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Abstract—Parallel inverter microgrids (MGs) present a sig-
nificant challenge in the form of inverter-based distributed
generators (IBDGs) connected with varying line impedances,
potentially leading to substantial reactive power-sharing errors
(RPSE). This paper proposes the fusion of data-driven control
into the conventional virtual synchronous generator in a bid to
minimize the sharing error. First, all state variables associated
with each IBDG in the microgrid are sensed and used as input
data for a deep reinforcement learning (DRL) agent. Next, the
DRL agent, motivated by a unique reward function, is trained
to satisfy two objectives: (1) Ensure the output voltage of all
IBDGs in the system stays within a safe operating boundary, (2)
Ensure the RPSE for the IBDGs is minimized. The trained agent
is deployed in a simple IBDG microgrid and the performance
is evaluated under different system disturbances and compared
with the traditional control methods.

Index Terms—Reactive power sharing, Inverter Based Dis-
tributed Generator, Microgrid, Virtual Synchronous Generator,
Twin Delayed Deep Deterministic Policy Gradient

I. INTRODUCTION

Enewable energy sources, such as wind and solar power,

rely on power electronic interfaces to connect to the grid
and are thus known as inverter-based distributed generators
(IBDGs) [1], [2]. The control of Virtual Synchronous Gen-
erators (VSGs) offers a versatile interface for Inverter Based
Distributed Generators (IBDGs). In grid-connected mode, the
VSG control objective is to track active and reactive power
command references (PQ-mode). In islanded operation, the
VSG transitions into microgrid voltage and frequency regula-
tion mode (VF-mode) [3], [4].

Islanded microgrids commonly have multiple VSGs con-
nected in parallel. In this configuration, the objective is to
distribute the total load demand in a manner consistent with the
IBDGs’ base rating. For active power sharing, this expectation
is typically met successfully regardless of the line impedance
mismatch. However, for reactive power sharing, due to line
impedance mismatch, the conventional reactive-power droop
control mechanism suffers from poor reactive power sharing
[5].

To minimize the reactive power sharing error (RPSE) in
autonomous microgrids, two solutions are proposed in liter-
ature: communication and decentralized based strategies [6].
In terms of communication based strategies, [7] presented a
control strategy that minimizes the RPSE based on voltage
drop estimation for each IBDG connecting line impedance. An

adaptive virtual impedance strategy is presented in [8] which
requires (i) an offline calculation of the virtual impedance pa-
rameters which is stored in a 2-D table and (ii) the introduction
of a secondary level controller. While the effectiveness of this
approach is demonstrated, the design process is hectic and
complex. Other proposed communication based methods are
given in [9] and [10], but they are either highly reliant on
accurate mathematical modelling or complex control loops. A
favored approach is often the decentralized strategy. However,
decentralized strategies cause a reduction in RPSE accuracy in
comparison to the communication based strategies and rely on
an accurate mathematical model of the system. For example, in
[11] and [12] an enhanced droop control mechanism which in-
volves increasing the reactive power droop gain was proposed.
While the RPSE was successfully reduced, the increased droop
gain negatively impacts the voltage control performance.

One common denominator between the two categories dis-
cussed is the reliance on an accurate mathematical model
that describes the dynamics of the MG network. Thanks to
the advancements in deep reinforcement learning (DRL), the
requirement for a mathematical model can be relaxed; DRL
agents learn by interacting with its environment by receiving
state information, taking an action and obtaining a reward [13],
[14] and [15]. To this end, the main contribution of this work
involves the fusion of DRL with VSG control in a bid to both
minimize the RPSE and constrain the IBDGs voltage within
safe boundaries. To the best of the authors knowledge, this
approach has not be utilized in a manner presented in this
paper. The rest of the paper is summarized as follows: section
IT presents the system description, section III goes into detail
regarding the DRL and reward design, and section IV and V
presents the results and conclusion.

II. SYSTEM DESCRIPTION

The conventional VSG control design for grid-tied inverters
is shown in Fig. la. Therein, two distinct control loops are
shown: the active power loop (APL) and the reactive power
loop (RPL). The goal for the APL is to mimic the SG swing
equation such that the inverter is capable of providing virtual
inertia to enhance the frequency response. Similarly, to control
the flow of reactive power in the network, the RPL is designed
to mimic the excitation behavior of a SG by employing the
voltage droop control. To achieve both APL and RPL control,
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Centralized Single Agent Control for Multi-Inverter Microgrid

the output ABC' current and voltage of the inverter are sensed
and converted to the dq0 reference frame for ease of control.
The output active power (P,,;) and reactive power (Q,+) are
calculated in the dq0 frame as:

Pout
Qout

To control the flow of active power, the VSG adopts the
swing synchronous generator swing equation:

= Vodlod + /quioq (1)

/Uod/]:oq - /qu/]:od

Pref — Kp(w —wg) — D(w —wyg) — Pour = Jww  (2)
Where P,.cf, J, D and K, are the reference active power of
the VSG, the virtual inertia, virtual damping factor and active
power drooping respectively. w and w, represent the speed of
the virtual rotor and the reference angular speed.
From power theory, the output active power of the VSG is
expressed as
3EUsind

Pout =
2X.,

3)

With X, = Xjine + Xyizer being the effective reactance.
From (3), E is the inverter voltage magnitude which would
be computed by the reactive power loop, X, is the effective
reactance per phase and the load angle is represented by J.
The control output of the APL is § which can be computed
as:

5:/(w—wg)dt 4)

Since this paper mainly focuses on the enhancing the RPL,
further discussions regarding the APL are not provided. In
order to control the flow of reactive power, the droop control
mechanism is adopted for conventional VSG:

Deep
Reinforcement |
Learning Agent |

(b)

Conventional Reactive Power Droop Control (b)

1
EF=— [ AQdt 5
< [ a0 ©
Where AQ is the difference between the reference reactive
power @y and Qo With Q,..y expressed as

(6)

In (5)-(6), E represents the magnitude of the inverter
voltage, @,om is the nominal reactive power, K; denotes the
integral control gain, and K, represents the gain associated
with the () — V droop control. The error in voltage, denoted
as AV, is calculated by taking difference between the nominal
voltage vp0m and actual voltage vg and multiplying by K.
Next, the nominal reactive power Q0. is added to this result
to form @),.s. Subsequently, the error in the reactive power
AQ is computed by taking the difference between .y and
Qout- This error is then passed through an integral controller
to generate F. Both control outputs from the RPL and APL are
used to form the inverter three phase voltage and are passed
to the PWM for controlling the inverter.

This work focuses on RPL as it utilizes a droop-based
control which is susceptible to poor reactive power sharing.
This is because the output reactive power of an IBDG de-
pends not only on the droop gain but also on the effective
impedance between the IBDG and the point of common
coupling [16]. Therefore, in parallel inverter islanded MGs,
when the connecting impedance is uneven, significant RPSE
can be observed. To address this problem, multiple model-
based solutions have been proposed. However, they often
require accurate mathematical models to arrive at a good
controller that minimizes the RPSE. To reduce the reliance
on the model-based technique, a deep reinforcement learning
(DRL) strategy can be adopted as shown in Fig.1b. DRL agents

Qref = kq(lvnom - ’Ud) + Qnom
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learn by interacting with the MG environment via receiving
state information, taking action, and obtaining a reward. This
approach reduces the reliance on detailed mathematical model-
ing as the goal is for the agent to learn a policy that maximizes
its reward (minimizes RPSE).

The present solution involves using a single agent for a
closed MG network with mismatched impedance. The agent
receives an observation set from all IBDGs in the network and
generates the reactive power reference @,y for each IBDG.
This allows the agent to minimize the RPSE while regulating
their respective output voltages.

III. DATA-DRIVEN CONTROL OF PARALLEL INVERTER
MICROGRID

The TD3 (Twin Delayed DDPG) algorithm is a rein-
forcement learning (RL) algorithm designed for continuous
control tasks. TD3 addresses a limitation found in the critic
network of the DDPG (Deep Deterministic Policy Gradient)
algorithm, which tends to overestimate the value function. This
overestimation can result in suboptimal policies and unstable
training. To overcome this issue, TD3 incorporates several
key modifications. These include; using delayed actor network
updates, twin critic networks, and target policy smoothing
regularization.

1) Network Architecture: The TD3 algorithm employs a
network architecture illustrated in Fig. 2, comprising a total
of six neural networks. This includes an actor-network pa-
rameterized by ¢ for action selection and a corresponding
target actor-network parameterized by ¢’. Additionally, the
setup includes two twin critic networks parameterized by 6,
and 65, responsible for Q-value estimation, along with two
target twin critic networks parameterized by 67 and 6} to aid
in training stability.

At the beginning of the training process, the parameters of
these networks are randomly initialized. Alongside this, an
empty finite buffer is created to serve as a storage cache for
the agent. This buffer will be used to store and replay past
experiences, facilitating the learning process of the agent.

The objective of the actor-network in TD3 is to learn
the policy m(st|a:) that maximizes the expected reward. It
accomplishes this by selecting the most suitable action (a;) to
take in a given state (s¢). The actor-network aims to optimize
the policy to make decisions that lead to higher cumulative
rewards over time, ultimately improving the performance of
the agent in the RL task. The twin critic network in TD3
plays a crucial role in evaluating the action value function
Qi(8¢, a|0;). This function takes into account both the action
generated by the actor network and the state information
provided by the environment. By estimating the action value
function, the critic network provides valuable feedback on
the effectiveness and quality of the selected actions. This
evaluation helps guide the learning process of the actor-
network, enabling it to make more informed decisions and
improve its policy over time.

To bolster the training stability in TD3, target networks
are employed. These target networks are essentially frozen
duplicates of the primary networks, serving as steadfast ref-
erence points throughout the training process. In the DRL,

achieving convergence typically requires multiple gradient
updates. Target networks play a pivotal role in mitigating
the challenge of constantly shifting target values by offering
consistent reference points. This stability, in turn, facilitates
more effective learning, enabling the algorithm to explore a
broader spectrum of actions.

The critic network consists of two paths: the state path and
the action path. The state path of the critic network includes an
input layer with three neurons, representing each state input. It
also has a hidden layer with 64 neurons and utilizes a rectified
linear unit (ReLU) activation function.

ReLU(z) = max(0, z) (7

Both the state and action paths are then concatenated, com-
bining their respective information. The concatenated output
is subsequently passed through two additional hidden layers.
The first hidden layer consists of 32 neurons, while the second
hidden layer comprises 16 neurons. Both hidden layers are
activated using the ReLU function. Finally, the output layer
of the critic network produces a single value, corresponding
to the Q-value estimation for the given state and action pair.

Conversely, the actor (policy) network takes the state input
and generates an estimation of the optimal policy for the agent
to follow in order to maximize the reward. The input layer
of the actor network is designed to match the dimensions
of the state space in the environment. Two hidden layers are
employed, with the first layer consisting of 128 neurons and
the second layer consisting of 64 neurons. Both hidden layers
are activated using the rectified linear unit (ReLU) function.
The output layer of the actor network corresponds to the
dimensions of the action space, determining the actions that
will be applied to the environment. In this case, the hyperbolic
tangent (tanh) activation function is used in the output layer of
the actor network. To ensure the predicted actions fall within
the desired range, a scaling factor is applied to the output of
the policy network.

xr —T
tanh(z) = ——— @®)
et fe7 "

2) Training process: As stated earlier, DRL agents learn
from interacting with an environment by receiving state infor-
mation, taking actions and obtaining a reward. In this work,
the states(s;) and actions(a;) are given as;

St = [U(h » Udy s Qoutl s Qoutg] (9)

ar = [QrequTEfz]

The agent takes a user-defined number of training steps T
in each episode. It has no experience on how to act in the
environment at the start of training. To encourage exploration,
a decaying Gaussian noise is added to the actions predicted
by the actor-network as shown in (11), where € is the noise
and ( is its decay factor.

10)

a(t) = my(se) + Ce (11)
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The predicted actions a; based on the current state s; are
applied to the environment and then the agent transitions to a
new state s;y1. The consequence of taking action a; in state
s¢ is a reward r,. This sequence of events, represented as
St, Gt, Tt, St+1, forms a transition tuple that is saved in a buffer
B. The experiences stored in B are randomly sampled in mini-
batches and used for training the networks. As the buffer has
a finite capacity, older experiences are removed to make room
for newer experiences when it becomes full. This mechanism
ensures that the buffer retains recent experiences, facilitating
convergence during training.

3) Implementation Process: As mentioned previously,
DDPG suffers from overestimation bias and sensitivity to
hyper-parameter tuning. To tackle this problem, TD3 intro-
duces the use of twin critic and target critic networks. The two
critic networks receive the current state (s;) and action (a;) to
compute their respective current action value Qy,(s,a). In a
similar manner, the target critic networks receive the next state
S¢+1 and action asy1 to compute their respective next action
value @ (s,a). The other two improvements introduced to
address the performance of the TD3 agent are summarized
below.

i) Target Policy Smoothing: As discussed in [13], deter-
ministic policies often exhibit overestimation bias, which can
lead to overly optimistic value estimates in the target network.
This increased variance in the Q-values can cause issues,
such as dissimilar actions producing different value estimates,
potentially affecting the agent’s learning process negatively.
To mitigate this issue, a small amount of random noise is
introduced to the target actor’s actions, enhancing exploration
during training. This approach encourages similar actions to
produce similar value estimates, ultimately improving the
learned policy of the agents.

The target actor network takes in the new state s;y; and
generates estimated target actions, denoted as at + 1. Both
these target actions and the new state are subsequently supplied
as input to the twin target critic networks for the calculation
of their respective next action values, represented as @Q'6;. To

compute the target action value function, denoted as y, it is
crucial to determine the minimum among the twin target critic
Q-functions, as depicted in Equation 12. This approach effec-
tively mitigates overestimation bias, which, if left unaddressed,
could result in sub-optimal action value estimates.

y=r+7min(Qy(s',a)) (12)
The calculation of the target Q-value y relies on the reward
r, a discount factor v, and the minimum Q-value obtained
from the target critic networks. The discount factor allows the
agent to strike a balance between immediate rewards (y=0) and
long-term rewards (y=1), influencing the agent’s preference for
short-term gains or long-term planning.

(13)

To compute the loss function which is necessary to update
the critic network, the mean squared error is computed indi-
vidually for each critic network as shown in(13). This error is
calculated by comparing the target Q-value with the Q-value
predicted by each critic network. The result is a separate loss
value for each critic network, which is used to update their
respective parameters.

To update both the actor and critic networks, the gradients
of the critic loss with respect to the weights of each critic
network are calculated. These gradients are then employed to
update the weights of each network using an optimizer, such
as Adam.

ii) Actor Network Update: The update of the actor-network
is delayed by the modulus of training step ¢ with respect to
the actor update frequency d.

Lossp, = MSE(y — Qp, (s, a))

(14)

V¢J((/)) N7t Z an91 (Sv ”’) |a=ﬂ'¢(s) V¢7T¢(S)

In accordance with (14), the loss function J for the actor-
network is defined with respect to its network parameters
¢. The gradient of this loss function is computed by tak-
ing inverse of the number of training batch samples (N),
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and multiply it by the summation (¥) of the gradient of
the first critic network concerning the state-action pair, i.e.,
V.Qo, (s,a). This result is further multiplied by the gradient
of the policy network, V 474(s). In simpler terms, this process
involves computing the gradient of the Q-value from the first
critic network concerning the actor-network parameter ¢. The
actor loss is then determined based on the negative mean of
the Q-values obtained through this procedure. The gradients
of the actor loss with respect to the network parameters
are subsequently computed and utilized to update the actor-
network parameters.

¢ =T¢i + (1 - 1) (16)

Lastly, both target networks (critic and actor) are updated
periodically by copying the main networks’ parameters via the
soft update rule with respect to a learning rate parameter 7.

A. Reward Function Design

The goal of any DRL agent is to find the optimal policy
that maximizes the expected cumulative reward. Therefore, a
good reward function must capture the problem description in
order to properly guide the agent learning.

In this paper, the reward function is split into three parts:

« Voltage regulation: When IBDGs operate in autonomous
mode, control of voltage and frequency becomes the pri-
ority for grid forming inverters. Therefore, the designed
TD3 agent must be capable of regulating the voltage of
each IBDG in the system so that the MG remains stable.
In addition, it is desired that the voltage stays within a
boundary of 4+0.15pu. Taking this into consideration, the
reward for voltage regulation can be expressed as:

Reward, = —ki|e,| '))

From the above equation, |e,| = |V; — V,,|. Where, V;
represents the output voltage of the iy, IBDG in the
system and V,, is the nominal voltage of the system all
in per-unit. A penalty term k; is used to inform the agent
on how well it is doing in terms of voltage regulation.
Hence, when |e,| is greater than the desired threshold,
k1 is large; otherwise, it is set to a small penalty.

o Minimize RPS Error: As pointed out earlier, the con-
ventional droop control suffers from poor sharing error
when there exists a line impedance mismatch between
both IBDGs. To address this issue, the reactive power
at PCC is measured and used in designing the reward
function for the agent.

Rewardg = —kaleq| — ks /(|€q|)

In (18), ko and ks are penalty terms associated with
the RPSE. In addition, k4 is a penalty linked with the
expected contribution of the i** IBDG to the rest of
the IBDG in the microgrid. For the RPSE terms, |e,

18)

TABLE I: TD3 Network Parameters

Network Network

Value Value
Parameter Parameter
Actor Learning [x10-4 Actor Network [4 128 64 2]
Rate Size
Twin Critics Twin [4 128] State Path
Learnine Rate 2x10~4 Critic Network [2 128] Action Path
g Size [128 64 1] Common Path
Target Learning _3 | Discount Factor
Rate 5x10 ~ 0.99
Buffer Length 2x10° Mini Batch Size 64
Agent Sampling 10ms Action Selection 2500% 103
Time Range

TABLE II: System Parameters and Reward Penalties

PSystem Value System Value
arameter Parameter
I\éicrogrid 6000 KVA Inverter Nominal 13.8 kV
apacity Voltage
Filter Resistance 1.9 mQ2 Filter Inductance 0.05 mH
Microgrid Frequency 60 Hz Virtual Inertia 3.5 x 10~°
Virtual Damping 0.45 Penalty k3 200
Big Penalty Small Penalty
[y, ko, ksl [5000, 5000, 500] Tk, ko, al [0.05, 0.05, 0.05]
IBDG 1 Line Riine = 6mS2 IBDG 2 Line Rjine = 0.1Q2
Impedance Ljjne = 40.35mH Impedance Ljjne = 40uH

is the difference between the desired output reactive
power and the measured output reactive power i.e. e, =

IBD -
|Qshare — QLBPC1| where Qpare is expressed as
IBDG,;
Srating )

Qshare = Qpcc : (19)

SMGcapacity
Therefore, if e, is greater than the maximum allowable
error threshold, ko becomes large; otherwise, it is a small
penalty. On the other hand, k3 is kept constant to motivate
the agent to rapidly minimize the sharing error.

o IBDG Capacity Ratio Constraint: To guarantee that IB-
DGs make equitable contributions relative to their ratings
in injecting reactive power, regardless of line impedance
variations, the following reward term has been introduced

RewardlBDGRatio = _k4IBDGrati0 (20)
where the term IBDG,,, is expressed as:
BDGyy, = aal PG @D

—IBDGi=1
> =2 QDG

The term k4 is the penalty associated with the IBDGggo.
Therefore, if the reactive power contribution of any
IBDG in the network is below or above the expected
contribution boundary, then k4 is a large negative reward,
otherwise k4 is a small negative reward.

Based on (17-20), the total cumulative reward received by
the agent at each time step is given as;

Reward; = Reward,, + Rewardg, + Rewardigpgraio  (22)

Thus, the goal for the agent is to find the optimal control
strategy that maximizes (22). Extra care should be taken when
selecting the penalty values as improper selection could be
detrimental to the agent’s learning and performance.
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IV. RESULTS AND DISCUSSION

In order to train the TD3 agent, a 2-inverter microgrid sys-
tem is designed in MATLAB/SIMULINK. The specifications
for the TD3 agent and the MG are provided in Tables I and
I

Fig. 3 shows the training graph of the TD3 agent when
considering even IBDGs and uneven IBDGs. The agent is
trained for 1500 episodes, with each training case taking
approximately 3 hours, using an ACER ASPIRE AV15-51 with
16GB RAM and a 2.90GHz processor. During this period, the
agent is able to find a policy that controls the inverters in a
manner that achieves the best reward.

A. Equal IBDG System

In this section, the performance of the proposed TD3 based
controller is evaluated under: a) mode switching and b) load
change.

1) Mode Switch: 1In this case study, the transition from
droop based control to TD3-based control is presented. The
goal is to show vividly the transient response of the control
method, and provide a clear representation of the superiority
of the proposed TD3 controller.

As shown in Fig 4 from 0-2 seconds, the system runs with
the conventional droop based reactive power controller after
which the proposed TD3 controller is activated. As expected,
the droop based controller keeps the voltage at each IBDG
close to 1 p.u as shown in Fig 4a. However, due to the
feeder impedance mismatch, the droop controller suffers from
significant reactive power mismatch as shown in Fig. 4b and

L Voltage DG 1
i‘:‘) 099k Voltage DG 2
S 098F \ ]
S 0.98
097 -
L L L L L
1 1.2 1.4 1.6 1.8 2 22 24 2.6 2.8 3
(2)
x10*
5 T T T T T T
% 15 Reactive Power DG 1
= ok Reactive Power DG 2
©
g 5 Droop Based Control vo=
5 TD3 Based Control
~ L L L L L L 1 L
1 1.2 1.4 1.6 1.8 2 22 24 2.6 2.8 3
(b)
_ 80 : : : : : : T T T
=
Z60F 1
o
2040 - 3 b
k= Control Transition
3 20F b
=
@0 L L L L L — T T T
1 1.2 1.4 1.6 1.8 2 22 24 2.6 2.8 3
(c)
Time
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4c. After 2 seconds, the TD3 based controller is activated.
Recall that part of the reward presets is to ensure that the IBDG
voltages remain within a £ 0.15pu band-limit. This criteria is
satisfied as shown in Fig.4a when TD3 control is activated.
However, unlike the droop controller, the TD3 control is
capable of also sharing the reactive power according to the
IBDG ratings which minimizes the sharing error as shown in
Fig 4b and 4c. An added advantage of minimizing RPSE is
the reduction of circulating current in the MG. As shown in
Fig. 5a, by utilizing the TD3 control, the circulating current
is significantly reduced. To further highlight the superiority of
the proposed TD3 control, the capacity ratio of one IBDG to
the other IBDG in the MG is shown in Fig. 5b and Fig 5Sc.
2) Load Change: In this case, the load response of the
proposed TD3 control is evaluated and compared to the
conventional reactive power droop control. Fig. 6a-6d shows a
comparative analysis for both the reactive power droop control
and TD3 based control. As illustrated, the reactive power load
demand in the MG is increased and decreased at four and

2951

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on October 01,2025 at 00:43:25 UTC from IEEE Xplore. Restrictions apply.



Voltage

= 0.98 \ '
. ——DGl
0.96 DG2

IS

=8~}
Qa
o=

Reactive Power
o o

-

4.5 5 55 6 6.5 7
(b)
Time

(©)

Time

Reactive Power
[
|

(d)
Time

Fig. 6: Response to Load Change (a) Voltage Response with Droop (b) Reactive Power Response with Droop (c) Voltage

Response with TD3 (d) Reactive Power Response with DRL

11 T T T T T T T T T
v
20
Y [ -
S Voltage DG 1
Voltage DG 2
09| L L L L L L L 1 1 =
1 1.2 14 1.6 1.8 2 22 24 2.6 2.8 3
(a)
5 10° Reactive Power DG 1
5 T T T T T T Reactive Power DG 2
2,F W =
~
2 e Droop Based Control |
j | TD3 Based Control
x 0f
L L L L L L L L L
1 12 1.4 1.6 1.8 2 22 24 2.6 2.8 3
(b)
60 F T T T T T T T T T .
@ 40 4
o -
g Control Transition
Z20F B
a
(1 L L L L L T T T T
1 1.2 14 1.6 1.8 2 22 2.4 2.6 2.8 3
(©)
Time

Fig. 7: Unequal IBDG Response to Control Mode Switch (a)
Voltage Response (b) Reactive Power Response (c) Percentage
Sharing Error

six seconds respectively. While the conventional droop-based
control is capable of controlling the voltage, it is less effective
at sharing the reactive power between both IBDGs as indicated
in Fig.6a and 6b. However, when the TD3 controller is utilized,
the voltage is kept within the desired boundary (£0.15pu)
while also ensuring the reactive power is shared evenly.

B. Unequal IBDG System

To further evaluate the performance of the proposed TD3
control, the agent is trained for two IBDGs with an unequal
rating of 2:1. Again, validate the proposed TD3 control, two
case scenarios are presented.

1) Mode Switch: Similar to the analysis shown with the
even IBDG case, the performance of the TD3 control is
compared with the reactive power droop method during a
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Fig. 8: Results with Unequal capacity IBDG for (a) Circu-
lating Current (b) IBDG 1 Capacity Constrained (c) IBDG 2
Capacity Constrained

control transition event. The reactive power droop control is
active from 0-2 seconds after which the TD3 based control is
activated. As illustrated in Fig 7a, both the droop based and
TD3 based

control operate the IBDG voltages within the +0.15pu band-
width. Although, the droop controller struggles with sharing
the reactive power evenly as shown in Fig 7b and 7c. In
contrast, when the TD3 control is used, the reactive power
is shared with respect to the IBDGs rating thus reducing the
sharing error as shown in Fig. 7b and 7c. More-so, as a
consequence of minimizing RPSE, the circulating current is
also reduced when the TD3 control is utilized as shown in
Fig. 8a.

Furthermore, Fig. 8b and 8c shows that the proposed TD3
based control restores the accurate sharing of the reactive
power according to the IBDG ratings.

2) Load Change Uneven IBDG: In this case, the perfor-
mance of the trained TD3 agent is evaluated under load
change disturbance. Fig. 9a-9d illustrate a comparative anal-
ysis between the droop and TD3 based control with load
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changes occurring at four and six seconds. As shown in
Fig. 9a and Fig.9c, both control methods maintain the IBDGs
output voltage within the desired boundary of £0.15pu. This
is important for the TD3 agent as it is one of the metrics for
evaluating its performance in accordance to the reward preset
on voltage regulation. However, due to feeder impedance
mismatch, the reactive power delivered to the load during its
increase or decrease is not proportional to the IBDG capacity.
This results in significant RPSE as shown in Fig. 9b. When
the trained TD3 agent is applied, the output reactive power
for each IBDG corresponds to the IBDG rating, reducing the
RPSE as shown in Fig. 9d.

V. CONCLUSION

This paper presents the fusion of deep reinforcement learn-
ing with with conventional VSG control in a bid to mini-
mize the reactive power sharing error while ensuring voltage
stability. The proposed TD3 control is achieved by receiving
measurements of the voltages for both IBDGs and their output
reactive power values. The reward is then designed to achieve
two key functions: (i) keep the IBDG output voltage within
safe bounds and (ii) minimize the RPSE. The proposed TD3-
based control is compared with the conventional droop based
reactive power control. Therein, the superiority of the proposed
control is demonstrated for both equal and unequal IBDG
cases while considering load change disturbance. Based on
the results, the single agent approach reduces the percentage
RPSE to < 1%.

In the future, this work could be extended to include a multi-
agent architecture which implies that the centralized approach
presented in this paper can be modified to a decentralized
approach.
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