
1

Accurately Disentangling Core and Winding Losses
in Experimental, In-situ Magnetic Loss Measurement

for Power Electronic Circuits and Applications
Lifang Yi, Student Member, IEEE, Jinyeong Moon, Senior Member, IEEE

Abstract—This paper presents a new idea that enables direct,
high-precision, in-situ, and in-operation core loss measurement
in experiment. Coupled with the improved dual-curve derivative
(iDCD) method that provides accurate in-situ total magnetic
loss measurement, this paper can accurately and experimentally
disentangle the core and winding losses from the lumped magnetic
loss in-situ and in-operation for practical power electronic
converters. Historically, the timing skew between measurement
channels has plagued direct power loss measurement approaches,
especially for switched-mode power electronics whose voltage and
current waveforms are both AC (e.g., excited by rectangular and
triangular stimuli). This unknown timing skew severely hinders
the application of the conventional “two-winding method” for
magnetic core loss measurement, introducing challenges when
attempting to measure the power loss under desired operating
conditions. This paper builds a comprehensive mathematical
model to analyze the effect of the timing skew on the direct core
loss measurement and presents a novel approach based on a
capacitor branch to eliminate the measurement error caused by
the unknown timing skew. The proposed method provides an
extremely tight error tolerance at a sub-1% level. A new cross-
validation method - though is only suitable in highly controlled
lab settings and is less accurate - is developed to demonstrate the
proposed method’s efficacy and prove that the proposed method
can be freely applied beyond lab settings. Theoretical analysis is
verified in simulation and experiment with a conventional DC-DC
step-down buck converter with non-sinusoidal voltage and current
waveforms under a range of practical circuit parameters.

Index Terms—Direct, in-situ, Magnetic, Inductor, Core, Power,
Loss, Measurement, Timing, Skew, DC-DC, Converter

I. INTRODUCTION

The continuous advancements in power semiconductor
devices, topologies, and control methodologies have revolu-
tionized the efficiency and power density of power electronic
circuits [1]–[3]. As a consequence, the proportion of magnetic
loss in the overall losses of the converter has gained significance,
highlighting the importance of reducing magnetic losses [4].
The optimization of magnetics has emerged as a critical factor
in improving the efficiency and reducing the size and weight of
power converters. To validate the optimization and design of the
magnetics, it is essential to measure the magnetic component’s
loss while it is operating under the intended conditions. This
ensures that the magnetics are performing as expected and
meeting the desired performance criteria in their rightful place.

Measuring the loss of a magnetic component when it is
operating in the converter is a challenging task. This challenge
arises primarily due to the inherent and unpredictable timing
skew between measurement channels, given that both its
voltage and current operate in an AC (alternating current)

mode. Consequently, in a real test, the magnetic loss is often
estimated relying on a deduction method, where all losses
except the magnetic one in the converter are excluded from
consideration [5], [6]. However, this deduction method can
only provide a relatively broad and imprecise estimation due
to the lack of a thorough understanding of other components’
loss mechanisms, such as the losses in FETs. Thus, it falls
short in offering the adequate level of precision required for
design verification of modern power electronics. In some cases,
the performance of the entire converter is used as an indirect
indicator of whether the magnetic component’s design meets
the requirements. If the converter’s loss exceeds expectations,
the magnetic component’s design is often blamed. Such an
approach is irrational and lacks rigor for design verification.

Power loss measurement through a calorimeter is a conven-
tional approach [7]–[9]. The temperature rise of the coolant,
along with a suitable thermal resistance model, can be used
to estimate the total power loss of a magnetic component.
However, this method is indirect and relies on the accuracy of
the 3rd party data, such as the heat capacity, thermal resistance,
and thermal capacitance of the medium. The accuracy of
these data points can vary and may introduce uncertainties
in the power loss measurement. This method cannot be
considered strictly in-situ as it introduces changes to the
electrical properties of the magnetic component when it is
placed in a different dielectric medium. The alteration in
the dielectric medium can impact the overall behavior and
characteristics [10], [11], such as inter-winding capacitances,
natural resonant frequency, and dielectric loss. In addition, the
calorimetric method necessitates specialized equipment and
expertise, making it time-consuming in practical applications.
This approach also has limitations regarding the range of power
loss it can accurately measure, unsuitable for cases where the
power loss is either excessively small or large. Furthermore,
the loss measured with a calorimeter represents the total power
loss of the magnetic component, including both the core loss
and winding loss. Disentangling the core and winding losses
from the total power loss remains a formidable challenge. This
separation is particularly crucial for verifying the magnetic
design, especially when the design concentrates on optimizing
either the core or the winding separately.

To estimate the core loss alone, the Steinmetz equation [12]
or one of its numerous variations [13] [14] are frequently
employed. Three key Steinmetz parameters (𝑘, 𝛼, and 𝛽) are
typically provided by manufacturers for loss prediction of
magnetic core material within a specific operating range. The
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original Steinmetz equation is limited to sinusoidal excitation
within a narrow operating range and does not adequately handle
DC bias or multiple/local magnetic hysteresis loops. There have
been efforts to enhance the applicability and accuracy of the
original Steinmetz in expanded settings – notably modified
Steinmetz Equation (MSE) [15], Generalized Steinmetz Equa-
tion (GSE) [16], improved Generalized Steinmetz Equation
(iGSE) [17], etc. However, the accuracy of the calculated
magnetic core loss is still limited to a narrow range. Instead of
relying on a 3rd party data and various fitting equations, a more
preferable approach for accurate magnetic characterization
would be to develop a customized loss map that covers all the
intended operating conditions and incorporates all the necessary
considerations. To create such a loss map in-house, it is essential
to measure the power loss of a magnetic component in-situ
while the converter is in operation. Furthermore, the necessity
of in-situ power loss measurement still arises even if we trust
a magnetics design based on Steinmetz parameters because the
design still needs to be validated through experiments.

The two-winding method is commonly used to directly
measure magnetic core loss and is theoretically valid for
arbitrary excitation [18]. However, the measured loss of this
method is sensitive to the timing skew between measurement
channels, especially for high-frequency applications. The
capacitive cancellation method presented in [19] and the
inductive cancellation method discussed in [20] can reduce
its sensitivity to the timing skew. However, they are both
vulnerable to additional measurement errors and face challenges
associated with the selection of appropriate components. The
enhanced partial cancellation method, introduced in [21],
eliminates the need for fine-tuning the values of cancellation
components. However, the accuracy of the partial cancellation
method relies on the effectiveness of the cancellation process
[22]. This method only corrects the timing skew caused
by the difference in the probes and the measurement loops
leading to the oscilloscope. Other error sources, such as
the delay caused by circuit components and printed circuit
board (PCB) layout, are not considered, which are the main
culprits in precision measurements. In addition, these methods
tend to be more complex as they involve the utilization of
additional components that are relatively large, which will
likely change the overall operation of the circuit. Consequently,
the waveforms obtained during the measurement may exhibit
significant deviations from the intended target operational
behavior of interest.

The unknown timing skew between measurement channels
becomes the biggest practical challenge preventing this simple
two-winding method in reality [23]. In power electronic circuits,
magnetic components often operate under rectangular – non-
sinusoidal – voltage excitation. In our previous work [5], [6],
[24], [25], we have dedicated our efforts to achieving precise in-
situ measurement of inductor loss (i.e., the sum of the core and
winding losses) under rectangular voltage excitation, effectively
eliminating any errors introduced by timing skew. This paper
aims to directly measure the core loss in-situ instead of the
total inductor loss. The mathematical model will be built to
analyze the effect of the timing skew on the measured core loss.
Rather than attempting to reduce the measurement sensitivity

to timing skew, a more effective approach is proposed in
this paper to accurately determine the unknown timing skew
and directly eliminate the error related to the timing skew. A
small additional capacitor at a single-digit or low two-digit
pF level will be utilized to introduce a special geometric
feature to the mathematical model, which will facilitate the
identification of the actual timing skew and the core loss.
Through simulation and experimental validation, the proposed
method will be proven effective, accurate, and practical for
direct in-situ measurement of the magnetic core loss under
rectangular voltage excitation. When coupled with the total
magnetic loss measured using the iDCD method introduced
in [25], the proposed core loss measurement method offers
separation of core and winding losses in experiment, in-situ,
and in-operation with unprecedented precision. Our method
can finally close the design and optimization loop of magnetic
components and power electronic converters and transparently
translate the design effort into visible performance gains in
magnetics and power converters.

II. MATHEMATICAL MODEL BETWEEN CORE LOSS AND
TIMING SKEW

Here, an inductor operating in a DC-DC step-down buck
converter is considered as an example to build the mathematical
model. The main variables of the circuit are: 𝑉𝐻 [V] - input
voltage; 𝑉𝐿 [V] - output voltage; 𝑓 [Hz] - switching frequency;
𝐿 [H] - inductance; 𝑆 [V/s] - slope of voltage transitions; and
𝜃 [s] - timing skew. The steady-state waveforms of voltage
and current of an ideal inductor, 𝑉ind and 𝐼ind, are shown in
the upper and lower plots of Fig. 1, respectively. The current
waveform, illustrated in thick red, indicates that the measured
current lags the voltage by 𝜃. According to the guidelines
without and with timing skew, waveforms in one switching
cycle can be divided into eight regions as shown in Fig. 1.

Considering the loss mechanisms of a real inductor, a
lossy inductor model is shown in Fig. 2, including an ideal
inductor (𝐿), a resistor in parallel (𝑅𝑝) to lump core loss,
and a resistor in series (𝑅𝑠) to lump winding loss [24]. The
equivalent circuit of the inductor under two-winding test is
also provided in Fig. 2. To directly measure the core loss, the
voltage across the magnetic core (𝑉ind) and the current through
the inductor (𝐼ind,all) should be obtained when the inductor
is operating in the converter under the desired conditions. An
auxiliary winding is employed to extract the core voltage, 𝑉core,
on the secondary side. The turns ratio is set to unity to simplify
the analysis. ⎧⎨⎩𝐼ind,all (𝑡) = 𝐼ind (𝑡) +

𝑉ind (𝑡)

𝑅𝑝

𝑉core (𝑡) = 𝑉ind (𝑡)

(1)

Although 𝑅𝑠 and 𝑅𝑝 are frequency-dependent and nonlinear
resistors in reality, it can be shown that they do not affect the
mathematical model and the method developed in this article.
The key requirement is that the behavior of 𝑅𝑠 and 𝑅𝑝 remains
consistent and repeatable in switching cycles (i.e., as long as
the magnetic component stably establishes the steady-state).
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Fig. 1. Inductor voltage and current waveforms with a positive timing skew (0 ≤ 𝜃 ≤ 𝑉𝐻
𝑆

) - current lagging
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Fig. 2. Equivalent circuit model of the inductor for two-winding test

Without timing skew (i.e., 𝜃 = 0), the measured core loss,
𝑃Meas
Core (𝜃), must be identical to the real core loss, 𝑃Real

Core .

𝑃Meas
Core (𝜃) |𝜃=0 = 𝑃Real

Core . (2)

Assuming the measured current lags the voltage by 𝜃, the
sensitivity of the measured core loss with respect to the timing
skew, 𝜕𝑃Meas

Core (𝜃) /𝜕𝜃, can be calculated as

𝜕𝑃Meas
Core (𝜃)

𝜕𝜃
=

𝜕

𝜕𝜃

[︃
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑉ind (𝑡)

(︂
𝐼ind (𝑡+ 𝜃) +

𝑉ind (𝑡+ 𝜃)

𝑅𝑝

)︂
d𝑡

]︃
.

(3)

Here assumed is that the current lags the voltage by 𝜃,
where 0 ≤ 𝜃 ≤ 𝑉𝐻

𝑆 . When the current leads the voltage
(i.e., −𝑉𝐻

𝑆 ≤ 𝜃 ≤ 0), the mathematical derivation can be
similarly done. The expressions of 𝑉ind(𝑡), 𝐼ind(𝑡 + 𝜃) and
𝑉ind(𝑡 + 𝜃) under a rectangular voltage excitation in eight
regions are provided in the previous work [6], [24]. Combining
the integration results in eight regions, when −𝑉𝐻

𝑆 ≤ 𝜃 ≤ 𝑉𝐻

𝑆 ,
the sensitivity of the measured core loss with respect to the

TABLE I
MAIN CIRCUIT PARAMETERS

𝑉𝐻 𝑉𝐿 𝑓 𝑆
30V 15V 100 kHz 5V/ns
𝐿 𝑅𝑝 𝑅𝑠 𝐶𝑝,add

10 µH 5kΩ 0.2Ω 12 pF

timing skew can be calculated as

𝜕𝑃Meas
Core (𝜃)

𝜕𝜃
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

* − 𝑆2𝑓
3𝐿 𝜃3 +

(︁
𝑉𝐻𝑆𝑓

𝐿 + 𝑆2𝑓
𝑅𝑝

)︁
𝜃2 − 2𝑉𝐻𝑓𝑆

𝑅𝑝
𝜃

−
(︁

𝑉𝐿(𝑉𝐻−𝑉𝐿)
𝐿 − 𝑉 3

𝐻𝑓
3𝐿𝑆

)︁
† 𝑆2𝑓

3𝐿 𝜃3 +
(︁

𝑉𝐻𝑆𝑓
𝐿 − 𝑆2𝑓

𝑅𝑝

)︁
𝜃2 − 2𝑉𝐻𝑓𝑆

𝑅𝑝
𝜃

−
(︁

𝑉𝐿(𝑉𝐻−𝑉𝐿)
𝐿 − 𝑉 3

𝐻𝑓
3𝐿𝑆

)︁
*
[︂
For 0 ≤ 𝜃 ≤ 𝑉𝐻

𝑆

]︂
, †

[︂
For − 𝑉𝐻

𝑆
≤ 𝜃 ≤ 0

]︂
.

(4)

According to (2) and (4) , the measured core loss with
respect to the timing skew can be expressed as

𝑃Meas
Core (𝜃) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

* − 𝑆2𝑓
12𝐿 𝜃

4 +
(︁

𝑉𝐻𝑆𝑓
3𝐿 + 𝑆2𝑓

3𝑅𝑝

)︁
𝜃3 − 𝑉𝐻𝑓𝑆

𝑅𝑝
𝜃2

−
(︁

𝑉𝐿(𝑉𝐻−𝑉𝐿)
𝐿 − 𝑉 3

𝐻𝑓
3𝐿𝑆

)︁
𝜃 + 𝑃Real

Core

† 𝑆2𝑓
12𝐿 𝜃

4 +
(︁

𝑉𝐻𝑆𝑓
3𝐿 − 𝑆2𝑓

3𝑅𝑝

)︁
𝜃3 − 𝑉𝐻𝑓𝑆

𝑅𝑝
𝜃2

−
(︁

𝑉𝐿(𝑉𝐻−𝑉𝐿)
𝐿 − 𝑉 3

𝐻𝑓
3𝐿𝑆

)︁
𝜃 + 𝑃Real

Core

*
[︂
For 0 ≤ 𝜃 ≤ 𝑉𝐻

𝑆

]︂
, †

[︂
For − 𝑉𝐻

𝑆
≤ 𝜃 ≤ 0

]︂
.

(5)

Given a specific set of circuit parameters provided in Table I,
we can generate the ‘𝑃Meas

Core vs. 𝜃’ curve by applying (5), as
illustrated in Fig. 3. Ignoring higher-order terms, the sensitivity
of the measured core loss to the timing skew is proportional
to 𝑉𝐿 (𝑉𝐻 − 𝑉𝐿) /𝐿. When the current waveform leads the
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Fig. 4. Equivalent circuit model with 𝐶𝑝,add

voltage waveform (i.e., 𝜃 < 0), the measured core loss will
exceed the real core loss; on the contrary, if the current
waveform lags the voltage waveform (i.e., 𝜃 > 0), the measured
core loss will be less than the real core loss, which often leads
to an impossible “negative” core loss in conventional loss
measurements. The real core loss can be read from the loss
curve once the absolute zero-skew position is determined.

III. THE PROPOSED METHOD

With the aid of an additional added capacitor, the direct
in-situ inductor loss measurement is realized through the
improved dual-curve derivative (iDCD) method from our
previous work [25]. In this section, in conjunction with the
two-winding method, we will explore the extension of the
iDCD method to enable the direct core loss measurement,
eliminating the measurement error introduced by the unknown
timing skew. In this section, we will assess the feasibility of
the proposed method by conducting an analysis employing
our developed mathematical model and further validating it
through simulation.

A. Theoretical analysis

To obtain the core loss from the direct measurement,
the timing skew between measurement channels should be
determined first. Here, a small additional capacitor, 𝐶𝑝,add, at
a pF level is added across the inductor by a general switch
𝐾 as shown in Fig. 4. When 𝐾 is closed, current through the
capacitor, 𝐼𝑐, will be introduced into the measured inductor
current, 𝐼ind,all,𝑐:{︃

𝐼ind,all,𝑐 (𝑡) =𝐼ind,all (𝑡) + 𝐼𝑐 (𝑡)

𝑉core (𝑡) =𝑉ind (𝑡)
, (6)

where

𝐼𝑐 (𝑡) = 𝐶𝑝,add
𝑑(𝑉ind(𝑡)+(𝐼ind(𝑡)+𝑉ind(𝑡)/𝑅𝑝)·𝑅𝑠)

𝑑𝑡 . (7)

The sensitivity of the measured core loss with respect to
the timing skew without 𝐶𝑝,add, 𝜕𝑃Meas,1

Core (𝜃) /𝜕𝜃, can be
calculated as

𝜕𝑃Meas,1
Core (𝜃)

𝜕𝜃
=

𝜕

𝜕𝜃

[︃
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑉ind (𝑡) 𝐼ind,all (𝑡+ 𝜃) d𝑡

]︃
. (8)

Similarly, the sensitivity of the measured core loss with 𝐶𝑝,add,
𝜕𝑃Meas,2

Core (𝜃) /𝜕𝜃, can be expressed as

𝜕𝑃Meas,2
Core (𝜃)

𝜕𝜃
=

𝜕

𝜕𝜃

[︃
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑉ind (𝑡) 𝐼ind,all,𝑐 (𝑡+ 𝜃) d𝑡

]︃
. (9)

The superscripts “1” and “2” denote the cases without and with
𝐶𝑝,add, respectively. According to (8) and (9), the difference
between two loss measurement sensitivities, Δ𝜕𝑃Meas

Core (𝜃) /𝜕𝜃,
can be obtained as

Δ
𝜕𝑃Meas

Core (𝜃)

𝜕𝜃
=
𝜕𝑃Meas,1

Core (𝜃)

𝜕𝜃
−

𝜕𝑃Meas,2
Core (𝜃)

𝜕𝜃

=−
𝜕𝑃Meas

Core,𝑐 (𝜃)

𝜕𝜃
,

(10)

where 𝜕𝑃Meas
Core,𝑐 (𝜃) /𝜕𝜃 represents the derivative items related

to 𝐶𝑝,add and can be expressed as

𝜕𝑃Meas
Core,𝑐 (𝜃)

𝜕𝜃
=

𝜕

𝜕𝜃

[︃
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑉ind (𝑡) 𝐼𝑐 (𝑡+ 𝜃) d𝑡

]︃
. (11)

Substituting (7) into (11) and combining the expressions of
𝑉ind(𝑡), 𝐼ind(𝑡+ 𝜃) and 𝑉ind(𝑡+ 𝜃), 𝜕𝑃Meas

Core,𝑐 (𝜃) /𝜕𝜃 can be
calculated as
𝜕𝑃Meas

Core,𝑐 (𝜃)

𝜕𝜃
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

* 𝐶𝑝,add𝑅𝑠𝑆
2𝑓

𝐿 𝜃2 − 2𝐶𝑝,add𝑓𝑆
2
(︁
1 + 𝑅𝑠

𝑅𝑝
+ 𝑅𝑠𝑉𝐻

𝐿𝑆

)︁
𝜃

+ 2𝐶𝑝,add𝑓𝑆𝑉𝐻

(︁
1 + 𝑅𝑠

𝑅𝑝

)︁
† − 𝐶𝑝,add𝑅𝑠𝑆

2𝑓
𝐿 𝜃2 + 2𝐶𝑝,add𝑓𝑆

2
(︁
1 + 𝑅𝑠

𝑅𝑝
− 𝑅𝑠𝑉𝐻

𝐿𝑆

)︁
𝜃

+ 2𝐶𝑝,add𝑓𝑆𝑉𝐻

(︁
1 + 𝑅𝑠

𝑅𝑝

)︁
*
[︂
For 0 ≤ 𝜃 ≤ 𝑉𝐻

𝑆

]︂
, †

[︂
For − 𝑉𝐻

𝑆
≤ 𝜃 ≤ 0

]︂
.

(12)

In a practical case, the magnitude of 𝑅𝑠𝑉𝐻

𝐿𝑆 is usu-
ally much smaller than 1. Under such an assumption,
𝜕2𝑃Meas

Core,𝑐 (𝜃) /𝜕𝜃
2 is negative for 0 ≤ 𝜃 ≤ 𝑉𝐻/𝑆 and positive

for −𝑉𝐻/𝑆 ≤ 𝜃 ≤ 0 because:

𝜕2𝑃Meas
Core,𝑐 (𝜃)

𝜕𝜃2
=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

* 2𝐶𝑝,add𝑓𝑆
2
(︁

𝑅𝑠

𝐿 𝜃 − 𝑅𝑠𝑉𝐻

𝐿𝑆 − 1− 𝑅𝑠

𝑅𝑝

)︁
< 0

† − 2𝐶𝑝,add𝑓𝑆
2
(︁

𝑅𝑠

𝐿 𝜃 + 𝑅𝑠𝑉𝐻

𝐿𝑆 − 1− 𝑅𝑠

𝑅𝑝

)︁
> 0

*
[︂
For 0 ≤ 𝜃 ≤ 𝑉𝐻

𝑆

]︂
, †

[︂
For − 𝑉𝐻

𝑆
≤ 𝜃 ≤ 0

]︂
.

(13)

Thus, in a real measurement, the nadir point of
“Δ𝜕𝑃Meas

Core (𝜃) /𝜕𝜃 vs. 𝜃” curve can pinpoint the location where
the absolute timing skew is zero. Based on the circuit parame-
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Fig. 5. 𝛥𝜕𝑃Meas
Core (𝜃) /𝜕𝜃 vs. 𝜃 in calculation

ters exemplified in Section II, the curve of “Δ𝜕𝑃Meas
Core (𝜃) /𝜕𝜃

vs. 𝜃” is illustrated in Fig. 5. The nadir point of the plot reports
the absolute zero-skew point. Thus, the proposed method
enables direct core loss measurement through the following
steps:

(1) Set up the two-winding method in the circuit to measure
the inductor current and core voltage waveforms.

(2) Obtain 𝑃Meas,1
Core vs. 𝜃 without the additional 𝐶𝑝,add.

(3) Obtain 𝑃Meas,2
Core vs. 𝜃 with the additional 𝐶𝑝,add.

(4) Calculate Δ𝜕𝑃Meas
Core (𝜃)/𝜕𝜃 vs. 𝜃, where Δ𝜕𝑃Meas

Core =
𝑃Meas,1
Core − 𝑃Meas,2

Core .

(5) Plot ‘Δ𝜕𝑃Meas
Core (𝜃)/𝜕𝜃 vs. 𝜃’ and find 𝜃 = 𝜃0 where

the curve reaches its minimum. 𝜃0 represents the actual
timing skew.

(6) Return to Step (2) and obtain the actual core loss by
reading 𝑃Meas,1

Core (𝜃0).

It is essential to highlight that the introduction of an
additional capacitor in step (3) may lead to extra current ripples,
which can marginally influence the magnetic loss. Nevertheless,
this current distortion serves a specific purpose: precisely
identifying the actual timing skew as a timing marker. The
actual core loss is determined by referencing the initial core loss
curve without incorporating this added capacitor. Consequently,
any distortions in the measured current waveform resulting
from the added capacitor do not affect the accuracy of the core
loss determination. In addition, the parasitic capacitance of a
real inductor can be modeled as a lumped capacitor across the
inductor. While this introduces an additional current dip during
transitions, it does not impact the loss difference derivative
items introduced by the added capacitance [25]. Thus, it does
not affect the effectiveness of the proposed method.

B. Simulation Verification

To validate the theoretical analysis of the proposed method, a
DC-DC step-down buck converter is built in a circuit simulator,
as in Fig. 6. Spice models of GaN MOSFET GS66508B

Co

L

Q1

Q2

VL
Rp

Rs

+     V       -

Cp,add K

I

VH

Fig. 6. Simulation circuit
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Fig. 7. Simulation verification of the proposed method. (a) ‘Δ𝜕𝑃Meas
Core (𝜃) /𝜕𝜃

vs. 𝜃’ curve. (b) ‘𝑃Meas,1
Core vs. 𝜃’ curve.

are used for switching devices 𝑄1 and 𝑄2. The inductor is
constructed based on the equivalent circuit model in Fig. 2.
The two-winding method is applied to obtain the core voltage
by utilizing an auxiliary winding with a unity turns ratio. A
capacitor, 𝐶𝑝,add, is added across the inductor and controlled by
a switch 𝐾. The main circuit parameters are given in Table I.

Simulation is performed following the steps listed in Section
III-A. Next, the switch 𝐾 is closed and the additional capacitor
𝐶𝑝,add is added across the inductor. Other circuit parameters
remain unchanged. The inductor current and core voltage
waveforms are recorded again in the steady state. Two sets of
inductor current and core voltage waveforms, one without and
one with 𝐶𝑝,add, are collected for subsequent data processing.

Before processing the data, an arbitrary timing skew of 20 ns
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Fig. 8. An inductor for the Three-winding method. (a) Physical diagram. (b)
Equivalent circuit.

is applied to delay the current waveforms for both simulation
results, which serves as an unknown timing skew in reality.
Then, two “𝑃 vs. 𝜃” curves without and with 𝐶𝑝,add are
generated by sweeping an artificial timing skew 𝜃 on current
waveforms in MATLAB. The derivatives of two measured
core losses with respect to 𝜃 are calculated and the difference
between them, Δ𝜕𝑃Meas

Core (𝜃)/𝜕𝜃, is obtained as illustrated in
Fig. 7 (a). The nadir point of the “Δ𝜕𝑃Meas

Core (𝜃) /𝜕𝜃 vs. 𝜃”
curve successfully pinpoints the actual timing skew as −20 ns.
Based on this pinpointed timing skew of −20 ns, the core
loss can be read from the original, unmodified “𝑃Meas,1

Core vs.
𝜃” curve. The resulting core loss is 45.16mW as shown in
Fig. 7 (b) and is identical to the core loss directly reported
by the simulator. The simulation result successfully proves the
validity of the theoretical analysis.

IV. EXPERIMENTAL VERIFICATION

In this section, a novel cross-verification method is first
designed to establish a core loss reference for experimental
verification. The proposed core loss measurement method
is then assessed in a dedicated experimental platform. The
experimental results will be evaluated in comparison to the
established core loss reference. Various circuit parameters and
inductors will be systematically tested and analyzed.

A. The Three-winding Method

With our previously developed iDCD method [25], the
total inductor loss can be accurately measured in-situ and
in-operation. Given the measured total inductor loss, the core
loss can be obtained if the winding loss is known. In an effort to
experimentally identify the winding loss based on the deduction
method, a special inductor with three windings is designed,
as illustrated in Fig. 8. Three identical windings, denoted as
winding 1, winding 2, and winding 3, are uniformly wound
onto the target magnetic core.

Two measurements will be conducted to obtain the core loss
reference of interest (𝑃 ref

Core). In the initial measurement setup,
the three-winding inductor is connected to the converter circuit
as follows: winding 1 is left unconnected (floating), winding
2 serves as the inductor winding within the power loop, and
winding 3 functions as the auxiliary winding responsible for
core voltage extraction. The winding resistance of the inductor
can be regarded as 𝑅𝑠,1. In the first measurement, the converter

is operated under specified conditions, with the enforcement of
ZVS operation for the MOSFETs to simplify the converter’s
loss mechanism. The inductor loss, 𝑃ind,1, can be measured
based on the iDCD method. Furthermore, the input power
(𝑃𝑖𝑛,1) and the output power (𝑃𝑜,1) of the converter can be
directly measured to calculate the total converter loss, 𝑃loss,1.

𝑃loss,1 = 𝑃𝑖𝑛,1 − 𝑃𝑜,1. (14)

Considering the loss mechanism of the converter,

𝑃loss,1 = 𝑃FET,1 + 𝑃core,1 + 𝑃winding,1 + 𝑃other,1, (15)

where 𝑃FET, 𝑃core, 𝑃winding, and 𝑃other represent the FET
loss, core loss, winding loss, and other losses, respectively.
The subscript “1” denotes the first measurement.

In the second measurement, while keeping the same circuit
parameters and configuration, we parallel winding 1 with
winding 2 to form the inductor winding. The winding loss
in the second measurement should be reduced to 𝑅𝑠,2. With a
relatively simple winding structure as shown in Fig. 8 (a), it is
straightforward that the inductance will remain consistent with
the first measurement and 𝑅𝑠,2 = 𝑅𝑠,1/2, as winding 1 and
winding 2 are identical. The input power (𝑃𝑖𝑛,2) and output
power (𝑃𝑜,2) of the converter are measured again to get the
converter loss 𝑃loss,2.

𝑃loss,2 = 𝑃𝑖𝑛,2 − 𝑃𝑜,2. (16)

Similarly,

𝑃loss,2 = 𝑃FET,2 + 𝑃core,2 + 𝑃winding,2 + 𝑃other,2. (17)

The subscript “2” represents the second measurement. As-
suming that the inductor current remains consistent in both
measurements, the FET loss, core loss, and other losses will
remain unchanged, while the winding loss should be halved:

𝑃winding,2 = 0.5𝑃winding,1. (18)

This implies that the difference between the two total converter
losses equals half of the winding loss observed in the first
measurement. Consequently, we can estimate the specific
winding loss of interest in the first measurement through the
following relationship:

𝑃winding,1 = 2 (𝑃loss,1 − 𝑃loss,2)

= 2 [(𝑃𝑖𝑛,1 − 𝑃𝑜,1)− (𝑃𝑖𝑛,2 − 𝑃𝑜,2)] .
(19)

In reality, the inductor current in the second measurement
will be slightly reduced due to a smaller winding resistance.
Thus, the RMS values of the inductor currents, 𝐼𝐿,1 in the
measurement and 𝐼𝐿,2 in the second measurement, should
also be measured. Assuming a linear loss mechanism for the
converter (i.e., “𝑃 ∝ 𝐼”), the lower boundary of the winding
loss estimation, denoted as 𝑃winding,L, should be:

𝑃winding,L = 2

[︂
(𝑃𝑖𝑛,1 − 𝑃𝑜,1)−

𝐼𝐿,1

𝐼𝐿,2
(𝑃𝑖𝑛,2 − 𝑃𝑜,2)

]︂
. (20)

Considering that the converter’s losses follows a quadratic
relationship with current (i.e., ‘𝑃 ∝ 𝐼2’), the upper boundary
of the winding loss estimation, denoted as 𝑃winding,H, should
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Fig. 9. Measurement diagram in experiment

be:

𝑃winding,H = 2

[︃
(𝑃𝑖𝑛,1 − 𝑃𝑜,1)−

𝐼2𝐿,1

𝐼2𝐿,2

(𝑃𝑖𝑛,2 − 𝑃𝑜,2)

]︃
. (21)

Again, this “assumed” behavior and unmodeled parasitics
ultimately prevent a pinpointed value estimation and only
provide an estimation band. However, it is much tighter in this
controlled experiment than the conventional deduction method.
Therefore, rather than a specific baseline, a relatively tighter
estimation range can be obtained for the core loss reference
by combining the winding loss boundaries (20) and (21) with
the inductor loss determined in the first measurement:

[𝑃core,L, 𝑃core,H] = [𝑃ind,1 − 𝑃winding,H, 𝑃ind,1 − 𝑃winding,L] , (22)

where 𝑃core,L and 𝑃core,H represent the lower and upper
boundaries of the core loss reference range. By employing
the Three-winding method, a core loss reference range can
be obtained in the experiment for cross verification. Note that
the Three-winding method is only applicable in the lab under
strictly controlled conditions. The accuracy of the reference
range may be questionable when dealing with complex winding
loss mechanisms, such as those with multi-layer winding
structures. Note, however, that our goal is to demonstrate the
accuracy of the proposed method using this cross-validation
method.

In the following experiments, inductors equipped with three
windings will be used. In addition to measuring the core loss
of interest, the inductor loss will also be obtained based on
the iDCD method to establish the core loss reference using
the Three-winding method. Thus, the measurement diagram
is shown in Fig. 9. Two passive voltage probes are positioned
at both ends of the inductor to capture the inductor voltage
(i.e., 𝑉M − 𝑉N). Another passive voltage probe is connected
across the auxiliary winding to get the core voltage (i.e., 𝑉core).
To measure the inductor current, a sense resistor, 𝑅sense, is
utilized, and the voltage across the sense resistor, 𝑉𝑅sense, is
recorded.

B. Experimental Verification

For experimental verification, a platform is set up as shown
in Fig. 10. A buck converter is built with a half-bridge GaN
E-HEMT daughter board (GS66508B-EVBDB1) and a mother

Fig. 10. Experimental platform

1
2

3

Fig. 11. An inductor for the Three-winding method

board (GS665MB-EVB) from GaN Systems. The control
signals are provided by the function generator. A custom
measurement board is designed and built to realize low parasitic
measurements and convenient connections. An inductor with
three windings is constructed with a magnetic core (model
number 58587A2) and the magnet wire of AWG 26 as shown
in Fig. 11. Following Fig. 9, three passive voltage probes
of 1GHz bandwidth are utilized to measure inductor voltage
and core voltage. Current probes allow easy and non-intrusive
measurement of current waveforms. However, commercially
available current probes typically have a limited bandwidth of
less than 150 MHz. This bandwidth is insufficient to capture
detailed current information during transitions, especially with
wide bandgap devices like GaN, making these probes unsuitable
for the proposed method since it relies on fine-resolution current
measurement around the critical edges. Thus, a sense resistor
approach, built with twenty 0402 resistors of 2Ω, is employed
to increase the bandwidth for current measurement. The voltage
across the sense resistor is collected using a coaxial (MMCX)
connector and fed into the oscilloscope through a coaxial
cable for a GHz-level bandwidth. Ceramic capacitors rated
as C0G (NP0) are employed for 𝐶𝑝,add in the experiment to
minimize capacitance variation and dielectric loss resulting
from voltage and temperature changes. To facilitate connection
control of 𝐶𝑝,add, a two-pin header and a jumper shunt are
utilized as the switch 𝐾 in the experiment. The equipment
used is: CPX400S (DC power supply); AFG31000 (function
generator); MSO64 (oscilloscope); TPP1000 (passive voltage
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TABLE II
MAIN CIRCUIT PARAMETERS IN EXPERIMENT

𝑉𝐻 𝑉𝐿 𝑓 𝐿 Turns ratio 𝐶𝑝,add 𝑅sense

30V 15V 100 kHz 9.2 µH 18:18 12 pF 97.9mΩ
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Fig. 12. Experimental waveforms in the time domain. (a) Waveforms in two
switching cycles. (b) Waveforms during the rising transition. (c) Waveforms
during the falling transition.

probe); and DMM6500 (multimeter). The oscilloscope’s sample
rate is 12.5Gs/s. The experimental parameters are shown in
Table II.

To simplify the loss mechanism, the output of the converter
is open and the ZVS operation of the switches is realized in the
experiment. For normal operation, winding 2 is connected to
the converter and the winding 3 is connected to a voltage probe
for core voltage measurement. Winding 1 is left floating. After
the DC-DC buck converter reaches the steady state, the time-
domain waveforms without and with the presence of 𝐶𝑝,add are
recorded in Fig. 12 (a), including the inductor current, inductor
voltage, and core voltage. To offer a more detailed view of

the rising and falling transitions, the zoomed-in representations
are provided in Fig. 12 (b) and Fig. 12 (c), respectively. Both
the inductor voltage and core voltage remain the same during
the transition while the current waveform contains a deeper
dip when 𝐶𝑝,add is introduced. Note that the original current
waveform already contains a certain current dip during the
transition, primarily attributable to its parasitic capacitance.
According to Fig. 12, it is evident that the measured current
exhibits distinct timing skews relative to the inductor voltage
and core voltage. The observed difference in two timing skews
is approximately 40 ns. In addition to the waveforms, the input
power (𝑃𝑖𝑛,1) and the root mean square (RMS) values of
the inductor current (𝐼𝐿,1) are measured, yielding values of
2.481W and 2.321A, respectively, in the absence of 𝐶𝑝,add.
The output power (𝑃𝑜,1) is zero as the load is open.

To obtain the core loss reference, the Three-winding method
is applied with winding 1 connected to the converter in parallel
with winding 2 and the extra capacitor removed from the circuit.
All the other circuit parameters remain the same. After the
converter operates in steady state, the input power (𝑃𝑖𝑛,2) and
the RMS values of the inductor current (𝐼𝐿,2) are measured
again as 2.226W and 2.343A, respectively. According to (20)
and (21), the winding loss reference range can be calculated
as [552.737mW, 595.015mW]. Next, the iDCD method is
applied to figure out the inductor loss, where the timing skew
between the inductor current and inductor voltage is 43.34 ns
and the real inductor loss is 1.248W. According to (22), the
core loss reference range can then be obtained as [652.265mW,
694.543mW].

Next, the inductor current and core voltage waveforms are
processed in MATLAB following the steps of the proposed
method. The curve of “Δ𝜕𝑃Meas

Core (𝜃)/𝜕𝜃” is illustrated in
Fig. 13 (a). The nadir point reports the actual timing skew
between the inductor current and core voltage is 3.6 ns. The
core loss curve without the extra capacitor 𝐶𝑝,add is illustrated
in Fig. 13 (b), where the real core loss, 672.2mW, is then read
from. To evaluate the repeatability of the proposed method in
experiment, the measurement is repeated five times, yielding
five sets of inductor current and core voltage waveforms.
Fig. 14 displays the corresponding 25 results of the actual
timing skew and real core loss. Statistical analysis of this
dataset yielded the following findings: The mean timing skew is
𝜇 = 3.6224 ns with a standard deviation of 𝜎 = 0.0734 ns. The
mean core loss is 𝜇 = 671.652mW with a standard deviation
of 𝜎 = 1.6947mW. Incorporating the coupling coefficient
(𝑘) between winding 2 and winding 3, which is measured at
0.9983, the mean core loss is converted to be 𝜇 = 679.603mW
with a standard deviation of 𝜎 = 1.7148mW according to the
equation below:

𝑃final = 𝑃initial/𝑘, (23)

where 𝑃initial and 𝑃final are loss values before and after incor-
porating the coupling coefficient, respectively. The experimental
measurements of the core loss are highly concentrated in a
narrow range, with all results falling within the core loss
reference range established by the Three-winding method.
Without the proposed method, the direct measured core loss,
𝑃Direct
Core , is 758.0mW, which is out of the core loss reference



9

-8

-6

-4

-2

0

2

-4

-2

0

2

4

6

(3.60ns, 672.2mW)

θnadir=3.60ns

(1
0

4
W

/s
)

(W
)

-150 -100 -50 0 50 100 150
θ (ns)

-150 -100 -50 0 50 100 150
θ (ns)

(a)

(b)

Fig. 13. Experimental validation of the proposed method. (a)
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range. Taking the proposed method as the reference, the error
in the direct measured core loss is 11.54%. The experimental
results effectively confirm the validity of the theoretical analysis
of the proposed core loss measurement method, confirming its
accuracy and practical applicability.

C. Further Experimental Verification with Various Parameters

To comprehensively evaluate the proposed core loss measure-
ment method, the experiment is repeated with different circuit
parameters. With the parameters in Table II as default values,
different experiment sets are conducted at different voltages,
duty ratios, loads, and frequencies. For each experimental set,
the Three-winding method is employed to establish the core
loss reference range. Utilizing five sets of recorded waveforms,
25 experimental samples are calculated to derive the mean
and standard deviation values for both the actual timing skew
and the real core loss. The experiment is carried out at the
input voltage of 20V, 30V, and 40V. The results of the
actual timing skew and real core loss are shown in Table III.
Similarly, the converter is tested at the duty ratio of 0.2, 0.5,
and 0.7. The actual timing skew and real core loss are given
in Table IV. As the output voltage is 15V, the load current is
regulated to 0.75A and 1.5A by modifying the load resistance
to 20Ω and 10Ω, respectively. The results of different loads are
provided in Table V. To evaluate the experiment under different
switching frequencies while utilizing the same inductor, tests
are conducted at 250 kHz, 500 kHz, and 1MHz. To meet
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Fig. 14. 25 experimental results of the proposed method. (a) Actual timing
skew. (b) Actual core loss.

TABLE III
EXPERIMENTAL VALIDATION WITH DIFFERENT INPUT VOLTAGES

𝑉𝐻 (V)
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

20 3.626 0.077 272.52 0.817 [162.196, 280.843] 305.4 12.07%
30 3.622 0.073 679.603 1.715 [652.265, 694.543] 758.0 11.54%
40 3.619 0.052 1298.472 1.973 [1239.84, 1360.65] 1437.0 10.67%

TABLE IV
EXPERIMENTAL VALIDATION WITH DIFFERENT DUTY RATIOS

𝐷
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

0.2 3.728 0.045 295.898 0.640 [285.906, 309.923] 346.4 17.07%
0.5 3.622 0.073 679.603 1.715 [652.265, 694.543] 758.0 11.54%
0.7 3.552 0.045 511.853 0.905 [481.157, 528.136] 577.0 12.73%

TABLE V
EXPERIMENTAL VALIDATION WITH DIFFERENT LOADS

Load(A)
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

0 3.622 0.073 679.603 1.715 [652.265, 694.543] 758.0 11.54%
0.75 3.619 0.065 765.585 1.540 [692.320, 776.478] 853.5 10.18%
1.5 3.686 0.071 842.380 1.683 [797.958, 866.953] 918.2 9.00%

the ZVS requirement, the inductance is reduced to 3.0 µH,
while other parameters remain the same as the default values.
The experimental results of different frequencies are shown
in Table VI. Though the timing skew remains similar across
different switching frequencies, the impact of the error increases
significantly with higher frequencies.

Subsequently, experiments are conducted with various mag-
netic components. Different inductances of 6.89 µH, 9.20 µH,
and 15.49 µH are achieved by modifying the number of turns
in the windings while with the same magnetic core. Next, the
cross-sectional area of the winding wire is adjusted by replacing
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TABLE VI
EXPERIMENTAL VALIDATION WITH DIFFERENT FREQUENCIES

𝑓 (kHz)
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

250 3.670 0.057 1002.811 3.876 [974.883, 1091.804] 1205.0 20.16%
500 3.606 0.055 629.762 3.598 [606.344, 668.998] 837.9 33.05%

1000 3.386 0.044 392.173 2.809 [358.382, 407.137] 592.7 51.13%

TABLE VII
EXPERIMENTAL VALIDATION WITH DIFFERENT INDUCTANCES

𝐿(µH)
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

6.89 3.472 0.078 1087.29 2.477 [993.250, 1112.021] 1165.0 7.15%
9.20 3.622 0.073 679.603 1.715 [652.265, 694.543] 758.0 11.54%
15.49 3.725 0.051 452.335 0.717 [433.101, 457.221] 492.6 8.90%

TABLE VIII
EXPERIMENTAL VALIDATION WITH DIFFERENT WINDINGS

Winding
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

A 3.674 0.071 727.718 1.680 [626.090, 748.930] 800.0 9.93%
B 3.622 0.073 679.603 1.715 [652.265, 694.543] 758.0 11.54%
C 3.555 0.064 1297.096 2.260 [1203.321, 1334.506] 1388.0 7.01%

TABLE IX
EXPERIMENTAL VALIDATION WITH DIFFERENT CORES

Core
𝜃real(ns) 𝑃Real

Core (mW)
𝑃 ref
Core(mW)

𝑃Direct
Core 𝑃Direct

Core −𝑃Real
Core

𝑃Real
CoreMean (𝜇) SD (1-𝜎) Mean (𝜇) SD (1-𝜎) (mW)

A 3.613 0.063 285.384 1.346 [264.196, 287.497] 357.3 25.20%
B 3.622 0.073 679.603 1.715 [652.265, 694.543] 758.0 11.54%
C 3.677 0.073 902.623 1.590 [877.156, 908.431] 962.5 6.63%

it with different magnet wires (i.e., AWG 30, AWG 26, and
AWG 22). Note that the inductances of the three inductors vary
as a result of differences in turn-to-turn spacing. Finally, three
different cores (i.e., 58440A2, 58587A2, and 58154A2) are
tested where the number of turns in the windings are adjusted
to keep the inductance similar. Other circuit parameters remain
the same as the default values. The actual timing skew and
real core loss for the three different inductors are provided in
Table VII, Table VIII, and Table IX, respectively.

The data displayed in all the tables clearly demonstrate that
there are minimal fluctuations in actual timing skew and real
core loss. Furthermore, it is noteworthy that all the obtained
core loss values fall within the established core loss reference
range from the Three-winding method. The experimental results
prove the effectiveness of the proposed method over a wide
range of circuit and design parameters.

D. Remarks on the Proposed Method

It should be noted that the ZVS operation is not necessary
for the proposed core loss measurement method. It is adopted
in this article to simplify the loss mechanism of the converter
and obtain a more accurate and reliable core loss reference
range. In addition, the Three-winding method is utilized in
our experimental setup for the sole purpose of acquiring a
core loss reference, allowing for cross-verification. In practical
applications, there are no limitations regarding the type of
winding or magnetic core that can be employed. The proposed
method can be effectively applied where a magnetic component
operates under rectangular voltage excitation, provided that

precise measurements of inductor current and core voltage can
be reliably obtained. In real-world measurements, the presence
of inevitable parasitic elements introduces high-frequency
ripples into the recorded current and voltage waveforms. These
ripples, if left unaddressed, have the potential to distort the
derivative curve used to determine the actual timing skew. To
mitigate this effect, mathematical tools can be employed to
eliminate high-frequency components. For example, we have
eliminated 16th harmonic and beyond via an FFT filter for the
data processing in this paper. In addition, since the proposed
method is built on the traditional two-winding method, it is
necessary to maintain a high coupling coefficient and account
for it in the final core loss calculation as (23) suggests. A
high coupling coefficient close to the unity is preferred as it
reduces the introduced parasitics and mitigates ripples in the
measurement. The proposed magnetic core loss measurement
method is currently suitable only for inductors under rectangular
voltage and triangular current excitation. It is not yet applicable
for general in-situ core loss measurement of transformers
with arbitrary waveforms in input and output. However, the
method can be used for transformers with rectangular voltage
excitation if the core loss is measured separately using a similar
two-winding setup. For other topologies with non-rectangular
voltage excitations or different transformer configurations, the
loss models can vary significantly. In such cases, the analysis
steps described in this article can be followed to derive new
error models. Exploring new variables in these topologies
could potentially lead to the development of a different in-situ
measurement method.

V. CONCLUSION

The effect of the timing skew between the voltage and
current measurement channels on direct magnetic core loss
measurement under rectangular voltage excitation is analyzed.
A mathematical model is established to represent the measured
core loss as a function of the timing skew, covering the
entire transition. The proposed method utilizes a pF-level
additional capacitor to introduce a geometric characteristic
to the mathematical model. This facilitates the accurate
determination of the actual timing skew and the real magnetic
core loss. This article also introduces the Three-winding method
to provide a core loss reference range for cross verification
in the laboratory. The effectiveness of the proposed core
loss measurement method is verified through simulations
and experiments under various circuit and design parameters,
validating its ability to provide reliable and precise results.
This approach enhances the understanding and analysis of
the timing skew and its impact on the measured magnetic
core losses. Building on previous work that measured total
inductor loss, the proposed method now enables real-time
measurement and distinction of core and winding losses. For
the first time, a single, straightforward measurement setup
can accurately capture both core and winding losses in-situ.
This breakthrough has significant potential to contribute to the
design and optimization of magnetic components in various
applications.
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