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Abstract 
Immune response is critical in septic wound healing. The aberrant and imbalanced signaling 
dynamics primarily cause a dysfunctional innate immune response, exacerbating pathogen 
invasion of injured tissue and further stalling the healing process. To design biological controllers 
that regulate the critical divergence of the immune response during septicemia, we need to 
understand the intricate differences in immune cell dynamics and coordinated molecular signals 
of healthy and sepsis injury. Here, we deployed an ordinary differential equation (ODE)-based 
model to capture the hyper and hypo-inflammatory phases of sepsis wound healing. Our results 
indicate that impaired macrophage polarization leads to a high abundance of monocytes, M1, and 
M2 macrophage phenotypes, resulting in immune paralysis. Using a model-based analysis 
framework, we designed a biological controller which successfully regulates macrophage 
dysregulation observed in septic wounds. Our model describes a systems biology approach to 
predict and explore critical parameters as potential therapeutic targets capable of transitioning 
septic wound inflammation toward a healthy, wound-healing state.  

 

Introduction 

Wound healing is one of the most complex processes in multicellular organisms that involves a 
cascade of immune cells coordinated by molecular signals and aims to achieve tissue integrity, 
eradicate pathogen invasion, and promote tissue homeostasis. After an injury, platelets aggregate 
to form blood clots and prevent excessive blood loss in vascular tissues (Shannon 2020; 
Golebiewska and Poole 2015). The blood clots release various pro-inflammatory mediators, 
including tumor necrosis factor-alpha (TNF-α), to activate the bulk transmigration of neutrophils 
(N) into the tissue. Typically, neutrophils abundance steadily increases at the injury site for 
approximately 24 hours before undergoing apoptosis (Herrero-Cervera, Soehnlein, and Kenne 
2022; M.-H. Kim et al. 2008). Neutrophil apoptosis releases cytokines and other molecules that 
recruit monocytes (M0), arriving within 5 to 6 hours post-injury (Marwick et al. 2018; El Kebir, 
Gjorstrup, and Filep 2012). The recruited monocytes differentiate into monocyte-activated 
macrophages. Macrophages are often considered the most important immune cell in the healing 
process, as they undergo phenotypic change towards the "classically activated" (M1) pro-
inflammatory phenotype, followed by the "alternatively activated" (M2) anti-inflammatory 
phenotype. The macrophage plasticity (differentiation between M0, M1, and M2) is crucial in 
transitioning the wound microenvironment from a pro-inflammatory to a pro-resolution state (S. 
Y. Kim and Nair 2019; Krzyszczyk et al. 2018; Li et al. 2021). As inflammation is resolved, the 
M2 anti-inflammatory macrophages secrete cytokine IL-4 and growth factors TGF-β, suppressing 
inflammatory immune cell activity while promoting extracellular matrix synthesis, recruiting 
fibroblasts, and stimulating mesenchymal cells to differentiate into myofibroblasts (Minutti et al. 
2017).  



 2 

In a healthy, acute wound-healing condition, inflammation is an essential step in the clearance of 
infection. Host immune white blood cells quickly enter the injury site to locate and remove 
pathogens. The immune response and transition from inflammation to proliferation and 
remodeling phases is typically tightly regulated, returning immune cell counts and their signal 
mediators to basal levels (Landén, Li, and Ståhle 2016) . However, the dysregulated immune 
function produces a cytokine storm that impairs macrophage function, hindering the measures for 
preventing pathogen invasion—the consequences of a weakened immune response results in 
microenvironments ideal for systemic pathogenesis and sepsis.   

Sepsis is a life-threatening condition initiated by pathogen infection and is one of the leading 
causes of morbidity and mortality worldwide (Rudd et al. 2020). Sepsis is fundamentally an 
immune-inflammatory condition characterized by two distinct phases in response to systemic 
infection: hyper-inflammation and prolonged immune suppression (Hotchkiss, Monneret, and 
Payen 2013; Nakamori, Park, and Shimaoka 2021). Excess production of inflammatory mediators 
such as TNF-α and IL-1β can further damage tissue and activate bacterial virulence. Concurrent 
immune suppression leads to macrophage paralysis, ineffectual wound healing, and increased 
susceptibility to infection.  

 

Figure 1. Diagram of macrophage polarization during wound healing. (A) balanced macrophage 
abundance and immune response eliminate disease and damaged tissue to promote homeostatic 
healing. (B) impaired macrophage polarization results in overabundance in all macrophage 
phenotypes. The cocureent cytokine storm and inflammation suppression lead to macrophage 
paralysis. 
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Current efforts on inflammation regulation for chronic wounds and scar prevention have mainly 
focused on the delivery of growth factors, cytokines, and other immunomodulatory factors (Zhang 
and Ning 2021; Rudd et al. 2018; Tsirigotis et al. 2016). Despite early success, translating these 
therapies for septic wound resolution into the clinic has been difficult due to delivery methods and 
safety challenges (Ulloa et al. 2009; Vincent 2016; Malone and Schultz 2022). Most therapeutics 
currently rely on discrete doses, given via injections or applied topically to the wound site. Because 
of natural clearance, doses are given at supra-physiological levels to sustain drug presence 
throughout the wound healing process (Kumar and Singh 2015; Sjövall et al. 2018). This results 
in both safety concerns and poor long-term efficacy. Alternatively, dynamically regulating the 
immune system to suppress cytokine production and promote tissue repair and regeneration is an 
attractive approach for controlled and sustained drug release over longer periods, which is critical 
to the success of immune therapies.  
In this work, we present a systems biology approach that deploys a model-based analysis 
framework to design a biological controller, to regulate bacterial invasion that often leads to local 
and systemic inflammation of septic wounds. Specifically, we developed a mechanistic model that 
captures the healing process based on literature findings and used local and global sensitivity 
analysis to identify the monitoring and regulation points along the pathway. We then proposed a 
biologically feasible controller (i.e., synthetic gene circuit) and demonstrated the efficacy of the 
controller by regulating various impaired healing conditions. 

Results  
Wound Healing Model Development 
Recent systems medicine models reveal design principles of therapeutic circuit motifs that could 
improve impaired wound closure and excessive scar tissue (Cumming, McElwain, and Upton 
2010; Flegg et al. 2015; Green et al. 2019; Adler et al. 2020). Computational models, including 
ordinary differential equation (ODE)-based models and agent based models, have demonstrated 
the capability of describing wound healing mechanisms while elucidating potential pathways and 
immune dynamics that may lead to therapeutic strategies (Walker et al. 2004; Mi et al. 2007; 
McDaniel et al. 2019; Vodovotz and An 2021; Zlobina, Xue, and Gomez 2022). In this work, we 
develop a simplified ODE model to describe the healing process in injured tissue, as outlined in 
Figure 2. The kinetic parameters are identified and tuned for the model to capture concurrent 
hyperinflammation and immune paralysis defined in septic wound healing. 

Specifically, to facilitate the transition of each phase of wound healing based on cellular and 
molecular dynamics, we introduce chemical species S1, S2, and S3 to represent a class of critical 
cytokines and growth factors that coordinates healing. We also employ a Hill-type function to 
describe the impact of the injury on neutrophil recruitment. To represent the promoting and 
repressing effect of M1 on injury based on its relative abundance, we introduce a simple logic 
switch, Effector, defined as:  

!""#$%&'()!, +ℎ'#-ℎ&./"##0 = 2−1, )! < +ℎ'#-ℎ&./"##	
1, 		)! ≥ +ℎ'#-ℎ&./"##  

where, !!	is the cell count of the cellular species M1, and #ℎ%&'ℎ()*"## is a tunable threshold to 
trigger the effector. When the M1 cell count is below the threshold, M1 will repress injury as 
expected during a healthy immune response; otherwise, M1 cells worsen injury. The detailed 
ODEs are given in equations 1-10. Where in general + represents the generation, recruiting rate of 
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the corresponding species, , represents induced apoptosis (γ1), differentiation (γ2-5), and cell 
recruiting (γ6) and rate, - is the cell degradation rate, and . is the signal degradation rate. K and n 

are the hill function constant. Capacity is defined as 1- 
∑%&&	("&&)
*!"#

,  where /+%, is the maximum 

number of cells allowed in the system, to introduce a constraint from the environment.   

Using the derived ODE model, we first confirm if the model can capture the key characteristics of 
both the healthy and impaired wound healing processes. Figures 2B and 2C show the healthy and 
impaired cellular dynamics simulations during tissue injury, respectively. The kinetic parameter 
values are given in SI Table 1, and the simulations are solved with MATLAB ode23s solver. As 
indicated in Figure 2B, the healthy wound healing model demonstrates a sequential and timely 
cascade of cell dynamics of neutrophil, monocyte, M1, M2, fibroblast and ending with 
myofibroblast dominating the system after ten days. On the other hand, the cellular dynamics are 
distressed in the septic wound healing system (Figure 2C), with M0, M1, and M2 macrophage 
abundance remaining relatively high when compared to healthy healing dynamics. The 
observations verify that our ODE model can capture the fundamental features of healthy healing 
dynamics and impaired healing processes observed in sepsis disease.  

 

Figure 2. (A) Overview of wound healing immune cell dynamics following injury and pathogen 
invation. Simulation of (B) acute and (C) septic wound healing using parameters listed in 
Supplemental Table 1 and ODEs in equations (1-10). 
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  !(#$%&'()*+,)!& = ". /01%'2!
/01%'2!34! [$%&'()*ℎ,-][/0*01,'2] − 4.[$&%'()*ℎ,-][51] − 45[$&%'()*ℎ,-][71] − 8.[$]			(1)		 

	<(5)=)12'&)<' = 45[$][71] − 46[5)=)12'&] − 86[5)=)12'&]																																																																																														(2) 

	<(51)<' = 46[5)=)12'&] − 47[51][72] − 87[51]																																																																																																																						(3) 

	<(52)<' = 47[51][72] − 88[52]																																																																																																																																																							(4) 

	<(A,B()B-0C')<' = "6
730

730 +E0 [A,B()B-0C'][/0*01,'2] − 48[A,B()B-0C']																																																																								(5) 

	<(52)G,B()B-0C')<' = 48[A,B()B-0C']																																																																																																																																												(6) 

	<(I=J%(2)<' = "7KGG&1')([51][I=J%(2] − 49[$&%'()*ℎ,-][I=J%(2]
− L8[I=J%(2]																																																																																																																																																							(7) 

	<(71)<' = N.[$&%()*ℎ,-] − L.[71]																																																																																																																																																				(8) 
<(72)
<' = 4.[51][$&%'()*ℎ,-] − L6[72]																																																																																																																																										(9) 

<(73)
<' = N6[52] − L7[73]																																																																																																																																																																	(10) 

Controller Design 
After verifying the model, we introduced a controller that reverts the chronic healing dynamics 
toward a healthy, homeostatic immune response. Specifically, we designed a feedback controller 
capable of ensuring system stability, handling system uncertainty, and mitigating modeling errors 
to achieve a timely cascade of cellular dynamics ending with a high level of myofibroblast state 
after ten hours.  

 

A typical feedback control involves 1) sensing, which measures the system's status as an input to 
the controller, 2) control policy, a guideline to update the control input; and 3) actuation, which 

 

Figure 3. Framework for biological controller design and verification. Local sensitivity analysis 
provides information on the regulation point, and global snesitivity analysis identifies which 
cellular species to monitor, in the biological controller. 
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adjusts the manipulated variable according to the updated control input. Actively sensing and 
modulating immune cell and signal concentrations throughout the healing process is a viable 
therapeutic strategy, thus, we describe a proof-of-concept single-input-single-output controller to 
regulate vital immune processes. Our understanding of dysregulated immune response, altered 
signal concentrations, and impaired cellular function guided the controller design.  

To identify the aforementioned components for our controller, we implemented a system’s 
framework outlined in Figure 3. Our model includes a local sensitivity analysis to identify the 
appropriate regulation point, i.e., manipulated variable to influence the process dynamics, and a 
global sensitivity analysis to identify the optimal cellular and molecular species to monitor and 
activate the feedback controller. Additionally, we use a biomolecular sequestration module as a 
threshold comparator to establish simple rules to trigger the controller when sepsis conditions 
arise.  

Local Sensitivity Analysis for Regulation Chemical Identification 

The local sensitivity analysis evaluates the model's sensitivity to changes in a single parameter and 
provides insights into the most prominent variables that lead to impaired healing. Such parameters 
will serve as candidate regulation points for the controller to modulate.  

In our study, we independently perturbed each of the 22 kinetic parameters to five discrete values 
spanning five orders of magnitude: [0.001, 0.01, 0.1, 1, 10] ∗ ()*+,-.	0-.12. The parameter 
range represents a reasonable span of the biologically relevant values, while the coarse grain 

 

Figure 4. The endpoint cell count of the local sensitivity analysis reveals the dominating kinetic 
parameters in our system. Circles indicate the mean, and the error bar indicates the standard 
deviation of the endpoint concentration due to variations in each specific kinetic parameter. 
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reduces the computational cost when covering such a broad range of values. Together we 
conducted a total of 22 × 5 = 110 simulations and analyzed the results using three metrics: 
Endpoint Cell Counts, Maximum Cell Counts, and Time to Peak. The "Endpoint Cell Count" 
quantifies the abundance of each cell species at the end of the 20-day simulation and determines 
if the system sequentially completes the phases of healthy healing or is halted in a chronic state. 
The "Maximum Cell Count" of each species and the "Time to Peak" metrics complement the 
"Endpoint Cell Count" by gauging the temporal signal and cellular dynamics to discern between 
healthy versus chronic healing processes.  

Figure 4 summarizes the local sensitivity results based on the Endpoint Cell Count metric. The 
results for Maximum Concentration and Time to Peak are provided in SI Figure S1 and S2. For 
each parameter, we presented the average Endpoint Cell Count of the five simulations using the 
five values mentioned earlier for each of the six cell species. The error bars indicate the 
corresponding standard deviation. Results in Figure 4 suggest that the Endpoint Cell Count of 
fibroblast is least affected by the kinetic parameters. Conversely, the differentiation rate of 
fibroblast to myofibroblast, parameter 7-, shows a noticeable impact as illustrated by the large 
standard deviation. Myofibroblast displays the most sensitivity to single-parameter variation, as 
most parameters would affect the endpoint values quantified by the large standard deviation. In 
general, parameters 7!, 7., 7/, 8!, and 90 show a significant impact on all the cell types. This 
observation further indicates that these parameters are candidate variables to regulate with the 
controller. Given the definitions of these parameters, we assigned 7/ as the manipulated variable, 
as it serves as a critical variable, upstream in the wound healing process: recruiting monocytes by 
way of neutrophils.  

Global Sensitivity Analysis for Sensing Species Identification 
While we identify the manipulated variable with local sensitivity analysis, we deploy global 
sensitivity analysis to identify the appropriate cell species for the controller to monitor. In the 
global sensitivity analysis, we randomly perturbed the most impactful kinetic parameters 7!, 	7.,
7/, 	8!,	and 90,	within ±50% of their nominal values with a uniform distribution, and performed 
1000 independent simulations to investigate the conditions that lead to chronic healing dynamics. 
This ±50% interval was chosen based on our observations from the local sensitivity analysis, 
which showed that 50% perturbations of the dominate parameters is sufficient in altering the 
healing dynamics toward chronic like-behavior.  

Figure 5 summarizes the time trajectory of 1000 simulations of all the species, by which we group 
the simulations into two categories based on the Endpoint Cell Count: acute and chronic 
conditions. Specifically, when myofibroblast has the highest Endpoint Cell Count among all the 
cell types, with a count ≥ 40 (selected as an example and is tunable based on the actual biological 
dynamics), the corresponding simulations are deemed as acute; otherwise, myofibroblast cell count 
below 40 cells is considered chronic healing. Such a criterion ensures that the most abundant cell 
type at the end of the process is myofibroblast, which corresponds to physiological healing 
conditions.  
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With this criterion, our modeled resulted in 43/1000 chronic and 957/1000 acute conditions. This 
observation further supports the selection of the nominal values with reasonable robustness to 
parameter uncertainties. The solid green and black lines in Figure 5 represent the average plots of 
the acute and chronic simulations, respectively, as the shaded region represents the entire range 
the dynamics covered for each simulation. Figure 5 shows that most chronic conditions were 
stalled due to high macrophage (M0, M1, M2) abundance, while the acute conditions demonstrated 
an ordered transition ending with maximum myofibroblast abundance. Comparing the difference 
between the acute and chronic healing conditions, we notice the time trajectory of the M2 cell 
count shows an evident divergence at around 15 cells at the early stage of the process. Therefore, 
we decide to monitor the M2 cell count as the feedback to trigger our controller.  

Threshold-based Single Input Single Output Biological Controller 
The manipulated parameter in our controller, 7/, is the rate by which neutrophils recruit monocytes 
into the injured tissue. The controller's objective is to confine the excessive accumulation of all 
macrophage phenotypes to avert the onset of chronic conditions. One control strategy is to limit 
the differentiation of M2 by down regulating the upstream events governed by the kinetic 
parameter 7/. Therefore, we propose the following simple logic regulator, capable of detecting the 
relative abundance of M2, M2, to a threshold, Thresholdcon: 

=),>?)..2?	(A0	Bℎ?2Dℎ).E(12) = GH, +I	A0 ≥ Bℎ?2Dℎ).E(12
1, )>ℎ2?J+D2.																						  

Where H is a large tunable number ("1), and we modify equation 2 as:  

E(A),)LM>2)
E> = 7/

=),>?)..2? [(][N2] − 70[A),)LM>2] − P0[A),)LM>2]							(11) 

 

Figure 5. Global sensitivity analysis was performed to identify sensing points as feedback to 
the controller. Green lines represent the average acute condition simulation results, and black 
ones represent the averaged chronic condition simulation results, with the shaded areas 
indicating the entire space each condition has spanned in our simulation.  
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The design of the controller resets the total abundance of monocytes and macrophages prone to 
cause impaired healing conditions in the system by down-regulating neutrophil activation of 
monocytes. The controller design can be realized with a synthetic gene circuit, as shown in Figure 
6. Specifically, we can use sequestration at the DNA, RNA, or protein level to establish a 
regulation threshold to activate the negative feedback in the system. The concentration of the 

negative inhibitor can shift the input-output threshold, while maintaining ultra-sensitivity, as 
shown in Figures 6 B and C (Buchler and Cross 2009). 

Two factors would affect the controller performance: the concentration of M2 to trigger threshold, 
Thresholdcon and the parameter K value. From our sensitivity analysis, varying these two 
parameters (SI Figure S3) indicates that the performance of the controller is dominated by the 
threshold value and is less sensitive to the value of K. This observation is expected, as the threshold 
determines the controller's responsiveness to the system dynamics. For illustration purposes, we 
present results for H = 100, an 	Bℎ?2Dℎ).E(12 = 20, for analysis. 

Controller Performance Evaluation 

 

Figure 6. (A) Schematic of the controller integrated into the cellular imune circuit. (B) 
Realization of controller design using sequestration gene circuit to establish a threshold setpoint. 
The controller output (orange) is activated when the M2 input signal (black) is above the 
threshold comparator compound (gray). (C) Illustration of input-output dynamics with increased 
threshold setpoint. 
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To evaluate the performance of our controller, we implemented the controller on all the simulated 
trajectories from the global sensitivity analysis in Figure 6. We anticipate that the controller will 
revert the chronic healing dynamics and deliver an improved healing process while not interfering 
with a healthy healing process.  

Results in Figure 7 summarize the controlled (red) and uncontrolled (black) results of the 43 
chronic conditions obtained from the global sensitivity analysis. The solid black and red lines 
indicate the average dynamics of the uncontrolled and the controlled simulations, respectively.  
The shaded area represents the range covered space by the simulations. Figure 7 illustrates that the 
controller reverts all chronic conditions to healthy by down regulating the cell count of monocyte, 
M1, and M2, which subsequentially lead to the max (or near max) abundance of myofibroblast at 
the end of the simulation. One noticeable point is that the controller introduced oscillations into 
the system, exemplified by neutrophils, monocyte, S1, and S2, before improving the dynamics of 
each cell type. A comparison of the log scale injury profile demonstrates that injury explodes over 
time without control, as observed in septic wounds, but with the controller, injury is reduced 
allowing for healthy healing. An example of individual controlled and uncontrolled simulations is 
provided in SI Figure S4, which shows similar observations as the statistically averaged dynamics.  

 

Figure.7 Comparison of controlled and uncontrolled simulations. Statistical results of the 
controlled and uncontrolled chronic conditions for each cell and signal. The black and red lines 
represent the uncontrolled and uncontrolled average dynamics. Simulation results suggest the 
controller can revert the chronic healing condition to acute wound healing. B) Statistical results 
of the controlled and uncontrolled acute conditions for each cell and signal. The green and red 
lines represent the uncontrolled and uncontrolled average dynamics. Simulation results suggest 
no significant interference from the controller to the healthy healing process.  
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Out of the 957 acute simulations from the global sensitivity analysis, 97% of the simulations ended 
up with an endpoint myofibroblast cell count of ≥ 90, with the remaining 3% of simulations with 
an endpoint myofibroblast cell count of ≤ 60, as demonstrated in the histogram distribution in 
Figure 8A. To evaluate the impact of the controller on the acute healing processes, we applied the 
controller to two representative simulations, one with a high endpoint myofibroblast and one with 
a low myofibroblast, as shown in Figure 8B. The comparison reveals that the controller does not 
interfere with the system dynamics during the acute healing process (Scenario 1), while the 
controller improves impaired healing during sepsis conditions (Scenario 2). Indeed, the Scenario 
2 condition could be classified as sepsis in wound healing.  

Altogether, the simulation results confirm that our controller can improve the chronic healing 
condition and has minimum impact on the system if it is in an acute healing condition.  

Discussion 
Bacterial infections leading to sepsis are a key challenge facing our global healthcare system. The 
pathophysiology of sepsis is vaguely defined as the dysregulated host response to infection. Sepsis 
is traditionally considered a biphasic condition where immunosuppression follows 
hyperinflammation. However, recent studies describe the underlying mechanisms to include 
concurrent hyperinflammation and immunosuppression from the onset of sepsis. Sepsis treatment 
depends mainly on candid measures, including source control, resuscitation, and palliative 
interventions (Mackenzie and Lever 2007; Dugar, Choudhary, and Duggal 2020). There remains 
a growing need for early diagnosis and responsive treatments at the onset of septicemia and 
impaired wound healing caused by the septic invasion. An ideal septic wound therapeutic must 
maintain a balanced control of the hyper and the hypo-inflammatory phase in a dysfunctional 
immune process and prevent septicemia and further organ malfunction (Tsirigotis et al. 2016). 

 

Figure 8. Evaluation of controller interferences on acute healing conditions. (A) histogram of 
endpoint myofibroblast cell count of the 957 acute condition simulations from the global 
sensitivity analysis. (B) Two different acute healing scenarios suggest the controller impact on 
the system depends on the "wellness" of the system, where no impact is observed if the system 
is in a good acute healing condition (Scenario 1). The green plots are with the controller, and 
the black plots are without the controller.  
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Systems biology models are valuable tools to elucidate critical signaling pathways and design 
potential controller motifs that may serve as immune-modulating interventions.   

In this work, we developed a set of ordinary differential equations that captures the prominent 
characteristics of sepsis's impaired immune cellular dynamics. Our systems biology model also 
illustrates how dysregulated macrophage count, particularly the concurrent overabundance of M0, 
M1 and M2 macrophages, results in poor wound healing, leading to recurrent wound infections. 
While the model explains the severe derangement of immune cell dynamics, it also highlights an 
ideal monitoring and regulation point to reset immune paralysis based on local and global 
sensitivity analysis. Furthermore, the proposed feedback biological controller can recover the 
septic inflammatory condition to the healed state by modulating the neutrophil to M0 
differentiation rate in response to M2 dynamics.  

Cytokines and growth factors are critical mediators as they are involved in crucial transition points 
during the immune process. For example, TGF-β is responsible for resolving inflammation, 
skewing the polarization of M2 macrophage phenotype, recruiting fibroblasts, and stimulating 
mesenchymal cells to differentiate into myofibroblasts. Our local and global sensitivity analysis 
illustrated that pro and anti-inflammation signaling pathways remained upregulated during 
pathologic localization and infusion observed in sepsis inflammation (Nedeva, Menassa, and 
Puthalakath 2019; Qiu, Liu, and Zhang 2019). The controlled results suggest that detecting excess 
cell and signal abundance concerning a critical threshold, thus activating the regulation of the key 
transition points, is a viable and practical approach to dynamically controlling the healing process.    

Computational models are generally limited by assumptions that simplify the complexity of 
biological systems. The work presented here highlights a primary controller for subverting sepsis 
wound healing based on the offset of immune dysregulation and suppression. Our model focuses 
only on the impaired immune responses of the predominant innate cells in wound healing: 
neutrophil, macrophage, fibroblast, and myofibroblast, and overlooks deficits in the adaptive 
immune response, which are also critical in septic-induced mortality. Like the innate immune 
response, the adaptive cell types, including T cells, B cells, and dendritic cells, play 
immunoregulatory roles in mitigating tissue damage and facilitating immune homeostasis after 
infection or injury (Brady, Horie, and Laffey 2020). We expect such simplification to render 
discrepancy in experimental implementation and anticipate further modification of the model to 
reflect experimental details for control performance.  
Additionally, we used single molecular elements to represent a class of immune cytokine and 
chemokine signals to simplify the complex yet essential pleiotropic nature of immune signals in 
our model. In our model and analysis, we also used cellular and signal parameter values to 
generalize impaired wound healing during sepsis. In future work, we will identify the critical 
biomarkers responsible for pivotal transition points defined in our model (e.g., neutrophil 
apoptosis, macrophage polarization) and characterize the parameter values for signal production 
and secretion rates from the predominant cell type. As more information becomes available, we 
will modify our model assumptions and incorporate detailed mechanisms, to improve the 
relevancy and accuracy of the model and the inferred pathogenesis of sepsis.   

The framework presented in this computational study provides a potentially viable approach to 
designing a biological regulator for a complex biological pathway. We expect our work to guide 
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experimental exploration to advance our understanding of the immune dynamics in sepsis and to 
facilitate the development of synthetic-based theragnostic for septic wound healing.  

Materials and Methods 
The mechanistic ODE model was developed around the key species in the system, following the 
low of mass action. All the simulations presented in this manuscript were conducted in 
MATLAB_R2022a, and solved with ode23s solver. For the local sensitivity analysis, we 
independently perturbed each of the 22 kinetic parameters in our model to five discrete values, 
spanning five orders of magnitude: [0.001, 0.01, 0.1, 1, 10] ∗ ()*+,-.	0-.12. This parameter 
range represents a reasonable span of the biologically relevant values, while the coarse grained 
interval reduces the computational cost when covering such a broad range of values. The nominal 
value for each parameter is provided in SI Table 1. Together, we conducted a total of 22 × 5 =
110 simulations and analyzed the results using the three metrics: Endpoint Cell Counts, Maximum 
Cell Counts, and Time to Peak, as defined in the manuscript. In the global sensitivity analysis, we 
randomly perturbed the most impactful kinetic parameters 7!, 	7., 7/, 	8!,	and 90,	within ±50% of 
their nominal values with a uniform distribution with MATLAB command rand, and performed 
1000 independent simulations to investigate the conditions that lead to chronic healing dynamics. 
This ±50% interval was chosen based on our observations from the local sensitivity analysis, that 
50% perturbations of the dominate parameters is sufficient in altering the healing dynamics toward 
chronic like-behavior. To evaluate the controller performance, 1000 simulations with the controller 
were conducted using the same kinetic parameters used for the global sensitivity analysis. All the 
results plots were generated in MATLAB. Codes and scripts are available per reasonable request. 
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