57 shower_stall, screen_door 34 97.06 32.31 | 2.60 0.61 | 2.53 0.00 -7.55 <.00001
63 edifice, skyscraper 45 88.89 48.38 | 241 0.83 | 2.36 0.00 -6.73  <.00001
CLIP-Dissect
3 dresser 43 93.02 64.61 | 2.59 1.42 | 2.62 0.68 5.01  <0.0001
7 bathroom 46 89.47 41.56 | 2.02  1.01 | 2.15  0.00 5.45  <0.0001
18 dining 36 94.87 76.82 | 3.01 1.85 | 3.11 1.44 4.52  <0.0001
33 bathroom 38 71.05 34.02 | 1.28  0.47 | 0.95  0.00 491  <0.0001
38 bathroom 38 84.21 31.71 | 1.79 0.54 | 1.83 0.00 7.14 <0.0001
43 highways 32 100.00 63.87 | 7.00 3.14 | 6.39 2.64 6.17  <0.0001
49 bedroom 40 97.50 55.77 | 348  1.63 | 343  0.63 6.05 <0.0001
50 bedroom 40 97.50 63.21 | 456  1.30 | 4.60 0.66 8.70  <0.0001
GPT-4
1 Street Scene 42 90.50 30.40 | 3.80  0.70 | 420  0.00 -9.62  <0.0001
3 Bedroom 42 97.60 63.40 | 4.70  1.20 | 490  0.70 -9.05  <0.0001
6 Kitchen 43 83.70 52.00 | 2.40 1.00 | 2.00 0.10 -5.06 <0.0001
8 Bathroom 41 100.00 44.10 | 410  1.00 | 4.10  0.00 -9.57  <0.0001
14 Living Room 41 78.00 67.50 | 1.40  1.30 | 1.20  0.90 -0.77 0.4413
17 Dining Room 40 97.50 45.90 | 220  0.60 | 2.50  0.00 -8.29  <0.0001
18 Outdoor Scenery 41 100.00 76.10 | 2.30 1.50 | 2.20 1.20 -3.96  <0.0001
22 Street Scene 42 90.50 50.10 | 3.00  1.40 | 3.30  0.00 -5.95  <0.0001
23 Street Scene 42 85.70 20.70 | 2.40 0.30 | 2.10 0.00 | -10.83 <0.0001
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Neuron Label(s) Tmages # Activations (%) Mean Median z-score  p-value
targ non-t | targ non-t | targ non-t
29 Bathroom 41 90.20 68.40 | 2.60 1.50 | 2.40 1.00 -4.05 <0.0001
30 Kitchen 43 86.00 38.60 | 2.60 0.80 | 2.70  0.00 -7.22 <0.0001
31 Urban Street Scene 41 80.50 65.70 | 1.80 1.30 | 1.70 0.90 -24 0.164
36 Bathroom 41 100.00 61.30 | 3.10 1.20 | 2.80 0.60 -7.48 <0.0001
38 Living Room 41 92.70 54.30 | 2.00 1.00 | 2.20 0.30 -5.53  <0.0001
39 Bicycle 39 84.60 47.40 | 2.10 0.90 | 2.40 0.00 -5.64 <0.0001
41 Living Room 41 97.60 42.00 | 2.60  0.60 | 2.30  0.00 -9.31  <0.0001
43 Outdoor Urban Scene 41 92.70 56.30 | 4.10  2.40 | 4.30 1.00 -4.42  <0.0001
44 Kitchen Scene 42 81.00 43.40 | 2.30 1.00 | 2.10 0.00 -5.43  <0.0001
48 Urban Street Scene 41 100.00 52.60 | 4.90 2.30 | 4.80 0.40 -6.03  <0.0001
49 Bedroom 42 95.20 35.00 | 3.80 0.70 | 4.00 0.00 | -10.31 <0.0001
50 Living Room 41 97.60 63.90 | 3.00 1.20 | 2.60  0.60 -6.78  <0.0001
51 Street Scene 42 95.20 4290 | 5.70  1.50 | 6.10  0.00 -9.05 <0.0001
56 Toilet Brush 42 97.60 34.60 | 3.60  0.70 | 3.60  0.00 | -10.48 <0.0001
57 Bathroom Interior 41 92.70 40.50 | 3.00 0.80 | 2.90 0.00 -8.35 <0.0001
59 Urban Street Scene 41 82.90 26.30 | 2.70  0.50 | 2.50  0.00 -9.06 <0.0001
62 Dining Room 40 90.00 43.90 | 3.30 0.80 | 3.70 0.00 -8.64 <0.0001
63 Cityscape 39 97.40 48.50 | 2.80 0.70 | 2.40 0.00 -8.76  <0.0001

A.3 Detailed results of Concept Activation Analysis

Table 7: Mann-Whitney U Test results on Concept Activation Analysis Test
Accuracies of Concept Induction, CLIP-Dissect, and GPT-4

Method CAV CAR
z-score p-value | z-score p-value
Concept Induction x CLIP-Dissect | 0.1252  0.9004 | -0.8717  0.3834
CLIP-Dissect x GPT-4 1.7494 0.0801 | 1.9680 0.0488
Concept Induction x GPT-4 2.1560 0.0308 1.7792  0.0751
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Table 8: Concept Accuracy in Hidden Layer Activation Space of Concepts ex-
tracted using Concept Induction.

Concept Name CAR CAV

Train Acc. Test Acc. | Train Acc. Test Acc.
Air Conditioner 0.8994 0.8415 0.811 0.8659
Baseboard 0.875 0.8717 0.8846 0.9102
Body 0.9035 0.8857 0.8642 0.9
Building 0.9085 0.9404 0.8262 0.8690
Bushes 0.9150 0.9487 0.9477 0.9743
Car 0.9464 0.9571 0.925 0.9429
Casserole 0.9458 0.9375 0.9808 0.975
Central Reservation 0.8694 0.9 0.8917 0.9
Chain 0.9556 0.9677 0.9637 0.9677
Cistern 0.8734 0.8375 0.8449 0.8875
Coffee Table 0.9047 0.9523 0.8988 0.9166
Crapper 0.8516 0.8043 0.8571 0.8695
Cross Walk 0.9166 0.9468 0.9247 0.9361
Dishcloth 0.9055 0.9375 0.9685 0.9531
Dish Rack 0.9375 0.9583 0.9843 0.9375
Dishrag 0.8603 0.9285 0.9144 0.9464
Doorcase 0.8936 0.8611 0.8581 0.8194
Edifice 0.9487 0.9642 0.9548 0.9523
Fire Hydrant 0.9171 0.9625 0.9171 0.925
Fire Escape 0.8950 0.9146 0.9104 0.8902
Flooring 0.8841 0.9166 0.8871 0.9047
Flusher 0.8722 0.8285 0.9014 0.9285
Fluorescent Tube 0.9006 0.9625 0.9358 0.9125
Footboard 0.9268 0.9519 0.9585 0.9423
Go Cart 0.9378 0.9512 0.9254 0.9390
Jar 0.9059 0.9333 0.9572 0.9666
Left Arm 0.8549 0.8536 0.8858 0.8658
Left Foot 0.8734 0.8658 0.8703 0.8536
Letter Box 0.8901 0.8636 0.875 0.9242
Lid 0.8622 0.9047 0.8712 0.8809
Manhole 0.9349 0.8953 0.9349 0.9302
Mountain 0.9426 0.95 0.9745 0.9625
Mouth 0.8963 0.9268 0.9481 0.9512
Night Table 0.8917 0.875 0.9235 0.8875
Nuts 0.9223 0.9134 0.9417 0.9230
Open Fireplace 0.9129 0.9222 0.9101 0.9333
Ornament 0.8910 0.9375 0.9198 0.9625
Paper Towels 0.9021 0.9166 0.9239 0.9166
Pillar 0.8372 0.8837 0.7732 0.8372
Pipage 0.84239 0.7826 0.7826 0.7391
Plank 0.8719 0.9523 0.9146 0.9047
Posters 0.8806 0.9230 0.8806 0.9230
Pylon 0.8397 0.8125 0.8205 0.8375
River 0.9430 0.925 0.9399 0.925
River Water 0.9554 0.9375 0.9617 0.9375
Road 0.9221 0.9642 0.9461 0.9404
Rocker 0.8953 0.9545 0.9457 0.8939
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Concept Name CAR CAV

Train Acc. Test Acc. | Train Acc. Test Acc.
Rocking Horse 0.9173 0.9310 0.9347 0.9655
Saucepan 0.9561 0.9827 1 0.9827
Screen Door 0.9076 0.9375 0.9235 0.925
Sculpture 0.8242 0.8333 0.8788 0.8571
Shower Stall 0.9409 0.9722 0.9652 0.9583
Sideboard 0.91 0.94 0.965 0.92
Side Rail 0.9054 0.9459 0.8986 0.9054
Skyscraper 0.9455 0.9743 0.9615 0.9743
Slipper 0.9262 0.9456 0.9617 0.9565
Slope 0.8705 0.8714 0.9208 0.8857
Soap Dish 0.8733 0.8589 0.8474 0.8589
Soap Dispenser 0.88 0.9375 0.916 0.9531
Spatula 0.9017 0.9431 0.9219 0.9204
Stem 0.8834 0.8676 0.8383 0.8382
Stretcher 0.89375 0.9375 0.9312 0.9375
Tank Lid 0.8947 0.8846 0.8848 0.8717
Tap 0.8198 0.8536 0.8354 0.8902
Teapot 0.9365 0.9411 0.9552 0.9779
Toaster 0.927 0.9714 0.9197 0.9736
Toothbrush 0.9198 0.9125 0.9198 0.9
Utensils Canister 0.9262 0.925 0.9487 0.9375
Wardrobe 0.9375 0.95 0.9188 0.9125

Table 9: Concept Accuracy in Hidden Layer Activation Space of Concepts ex-
tracted using CLIP-Dissect.

Concept Name CAR CAV

Train Acc. Test Acc. | Train Acc. Test Acc.
Bathroom 0.9700 0.9474 0.9400 0.9474
Bed 0.9587 0.9500 0.9437 0.9125
Bedroom 0.9167 0.9167 0.9137 0.9048
Buildings 0.9321 0.9230 0.8990 0.8974
Dallas 0.9447 0.9318 0.9750 0.9545
Dining 0.9294 0.9125 0.8907 0.9000
Dresser 0.9762 0.9625 0.9650 0.9500
File 0.9837 0.9750 0.9681 0.9500
Furnished 0.8843 0.8875 0.8762 0.8625
Highways 0.9396 0.9375 0.9679 0.9531
Interstate 0.9293 0.9268 0.8593 0.8536
Kitchen 9848 0.9743 0.9590 0.9487
Legislature 0.9149 0.9000 0.9156 0.9000
Microwave 0.9803 0.9807 0.9873 0.9807
Mississauga 0.9041 0.9054 0.9467 0.9324
Municipal 0.8679 0.8461 0.9298 0.9102
Restaurants 0.9850 0.9722 0.9692 0.9583
Road 0.9362 0.9250 0.9387 0.9250
Room 0.8653 0.8125 0.8273 0.8250
Roundtable 0.9405 0.9473 0.9136 0.8947
Valencia 0.8735 0.8625 0.8781 0.875
Street 0.9830 0.9722 0.9347 0.9167
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Table 10: Concept Accuracy in Hidden Layer Activation Space of Concepts ex-
tracted using GPT-4.

Concept Name CAR CAV

Train Acc. Test Acc. | Train Acc.  Test Acc.
Bedroom 0.9851 0.9761 0.9660 0.9523
Bathroom 0.9176 0.9024 0.9068 0.8902
Bathroom Interior 0.9273 0.9146 0.9241 0.9268
Bicycle 0.9787 0.9615 0.9887 0.9871
Cityscape 0.9438 0.9358 0.9894 0.9743
Classroom 0.8981 0.8780 0.9012 0.8536
Dining Room 0.9256 0.9125 0.8942 0.8875
Eyeglasses 0.9813 0.9883 0.9883 0.9883
Home Interior 0.8515 0.8452 0.8363 0.8214
Indoor Home Decor 0.8428 0.8333 0.8418 0.8222
Indoor Home Setting 0.6713 0.6785 0.6890 0.6666
Kitchen 0.9122 0.9302 0.9122 0.9186
Kitchen Scene 0.8562 0.8571 0.8022 0.7976
Living Room 0.8963 0.8658 0.8658 0.8414
Outdoor Scenery 0.9135 0.9024 0.9054 0.9024
Outdoor Urban Scene 0.8343 0.8170 0.7650 0.7317
Street Scene 0.8819 0.8809 0.8568 0.8690
Toilet Brush 0.9815 0.9761 0.9727 0.9642
Urban Landscape 0.8665 0.8636 0.8922 0.8863
Urban Street Scene 0.9140 0.9024 0.8757 0.8658
Urban Transportation 0.8412 0.8414 0.8251 0.8414
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