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Abstract—This paper presents a novel approach that integrates
deep reinforcement learning (DRL) with the conventional virtual
synchronous generator (VSG) to address dual objectives of
microgrid (MG) control; frequency regulation and precise active
power sharing. MGs typically consist of multiple Inverter-Based-
Distributed-Generators (IBDGs) connected in parallel through
different line impedances. The conventional active power loop
(APL) of the VSG encounters significant steady-state frequency
errors as load increases/decreases during islanded operation. To
mitigate this issue, secondary-level controllers like proportional-
integral (PI) control are added to the APL to regulate the
frequency of IBDGs. However, PI control compromises power-
sharing capabilities when the impedance values of connecting
feeders for each IBDG are mismatched. To eliminate frequency
errors and achieve accurate power sharing concurrently, this
study adopts a DRL-based strategy. The agent collects state
information from each IBDG in the microgrid as input and
undergoes training using a reward function crafted to satisfy both
objectives simultaneously. The performance of the trained agent
is demonstrated in a two-inverter microgrid system designed
in MATLAB/SIMULINK and is compared against traditional
methods.

Index Terms—Active Power Sharing, Deep Reinforcement
Learning, Frequency Control, Inverter Based Distributed Gen-
erators, Microgrids, Twin Delayed DDPG, Virtual Synchronous
Generator.

I. INTRODUCTION

Microgrids are capable of operating independently from
the main grid, through the integration of renewable energy
resources (RESs) that are controlled via grid-forming inverter
schemes such as or virtual synchronous generator (VSG)
based controls. However, parallel connection of inverter-
based distributed resources (IBDGs) with mismatched feeder
impedances often leads to inaccurate active and/or reactive
power-sharing, challenging stable microgrid operation [1].

To achieve precise power sharing capabilities in a parallel
inverter MG, the classical droop control for both active and
reactive power control was presented in [2]. An enhanced
version of the control is presented in [3], wherein an adaptive
decentralized controller is developed for paralleled inverter-
based microgrids to address power-sharing errors and enhance
the damping characteristics of the active power loop (APL).
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However, it is widely recognized that conventional VSG-
based control suffers from significant steady-state frequency
errors and thus necessitates augmentation with a secondary-
level controller. In [4], a solution is proposed to simultane-
ously restore frequency and maintain accurate APS. While a
proportional-integral (PI) controller can eliminate frequency
errors, it often compromises the APS capability of inverter-
based distributed generators (IBDGs). To address this issue,
the authors introduced a compensation integral controller, aug-
mented with both frequency recovery and control. A different
approach was taken into consideration by [5], wherein the
control for frequency restoration and minimizing the active
power sharing error (APSE) involved the use of a nonlinear
feedback controller for each IBDG phase angle.

While the strategies mentioned effectively address fre-
quency regulation and accurate APS, they heavily rely on
precise mathematical models of the MG system, which are
often rigid, highly non-linear, and complex to develop [6]-
[8]. In recent years, the push for model-free methods for
designing grid-forming inverter controllers has seen rapid
growth among researchers. Most notably, the adoption of
model-free methods such as fuzzy logic-based controllers or
deep reinforcement learning (DRL) based approaches implies
that an intelligent control scheme for IBDG-dominated MGs
can be designed without a mathematical system model, or
complex estimation algorithms [9], [10]. DRL methods rely
on receiving necessary state information, taking appropriate
control actions, a receiving reward that evaluates the agents’
performance, and transitioning to a new state [11]. Through
numerous iterative episodes, the agent’s goal is to learn a
policy that maximizes its expected reward over time. Notably,
DRL-based solutions have been successful in MG-related
control tasks such as; the adaptive parameter tuning of VSG
control [12]-[14], frequency and voltage stabilization [15],
[16] and intelligent energy management systems for MGs [17],
[18]. Also, in our most recent work, a DRL-based solution
for achieving accurate reactive power sharing and voltage
regulation in parallel inverter MGs was discussed in [19].

To this end, the major contribution of this paper involves the
fusion of a DRL-based algorithm with the APL of a VSG to
simultaneously eliminate the frequency of steady-state errors
and minimize the APSE in a model-free manner. To the best
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Fig. 1. Architecture of a Conventional Virtual Synchronous Generator
Controlled Inverter

of the author’s knowledge, this is the first time this strategy is
being adopted for addressing this problem in MGs. The rest
of this paper is summarized as follows: section II discusses
the conventional VSG control and highlights the challenges
it suffers from as regards accurate active power sharing and
frequency regulation. Section III presents the proposed TD3
based control strategy and the reward formulation. Section
IV evaluates and compares the proposed controller with the
classical methods and section V concludes this paper.

II. SYSTEM DESCRIPTION

The conventional VSG control design for grid-tied inverters
is shown in Fig. 1. The VSG three-phase output current
(I,,,,) and voltage (V,,,.) are sensed, converted to the dq0
reference frame, and used in computing the output active
(P,yt) and reactive (@) power of the IBDG. The APL aims
to emulate the synchronous generator (SG) swing equation,
enabling the inverter to provide virtual inertia for enhanced
frequency response.

Pref — Kp(w —wg) — D(w —wy) — Poyr = Jww (1)

Where P,.r, J, D, and K, are the reference active power of
the VSG, the virtual inertia, virtual damping factor, and active
power droop coefficient respectively. w and w, represent the
speed of the virtual rotor and the reference angular speed.

The control output of the APL is the inverter power angle
(9) which can be computed as:

5:/(w—wg)dt @)

For reactive power control, the RPL consists of both a droop
control loop and an integral control loop. The droop control
generates the reference reactive power (Q,..) as shown in (3).

- Ud) + Qnom (3)

In eq. (3), @nom> Viom. V4, and K are the nominal reactive
power, nominal voltage, output voltage, and voltage droop gain
respectively.

Q'r‘ef = kq(vnom
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The output of the droop control loop is fed through an
integral controller as shown in eq. (4) to generate inverter
voltage reference (F). For clarity, the terms K;, and AQ
represent the reactive power integral gain, and the reactive
power error (AQ = |Qnom - Qoutl)

Since this paper focuses on the VSG-APL, further discus-
sions on the RPL are not provided. In reality, MGs consist
of multiple VSGs in parallel, and when operated in islanded
mode, they form the MGs’ voltage and frequency. The con-
ventional VSG active power loop achieves precise sharing in
parallel-connected VSGs but exhibits steady-state frequency
error during load fluctuations, which could be detrimental to
the MG stability. To mitigate this, secondary-level control,
often in the form of PI control, is introduced for frequency
restoration. However, this control results in inaccurate active
power sharing particularly when the feeder impedance con-
necting each IBDG is not similar. While [4] and [5] proposed
viable solutions, the methods presented are highly reliant on
an accurate mathematical model of the MG and estimation
techniques. However, achieving an accurate mathematical sys-
tem model often requires linearizing a highly nonlinear system
model, which leads to a loss in hidden dynamics and is often
not easily adaptable to system configuration changes.

III. PROPOSED CONTROL STRATEGY

To simultaneously regulate each VSG frequency while
achieving accurate active power sharing in a model-free
manner, this research proposes the fusion of a DRL agent
trained with a reward function that is designed to satisfy both
objectives. Details regarding the design and implementation of
the DRL method are presented below.

A. TD3 Algorithm

The twin delayed deep deterministic policy gradient (TD3)
algorithm is a DRL algorithm tailored for continuous control
tasks. It utilizes key features such as delayed actor-network
updates, twin critic-networks for overcoming over-estimation
bias, and target policy smoothing regularization for achieving
stable learning [20].

As shown in Fig. 2, TD3 utilizes six neural networks
consisting of an actor-network (parameterized by ¢) for action
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selection and a corresponding target actor-network (parameter-
ized by ¢’). Additionally, two twin critic-networks (parameter-
ized by 6, and 6,) estimate Q-values, complemented by target
twin critic-networks (parameterized by 67 and 65) for training
stability.

Parameters are randomly initialized at the start of training,
and a finite replay buffer stores and replays past experiences.
The actor-network aims at learning a policy m(s;|a;) which
maximizes the expected reward when the agent takes action
(ay) in states (sy;). Twin critic-networks evaluate the action
value function Q;(s¢,a¢|0;), providing crucial feedback to
guide the actor-network learning, enhancing decision-making
and policy improvement [12], [19].

The target networks are frozen duplicates of the primary
networks, serving as continuous reference points for training
stability. In DRL, achieving convergence involves multiple
gradient updates applied to both the actor and critic-network
weights and target networks mitigate shifting target values by
providing consistent reference points. This stability enhances
learning effectiveness, allowing the algorithm to explore a
broader range of actions. The output of the target-critic net-
works and the actual critic-network are compared and used to
compute the critic-network loss, which is required for updating
both critic-network weights.

On the other hand, the actor-network maps state inputs
to an estimated optimal policy. Its input layer matches the
environment’s state space dimensions. Two hidden layers
follow, leading to an output layer with dimensions matching
the action space. The output layer utilizes hyperbolic sigmoid
activation, scaled to ensure predicted actions fall within the
desired range.

B. State and Action

As stated earlier, DRL agents learn from interacting with
an environment by receiving state information, taking actions,
and obtaining a reward. In this work, the states (s;) and actions
(at) are given as;

St:[FiaFﬁPouthoutj] (5)
ay = [Prefm Prefj] (6)

Where, F;, I, Py, and Poutj are the frequencies and output
active power of the i;, and j;;, IBDGs in the MG respectively.
The predicted actions a; based on the current state s; are
applied to the environment causing the agent to transition
to a new state s,y;. The consequence of taking action a; in
state s; is a reward r;. This sequence of events represented
as S, a¢, T, Se41, forms a transition tuple that is saved in a
buffer B. The experiences stored in B are randomly sampled
in mini-batches and used for training the networks. As the
buffer has a finite capacity, older experiences are removed to
make room for newer experiences when it becomes full. This
mechanism ensures that the buffer retains recent experiences,
facilitating convergence during training.

C. Reward Function Design

The goal of any DRL agent is to find the optimal policy
that maximizes the expected cumulative reward. Therefore, a
good reward function must capture the problem description to

properly guide the agent learning. In this paper, the reward
function is split into three parts:

(1) Frequency regulation: Inspired by the understanding
that the traditional VSG control active power loop exhibits
characteristics similar to conventional conventional droop con-
trol, which is known for its considerable steady-state frequency
error, the subsequent reward has been formulated for the DRL
agent.

Rewardp = —k1lef| — ko / les|dt @)

Ineq. (7), lef| = |F;—Frey|, where ey, F;, and F..y represent
the absolute error of the frequency measurement, the frequency
of the 44, IBDG, and the reference frequency, respectively.
Terms k; and ko act as penalty factors, with k; penalizing
the agent for deviations beyond the frequency error threshold
(0.001) and k9 providing a fixed negative penalty to encourage
quick recovery toward the nominal value.

(2) Minimize APS Error: As discussed previously, when
the conventional PI controller is used for achieving frequency
regulation, the active power sharing is ruined. To address this
issue, the following reward function is formulated.

Rewardp — —ksle,| — ks / (e, )t ®)

In eq. (8), |e,| denotes the error between the expected output
power P,., and the actual output power P, for each IBDG.
The penalty terms are represented by k3 and k4. Specifically,
lep| = Pewp — Pout, where P.,,, is defined as.

IBDG;

rating (9)

P, exp — B pee * S
MGcapacity

Where Py, SéfngGi, and SmGeapacity represent the total active
power demand at the point of common coupling (PCC),
the capacity rating of the considered IBDG, and the total
capacity rating of all IBDGs in the microgrid. The penalty
gain ks imposes a substantial negative reward when the term
ep exceeds the error threshold; otherwise, it applies a small
negative penalty, encouraging the agent to explore policies
minimizing active power-sharing errors. The term k4 remains
constant, motivating the agent to swiftly reduce the error
between the measured and expected active power.

(3) IBDG Capacity Ratio Constraint: To guarantee that
IBDGs make equitable contributions relative to their ratings in
injecting active power, regardless of line impedance variations,
the following reward term has been introduced

RewardigpGRratio = —k5IBDGrago (10)
where the term IBDGq,, is expressed as:
P .
IBDGratio = [BDGi (1 1)

> =2 PiBDG

The term k5 is the penalty associated with the IBDGgyio-
Therefore, if the reactive power contribution of any IBDG
in the network is below or above the expected contribution
boundary, then k5 is a large negative reward; otherwise, k5 is
a small negative reward.
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TABLE I
NETWORK AND SYSTEM PARAMETERS

TD3 Network Parameters System Parameters and Reward Penalties
Network Parameter Value System Parameter Value System Parameter Value
Actor Learning Rate 1x 10 4 Microgrid Capacity 6000 KVA Big Penalty [k, ko, kgl [5000, 5000, 500]
Twin Critics Learning Rate 2 X 1074 Inverter Nominal Voltage 13.8 kV Small Penalty [kl s k2 s k:4] [0.05, 0.05, 0.05]
. —3 - . . Rline = 6mQ
Target Learning Rate 5 X 10 Filter Resistance 1.9 mQ IBDG 1 Line Impedance Lipe = 40.35mH
Buffer Length 2 x 108 Filter Inductance 0.05 mH IBDG 2 Line Impedance Riipe = 0.1
L]ine = 40uH
[2, 64] State Path
Critic Net Size [2, 64] Action Path Microgrid Frequency 60 Hz Percentage Error Threshold 5%
[64, 32, 1] Common Path
Actor-Network Size [4, 128, 64, 1] Virtual Inertia 3.5 X 10_5 Virtual Damping 0.45
18DG 1 1= PCCBus 0 I I
9 {
J_—JG o 'm"ﬂ'ﬂm'rvr"”ﬂ'““”ﬂvmmwwrnwwrmm
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PZ ,Qz Fig. 4. Reward Graph for Trained Agent with Two Equal DGs

Fig. 3. Schematic of a Two Inverter Microgrid with Centralized DRL Agent

Based on eq. (7-10), the total cumulative reward received
by the agent at each time step is given as;

Reward; = Rewardp, + Rewardp, + Rewardigpgratio  (12)
Thus, the goal for the agent is to find the optimal control
strategy that maximizes eq. (12). Extra care should be taken
when selecting the penalty values as improper selection could
harm the agent’s learning and performance.

IV. RESULTS AND DISCUSSION

To train the TD3 agent, a two-inverter microgrid system as
shown in Fig. 3 is designed in MATLAB/SIMULINK. Therein,
Ry and R,, while X; and X5, are the equivalent resistance
and reactance per phase for both IBDG in the system. First,
the VSG-controlled inverters are operated using the classical
droop control and PI control methods to highlight their draw-
backs. Next, the trained DRL is applied to demonstrate its
effectiveness in regulating each IBDG frequency and achieving
precise active power sharing.

Fig. 4 and 5 show the training graph of the TD3 agent when
considering two equal and unequal IBDGs. As illustrated, the
agent is trained for 1500 episodes, during which it arrives at
the best policy that controls the inverters in a manner that
achieves the best reward in both cases. The total training time
is approximately 3 hours 30 minutes when using an ACER
Aspire Core-i7 2.90GHz laptop.

——Episodic Reward|
Average Reward

Rewards

1000 1500

Episode

Fig. 5. Reward Graph for Trained Agent with Two Unequal DGs

A. Evaluation of DRL Agent in a Two Equal Inverter MG

To analyze the performance of the proposed DRL-based
solution, two equally rated IBDGs are configured in an MG
according to the structure in Fig. 3. Fig. 6 presents a per-
formance comparison between the classical VSG-based APL
control, PI-VSG frequency control, and the proposed DRL-
VSG control. According to Fig. 6(a-i), (a-ii), and (a-iii), when
the conventional VSG-based control is utilized, the frequency
error increases as the active power load demand increases,
although the power-sharing capability is preserved with the
sharing error being less than the specified 5% threshold. Pro-
long increment of the frequency error could be detrimental to
the MG stability, violating the IEEE 1547 frequency standards,
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and result in load management strategies to be deployed to
prevent grid collapse.

To eliminate the frequency error, PI controllers are intro-
duced to the APL of the VSG. Fig. 6 (b-i), (b-ii), and (b-iii)
indicate the response of the parallel VSGs to load changes.
Therein, it is evident that the frequency of each IBDG is
restored to the nominal value despite the increment in the
active power load demand. However, significant APS error is
observed indicating that the load distribution across all active
IBDG in the network is not equal despite having the same
capacity.

Given the highlighted drawbacks of the conventional VSG-
based and PI-based control strategies, the trained DRL-based
VSG control is introduced to simultaneously achieve both
objectives. Fig. 6 (c-i),(c-ii), and (c-iii) show the DRL-based

VSGs response as regards frequency, active power response,
and percentage sharing error. As presented, despite the incre-
ments made towards the active power demand, the frequency
of both IBDGs is regulated to the nominal point, and the
demanded power is split equally between both IBDGs leading
to a significant reduction in the APSE.

B. Evaluation of DRL Agent in a Two Unequal Inverter MG

Most MGs consist of IBDGs with different capacity ratings,
and in this case study, a 2:1 (4000 KVA:2000 KVA) rating
is established between IBDG; and IBDGs. Fig. 7 shows the
comparison between the conventional VSG-APL control, PI-
VSG frequency control, and the proposed DRL-VSG control
for this case analysis.

Fig. 7(a-1), (a-ii), and (a-iii) illustrate the conventional VSG-
APL response as it relates to frequency response, dispatched
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active power, and percentage sharing error respectively. Again,
as illustrated, while this form of control successfully shares
the active power between both IBDGs precisely, it suffers
from incremental steady-state error in the frequency as the
load increases.

Similar to the previous case, a PI-frequency controller can
be integrated with the APL of each VSG controller to regulate
the IBDG frequency to nominal values. Fig. 7b shows the
IBDGs’ responses when this control is applied. As demon-
strated in Fig. 7(b-1), the frequency is regulated to the nominal
60Hz value throughout the applied load disturbance. However,
both Fig. 7(b-ii), and (b-iii) indicate inaccurate power sharing
between the IBDGs when using this control strategy.

Lastly, the DRL-based VSG control is utilized for con-
trolling both IBDG in the MG to achieve simultaneous fre-
quency regulation and accurate active power sharing. Fig. 7c
demonstrates the IBDG response when using the DRL-based
VSG control strategy. Fig. 7(c-i), (c-ii), and (c-iii) demonstrate
the performance of the proposed DRL as regards frequency
response, active power output, and percentage sharing error.
As shown, throughout the entire load sweeps, the proposed
DRL-based VSG successfully regulates the frequency to the
desired value, shares the active power accurately, and as a
consequence reduces the percentage sharing error below the
5% error threshold.

V. CONCLUSION

In this paper, a novel DRL control strategy for simultane-
ously regulating the frequency of parallel VSGs in an islanded
microgrid while minimizing their active power-sharing error
is presented. The proposed method reduces control design
complexity by eliminating the need for complex mathematical
modeling of the microgrid system. The proposed DRL-based
control performance is compared against the conventional
VSG control and a PI-based controller when considering a
two-inverter MG subjected to load change disturbances. The
results showcase the superiority of the proposed method in
overcoming the limitations of existing methods.
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