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ULTRAPRODUCT METHODS

FOR MIXED q-GAUSSIAN ALGEBRAS

MARIUS JUNGE AND QIANG ZENG

We provide a unified ultraproduct approach for constructing Wick words

in mixed q-Gaussian algebras which are generated by s j = a j + a∗
j for

j = 1, . . . , N , where ai a
∗
j − qi j a

∗
j ai = δi j . Here we also allow equality

in −1 ≤ qi j = q j i ≤ 1. Using the ultraproduct method, we construct an

approximate comultiplication of the mixed q-Gaussian algebras. Based on

this we prove that these algebras are weakly amenable and strongly solid

in the sense of Ozawa and Popa. We also encode Speicher’s central limit

theorem in the unified ultraproduct method, and show that the Ornstein–

Uhlenbeck semigroup is hypercontractive, the Riesz transform associated to

the number operator is bounded, and the number operator satisfies the L p

Poincaré inequalities with constants C
√

p.

1. Introduction

Group measure space constructions go back to the original work of Murray and von

Neumann [1936]. In the last decades Popa and his collaborators have solved many

open problems about fundamental groups and uniqueness of Cartan subalgebras;

see, e.g., [Ozawa and Popa 2010a; 2010b; Popa and Vaes 2010; 2014; Houdayer

and Shlyakhtenko 2011]. In parallel, von Neumann algebras generated by q-

commutation relations (motivated by physics and number theory) were introduced

by Bożejko and Speicher [1991], and further investigated by Bożejko, Kümmerer,

and Speicher [Bożejko et al. 1997], Shlyakhtenko [2004], Nou [2004], Śniady

[2004], Ricard [2005], Kennedy and Nica [2011], and Avsec [2011], among others.

More recently, Dabrowski [2014] and Guionnet and Shlyakhtenko [2014] have

shown that for small q , the q-Gaussian algebras are isomorphic to free group factors.

All these results on factoriality, embeddability in RÉ, and approximation properties

face a similar problem: how to derive properties of von Neumann algebras from

combinatorial structures given by the original q-commutation relations.
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In this paper we study generalized q-commutation relations: Given a symmetric

matrix Q = (qi j )
N
i, j=1, qi j ∈[−1, 1], Speicher [1993] considered variables satisfying

(1-1) ai a
∗
j − qi j a

∗
j ai = ¶i j .

The mixed q-Gaussian algebra 0Q is generated by the self-adjoint variables s j =
a∗

j + a j and admits a normal faithful tracial state (see Section 3 for more details).

Bożejko and Speicher [1994] systematically constructed the Fock space representa-

tion of the so-called braid relations, which is more general than (1-1). Then various

properties were studied in, e.g., [Nou 2004; Krȯlak 2000; 2005]. As for (1-1),

Lust-Piquard [1999] showed the L p boundedness of the Riesz transforms associated

to the number operator of the system when qi i < 1. Other generalized Gaussian

systems related to our investigation have also been studied; see, e.g., [Guţă and

Maassen 2002; Guţă 2003].

It is very tempting to believe that mixed q-Gaussian algebras behave in any

respect the same way as the q-Gaussian algebras with constant q. Indeed, the L2

space of such an algebra admits a decomposition

L2(0Q)=
∞⊕

k=0

H k
Q

into finite-dimensional subspaces H k
Q of dimension N k , which are eigenspaces of

the number operator. For fixed qi j = q the number operator can be defined in a

functorial way following Voiculescu’s lead [Voiculescu et al. 1992] for q =0. Indeed,

for every real Hilbert H one finds the q-Gaussian von Neumann algebra 0q(H) and

a group homomorphism ³ : O(H)→Aut(0q(H)) such that for o ∈ O(H) and h ∈ H

³(o)(sq(h))= sq(o(h)).

Here, sq(e j )= s j and (e j ) is an orthonormal basis for the N-dimensional Hilbert

space H . Then

Tt = E³(ot)Ã,

where Ã : 0q(H)→ 0q(H · H) is the natural embedding with conditional expec-

tation E , and

ot =
(

e−t id −
√

1 − e−2t id√
1 − e−2t id e−t id

)
.

For nonconstant Q = (qi j ) we can no longer refer to functoriality directly. One

of the first results in this paper is to provide a unified approach to the Ornstein–

Uhlenbeck semigroup for |qi j | f 1 including the classical cases q = 1 for bosons

and q = −1 for fermions. The fact that the dimension of the eigenspace H k
Q is not

more than N k uniformly for all Q is based on thorough analysis of different forms

of Wick words and probabilistic estimates (see Section 3).
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Another new feature of these generalized relations comes from studying the

operators

8(x)= E(sN+1xsN+1),

where x is generated by s1, . . . , sN . For constant qi j = q we find 8(x) = ql(x)x
can be easily computed in terms of the length function l(x) = k if x ∈ H k

Q . The

formula for general Q is vastly more complicated. However, such expressions are

crucial building blocks in proving strong solidity.

Let us recall some notions in operator algebras. We always assume the von

Neumann algebras to be finite in this paper. Recall that a von Neumann algebra M

has the weak* completely bounded approximation property (w*CBAP) if there

exists a net of normal, completely bounded, finite-rank maps Æ³ : M → M such

that ∥Æ³∥cb f C for all ³, and Æ³ → id in the point weak* topology. Here,

∥ · ∥cb denotes the completely bounded norm. The infimum of such constants C is

called the Cowling–Haagerup constant and is denoted by 3cb(M). Cowling and

Haagerup [1989] showed that a discrete group G is weakly amenable if and only if

its group von Neumann algebra LG has w*CBAP. Thus, a von Neumann algebra

with w*CBAP is also said to be weakly amenable. If 3cb(M)= 1, M is said to

have the weak* completely contractive approximation property (w*CCAP). See,

e.g., [Brown and Ozawa 2008] for more details of the approximation properties.

Following Ozawa and Popa [2010a], a von Neumann algebra M is called strongly

solid if the normalizer NM(P) := {u ∈ U(M) : u Pu∗ = P} of any diffuse amenable

subalgebra P ¢ M generates an amenable von Neumann algebra. Here, U(M) is

the set of unitary operators in M.

Theorem 1.1. 0Q has w*CCAP and is strongly solid provided max1fi, jfN |qi j |< 1.

These properties extend similar results due to Avsec [2011] for q-Gaussian von

Neumann algebras. The w*CCAP for 0Q is proved using a transference method

based on Avsec’s w*CCAP result for the q-Gaussian algebras. Then we show a weak

containment result of certain bimodules. These results, together with a modification

of Popa’s s-malleable deformation estimate, leads to strong solidity using a, by

now, standard argument. The method used here follows that of [Houdayer and

Shlyakhtenko 2011; Avsec 2011]. However, the techniques are more difficult than

the case of q-Gaussian algebras. We have to use some nontrivial tricks to achieve

certain results similar to those in [Avsec 2011].

The ultraproduct method plays an essential role in many aspects of this paper.

It is well known that CCAP is a stepping stone for proving strong solidity. The

transference method mentioned above relies entirely on an embedding of 0Q into an

ultraproduct of von Neumann algebras which preserves the Wick words. This allows

us to transfer the CCAP result of the constant q case of Avsec to the current mixed q
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case. The argument can be illustrated using the following commutative diagram:

0Q
�

� ÃU
//

È³

��

∏
m,U 0q(ℓ

m
2 )¹0Q̃¹1m

ϕ³(A)¹id

��

0Q
�

� ÃU
//
∏

m,U 0q(ℓ
m
2 )¹0Q̃¹1m

The notation will be explained in the proof of Theorem 5.5. The map ÃU can be

understood as an approximate comultiplication. Without the help of the ultraproduct

method above, we will have to extend directly the argument for the constant q case

to the mixed q case, which may be very hard due to the involved combinatorial

structure.

We also prove some analytic properties for 0Q following the unified ultraproduct

approach. The cornerstone is a Wick word decomposition result, whose proof in-

volves some complicated combinatorial and probabilistic arguments. In this context,

the ultraproduct construction provides a natural framework to encode Speicher’s

central limit theorem; see [Speicher 1992; 1993; Junge 2006]. Furthermore, the

Wick words are identified as some special sequences in the ultraproduct of spin

matrix models. Once we have the Wick word decomposition, it follows immediately

that the Ornstein–Uhlenbeck semigroup (Tt)tg0 associated to 0Q is hypercontractive:

For 1 f p, r <∞,

∥Tt∥L p→Lr = 1 if and only if e−2t f p − 1

r − 1
.

Here, L p = L p(0Q, ÄQ) is the noncommutative L p space associated to the canonical

tracial state ÄQ on 0Q . This result is a vast generalization of the work of Biane

[1997] and Junge et al. [2015]. Indeed, we obtain hypercontractivity results for

free products of q-Gaussian algebras and, in particular, free products of Clifford

algebras. More exotic choices may be obtained for general qi j . We also recover and

extend the result of Lust-Piquard [1999] on the boundedness of Riesz transforms.

Let A be the number operator of 0Q , which is also the generator of Tt . Define the

gradient form (Meyer’s “carré du champ”) associated to A as

0( f, g)= 1
2
(A( f ∗)g + f ∗ Ag − A( f ∗g))

for f, g in the domain of A. We show that

(a) for p g 2,

c−1
p ∥A1/2 f ∥p f max

{
∥0( f, f )1/2∥p, ∥0( f ∗, f ∗)1/2∥p

}
f K p∥A1/2 f ∥p

with cp = O(p2) and K p = O(p3/2);
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(b) for 1< p < 2,

K −1
p′ ∥A1/2 f ∥p f inf

¶( f )=g+h
g∈Gc

p,h∈Gr
p

{
∥E(g∗g)1/2∥p + ∥E(hh∗)1/2∥p

}
f C p∥A1/2 f ∥,

with K p′ = O(1/(p −1)3/2) and C p = O(1/(p −1)2), where ¶ is a derivation

related to the Riesz transforms and Gc
p and Gr

p are two Gaussian spaces (all

will be defined below).

Moreover, we obtain the L p Poincaré inequalities:

∥ f − ÄQ( f )∥p f C
√

p max
{
∥0( f, f )1/2∥p, 0( f ∗, f ∗)1/2∥p

}
for p g 2.

This is an extension of similar results for the Walsh and Fermionic system in [Efraim

and Lust-Piquard 2008]. It is known that the constant C
√

p in such inequalities is

crucial for proving concentration and transportation inequalities; see, e.g., [Zeng

2014].

The paper is organized as follows. Some preliminaries and notation are pre-

sented in Section 2. We construct the mixed q-Gaussian algebras and the Ornstein–

Uhlenbeck semigroup in Section 3, where the Wick word decomposition result

is also proved with a lengthy argument. The analytic properties are proved in

Section 4, and the strong solidity is proved in Section 5.

2. Preliminaries and notation

2A. Notation. We write [N ] = {1, 2, . . . , N } for N ∈ N. The set of nonnegative

integers is denoted by Z+. For n ∈ N, we denote by Mn the algebra of n×n matrices.

We will use some notation to analyze combinatorial structures following [Speicher

1992; Junge et al. 2015]. Denote by P(d) the set of all partitions of [d]= {1, . . . , d}.
For Ã, Ã ∈ P(d), we write Ã f Ã or Ã g Ã if Ã is a refinement of Ã . We denote

the integer valued vectors by i, j , etc. Given i = (i1, . . . , id) ∈ [N ]d , we associate

a partition Ã(i) to i by requiring k, l ∈ [d] belonging to the same block of Ã(i) if

and only if ik = il .

We denote by |S| or #S the cardinality of a (finite) set S. If d is an even

integer, we define P2(d) to be the set of pair partitions of [d], i.e., P2(d) consists

of Ã = {V1, . . . , Vd/2} such that |Vk | = 2 for every block Vk . Write Vk = {ek, zk}
with ek < zk and e1 < e2 < · · ·< ed/2. Given Ã ∈ P2(d), the set of crossings of Ã

is denoted by

(2-1) I (Ã)=
{
{k, l} | 1 f k, l f d/2 and ek < el < zk < zl

}
.

For d ∈ N, we denote by P1(d) the one element set of singleton partition of [d], i.e.,

P1(d)= {Ã0} and Ã0 = {{1}, {2}, . . . , {d}}. Let P1,2(d) denote the set of partitions
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consisting of only singletons and pair blocks, and Pr (d) = P(d) \ P1,2(d). Let

Ã ∈ P1,2(d) be given by

Ã = {V1, . . . , Vs+u},

where the V j ’s are singletons (V j = {e j = z j }) or pair blocks (V j = {e j , z j }).
Assume there are s singleton blocks and u pair blocks in Ã . Let Ãp be a subpartition

consisting of the u pair blocks of Ã ∈ P1,2(d). Denote by Ip(Ã ) := I (Ãp) the set of

pair crossings of Ã given in (2-1) and define

Isp(Ã )=
{
{r, t} : er < et = zt < zr

}

to be the set of crossings between pairs and singletons.

Given a discrete group G, the left regular representation is ¼ : G → ℓ2(G),
¼(g)¶h = ¶gh for g, h ∈ G, and (¶g)g∈G is a canonical basis of ℓ2(G). The group

von Neumann algebra of G is denoted by LG and the canonical trace by ÄG . The

Kronecker delta function is denoted by ¶i, j . The use of two ¶’s will not appear in

the same place. It should be clear from the context which one we are using. We

let 1n denote the n × n matrix with all entries equal to 1.

2B. Spin matrix model. We consider a general spin matrix model, following [Lust-

Piquard 1998; Junge et al. 2015]. Fix a finite integer N . Let JN ,m = [N ]× [m] and

JN = [N ] × N. We usually do not specify the dependence on N and simply write

Jm = JN ,m and J = JN if there is no ambiguity. We equip Jm with the lexicographical

order. Let ε : J×J →{−1, 1} be a map satisfying ε(x, y)=ε(y, x) and ε(x, x)=−1

for all x, y ∈ J . Consider the complex unital algebra Am = Am(N , ε) generated by

(xi (k))(i,k)∈Jm , where the xi (k)’s satisfy xi (k)∗ = xi (k) and

xi (k)x j (l)− ε((i, k), ( j, l))x j (l)xi (k)= 2¶(i,k),( j,l)

for (i, k), ( j, l) ∈ Jm . It is well known that the xi (k)’s can be represented as tensor

products of Pauli matrices. Thus Am can be represented as a matrix subalgebra

of M2Nm . A generic element of Am can be written as a linear combination of words

of the form

xB = xi1
(k1) · · · xid (kd),

where B ={(i1, k1), . . . , (id , kd)}¢ Jm . We say xB is a reduced word if the xir (kr )’s

in xB are pairwise different for r = 1, . . . , d . Using the commutation relation, every

word À can be written in the reduced form, denoted by À̃ . There is a canonical

normalized trace Äm on Am such that Äm(xB)= ¶B,∅ for a reduced word xB .

2C. Pisier’s method for multi-index summations. Let Ã ∈ P(d) be a partition. In

the following we need to estimate the L p norm of
∑

k∈[m]d :Ã(k)gÃ
x1(k1) · · · xd(kd),
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where xi (ki ) ∈
⋂

p<∞ L p(Ä ), and L p(Ä ) is a noncommutative L p space associated

to a trace Ä . To this end, we follow Pisier’s method [2000]. As illustrated in the

proof of [Pisier 2000, Sublemma 3.3], one can find À1(k1), . . . , Àd(kd) ∈ LG such

that ÄG(À1(k1) · · · Àd(kd))= 1 if and only if Ã(k)g Ã and ÄG(À1(k1) · · · Àd(kd))= 0

otherwise. Here, G is a suitable product of free groups, LG is the von Neumann

algebra of G, and ÄG is the canonical trace on LG.

Let us explain this in more detail using an example. We denote by Fm the free

group with free generators (gi )i∈[m]. Suppose d = 6 and Ã = {{1, 3, 5}, {2, 6}, {4}}.
In this case, G = Fm × Fm × Fm and for i ∈ [m],

À1(i)= ¼(gi )
∗ ¹ 1 ¹ 1, À2(i)= 1 ¹ ¼(gi )

∗ ¹ 1,

À3(i)= ¼(gi )¹ 1 ¹ ¼(gi )
∗, À4(i)= 1 ¹ 1 ¹ 1,

À5(i)= 1 ¹ 1 ¹ ¼(gi ), À6(i)= 1 ¹ ¼(gi )¹ 1.

Then ÄG(À1(k1) · · · À6(k6))= 1 if and only if k1 = k3 = k5 and k2 = k6.

Returning to the general setting, consider the algebraic tensor product LG¹L p(Ä ).

Since ÄG ¹ id extends to contractions on L p, using Hölder’s inequality, we have
∥∥∥∥

∑

k∈[m]d :Ã(k)gÃ
x1(k1) · · · xd(kd)

∥∥∥∥
p
=
∥∥∥∥
∑

k∈[m]d

ÄG(À1(k1) · · ·Àd(kd))x1(k1) · · · xd(kd)

∥∥∥∥
p

f
∥∥∥∥
∑

k∈[m]d

À1(k1)¹ x1(k1) · · ·Àd(kd)¹ xd(kd)

∥∥∥∥
p

f
d∏

i=1

∥∥∥∥
m∑

ki =1

Ài (ki )¹ xi (ki )

∥∥∥∥
pd
.

If i belongs to a singleton block of Ã , then Ài (ki )= 1 and

∥∥∥∥
m∑

ki =1

Ài (ki )¹ xi (ki )

∥∥∥∥
pd

=
∥∥∥∥

m∑

ki =1

xi (ki )

∥∥∥∥
pd
.

If i does not belong to any singleton of Ã , then it is well known that

∥∥∥∥
m∑

ki =1

Ài (ki )¹ xi (ki )

∥∥∥∥
pd

=
∥∥∥∥

m∑

ki =1

¼(gi )¹ xi (ki )

∥∥∥∥
pd
.

By [Pisier 2000, Lemma 3.4], we have, for any even integer p g 2,

∥∥∥∥
m∑

ki =1

¼(gi )¹ xi (ki )

∥∥∥∥
p

f 3Ã

4
max

{∥∥∥∥
(∑

ki

xi (ki )
∗xi (ki )

)1
2
∥∥∥∥

p
,

∥∥∥∥
(∑

ki

xi (ki )xi (ki )
∗
)1

2
∥∥∥∥

p

}
.
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We record this result as follows. Denote by Ãsing and Ãns the union of singletons and

the union of nonsingleton blocks of Ã respectively. Thus we have #Ãsing +#Ãns = d .

Proposition 2.1. Let Ã ∈ P(d) be a partition and xi (ki ) ∈ L p(Ä ) for k ∈ [m]d

and i ∈ [d]. Then, for any even integer p g 2,
∥∥∥∥

∑

k:Ã(k)gÃ
x1(k1) · · · xd(kd)

∥∥∥∥
p

f
(

3Ã

4

)#Ãns ∏

i∈Ãsing

∥∥∥∥
m∑

ki =1

xi (ki )

∥∥∥∥
pd

∏

i∈Ãns

max

{∥∥∥∥
( m∑

ki =1

xi (ki )
∗xi (ki )

)1
2
∥∥∥∥

pd
,

∥∥∥∥
( m∑

ki =1

xi (ki )xi (ki )
∗
)1

2
∥∥∥∥

pd

}
.

This result will be used in a slightly more general setting. We may have other

fixed operators, y j ’s, inside the product x1(k1) · · · xd(kd). In this case, we may

simply attach the y j ’s to their adjacent xi (ki )’s and then invoke Proposition 2.1.

3. Construction and Wick word decomposition

The algebra we study here can be constructed using purely operator algebraic tech-

niques if max1fi, jfN |qi j |< 1 as shown in [Bożejko and Speicher 1994]. However,

we use the probabilistic approach due to Speicher [1992; 1993]. This is convenient

for studying the analytic properties following Biane’s original idea [1997]. The

main result of this section is Theorem 3.8. Although the proof is unexpectedly

lengthy, the analytic properties are easy consequences of this result. As a byproduct,

we also provide an alternative construction of the Fock space representation.

3A. Speicher’s CLT and von Neumann algebra ultraproducts. Let Q = (qi j )
N
i, j=1

be a symmetric matrix where qi j = q(i, j) ∈ [−1, 1]. Note that we do not

specify the values on the diagonal. Following the notation of Section 2B, we

consider a probability space (�,P) and a family of independent random variables

ε((i, k), ( j, l)) :�→ {−1, 1} for (i, k) < ( j, l) with distribution

(3-1)
P
(
ε((i, k), ( j, l))= −1

)
= 1

2
(1 − q(i, j)),

P
(
ε((i, k), ( j, l))= 1

)
= 1

2
(1 + q(i, j)),

so that E[ε((i, k), ( j, l))] = q(i, j). Here, (i, k), ( j, l) ∈ [N ] × N. Given É ∈ �,

the commutation/anticommutation relation is fixed. We understand all generators

xi (k)(É) to depend on É. Restricting k ∈ [m] we get random Am . Because the

dependence on É should be clear from the context, we will not write É in the

following to simplify notation. Let x̃i (m)= 1√
m

∑m
k=1 xi (k).
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The following central limit theorem result was due to Speicher [1993] and is a

generalization of [Speicher 1992]. We streamline Speicher’s proof in the appendix

for the reader’s convenience. The same strategy will be used repeatedly when we

prove Theorem 3.8.

Theorem 3.1. Let i ∈ [N ]s . Then

lim
m→∞

Äm (̃xi1
(m) · · · x̃is (m))= ¶s∈2Z

∑

Ã∈P2(s)
ÃfÃ(i)

∏

{r,t}∈I (Ã )

q(i(er ), i(et)) a.s.

Here and in what follows, we understand
∏

{i, j}∈∅ q(i, j) to be equal to 1.

By Theorem 3.1, we can find a full probability set �0 ¢ � such that the con-

vergence holds for all É ∈ �0. Fix a free ultrafilter U on N. By the well-known

ultraproduct construction of von Neumann algebras (see, e.g., [Brown and Ozawa

2008, Appendix A]), we have a finite von Neumann algebra AU :=
∏

m,U Am

with normal faithful tracial state ÄU = limm,U Äm . Put A∞
U

=
⋂

p<∞ L p(AU ). For

each É ∈�0,

(̃xi (m)(É))
• ∈ A

∞
U .

Here and in what follows, we write (̃xi (m)(É))• for the element represented by

(̃xi (m)(É))m∈N in the ultraproduct. We have the moment formula

(3-2) ÄU
(
(̃xi1

(m)(É))• · · · (̃xis (m)(É))
•)= ¶s∈2Z

∑

Ã∈P2(s)
ÃfÃ(i)

∏

{r,t}∈I (Ã )

q(i(er ), i(et)).

It follows that

ÄU (|(̃xi (m)(É))
•|p)f Cp p.

By the uniqueness argument in [Junge 2006, Section 6], the von Neumann algebras

generated by the spectral projections of the (̃xi (m)(É))•, where i = 1, . . . , N , for

different É ∈�0 are isomorphic. We denote by 0Q any von Neumann algebra in the

isomorphic class with generators (̃xi (m)(É))•, where i = 1, . . . , N . This algebra

was introduced by Speicher [1993] and studied in [Bożejko and Speicher 1994; Lust-

Piquard 1999]. Note that (̃xi (m)(É))• may be an unbounded operator, therefore

may not be in 0Q . But, by our construction, it belongs to 0∞
Q :=

⋂
p<∞ L p(0Q, ÄU ).

In the following, whenever we say that the (̃xi (m)(É))•, where i = 1, . . . , N , are

generators of 0Q , we always mean (̃xi (m)(É))• ∈ 0∞
Q and 0Q is generated by the

spectral projections of the (̃xi (m)(É))•’s. We call 0Q the mixed q-Gaussian algebra,

and Q the structure matrix of 0Q . Sometimes we also write ÄQ = ÄU |0Q .

There is another way of constructing 0Q . All the xi (k)’s are in fact in L∞(�;Am)

and thus x̃i (m)∈ L∞(�;Am). Here, the trace on L∞(�;Am) is given by E¹Äm . By

the same CLT argument as for Theorem 3.1, we find the moment formula (A-4) in the

limit, which is the same as (3-2). Therefore, as before, the (̃xi (m))• for i = 1, . . . , N
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generate a von Neumann algebra, denoted by 0a
Q . We call it the average model.

Using the uniqueness results in [Junge 2006, Section 6], we have that 0a
Q is

isomorphic to 0Q . When we write (̃xi (m))•, it can mean either an element in⋂
p<∞ L p

(∏
m,U L∞(�;Am)

)
or simply (̃xi (m)(É))• for some É ∈�0. It should

be clear from the context which one we are using. In fact, we may simply write

x1, . . . , xN for the generators of 0Q if we are not concerned with the construction.

By considering different structure matrix Q, we can construct various examples

as special cases of 0Q . The same philosophy was used before by Lust-Piquard

[1999].

Example 3.2. 0q(H), where q ∈ [−1, 1] is fixed. If q(i, j) = q all 1 f i, j f N ,

then we recover the classical q-Gaussian algebra 0q(H), where H is a real Hilbert

space with dim H = N .

Example 3.3. ∗n
i=1 0qi (Hi ), where qi ∈ [−1, 1] is fixed for i = 1, . . . , n. Here, the

Hi ’s are real Hilbert spaces with dim Hi = di . Let N = d1 + · · · + dn . Define Q as

follows. For k = 0, . . . , n − 1 and 1 f ³, ´ f dk+1, put

q

( k∑

j=1

d j +³,
k∑

j=1

d j +´
)

= qk+1,

and q(³, ´) = 0 otherwise. Then by the moment formula (3-2), we recover

∗n
i=1 0qi (Hi ). The case qi = −1 for all i = 1, . . . , n was considered in [Junge

et al. 2015].

Example 3.4.
⊗n

i=1(0qi (Hi ) ∗ 0pi (Ki )), where qi , pi ∈ [−1, 1] are fixed. Here,

the Hi ’s and Ki ’s are real Hilbert spaces with dim Hi = di and dim Ki = d ′
i . Let

N =
∑n

i=1 di + d ′
i . For k = 0, . . . , n − 1, define

q̃

( i∑

j=1

(d j+d ′
j )+³,

i∑

j=1

(d j+d ′
j )+´

)
=





qi if 1 f³, ´ f di+1,

pi if di+1 + 1 f³, ´ f di+1 + d ′
i+1,

0 if 1 f³f di+1<´ f di+1 + d ′
i+1,

and q̃(³, ´)= 1 otherwise. Let Q = (̃q³,´)1f³,´fN . By the moment formula (3-2),

this model gives mixed products of q-Gaussian algebras. For example, consider the

von Neumann algebra of the integer lattice L(Zn). We may identify L(Zn) with⊗n
i=100(R) via ¼(gk) 7→ xk , where the gk’s are the generators of Z

n and the xk’s

are generators of
⊗n

i=100(R). Alternatively, by extending ¼(gk) 7→ x2k−1x2k , we

may embed L(Zn) into
⊗n

i=10−1(R) ∗0−1(R).

3B. Wick word decomposition. For our later development, we need an analogue of

Wick word decomposition, i.e., rewriting (̃xi1
(m))• · · · (̃xid (m))

• as a linear combina-

tion of Wick words (to be defined) so that we can analyze the Ornstein–Uhlenbeck

semigroup easily. This procedure is conceptually clear with the help of Fock
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space representation because (̃xi1
(m))• · · · (̃xid (m))

• belongs to L2(0Q) and L2(0Q)

should coincide with the Fock space, which is spanned by Wick products; see

[Bożejko et al. 1997; Bożejko and Speicher 1994]. However, we do not know

the explicit formula for the decomposition of (̃xi1
(m))• · · · (̃xid (m))

• in terms of

matrix models. Moreover, the known Fock space construction usually requires

maxi, j |qi j |< 1.

Our approach is again probabilistic. We refer the readers to Section 2A for the

notation used in the following. By definition

(̃xi1
(m))• · · · (̃xid (m))

• =
(

1

md/2

∑

k∈[m]d

xi1
(k1) · · · xid (kd)

)•

.

Note that
∑

k∈[m]d

xi1
(k1) · · · xid (kd)

=
∑

Ã∈P1,2(d)

∑

Ã(k)=Ã
xi1
(k1) · · · xid (kd)+

∑

Ã∈Pr (d)

∑

Ã(k)=Ã
xi1
(k1) · · · xid (kd).

We first record a simple algorithm which we will refer to later on.

Proposition 3.5. Let i ∈ [N ]d , k ∈ [m]d , Ã(k) f Ã(i) and Ã(k) ∈ P1,2(d). Then
there is a specific algorithm to interchange xi³ (k³)’s in xi1

(k1) · · · xid (kd) such that

(1) xi1
(k1) · · · xid (kd)= ε(i, k)x j1(l

′
1) · · · x js (l

′
s) · · · x jd (l

′
d), where ε(i, k) is a ran-

dom sign resulting from interchanging xi³ (k³)’s which is given by

ε(i, k)=
∏

{r,t}∈Isp(Ã (k))

ε([i(er ), k(er )], [i(et), k(et)])

×
∏

{r,t}∈Ip(Ã (k))

ε([i(er ), k(er )], [i(et), k(et)]);

(2) (l ′1, . . . , l
′
s) are pairwise different and maintain their relative positions in k,

i.e., (l ′1, . . . , l
′
s) is obtained from k by removing the k³’s which correspond to

pair blocks;

(3) l ′s+1 = l ′s+2, . . . , l
′
d−1 = l ′d .

Proof. Since Ã(k)∈ P1,2(d), for each k³ in k, there is at most one k´ in k equal to k³ .

We can find the first k³ corresponding to a singleton in Ã(k), and move xi³ (k³)
to the beginning of the word by interchanging it with the xi´ (k´)’s which are to

the left of xi³ (k³). Rename this xi³ (k³) to be x j1(l
′
1). This process produces a

product of random signs of the form ε((i³, k³), (i´, k´)), where k³ corresponds

to a singleton and k´ corresponds to a pair block in Ã(k). Then we repeat this

procedure for the second k³ corresponding to a singleton in Ã(k), and rename

it x j2(l
′
2). We continue until all the xi³ (k³) corresponding to singletons in Ã(k)
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are in front of the remaining xi´ (k´)’s corresponding to pair blocks in Ã(k). In

this way, we get x j1(l
′
1) · · · x js (l

′
s) and a product of random signs. Afterwards, we

rename the variable xi³ (k³) right-adjacent to x js (l
′
s) to be x js+1

(l ′s+1). Then move the

other term with the same k³ to the right of x js+1
(l ′s+1), and call it x js+2

(l ′s+2). This

produces a product of ε((i³, k³), (i´, k´)), where k´ and k³ correspond to different

pair blocks. Repeat this procedure for the next pair of k³’s. After finitely many

steps, the algorithm will stop and we obtain ε(i, k)x j1(l
′
1) · · · x js (l

′
s) · · · x jd (l

′
d) with

the desired three properties. □

We write

(3-3) (l ′1, . . . , l
′
d)= (kÃ(1), . . . , kÃ(d)),

where Ã is a permutation determined by the algorithm. Similarly, ( j1, . . . , jd)=
(iÃ(1), . . . , iÃ(d)). Let

(3-4) l1 = l ′1, . . . , ls = l ′s, ls+1 = l ′s+1 = l ′s+2, . . . , ls+u = l ′d−1 = l ′d .

Here, s and u are the number of singletons and pair blocks of Ã(k), respectively.

Lemma 3.6. Let Ã ∈ P1,2(d). Then, for all 2< p <∞ and fixed É ∈�,

lim
m→∞

∥∥∥∥
1

md/2

∑

k∈[m]d :Ã(k)=Ã
xi1
(k1) · · · xid (kd)

− 1

md/2

∑

k∈[m]d :Ã(k)=Ã
ENs(k)[xi1

(k1) · · · xid (kd)]
∥∥∥∥

L p(Am ,Äm)

= 0.

Here, Ns(k) denotes the von Neumann algebra generated by all the xi³ (k³)’s, where
the k³’s correspond to singleton blocks in Ã(k).

Proof. Let s and u denote the number of singletons and pair blocks of Ã , respectively.

Clearly, s + 2u = d and there are

m(s+u) := m(m − 1) · · · (m − s − u + 1)

vectors k ∈ [m]d with Ã(k)= Ã . Let l be given in (3-4). l is a vector of length s +u.

Let ¶1, . . . , ¶m be i.i.d. random selectors uniformly distributed on {1, 2, . . . , s + u}
which are independent from L∞(�;Am). If all the l³’s are pairwise different, then

by independence,

E¶(1[¶l1=1]1[¶l2=2] · · · 1[¶ls+u =s+u])= (s + u)−s−u,

where E¶ is the expectation with respect to the ¶lq’s. Define random sets Bq for

q = 1, . . . , s + u by

Bq = {lq ∈ [m] : ¶lq = q}.
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Then, for each instance of the ¶lq’s, the Bq’s are pairwise disjoint and their union

is [m]. By (3-3), there is a 1-to-1 correspondence between k and l. We may rewrite

∑

k∈[m]d :Ã(k)=Ã
xi1
(k1) · · · xid (kd)

=
∑

l∈[m]s+u :Ã(l)∈P1(s+u)

xi1
(k1) · · · xid (kd)

= (s + u)s+u
∑

l:Ã(l)∈P1(s+u)

E¶[1[¶l1=1]1[¶l2=2] · · · 1[¶ls+u =s+u]xi1
(k1) · · · xid (kd)]

= (s + u)s+u
E¶

( ∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

xi1
(k1) · · · xid (kd)

)
,

where Ã(l) ∈ P1(s + u) amounts to saying that all the lq’s are pairwise different.

For q = s, s + 1, . . . , s + u, let Nq(k) be the von Neumann algebra generated by

{x j³ (l
′
³) : ³ f s + 2(q − s)}.

Recall that ls+u = kÃ(d−1) = kÃ(d). Let

wi,l(ls+u)=
∑

ls+u−1∈Bs+u−1

· · ·
∑

l1∈B1

xi1
(k1) · · · xid (kd).

Here we only fix ls+u and sum over all the other indices. It is straightforward to

check that

{wi,l(ls+u)− ENs+u−1(k)(wi,l(ls+u))}ls+u∈Bs+u

is a sequence of martingale differences. Using the noncommutative Burkholder–

Gundy inequality [Pisier and Xu 1997], we have

∥∥∥∥
∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

(
xi1
(k1) · · · xid (kd)− ENs+u−1(k)[xi1

(k1) · · · xid (kd)]
)∥∥∥∥

p

=
∥∥∥∥

∑

ls+u∈Bs+u

(
wi,l(ls+u)− ENs+u−1(k)(wi,l(ls+u))

)∥∥∥∥
p

f C p

∥∥∥∥
( ∑

ls+u∈Bs+u

|wi,l(ls+u)− ENs+u−1(k)(wi,l(ls+u))|2

+
∣∣(wi,l(ls+u)− ENs+u−1(k)(wi,l(ls+u))

)∗∣∣2
)1

2
∥∥∥∥

p=:9.
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By the triangle inequality, we have

9 f C p

√
|Bs+u| sup

ls+u∈Bs+u

∥wi,l(ls+u)− ENs+u−1(k)(wi,l(ls+u))∥p

f 2C p

√
|Bs+u| sup

ls+u∈Bs+u

∥wi,l(ls+u)∥p.

Recall that k³ = lÃ−1(³) if ³ is a singleton of Ã . In this case, l´ ∈ B´ if and only if

k³ ∈ BÃ−1(³), where Ã(´)= ³. Replacing p by a larger even integer if necessary,

arguing as for Proposition 2.1, or simply adding zeros to apply Proposition 2.1, we

find

∥wi,l(ls+u)∥p f
(

3Ã

4

)2u ∏

³∈Ã̃sing

∥∥∥∥
∑

k³∈B
Ã−1(³)

xi³ (k³)

∥∥∥∥
pd

∏

³∈Ã̃ns

m1/2.

Here, Ã̃ is obtained from Ã by erasing one pair block containing Ã(d) so that

# Ã̃ns = 2(u − 1). We mention one subtlety here in applying Proposition 2.1.

Since ls+u is fixed, the term xi³ (ls+u) is regarded to “attach” to its adjacent term.

For instance, xi j ′ (k j ′)xi³ (ls+u)xi j (k j ) is regarded as a product of two terms, i.e.,

[xi j ′ (k j ′)xi³ (ls+u)]xi j (k j ) or xi j ′ (k j ′)[xi³ (ls+u)xi j (k j )]. Using the noncommutative

Khintchine inequality [Lust-Piquard 1986; Lust-Piquard and Pisier 1991] or the

Burkholder–Gundy inequality [Pisier and Xu 1997], we have, for ³ ∈ Ã̃sing,

∥∥∥∥
∑

k³∈B
Ã−1(³)

xi³ (k³)

∥∥∥∥
pd

f C pd max

{∥∥∥∥
∑

k³

xi³ (k³)
∗xi³ (k³)

∥∥∥∥
1/2

pd/2
,

∥∥∥∥
∑

k³

xi³ (k³)xi³ (k³)
∗
∥∥∥∥

1/2

pd/2

}

f C pdm1/2.

It follows that ∥wi,l(ls+u)∥p f C p,Ãms/2+u−1 and thus 9 f C p,Ãms/2+u−1/2. We

have shown that

(3-5)
1

md/2

∥∥∥∥
∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

(
xi1
(k1) · · · xid (kd)

− ENs+u−1(k)[xi1
(k1) · · · xid (kd)]

)∥∥∥∥
p
f C p,Ã

m1/2
.

Repeating the argument u −1 times by replacing u with u −1, u −2, . . . , 1, we find

1

mq−s/2

∥∥∥∥
∑

lq∈Bq

· · ·
∑

l1∈B1

(
ENq (k)[xi1

(k1) · · · xid (kd)]−ENq−1(k)[xi1
(k1) · · · xid (kd)]

)∥∥∥∥
p

f C p,Ã

m1/2
,
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for q = s +u −1, . . . , s +1. In this iteration argument, we use the same “attaching”

procedure as described above in order to apply Proposition 2.1. By the triangle

inequality, we have

1

md/2

∥∥∥∥
∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

(
xi1
(k1) · · · xid (kd)− ENs(k)[xi1

(k1) · · · xid (kd)]
)∥∥∥∥

p
f C p,Ã

m1/2
.

Hence, by Jensen’s inequality,
∥∥∥∥

1

md/2

∑

k:Ã(k)=Ã
xi1
(k1) · · · xid (kd)−

1

md/2

∑

k:Ã(k)=Ã
ENs(k)[xi1

(k1) · · · xid (kd)]
∥∥∥∥

L p(Am ,Äm)

f (s+u)s+u

md/2
E¶

∥∥∥∥
∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

(
xi1
(k1) · · · xid (kd)−ENs(k)[xi1

(k1) · · · xid (kd)]
)∥∥∥∥

p

f C p,Ã

m1/2
.

In the last inequality, the upper bound holds for every instance of ¶ and thus holds

for the average. The proof is complete by sending m → ∞. □

Lemma 3.7. Let Ã ∈ Pr (d). Then, for all p <∞ and fixed É ∈�,

lim
m→∞

∥∥∥∥
1

md/2

∑

k:Ã(k)=Ã
xi1
(k1) · · · xid (kd)

∥∥∥∥
L p(Am ,Äm)

= 0.

Proof. We follow the same argument as for Lemma 3.6 and only indicate the

differences. For Ã ∈ Pr (d), there is at lease one block with more than two elements.

Without loss of generality, assume there is only one block in Ã with more than two

elements. Suppose this block has, say, three elements. We list the running indices k
in the sum as {l1, . . . , ls, ls+1, . . . , ls+u, ls+u+1}, where there are s singletons, u
pairs and one block with three elements in Ã . Using the random selectors, it suffices

to show that

1

md/2

∥∥∥∥
∑

ls+u+1∈Bs+u+1

· · ·
∑

l1∈B1

xi1
(k1) · · · xid (kd)

∥∥∥∥
p
→ 0

as m → ∞, where B1, . . . , Bs+u+1 are disjoint random sets with union [m]. Denote

by Ns+u(k) the von Neumann algebra generated by xiÃ(³)(l
′
³) for all ³ f s + 2u,

where l ′ is a permutation of k so that l1 = l ′1, . . . , ls = l ′s, ls+1 = l ′s+1 = l ′s+2, etc.

Then using the noncommutative Burkholder–Gundy inequality, we can show that

1

md/2

∥∥∥∥
∑

ls+u+1∈Bs+u+1

· · ·
∑

l1∈B1

(
xi1
(k1) · · · xid (kd)−ENs+u(k)[xi1

(k1) · · · xid (kd)]
)∥∥∥∥

p

f C p,Ãms/2+u+1/2

ms/2+u+3/2
→ 0
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as m → ∞. It remains to show

1

md/2

∥∥∥∥
( ∑

ls+u+1∈Bs+u+1

· · ·
∑

l1∈B1

ENs+u(k)[xi1
(k1) · · · xid (kd)]

)∥∥∥∥
p
→ 0.

Note that

1

md/2

∥∥∥∥
( ∑

ls+u+1∈Bs+u+1

· · ·
∑

l1∈B1

ENs+u(k)[xi1
(k1) · · · xid (kd)]

)∥∥∥∥
p

f 1

m

∑

ls+u+1∈Bs+u+1

1

m(d−2)/2

∥∥∥∥
∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

xi1
(k1) · · · xid (kd)

∥∥∥∥
p
.

Now apply Proposition 2.1 with the same “attaching” procedure as above, yielding
∥∥∥∥

∑

ls+u∈Bs+u

· · ·
∑

l1∈B1

xi1
(k1) · · · xid (kd)

∥∥∥∥
p
f C p,Ãms/2+u,

which gives a decay factor and completes the proof. □

Theorem 3.8. Let (̃x j (m))• ∈
⋂

p<∞ L p
(∏

m,U L∞(�;Am)
)

for j = 1, . . . , d.
Then

(̃xi1
(m))• · · · (̃xid (m))

• =
∑

Ã∈P1,2(d)
ÃfÃ(i)

wÃ (i),

where the equality holds for all É ∈� and

(3-6) wÃ (i)=
(

1

md/2

∑

k∈[m]d :Ã(k)=Ã

ENs(k)[xi1
(k1) · · · xid (kd)]

)•

.

Proof. By Lemmas 3.6 and 3.7, we have

(̃xi1
(m))• · · · (̃xid (m))

• =
∑

Ã∈P1,2(d)

(
1

md/2

∑

k∈[m]d :Ã(k)=Ã

ENs(k)[xi1
(k1) · · · xid (kd)]

)•

.

By Proposition 3.5, we write

( j1, . . . , jd)= (iÃ(1), . . . , iÃ(d)) and (l ′1, . . . , l
′
d)= (kÃ(1), . . . , kÃ(d)).

It follows that

ENs(k)[xi1
(k1) · · · xid (kd)] = ε(i, k)x j1(l

′
1) · · · x js (l

′
s)¶ js+1, js+2

· · · ¶ jd−1, jd .

Note that ENs(k)[xi1
(k1) · · · xid (kd)] is nonzero only if js+1 = js+2, . . . , jd−1 = jd .

Since Ã(k)= Ã , we have Ã f Ã(i). □

If Ã f Ã(i), we call the wÃ (i) defined in (3-6) the arbitrary Wick words. By

Theorem 3.8,

L2(0Q)¢ L2- span{wÃ (i) : i ∈ [N ]d , Ã ∈ P1,2(d), d ∈ N}.
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Here and in what follows, L p- span W means the L p(ÄU ) closure of linear combi-

nations of elements in W . We want to identify L2(0Q) with the span of fewer Wick

words. Let i ∈ [N ]s for s ∈ N. We define the special Wick words

(3-7) w(i)=
(

1

ms/2

∑

k∈[m]s :Ã(k)∈P1(s)

xi1
(k1) · · · xis (ks)

)•

.

Let i ′ ∈ [N ]s′
. In order to understand the inner product of w(i) and w(i ′), we

first introduce some notions. Let {2 · 1, 2 · 2, . . . , 2 · s} be a multiset, each element

with multiplicity 2. One can regard it as a set of cardinality 2s given by [2s] =
{1, 2, . . . , s, 1̃, 2̃, . . . , s̃}. Let Ã b be a partition of the set [2s]. We call it a bipartite

pair partition of [2s] if

Ã b =
{
{ek, zk} : ek = 1, 2, . . . , s, zk = 1̃, 2̃, . . . , s̃

}
.

Let Pb
2 (2s) denote the set of all bipartite pair partitions. Let i, i ′ ∈ [m]s , where i ′ is

understood as a map i ′ : {̃1, 2̃, . . . , s̃}→[m]. Define the concatenation operation by

(3-8) i ⊔ i ′ = (i1, . . . , is, i ′
1̃
, . . . , i ′

s̃).

We denote by Ã(i ⊔ i ′) the partition induced by i and i ′ on the multiset [2s]. For

example, {k, l, k̃} are in the same block of Ã(i⊔i ′) if ik = il = i ′
k̃
. Given Ã b ∈ Pb

2 (2s),
define the set of bipartite crossings by

I b(Ã b)=
{
{k, l} : 1 f k, l f s, ek < el, zl > zk

}
.

Recall that ïw(i), w(i ′)ð = ÄU [w(i ′)∗w(i)].
Proposition 3.9. Let w(i) and w(i ′) be special Wick words. Then there exists a full
probability set �0 ¢� such that for all É ∈�0,

ïw(i), w(i ′)ð=





∑

Ã b∈Pb
2 (2s)

Ã bfÃ(i⊔i ′)

∏

{r,t}∈I b(Ã b)

q(i(er ), i(et)) if {i1, . . . , is}={i ′
1, . . . , i ′

s′},

0 otherwise,

where {i1, . . . , is} = {i ′
1, . . . , i ′

s′} means that i and i ′ are equal as multisets, i.e.,
both the elements and their multiplicities are the same.

Proof. We follow the same argument as for Theorem 3.1. By definition,

ïw(i), w(i ′)ð = lim
m,U

1

m(s+s′)/2

∑

k,k′:Ã(k)∈P1(s)
Ã (k′)∈P1(s′)

Äm[xi ′
s′
(k ′

s′) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)].

Since all the k³’s are pairwise different, Äm[xi ′
s′
(k ′

s′) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)]=0

unless s = s ′. Moreover, every xi³ (k³) has to be the same as exactly one xi ′
´
(k ′
´)
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to contribute to the sum. This implies i and i ′ are equal as multisets. We rewrite
∑

k,k′:Ã(k)∈P1(s)
Ã (k′)∈P1(s′)

Äm[xi ′
s′
(k ′

s′) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)]

=
∑

Ã(k),Ã (k′)∈P1(s)

Äm[xi ′
s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)]

=
∑

Ã b∈Pb
2 (2s)

Ã bfÃ(i⊔i ′)

∑

Ã(k⊔k′)=Ã b

Äm[xi ′
s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)].

If {r, t} ∈ I b(Ã b), then we have to switch xi(er )(k(er )) and xi(et )(k(et)) to cancel

the corresponding xi(zr )(k(zr )) and xi(zt )(k(zt)) terms. It follows that

Äm[xi ′
s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)]=

∏

{r,t}∈I b(Ã b)

ε([i(er ), k(er )], [i(et), k(et)]).

Since k ∈ P1(s), by independence, we have

1

ms

∑

Ã(k⊔k′)=Ã b

EÄm[xi ′
s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)]

= m(m − 1) · · · (m − s + 1)

ms

∏

{r,t}∈I b(Ã b)

q(i(er ), i(et)).

Hence, if i = i ′ as multisets, then

Eïw(i), w(i ′)ð =
∑

Ã b∈Pb
2 (2s)

Ã bfÃ(i⊔i ′)

∏

{r,t}∈I b(Ã b)

q(i(er ), i(et)).

To show almost sure convergence, let

Xm = 1

ms

∑

Ã b∈Pb
2 (2s)

Ã bfÃ(i⊔i ′)

∑

Ã(k⊔k′)=Ã b

Äm[xi ′
s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)].

Since P(É : |Xm − EXm | > ¸) f Var(Xm)/¸
2, by the Borel–Cantelli lemma, it

suffices to show that
∑∞

m=1 Var(Xm) <∞. But

Var(Xm)= 1

m2s

∑

Ã b,Ãb∈Pb
2 (2s)

∑

Ã(k⊔k′)=Ã b

Ã(ℓ⊔ℓ′)=Ãb

Vk,ℓ,

where

Vk,ℓ = E(Äm[xi ′
s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)]

× Äm[xi ′
s
(ℓ′s) · · · xi ′

1
(ℓ′1)xi1

(ℓ1) · · · xis (ℓs)])
− E(Äm[xi ′

s
(k ′

s) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xis (ks)])

× E(Äm[xi ′
s
(ℓ′s) · · · xi ′

1
(ℓ′1)xi1

(ℓ1) · · · xis (ℓs)])
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= E

[ ∏

{r,t}∈I b(Ã b)

ε([i(er ), k(er )], [i(et), k(et)])

×
∏

{r ′,t ′}∈I b(Ãb)

ε([i(er ′), ℓ(er ′)], [i(et ′), ℓ(et ′)])
]

−
∏

{r,t}∈I b(Ã b)

q(i(er ), i(et))
∏

{r ′,t ′}∈I b(Ãb)

q(i(er ′), i(et ′)).

By independence, Vk,ℓ is nonzero only if there are two pairs {r, t} ∈ I b(Ã b) and

{r ′, t ′} ∈ I b(Ãb) such that {k(er ), k(et)} = {ℓ(er ′), ℓ(et ′)}. In this case,

#
{
k, k ′, ℓ, ℓ′ : Ã(k ⊔ k ′)= Ã b and Ã(ℓ⊔ ℓ′)= Ãb}f msms−2 = m2s−2.

Since Vk,ℓ is uniformly bounded and C(s) := [#Pb
2 (2s)]2 is independent from m,

∞∑

m=1

Var(Xm)f
∞∑

m=1

C(s)

m2
<∞. □

Recall the notation Ip(Ã ) and Isp(Ã ) from Section 2A. For i ∈ [N ]d and Ã ∈
P1,2(d) with Ã f Ã(i), put

(3-9) fÃ (i)=
∏

{r,t}∈Ip(Ã )

q(i(er ), i(et))
∏

{r,t}∈Isp(Ã )

q(i(er ), i(et)),

with the convention that the product over an empty index set is 1.

Proposition 3.10. Let Ã ∈ P1,2(d) and Ã ′ ∈ P1,2(d ′) be partitions. Let wÃ (i) and
wÃ ′(i ′) be arbitrary Wick words as defined in (3-6). Then, for almost all É ∈�,

(3-10) ïwÃ (i), wÃ ′(i ′)ð

=
{ï fÃ (i)w(inp), fÃ ′(i ′)w(i ′

np)ð if Ã f Ã(i) and Ã ′ f Ã(i ′),

0 otherwise.

Here, inp is the vector obtained by removing coordinates in i which correspond to
the pair blocks of Ã .

Example 3.11. Suppose that i = (2, 4, 7, 4, 7) and Ã = {{1}, {2}, {4}, {3, 5}}. Then

inp = (2, 4, 4).

Proof of Proposition 3.10. By definition,

ïwÃ (i),wÃ ′(i ′)ð= lim
m,U

1

m(d+d ′)/2

∑

k,k′:Ã(k)=Ã
Ã(k′)=Ã ′

Äm[xi ′
d′ (k

′
d ′) · · · xi ′

1
(k ′

1)xi1
(k1) · · · xid (kd)].

Note thatwÃ (i) is nonzero only if Ã fÃ(i). Then k³ = k´ implies i³ = i´ . By (A-2),

we may assume that, in xi ′
d′ (k ′

d ′) · · · xi ′
1
(k ′

1)xi1
(k1) · · · xid (kd), if k³ = k´ for ³ ̸= ´,

then k ′
µ ̸= k³ for all µ ∈ [d ′]. In other words, k³ ̸= k ′

µ for all ³ ∈ [d] and µ ∈ [d ′] if
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both of them belong to pair blocks. Applying Proposition 3.5 to xi1
(k1) · · · xid (kd)

and xi ′
1
(k ′

1) · · · xi ′
d′ (k

′
d ′), we find

Äm[xi ′
d′ (k

′
d ′) · · · xi ′

1
(k ′

1)xi1
(k1) · · · xid (kd)]
= ε(i, k)ε(i ′, k ′)Äm[x j ′

s′
(ℓ′s′) · · · x j ′

1
(ℓ′1)x j1(ℓ1) · · · x js (ℓs)],

where ℓ ∈ P1(s), ℓ′ ∈ P1(s ′), j = inp, j ′ = i ′
np, and ε(i, k)ε(i ′, k ′) is given in

Proposition 3.5. By independence, we have

EÄm[xi ′
d′ (k

′
d ′) · · · xi ′

1
(k ′

1)xi1
(k1) · · · xid (kd)]

=
∏

{r,t}∈Ip(Ã )

q(i(er ), i(et))
∏

{r,t}∈Isp(Ã )

q(i(er ), i(et))
∏

{r ′,t ′}∈Ip(Ã ′)

q(i(er ′), i(et ′))

×
∏

{r ′,t ′}∈Isp(Ã ′)

q(i(er ′), i(et ′))EÄm[x j ′
s′
(ℓ′s′) · · · x j ′

1
(ℓ′1)x j1(ℓ1) · · · x js (ℓs)].

As shown in Proposition 3.9, Äm[x j ′
s′
(ℓ′s′) · · · x j ′

1
(ℓ′1)x j1(ℓ1) · · · x js (ℓs)] is zero if

ℓ and ℓ′ are not equal as multisets, and there is nothing more to prove. Assume

ℓ and ℓ′ are equal. Let u and u′ be the number of pair blocks in Ã and Ã ′. By

Proposition 3.9, we find

EïwÃ (i), wÃ ′(i ′)ð = lim
m,U

m · · · (m − s + 1)

ms
· (m − s) · · · (m − s − u − u′ + 1)

mu+u′

× fÃ (i) fÃ ′(i ′)EÄm[x j ′
s′
(ℓ′s′) · · · x j ′

1
(ℓ′1)x j1(ℓ1) · · · x js (ℓs)]

= fÃ (i) fÃ ′(i ′)Eïw(inp), w(i
′
np)ð.

The almost sure convergence follows from the same argument as for Proposition 3.9

using the Borel–Cantelli lemma and independence. □

In the two proofs above, the Borel–Cantelli lemma may be avoided if we use the

average model 0a
Q ; see Section 3A. Note that for i ∈ [m]s, wÃ (i)= w(i) for any

Ã ∈ P1(s).

Corollary 3.12. Let Ã f Ã(i). We have wÃ (i)= fÃ (i)w(inp) for almost all É ∈�.

Proof. Since ÄU is faithful on 0Q , it suffices to show

ÄU
(
(wÃ (i)− fÃ (i)w(inp))

∗(wÃ (i)− fÃ (i)w(inp))
)
= 0.

But, by Proposition 3.10, we have

ïw(inp), wÃ (i)ð = fÃ (i)ïw(inp), w(inp)ð.
From here the claim follows by linearity. □

This result yields the identification

L2- span{wÃ (i) : i ∈[N ]d , Ã ∈ P1,2(d), d ∈Z+}= L2- span{w(i) : i ∈[N ]s, s ∈Z+},

with the inner product relation given by (3-10).
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Proposition 3.13. L2(0Q)= L2- span{w(i) : i ∈ [N ]s, s ∈ Z+}.
Proof. Write Hw := L2- span{w(i) : i ∈ [N ]s, s ∈ Z+}. By Theorem 3.8 and

Corollary 3.12, L2(0Q)¢ Hw. It remains to show that Hw ¢ L2(0Q). We proceed

by induction on the length s of special Wick words w(i). First observe that if

Ã(i) ∈ P1(s), then the only partition Ã f Ã(i) is Ã(i) itself. In this case, by

Theorem 3.8, we have

(3-11) (̃xi1
(m))• · · · (̃xis (m))

• = wÃ(i)(i)= w(i) ∈ L2(0Q),

since every (̃xi1
(m))• is in

⋂
p<∞ L p(0Q). If s = 1,

w(i)=
(

1√
m

m∑

k1=1

xi1
(k1)

)•

∈ L2(0Q)

by definition. If s = 2 and i1 ̸= i2, then w(i) ∈ L2(0Q) by (3-11). If i1 = i2, using

Theorem 3.8, we find

(̃xi1
(m))•(̃xi2

(m))• = wÃ(i)(i)+wÃ0
(i)= 1 +wÃ0

(i),

where Ã0 ∈ P1(2). It follows that w(i)=wÃ0
(i) ∈ L2(0Q). Suppose w(i) ∈ L2(0Q)

for all i with |i |< s. Consider i ∈ [N ]s . We know w(i) ∈ L2(0Q) if Ã(i) ∈ P1(s).
If Ã(i) ̸∈ P1(s), by Theorem 3.8, we have

(3-12) (̃xi1
(m))• · · · (̃xis (m))

• = wÃ0
(i)+

∑

Ã∈P1,2(s)
ÃfÃ(i),Ã ̸∈P1(s)

wÃ (i),

where Ã0 ∈ P1(s). By Corollary 3.12, we have wÃ (i)= fÃ (i)w(inp), and inp is a

vector of dimension at most s − 2. By the induction hypothesis, wÃ (i) ∈ L2(0Q)

for Ã ̸∈ P1(s). We deduce from (3-12) that w(i)= wÃ0
(i) ∈ L2(0Q). □

3C. Fock spaces and mixed q-commutation relations. From the work in the

previous section, we can describe the Fock space and creation/annihilation operators

associated to 0Q . Given a vector i , we denote by |i | the number of nonzero

coordinates in i . Let H s
Q = span{w(i) : |i | = s}. We define the mixed Fock space by

(3-13) FQ =
∞⊕

s=0

H s
Q .

Clearly, FQ = L2- span{w(i) : i ∈ [N ]s, s ∈ Z+}, which can be further identified

with L2(0Q) by Proposition 3.13.

Proposition 3.14. Let x j =
(

1√
m

∑m
k=1 x j (k)

)• ∈ 0∞
Q for j = 1, . . . , N be genera-

tors of 0Q and w(i) ∈ H s
Q . Then

x jw(i)= w( j ⊔ i)+
s∑

l=1

¶ j,ilw(i − il)

l−1∏

r=1

q(ir , il).
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Here, j ⊔i = ( j, i1, . . . , is)∈ [N ]s+1 is the concatenation operation defined in (3-8),

i − il = (i1, . . . , il−1, il+1, . . . , is) with |i − il | = s − 1, and we understand the
product over empty index set to be 1. Therefore,

x j =
∞∑

s=0

Ps+1x j Ps +
∞∑

s=1

Ps−1x j Ps,

where Ps : FQ → H s
Q is the orthogonal projection.

Proof. By definition,

x jw(i)=
(

1√
m

m∑

k0=1

x j (k0)
1

ms/2

∑

k∈[m]s :Ã(k)∈P1(s)

xi1
(k1) · · · xis (ks)

)•

=
(

1

m(s+1)/2

∑

k0⊔k∈[m]s+1:Ã(k0⊔k)∈P1(s+1)

x j (k0)xi1
(k1) · · · xis (ks)

)•

+
s∑

l=1

(
1

m(s+1)/2

∑

k0⊔k∈[m]s+1:k0=kl
Ã(k)∈P1(s)

x j (k0)xi1
(k1) · · · xis (ks)

)•

.

The first term in the above equation is clearly the special Wick word w( j ⊔ i). To

understand the second one, we define Ãl ∈ P1,2(s +1) by Ãl = Ã(k0 ⊔ k) for k0 = kl

and k ∈ P1(s), i.e.,

Ãl =
{
{1, l + 1}, {2}, . . . , {l}, {l + 2}, . . . , {s + 1}

}
.

Using (the proof of) Lemma 3.6, we deduce that the arbitrary Wick word satisfies
(

1

m(s+1)/2

∑

k0⊔k∈[m]s+1:k0=kl
Ã(k)∈P1(s)

x j (k0)xi1
(k1) · · · xis (ks)

)•

= wÃl ( j ⊔ i).

Note that wÃl ( j ⊔ i) is nonzero only if Ãl f Ã( j ⊔ i) or equivalently j = il . Using

(3-9) and Corollary 3.12, we find

wÃl ( j ⊔ i)= ¶ j,il

l−1∏

r=1

q(ir , il)w(i − il). □

Define operators c j and a j acting on FQ by

(3-14) c jw(i)= w( j ⊔ i), a jw(i)=
s∑

l=1

¶ j,ilw(i − il)

l−1∏

r=1

q(ir , il).

Clearly x j = c j + a j , c j =
∑∞

s=0 Ps+1x j Ps and a j =
∑∞

s=1 Ps−1x j Ps . Since

x j = x∗
j , we have c∗

j = a j . We call c j and a j the creation and annihilation operators

respectively for j = 1, . . . , N . The following result is simply a recapitulation; see,

e.g., [Brown and Ozawa 2008] for more about QWEP C∗-algebras.
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Corollary 3.15. Let 0̃Q be the von Neumann algebra generated by (the spectral
projections of ) c j + a j for j = 1, . . . , N. Then 0Q = 0̃Q . In particular, 0̃Q is
QWEP.

Proposition 3.16. For j, k = 1, . . . , N , c j and c∗
j satisfy the mixed q-commutation

relation

(3-15) c∗
k c j − q( j, k)c j c

∗
k = ¶ j,k1.

Proof. Let w(i) ∈ H s
Q . Then

c∗
j c jw(i)= c∗

jw( j ⊔ i)= w(i)+
s∑

l=1

¶ j,ilw( j ⊔ (i − il))q( j, il)

l−1∏

r=1

q(ir , il).

But

c j c
∗
jw(i)=

s∑

l=1

¶ j,ilw( j ⊔ (i − il))

l−1∏

r=1

q(ir , il).

Hence c∗
j c jw(i)− q( j, j)c j c∗

jw(i)= w(i). If j ̸= k, then

c∗
k c jw(i)= c∗

kw( j ⊔ i)=
s∑

l=1

¶k,ilw( j ⊔ (i − il))q( j, il)

l−1∏

r=1

q(ir , il),

and

c j c
∗
kw(i)=

s∑

l=1

¶k,ilw( j ⊔ (i − il))

l−1∏

r=1

q(ir , il).

Hence c∗
k c jw(i)− q( j, k)c j c∗

kw(i)= 0. □

Remark 3.17. The Fock space representation was studied in more general setting

by Bożejko and Speicher [1994]. Let (ei ) be an orthonormal basis (o.n.b.) of a

Hilbert space H . One can construct the Fock space FQ(H) following [Bożejko

and Speicher 1994; Lust-Piquard 1999]. Let � be the vacuum state and W be the

Wick product, i.e.,

W (ei1
¹ · · · ¹ eis )�= ei1

¹ · · · ¹ eis .

The Wick product was studied in detail in [Krȯlak 2000]. Suppose i ∈ [N ]s and

j ∈ [N ]s′
. We have

ïw(i), w( j)ð = ïei1
¹ · · · ¹ eis , e j1 ¹ · · · ¹ e js′ ð,

where the left side is given by Proposition 3.9 and the right side is understood as

the inner product in FQ(H); see [Bożejko and Speicher 1994; Lust-Piquard 1999].

Our argument shows that one can alternatively implement (3-15) and construct the

Fock space using the probabilistic approach (Speicher’s CLT) and the von Neumann

algebra ultraproduct. If supi j qi j < 1 and i ∈ [N ]s , we can identify our special Wick
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words w(i) with W (ei1
¹· · ·¹ eis ). Thus we can also identify H s

Q with H¹s . This

identification will play an important role when we study the operator algebraic

properties of 0Q in later parts of this paper.

3D. The Ornstein–Uhlenbeck semigroup on 0Q . Let T m
t denote the Ornstein–

Uhlenbeck semigroup acting on Am ; see [Biane 1997, Section 2.1]. T m
t is given by

T m
t xi1

(k1) · · · xid (kd)= e−td xi1
(k1) · · · xid (kd)

if Ã(k) ∈ P1(d). Let us first recall an elementary fact.

Lemma 3.18. Let (N , Ä ) be noncommutative W ∗ probability space, where N is a
von Neumann algebra and Ä is a normal faithful tracial state. Let T : N → N be a
∗-preserving linear normal map with pre-adjoint map T∗ : N∗ → N∗. Suppose T is
self-adjoint on L2(N , Ä ). Then T = T∗|N .

Proof. Let x, y ∈ N . Denote the dual pairing between x∗ ∈ N∗ and x by (x∗, x),
which can be implemented by (x∗, x)= Ä(x∗x). Since N ¢ N∗ = L1(N , Ä ),

(T x, y)= Ä((T x)y)= ïT x, y∗ðL2(N ,Ä ) = Ä(x(T y))= (x, T y)= (T∗x, y). □

Let (T m
t )∗ : L1(Am)→ L1(Am) be the pre-adjoint map of Tt . By Lemma 3.18, it

coincides with Tt on Am . Let
∏

m,U L1(Am) be the ultraproduct of Banach spaces

L1(Am). Recall that AU =
∏

m,U Am is the von Neumann algebra ultraproduct in

Section 3A. Note we have the canonical inclusion L1(AU , ÄU )¢
∏

m,U L1(Am, Äm).

Let ((T m
t )∗)

• be the usual ultraproduct of (T m
t )∗. If (xm)

• ∈ AU , then

((T m
t )∗)

•(xm)
• = (T m

t xm)
• ∈ AU

because supm ∥T m
t xm∥ f supm ∥xm∥ <∞. Hence, ((T m

t )∗)
• leaves AU invariant.

We have checked the commutative diagram

AU
�

�

//

((T m
t )∗)

•|AU

��

L1(AU , ÄU )
�

�

//

((T m
t )∗)

•|L1(AU ,ÄU )

��

∏
m,U L1(Am, Äm)

((T m
t )∗)

•

��

AU
�

�

// L1(AU , ÄU )
�

�

//
∏

m,U L1(Am, Äm)

We define Tt =
(
((T m

t )∗)
•|L1(AU ,ÄU )

)∗
. Then, by construction, Tt : AU → AU is a

normal unital completely positive map which is self-adjoint on L2(AU , ÄU ). By

Lemma 3.18 again, Tt coincides with ((T m
t )∗)

• on AU and thus on L2(AU , ÄU ).

Since 0Q ¢ AU is a von Neumann subalgebra, L2(0Q) ¢ L2(AU ) ¢ L1(AU ).

Therefore, for i ∈ [N ]s and w(i) ∈ L2(0Q),

Ttw(i)=
(

1

ms/2

∑

k:Ã(k)∈P1(s)

e−ts xi1
(k1) · · · xis (ks)

)•

= e−tsw(i) ∈ L2(0Q).
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Since L2(0Q)∩AU = 0Q , Tt leaves 0Q invariant. Also, we see that (Tt)tg0 is a

strongly continuous semigroup in L2(0Q). Note that in general (Tt)tg0 may not be

a point Ã -weakly continuous semigroup in t , hence may not extend to a strongly

continuous semigroup on L2(AU ). By Theorem 3.8,

Tt
(
(̃xi1

(m))• · · · (̃xid (m))
•)=

∑

Ã∈P1,2(d)
ÃfÃ(i)

e−t |Ãsing|wÃ (i)=
∑

Ã∈P1,2(d)
ÃfÃ(i)

e−t |inp| fÃ (i)w(inp),

where |Ãsing| is the number of singletons in Ã , and |inp| is the dimension of inp.

fÃ (i) and inp are defined in (3-9) and Proposition 3.10. The generator of Tt is the

number operator, denoted by A.

4. Analytic properties

Our goal of this section is to prove some analytic properties for 0Q . This will be

done via a limit procedure, as was used in [Biane 1997; Junge et al. 2015] for

proving hypercontractivity.

4A. Hypercontractivity. Biane [1997, Theorem 5] proved the Ornstein–Uhlenbeck

semigroup acting on Am = Am(N , ε) is hypercontractive.

Theorem 4.1. Let 1 f p, r <∞. Then, for every É ∈�,

∥T m
t ∥L p→Lr = 1 if and only if e−2t f p − 1

r − 1
.

With the hard work done in the previous section, it is very easy to prove the

following result.

Theorem 4.2. Let Tt be the Ornstein–Uhlenbeck semigroup on 0Q for an arbitrary
N × N symmetric matrix Q with entries in [−1, 1]. Then, for 1 f p, r <∞,

∥Tt∥L p→Lr = 1 if and only if e−2t f p − 1

r − 1
.

Proof. The “only if” part follows verbatim Biane’s argument [1997, p. 461]. For

the converse, since the special Wick words span L p(0Q), it suffices to prove that if

e−2t f (p − 1)/(r − 1) then

∥∥∥∥Tt

(∑

i

³iw(i)

)∥∥∥∥
r
f
∥∥∥∥
∑

i

³iw(i)

∥∥∥∥
p
,

where
∑

i ³iw(i) is a finite linear combination of special Wick words.
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But, by Theorem 4.1,

∥∥∥∥T m
t

(∑

i

³i

md(i)/2

∑

k∈[m]d(i):Ã(k)∈P1(d(i))

xi1
(k1) · · · xid(i)(kd(i))

)∥∥∥∥
r

f
∥∥∥∥
∑

i

³i

md(i)/2

∑

k∈[m]d(i):Ã(k)∈P1(d(i))

xi1
(k1) · · · xid(i)(kd(i))

∥∥∥∥
p
.

Since there is a canonical inclusion L p(0Q)¢
∏

m,U L p(A, Äm), we have

∥∥∥∥
∑

i

³iw(i)

∥∥∥∥
p
= lim

m,U

∥∥∥∥
∑

i

³i

md(i)/2

∑

k∈[m]d(i):Ã(k)∈P1(d(i))

xi1
(k1) · · · xid(i)(kd(i))

∥∥∥∥
p
.

Similarly,

∥∥∥∥Tt

(∑

i

³iw(i)

)∥∥∥∥
r

=
∥∥∥∥
∑

i

³i e
−t |i |w(i)

∥∥∥∥
r

= lim
m,U

∥∥∥∥
∑

i

³i e−t |i |

md(i)/2

∑

k∈[m]d(i):Ã(k)∈P1(d(i))

xi1
(k1) · · · xid(i)(kd(i))

∥∥∥∥
r

= lim
m,U

∥∥∥∥T m
t

(∑

i

³i

md(i)/2

∑

k∈[m]d(i):Ã(k)∈P1(d(i))

xi1
(k1) · · · xid(i)(kd(i))

)∥∥∥∥
r
.

The assertion follows immediately. □

This result in particular implies the hypercontractivity results for 0q(H) due to

Biane [1997] and for the free product of 0−1(R
n) obtained in [Junge et al. 2015].

See also [Królak 2005] for another generalization with the braid relation. Using the

standard argument [Biane 1997], the log-Sobolev inequality follows from optimal

hypercontractivity bounds. Recall that A is the number operator associated to 0Q .

Corollary 4.3 (log-Sobolev inequality). For any finite linear combination of special
Wick words f =

∑
i ³iw(i),

ÄQ(| f |2 ln | f |2)− ∥ f ∥2
2 ln ∥ f ∥2

2 f 2ÄQ( f A f ∗).

4B. Derivations. Given the N × N matrix Q = (qi j ), we define a 2N ×2N matrix

Q′ by

Q′ = Q ¹
(

1 1

1 1

)
=
(

Q Q
Q Q

)
.
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Recall that Am(N , ε) is the spin matrix system with Nm generators as in Section 2B

and JN ,m = [N ]× [m]. We can extend the function ε to J2N ,m × J2N ,m as follows:

ε′((i, k), ( j, l))=





ε((i, k), ( j, l)) if (i, k), ( j, l) ∈ JN ,m,

ε((i − N , k), ( j, l)) if 1 f j < N + 1 f i f 2N ,

ε((i, k), ( j − N , l)) if 1 f i < N + 1 f j f 2N ,

ε((i − N , k), ( j − N , l)) if N + 1 f i, j f 2N .

In other words, ε′ = ε¹
(

1
1

1
1

)
. We may write ε for ε′ without causing any ambiguity.

Now we define a linear map

(4-1) ¶ : Am(N , ε)→ Am(2N , ε′),

xi1
(k1)xi2

(k2) · · · xin (kn)

7→
n∑

³=1

xi1
(k1) · · · xi³−1

(k³−1)xi³+N (k³)xi³+1
(k³+1) · · · xin (kn),

where xi1
(k1)xi2

(k2) · · · xin (kn) is assumed to be in the reduced form. See also

[Lust-Piquard 1999]. It is easy to see that ¶ is ∗-preserving.

Lemma 4.4. ¶ is a derivation, i.e., ¶(À¸)= ¶(À)¸+ À¶(¸) for two words À and ¸.

Proof. The assertion follows from the fact that ¶ is the derivative of certain one

parameter group of automorphisms; see [Lust-Piquard 1998; 1999; Efraim and

Lust-Piquard 2008]. We provide a direct elementary proof here. Note that if À and ¸

are two reduced words with no common generators, the derivation property follows

easily from (4-1). It remains to verify the derivation property when À and ¸ have

common generators. Let À = xi1
(k1) · · · xin (kn) ∈Am(N , ε) be a reduced word, and

let a be an arbitrary generator. Assume a = xi(³0)(k(³0)) and write the reduced

form of aÀ as ãÀ . Then

ãÀ = ε((i1, k1), (i³0
, k³0

)) · · · ε((i³0−1, k³0−1), (i³0
, k³0

))xi1
(k1)

· · · x̌i³0
(k³0

) · · · xin (kn),

where x̌ means the generator x is omitted in the expression. We have

¶(ãÀ)= ε((i1, k1), (i³0
, k³0

)) · · · ε((i³0−1, k³0−1), (i³0
, k³0

))

×
n∑

³=1,³ ̸=³0

xi1
(k1) · · · xi³−1

(k³−1)xi³+N (k³)xi³+1
(k³+1) · · · xin (kn).

Here we understand that if ³= ³0 −1 then i³+1 is actually i³+2 because xi³0
(k³0

) is

omitted. Similar remark applies when ³=³0+1 and we will follow this convention
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to ease notation in this proof. On the other hand,

¶(a)À + a¶(À)= xi³0
+N (k³0

)xi1
(k1) · · · xin (kn)+ axi1

(k1) · · · xi³0
+N (k³0

) · · · xin

+
³0−1∏

j=1

ε((i j ,k j ), (i³0
,k³0

))

×
n∑

³=1,³ ̸=³0

xi1
(k1) · · · xi³−1

(k³−1)xi³+N (k³)xi³+1
(k³+1) · · · xin (kn)

=
³0−1∏

j=1

ε((i j ,k j ), (i³0
,k³0

))

×
n∑

³=1,³ ̸=³0

xi1
(k1) · · · xi³−1

(k³−1)xi³+N (k³)xi³+1
(k³+1) · · · xin (kn).

Here we used the commutation relation given by ε in both equalities. Hence,

(4-2) ¶(ãÀ)= ¶(a)À + a¶(À).

Now assume ¶(˜̧À)= ¶(¸)À + ¸¶(À), where both À and ¸ are reduced words and

the generators of ¸ are all in À , i.e., ¸ is a subword of À . We want to show that

¶(ã¸À)= ¶(ã¸)À + a¸¶(À), where a is a generator. Note that ã¸À = ã˜̧À . By (4-2)

and the induction hypothesis,

¶(ã˜̧À)= ¶(a)¸À + a¶(˜̧À)
= ¶(a)¸À + a¶(¸)À + a¸¶(À)= ¶(ã¸)À + a¸¶(À).

The derivation property is verified when ¸ is a subword of À . For arbitrary reduced

words À and ¸, using the commutation relation we can write ¸ = ¸1¸2 so that ¸1

and À have no common generators and the generators of ¸2 are in À . Then

¶(˜̧À)= ¶(¸1
˜̧

2À)= ¶(¸1)¸2À + ¸1¶(˜̧2À)= ¶(¸1)¸2À + ¸1¶(¸2)À + ¸1¸2¶(À)

= ¶(¸1¸2)À + ¸1¸2¶(À)= ¶(¸)À + ¸¶(À). □

This lemma implies in particular that ¶(À) can be defined by (4-1) and is equal

to ¶(̃À) even if À is not a reduced word. We will simply write ¶(À) for any word À

in the following. If we denote by Am the number operator associated to the spin

system Am(N , ε), the gradient form is defined as

0m( f, g)= 1
2
(Am( f ∗)g + f ∗ Am(g)− Am( f ∗g))

for f, g ∈ Am(N , ε). The superscript m is used to distinguish the operators from

their counterparts defined for the limiting algebra 0Q . We may simply omit this

superscript if there is no ambiguity.
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Lemma 4.5. Let f, g ∈ Am(N , ε). Then

0( f, g)= E(¶( f )∗¶(g)),

where E : Am(2N , ε)→ Am(N , ε) is the conditional expectation satisfying

E(xB)= ¶B∩({N+1,...,2N }×[m]),∅xB

for a reduced word xB .

Proof. By linearity, it suffices to check 0( f, g)= E(¶( f )∗¶(g)) if f and g are re-

duced words in Am(N , ε). Let X B = xi1
(k1) · · · xin (kn) and XC = x j1(l1) · · · x js (ls)

be two reduced words, where B,C ¢ [N ] × [m] consist of (i³, k³) and ( j´, l´)
respectively. By the derivation property (4-1),

E(¶(X B)
∗¶(XC))

=
n∑

³=1

s∑

´=1

E(xin (kn) · · · xi³+N (k³) · · · xi1
(k1)x j1(l1) · · · x j´+N (l´) · · · x js (ls)).

We claim that the only nonzero terms in the above sum are those with (i³, k³)=
( j´, l´). Indeed, the conditional expectation simply computes the trace of generators

with subscript greater than N in the reduced form of

xin (kn) · · · xi³+N (k³) · · · xi1
(k1)x j1(l1) · · · x j´+N (l´) · · · x js (ls).

Thus xi³+N (k³) and x j´+N (l´) have to be the same to cancel out in order to con-

tribute to the sum. It follows that

(4-3) E(¶(X B)
∗¶(XC))

=
∑

³,´:(i³,k³)=( j´ ,l´ )

E
(
xin (kn) · · · xi³+N (k³) · · · xi1

(k1)x j1(l1)

· · · x j´+N (l´) · · · x js (ls)
)

=
∑

³,´:(i³,k³)=( j´ ,l´ )

xin (kn) · · · xi³ (k³) · · · xi1
(k1)x j1(l1) · · · x j´ (l´) · · · x js (ls).

Here we used the extended commutation relation on A(2N , ε) given by ε in the

last equality. Since X B and XC are reduced, given (i³, k³) ∈ B there is at most one

( j´, l´) ∈ C such that they are equal, and vice versa. We see that there are |B ∩ C |
terms in the sum of (4-3). Hence, we find

E(¶(X B)
∗¶(XC))= |B ∩ C |X∗

B XC .

On the other hand,

0(X B, XC)= 1
2
(A(X∗

B)XC + X∗
B A(XC)− A(X∗

B XC))

= 1
2
(|B| + |C | − |B△C |)

× xin (kn) · · · xi³ (k³) · · · xi1
(k1)x j1(l1) · · · x j´ (l´) · · · x js (ls).
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Note that we have the same word here as the summand of (4-3). Since 2|B ∩ C | =
|B| + |C | − |B△C |, we must have

0(X B, XC)= |B ∩ C |X∗
B XC = E(¶(X B)

∗¶(XC)). □

Let w(i) ∈ H s
Q be a special Wick word with length s ∈ Z+. We define a linear

map ¶ : H s
Q → H s

Q′

(4-4) ¶(w(i))=
(

1

ms/2

∑

k:Ã(k)∈P1(s)

¶m[xi1
(k1) · · · xis (ks)]

)•

,

where ¶m is the derivation defined in (4-1). Here we used Remark A.1 implicitly.

Note that ¶m is bounded when acting on words with fixed length s although it is not

uniformly (in m) bounded on Am . Hence ¶ = (¶m)• is well-defined on H s
Q . Since

L2(0Q) =
⊕∞

s=0 H s
Q , we can define ¶ on each H s

Q by (4-4). By definition, ¶ is

densely defined on FQ = L2(0Q) and Dom(¶) = Dom(A) can be identified with

the linear span of special Wick words with finite length, where A is the number

operator on L2(0Q). Since each w(i) is actually in 0∞
Q , ¶(w(i)) is in 0∞

Q′ .

Proposition 4.6. ¶ : L2(0Q)→ L2(0Q′) is a closed derivation.

Proof. Let Ps : L2(0Q)→ H s
Q and P ′

s : L2(0Q′)→ H s
Q′ be the orthogonal projections.

Suppose xn ∈ Dom(¶), limn→∞ ∥xn∥2 = 0 and limn→∞ ∥¶(xn)− y∥2 = 0. Then

Ps xn → 0 for each s ∈ Z+. It follows that

P ′
s¶(xn)= ¶(Ps(xn))→ 0 as n → ∞.

But P ′
s¶(xn) → P ′

s y, we find P ′
s y = 0 and thus y = 0. Hence ¶ is closed. The

derivation property follows from the definition (4-4), (4-1) and Remark A.1. □

Denote by AU (N ) the von Neumann algebra ultraproduct of Am(N ). Then

E = (Em)• :AU (2N )→AU (N ) is the canonical conditional expectation, where Em :
Am(2N )→ Am(N ) is given in Lemma 4.5. Since 0Q ¢ AU (N ) as a von Neumann

subalgebra, there is a trace-preserving conditional expectation E : 0Q′ → 0Q which

extends to contractions on L p for 1 f p <∞. Recall that 0( · , · ) is the gradient

form associated with the number operator A on 0Q .

Proposition 4.7. Let f, g ∈ Dom(¶). Then

0( f, g)= E(¶( f )∗¶(g)).

Proof. By linearity, it suffices to check the claim for f = w(i) and g = w(i ′).
By the construction of conditional expectation, the proof of Lemma 4.5 and the
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construction of the Ornstein–Uhlenbeck semigroup on L2(0Q) in Section 3D,

E[¶(w(i))∗¶(w(i ′))]

=
(

1

m(d+d ′)/2
Em

(
¶m

( ∑

k:Ã(k)∈P1(d)

xi1
(k1) · · · xid (kd)

)∗

× ¶m

( ∑

k′:Ã(k′)∈P1(d ′)

xi ′
1
(k ′

1) · · · xi ′
d′ (k

′
d ′)

)))•

= 1
2
[A(w(i∗)w(i ′)+w(i)∗ A(w(i ′))− A(w(i)∗w(i ′))] = 0(w(i), w(i ′)),

where A is the number operator on 0Q . □

4C. Riesz transforms. Lust-Piquard [1998] showed the boundedness of Riesz

transforms for the general spin system. Let T ∈ Am(N , ε) with Äm(T )= 0. Recall

that the Riesz transforms satisfy R j (T )= D j (Am)−1/2(T ), where D j is the annihi-

lation operator and Am =
∑Nm

j=1 D∗
j D j is the number operator for the spin system

Am(N , ε). By [Lust-Piquard 1998, Lemma 3.2 and Proposition 1.3], we have

(4-5) K̃ −1
p′ ∥T ∥p f

∥∥∥∥
Nm∑

j=1

Pj R j (T )

∥∥∥∥
p
f K̃ p∥T ∥p for 1< p <∞,

where K̃ p = O(p3/(p −1)3/2), 1/p +1/p′ = 1, and Pj is a certain tensor of Pauli

matrices in the general spin system; see [Lust-Piquard 1998, Definition 2.1]. It

is known that ∥
∑Nm

j=1 Pj R j (T )∥p = ∥¶m(Am)−1/2(T )∥p (see [Lust-Piquard 1999,

p. 547]), where ¶m is the derivation defined in (4-1). By considering T = (Am)1/2 f ,

(4-5) can be rewritten as

(4-6) K̃ −1
p′ ∥(Am)1/2 f ∥p f ∥¶m( f )∥p f K̃ p∥(Am)1/2 f ∥p.

Now it is easy to recover the main result in [Lust-Piquard 1999]. Recall that A is

the number operator on 0Q .

Theorem 4.8 (Lust-Piquard). Let 1< p <∞ and 1/p +1/p′ = 1. Let ¶ be defined
by (4-4). Then, for any f ∈ Dom(¶),

K̃ −1
p′ ∥A1/2 f ∥p f ∥¶( f )∥p f K̃ p∥A1/2 f ∥p,

where K̃ p = O(p3/(p − 1)3/2).

Proof. We may assume without loss of generality that f =
∑

i ³iw(i) is a finite

linear combination of special Wick words. Write w(i)= (X (i,m))•. Then

∥¶( f )∥p =
∥∥∥∥
∑

i

³i¶(w(i))

∥∥∥∥
p
= lim

m,U

∥∥∥∥
∑

i

³i¶
m(X (i,m))

∥∥∥∥
p
.
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Similarly,

∥A1/2 f ∥p = lim
m,U

∥∥∥∥
∑

i

³i

√
|i |X (i,m)

∥∥∥∥
p
= lim

m,U
∥(Am)1/2 f ∥p.

The assertion follows from (4-6) with a limiting procedure. □

In fact, we can give more precise estimates using the gradient form. Let

G p = L p- span{w(i) : i ∈ [2N ]s, s ∈ N, 1 f ik f N for all but at most one k}.

Since L p(0Q)¢ G p ¢ L p(0Q′), we have E : G p → L p(0Q) given by the restriction

of the conditional expectation E : 0Q′ → 0Q . If f ∈ 0Q′ , we define ∥ f ∥Lc
p(E) =

∥E( f ∗ f )1/2∥p and ∥ f ∥Lr
p(E) = ∥ f ∗∥Lc

p(E). The conditional L p(0Q′) space is

Lrc
p (E)=

{
Lr

p(E)+ Lc
p(E) if 1 f p f 2,

Lr
p(E)∩ Lc

p(E) if 2 f p f ∞.

Define Gr
p (resp. Gc

p) as the space of G p with the norm inherited from Lr
p(E) (resp.

Lc
p(E)). Now we follow [Junge et al. 2014] to derive a Khintchine-type inequality.

First, since E : 0Q′ → 0Q extends to contractions on L p for 1 f p <∞, we have,

for f ∈ L p(0Q′) and 2 f p <∞,

(4-7) max
{
∥E( f ∗ f )1/2∥p, ∥E( f f ∗)1/2∥p

}
f ∥ f ∥L p .

This means that L p(0Q′)¢ Lrc
p (E) contractively for 2 f p <∞.

Lemma 4.9. Let E : G p → L p(0Q) be as above. Then, for 2 f p <∞,

∥ f ∥G p f C
√

p max
{
∥E( f ∗ f )1/2∥p, ∥E( f f ∗)1/2∥p

}
f C

√
p∥ f ∥G p ,

and for 1< p f 2,

∥ f ∥G p f inf
f =g+h

g∈Gc
p,h∈Gr

p

{
∥E(g∗g)1/2∥p + ∥E(hh∗)1/2∥p

}
f C

√
p

p − 1
∥ f ∥G p .

Proof. Let 2 f p <∞. The right inequality is a special case of (4-7). For the left

inequality, let n ∈ N and i ∈ [2N ]s . For j = 1, . . . , n, define

Æ j : [2N ]s → [2N ]ns, Æ j (i)= 0 ⊔ · · · 0 ⊔ i ⊔ 0 · · · ⊔ 0,

where i occurs in the j-th position. Put Ã̃ j (w(i))= w(Æ j (i)), where w(Æ j (i)) is

the special Wick word associated to Æ j (i). Define

Ãn : 0Q′ → 0Q′¹1n , Ãn(w(i))= 1√
n

n∑

j=1

w(Æ j (i)).

Here, 1n is the n × n matrix with all entries equal to 1. The map Ãn extends to a

trace-preserving ∗-homomorphism. Alternatively, one may define Ãn via the second
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quantization functor as in [Lust-Piquard 1999]. It is crucial to observe that the

Ã̃ j (w(i)), where j = 1, . . . , n, are fully independent over 0Q¹1n (see [Junge and

Zeng 2013]) if w(i)∈ G p, as can be checked from the definition of E0Q :0Q′ →0Q .

We may assume f is a finite linear combination of special Wick words in G p. By the

noncommutative Rosenthal inequality [Junge and Xu 2008; Junge and Zeng 2013],

∥Ãn( f )∥p

f Cp√
n

( n∑

j=1

∥Ã̃ j ( f )∥p
p

)1
p

+ C
√

p
√

n
max

{∥∥∥∥
( n∑

j=1

E[Ã̃ j ( f )∗Ã̃ j ( f )]
)1

2
∥∥∥∥

p
,

∥∥∥∥
( n∑

j=1

E[Ã̃ j ( f )Ã̃ j ( f )∗]
)1

2
∥∥∥∥

p

}
.

We have extended the conditional expectation E :0Q′ →0Q to E :0Q′¹1n →0Q¹1n .

Note that E[Ã̃ j ( f )∗Ã̃ j ( f )]= Ã̃ j [E( f ∗ f )] and ∥Ã̃ j ( f )∥p =∥ f ∥p. Sending n →∞,

for 2< p <∞, we have

(4-8) ∥ f ∥G p f C
√

p max
{
∥E( f ∗ f )1/2∥p, ∥E( f f ∗)1/2∥p

}
.

For the case 1 < p < 2, we argue by duality. Define the orthogonal projection

P : Lrc
2 (E)→ G2 ∩ Lrc

2 (E). By orthogonality, for g ∈ 0Q′ ,

E(g∗g)= E(Pg∗ Pg)+ E(P§g∗ P§g)g E(Pg∗ Pg).

Similarly, E(gg∗)g E(Pg Pg∗). Since

max
{
∥E(Pg∗Pg)1/2∥p,∥E(Pg Pg∗)1/2∥p

}
f max

{
∥E(g∗g)1/2∥p,∥E(gg∗)1/2∥p

}
,

we deduce from (4-8) that P extends to a bounded projection with norm

∥P : Lrc
p (E)→ L p(0Q′)∥ f C

√
p

for 2 f p <∞. For 1< p f 2 and f ∈ G2, since P∗ = P , we have by duality

∥ f ∥Lrc
p (E) = ∥P f ∥Lrc

p (E) f C
√

p′∥ f ∥L p(0Q′ ),

where 1/p + 1/p′ = 1. By density, this inequality extends to f ∈ G p. It suffices

to consider the decomposition of f ∈ G p in Gc
p + Gr

p when we compute ∥ f ∥Lrc
p (E).

This gives the right inequality. The left inequality follows from duality and (4-7). □

Remark 4.10. In fact, the above argument also shows that G p is complemented

in L p(0Q′). Morally speaking, G p is a 0Q–0Q bimodule corresponding to differen-

tial forms of order one.

Corollary 4.11. (a) Let 2 f p <∞. Then, for every f ∈ Dom(A),

c−1
p ∥A1/2 f ∥p f max

{
∥0( f, f )1/2∥p, ∥0( f ∗, f ∗)1/2∥p

}
f K p∥A1/2 f ∥p,

where cp = O(p2) and K p = O(p3/2).
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(b) Let 1< p f 2. Then, for every f ∈ Dom(A),

K −1
p′ ∥A1/2 f ∥p f inf

¶( f )=g+h
g∈Gc

p,h∈Gr
p

{
∥E(g∗g)1/2∥p + ∥E(hh∗)1/2∥p

}
f C p∥A1/2 f ∥,

where K p′ = O(1/(p − 1)3/2) and C p = O(1/(p − 1)2).

Proof. Note that ¶( f )∈ G p if f ∈ Dom(A). Since E(¶( f )∗¶( f ))=0( f, f ), using

Lemma 4.9 for 2 f p <∞, we have

∥¶( f )∥p f C
√

p max
{
∥0( f, f )1/2∥p, ∥0( f ∗, f ∗)1/2∥p

}
f C

√
p∥¶( f )∥p.

Now apply Theorem 4.8 to conclude (a). For the constants, K p = O(p3/2) is trivial.

Since K̃ p′ = O(p′3/(p′ − 1)3/2) = O(p3/2), we have cp f O(p2). Assertion (b)

follows similarly using Lemma 4.9 and Theorem 4.8. □

Compared with Theorem 4.8, which was proved in [Lust-Piquard 1999], this

result is closer to Lust-Piquard’s original formulation of the Riesz transforms on

the Walsh system and the fermions given in [Lust-Piquard 1998]. In particular, we

get the exact order of constants as in [Lust-Piquard 1998].

4D. L p Poincaré inequalities. Efraim and Lust-Piquard [2008] proved that the L p

Poincaré inequalities (2 f p <∞),

(4-9) ∥ f − Äm( f )∥p f C
√

p max
{
∥0m( f, f )1/2∥p, 0

m( f ∗, f ∗)1/2∥p
}
,

hold for Walsh systems and CAR algebras. In fact, the same proof also works

for the general spin matrix system Am with some technical variants as shown in

[Lust-Piquard 1998]. Indeed, Lemmas 6.2–6.5 in [Efraim and Lust-Piquard 2008]

hold for the general spin systems, from which (4-9) follows. Recall that we denote

by A the number operator on 0Q .

Theorem 4.12. Let 2 f p <∞. Then, for every f ∈ Dom(A),

∥ f − ÄQ( f )∥p f C
√

p max
{
∥0( f, f )1/2∥p, 0( f ∗, f ∗)1/2∥p

}
.

Proof. Assume without loss of generality that f =
∑

i ³iw(i) = ( f m)• is a

finite linear combination of special Wick words. Note that E(¶( f )∗¶( f )) =
(Em[¶m( f m)¶m( f m)])•. Then the assertion follows from (4-9) and a limiting proce-

dure as for Theorems 4.2 and 4.8 with the help of Lemma 4.5 and Proposition 4.7. □

5. Strong solidity

5A. CCAP. Let 0q(H) be the q-Gaussian von Neumann algebra associated to a

real Hilbert space H with dim H g 2; see, e.g., [Bożejko et al. 1997] for more

information on 0q(H). Avsec showed that 0q(H) for −1< q < 1 has the weak*

completely contractive approximation property (w*CCAP) in [Avsec 2011]. In
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particular, 0q(H) is weakly amenable. Our goal here is to prove that 0Q also has

w*CCAP if max1fi, jfN |qi j |< 1. Our argument is based on Avsec’s result.

Assume that maxi, j |qi j | < 1. We may find q such that maxi, j |qi j | < q < 1.

Let Q = q Q̃, where Q̃ = (̃qi j ) satisfies maxi, j |̃qi j | < 1. For h ∈ H , let cq(h)
and (cq)∗(h) be the creation and annihilation operators, respectively, acting on

the q-Fock space Fq(H), where dim H = N . We write the q-Gaussian variables

as sq(h) = cq(h)+ (cq)∗(h). In particular, for an orthonormal basis (o.n.b.) (e j )

of H , we write sq
j = sq(e j ). Similarly, we write s Q(h) = cQ(h)+ (cQ)∗(h) for

the mixed q-Gaussian variables of 0Q ; see [Lust-Piquard 1999]. In particular,

s Q
j = s Q(e j ). We write xi, j = s Q̃¹1n ( fi ¹ e j ), where ( fi ) is an o.n.b. of ℓN

2 , and

(e j ) is an o.n.b. of ℓn
2 . Clearly, the xi, j ’s generate 0Q̃¹1n

. We first construct an

“approximate comultiplication” for 0Q .

Proposition 5.1. Let ÃU : 0Q →
∏

m,U 0q(ℓ
m
2 )¹ 0Q̃¹1m

be a ∗-homomorphism
given by

ÃU (s
Q
i )=

(
1√
m

m∑

k=1

sq
k ¹ xi,k

)•

.

Then ÃU is trace-preserving. Therefore, 0Q is isomorphic to the von Neumann
algebra generated by ÃU (s

Q
i ).

Proof. Let d be an even integer. By the moment formula (3-2),

∑

k∈[m]d

Äq ¹ ÄQ̃¹1m
[(sq

k1
· · · sq

kd
)¹ (xi1,k1

· · · xid ,kd )]

=
∑

Ã∈P2(d),ÃfÃ(i)

∑

Ã(k)=Ã
q#I (Ã )

∏

{r,t}∈I (Ã )

q̃(i(er ), i(et))

=
∑

Ã∈P2(d),ÃfÃ(i)

∑

Ã(k)=Ã

∏

{r,t}∈I (Ã )

q(i(er ), i(et)),

where I (Ã ) is the set of inversions for the partition Ã . Counting the number of k
with Ã(k)= Ã , we have

ÄU

(
1

md/2

∑

k∈[m]d

(sq
k1

· · · sq
kd
)¹ (xi1,k1

· · · xid ,kd )

)•

=
∑

Ã∈P2(d)
ÃfÃ(i)

∏

{r,t}∈I (Ã )

q(i(er ), i(et)).

This coincides with ÄQ(s
Q
i1

· · · s Q
id
) given by (3-2). □

Now we want to understand the image of Wick words of 0Q under ÃU . We need

a Wick word decomposition result similar to Theorem 3.8. For i ∈ [N ]d , we define

(5-1) ws(i)=
(

1

md/2

∑

k:Ã(k)∈P1(d)

(sq
k1

· · · sq
kd
)¹ (xi1,k1

· · · xid ,kd )

)•

.
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Proposition 5.2. Following the notation of Proposition 5.1, we have

ÃU (s
Q
i1

· · · s Q
id
)=

∑

Ã∈P1,2(d)
ÃfÃ(i)

ws
Ã (i).

Here,ws
Ã (i)= fÃ (i)ws(inp), fÃ (i) and inp are the same as those in Proposition 3.10.

Proof. Following verbatim the argument for Theorem 3.8, we have

ÃU (s
Q
i1

· · · s Q
id
)=

∑

Ã∈P1,2(d)

ws
Ã (i).

Here we have

ws
Ã (i)=

(
1

md/2

∑

k∈[m]d :Ã(k)=Ã

ENs(k)[(s
q
k1

· · · sq
kd
)¹ (xi1,k1

· · · xid ,kd )]
)•

,

and Ns(k) is the von Neumann algebra generated by all the sq
k³

¹ xi³,k³’s, where

the k³’s correspond to singleton blocks in k. To simplify the conditional expectation

in the ultraproduct, we denote by N 1
s (k) and N 2

s (k) the von Neumann algebras

generated by the sq
k³

¹0Q̃¹1m
’s and 0q(ℓ

m
2 )¹ xi³,k³’s, respectively, where the k³’s

correspond to singleton blocks in k. Clearly, Ns(k)¢ N 1
s (k)∩N 2

s (k). We claim

(5-2) EN 2
s (k)
(1 ¹ (xi1,k1

· · · xid ,kd ))

=
{

fÃ,Q̃(i)1 ¹ (x j1,l1
· · · x js ,ls ) if Ã = Ã(k)f Ã(i),

0 otherwise,

where (l1, . . . , ls) is obtained by deleting pair blocks in k, which also gives the

corresponding ( j1, . . . , js), and

fÃ,Q̃(i)=
∏

{r,t}∈Ip(Ã )

q̃(i(er ), i(et))
∏

{r,t}∈Isp(Ã )

q̃(i(er ), i(et)).

Unlike in the matrix models, the xi³,k³’s do not have commutation relations. We

check (5-2) by calculating the inner product of EN 2
s (k)
(1 ¹ xi1,k1

· · · xid ,kd ) and

monomials generated by the 1 ¹ xi³,k³’s in N 2
s (k). Let 1 ¹ xi ′

1,k
′
1
· · · xi ′

n,k
′
n
∈ N 2

s (k)
be a monomial. Since EN 2

s (k)
is trace-preserving, by the moment formula (3-2) for

mixed q-Gaussian algebras,

ÄQ̃¹1m
[xi ′

n,k
′
n
· · · xi ′

1,k
′
1
EN 2

s (k)
(xi1,k1

· · · xid ,kd )]

=
{

fÃ,Q̃(i)ÄQ̃¹1m
(xi ′

n,k
′
n
· · · xi ′

1,k
′
1
x j1,l1

· · · x js ,ls ) if Ã = Ã(k)f Ã(i),

0 otherwise.

Hence (5-2) is verified. Similarly, it can be checked that

EN 1
s (k)
((sq

k1
· · · sq

kd
)¹ 1)= q#Ip(Ã )+#Isp(Ã )sq

l1
· · · sq

ls
.

Note that fÃ (i) = q#Ip(Ã )+#Isp(Ã ) fÃ,Q̃(i). The assertion follows from the fact that

ENs(k) = ENs(k)EN 1
s (k)

EN 2
s (k)

. □
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Proposition 5.3. ÃU extends to an isomorphism

L2(0Q)∼= L2- span{ws(i) : i ∈ [N ]d , d ∈ Z+}.

Proof. Put HW = L2- span{ws(i) : i ∈ [N ]d , d ∈ Z+}. By Proposition 5.2, we

know that ÃU (L2(0Q))¢ HW . The converse containment follows from the same

induction argument as for Proposition 3.13. □

Remark 5.4. In fact, one can prove that ÃU (w(i))= ws(i) using the Fock space

representation. Since we do not need this fact, we leave it to the reader.

Now we are ready for the first main result of this section.

Theorem 5.5. 0Q has the weak* completely contractive approximation property
for all Q with max1fi, jfN |qi j |< 1.

Proof. Let H be a real Hilbert space and −1<q< 1. In [Avsec 2011], Avsec proved

that there exists a net of finite-rank maps ϕ³(A) which converges to the identity map

on 0q(H) in the point-weak* topology and such that ∥ϕ³(A)∥cb f 1 + ε for some

prescribed ε. Here, ∥ · ∥cb is the completely bounded norm and ϕ³(A) only depends

on the number operator A on 0q(H). Let Q = q Q̃ as above. Consider the diagram

0Q
�

� ÃU
//

È³

��

∏
m,U 0q(ℓ

m
2 )¹0Q̃¹1m

ϕ³(A)¹id

��

0Q
�

� ÃU
//
∏

m,U 0q(ℓ
m
2 )¹0Q̃¹1m

where we define È³ = Ã−1
U

◦ (ϕ³(A)¹ id) ◦ÃU . Here, ϕ³(A)¹ id is well-defined

on the ultraproduct of von Neumann algebras because it is uniformly bounded in

each 0q(ℓ
m
2 )¹0Q̃¹1m

. By an argument similar to that in Section 3D, ϕ³(A)¹ id is

a normal map. Note that È³ is well-defined because ÃU is injective and ϕ³(A)¹ id

acts as a multiplier. We claim that È³ is the desirable completely contractive

approximation of identity. By construction, the only nontrivial thing to check is

that È³ is of finite rank. To this end, it suffices to show that ϕ(A)³¹ id restricted to

ÃU (L2(0Q))= L2- span{ws(i) : i ∈ [N ]d , d ∈ N}

is of finite rank thanks to Proposition 5.1 and 5.3. Since ϕ³(A) is of finite rank,

suppose its range is span
{
sq

k1
· · · sq

kn
: Ã(k) ∈

⋃
n∈N

P1(n), k ∈ B
}

for some finite

set B. Then the range of ϕ³(A)¹ id |ÃU (L2(0Q)) is

span

{
sq

k1
· · · sq

kn
¹ xi1,k1

· · · xin,kn : Ã(k) ∈
⋃

n∈N

P1(n), k ∈ B

}
.

Therefore ϕ³(A)¹ id |ÃU (L2(0Q)) is a finite-rank map. □
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5B. Strong solidity. We follow closely the argument in [Avsec 2011; Houdayer

and Shlyakhtenko 2011]. The strategy is to first prove a weak containment result

of bimodules and then use it to prove strong solidity of 0Q . See, e.g., [Brown and

Ozawa 2008; Avsec 2011] for more details on bimodules and weak containment.

For simplicity, we write Q′ = Q¹12 = Q¹
(

1
1

1
1

)
as in Section 4B. Here we assume

(5-3) max
1fi, jfN

|qi j |< q2 < q < 1.

Recall that L0
2(0Q′) denotes the subspace of L2(0Q′) which consists of mean zero

elements. Define the following subspaces of L0
2(0Q′):

Fm = L2- span{w(i) : i ∈ [2N ]s, s ∈ N, s g m, ∃i1, . . . , im ∈ {N + 1, . . . , 2N }},

Em =
m⊕

k=0

Fk .

Clearly, E§
m is a 0Q–0Q-subbimodule of L0

2(0Q′). We want to show that E§
m is

weakly contained in the coarse bimodule L2(0Q)¹ L2(0Q) for m large enough.

By Proposition 3.13, we may identify L2(0Q′) with the Fock space FQ′ . For

À, ¸ ∈ L0
2(0Q′), define 8À,¸ : L2(0Q)→ L2(0Q) by

8À,¸(x)= E0Q (À x¸).

To distinguish the left action and the right action of 0Q′ on L2(0Q′), we write l(hi )

(resp. r(hi )) as the left (resp. right) creation operator associated to hi acting on the

Fock space FQ′ , i.e.,

l(hi )(h j1 ¹ · · · ¹ h jn )= hi ¹ h j1 ¹ · · · ¹ h jn ,

r(hi )(h j1 ¹ · · · ¹ h jn )= h j1 ¹ · · · ¹ h jn ¹ hi .

Here, the hi ’s are elements in C
2N = C

N · C
N . We write l(hi )

∗ (resp. r(hi )
∗) as

the left (resp. right) annihilation operator acting on the Fock space FQ′ . See more

details for these operations in [Bożejko and Speicher 1994; Lust-Piquard 1999].

One can also define them following Section 3C after choosing an o.n.b. Write

H ′s =span{w(i)∈L2(0Q′) :i ∈[2N ]s} and H s =span{w(i)∈L2(0Q) :i ∈[N ]s}.

Lemma 5.6. Assume (5-3). Let (ei )
2N
i=1 be an o.n.b. of C

2N . Suppose i ∈ [2N ]n1 and
j ∈ [2N ]n2 . If {N +1, . . . , 2N } contains exactly n elements of {ir+1, . . . , in1

}, then
∥∥E0Q

[
l(ei1

) · · · l(eir )l(eir+1
)∗ · · · l(ein1

)∗r(e j1) · · · r(e js )r(e js+1
)∗ · · · r(e jn2

)∗(x)]
∥∥

2

f Cq,n1,n2
q(³−(n2−s)−(n1−r−n))n∥x∥2

for all x ∈ H³.
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Proof. Note that among all possible configurations, the assertion is nontrivial only if

i1, . . . , ir , js+1, . . . , jn2
f N .

By [Bożejko and Speicher 1994, Theorem 3.1],

(5-4) ∥r(e js )
∗∥ f 1√

1 − q
, ∥l(eir )∥ f 1√

1 − q
.

We may assume without loss of generality that r = 0 and s = n2 and estimate the

norm of l(ei1
)∗ · · · l(ein1

)∗r(e j1) · · · r(e jn2
). The idea is that all the eir’s with ir > N

have to pair with the e js’s to cancel out, and moving across the element x will

yield a power of q . Let us assume in1
> N to illustrate the argument. Note that by

Remark 3.17, H³ can be identified with (CN · 0)¹³ via

w(i) 7→ W (ei1
¹ · · · ¹ ei³ ) 7→ ei1

¹ · · · ¹ ei³ .

First assume x = ek1
¹· · ·¹ek³ . Using (3-14) (or the formula on p. 109 of [Bożejko

and Speicher 1994]), we find

l(ein1
)∗r(e j1) · · · r(e jn2

)x

=
n2∑

m=1

¶in1
, jm

³∏

s=1

qin1
,ks

n2∏

r=m+1

qin1
, jr x ¹ e jn2

¹ · · · ¹ ě jm ¹ · · · ¹ e j1

=
n2∑

m=1

¶in1
, jm

³∏

s=1

qin1
,ks

n2∏

r=m+1

qin1
, jr r(e j1) · · · ř(e jm ) · · · r(e jn2

)x,

where ě jm and ř(e jm ) mean that e jm and r(e jm ) are omitted in the expression. The

difficulty is that the coefficient in front of x depends on x . In order to extend the

above equation to arbitrary x ∈ H³, we will find a linear operator for any fixed m
via deformation and enlargement of the algebra. Define q̃i j = qi j/q for 1 f i, j f N ,

Q̃ = (̃qi j ), and

P =
(

Q ¹ 12 Q̃ ¹ 12

Q̃ ¹ 12 Q ¹ 12

)
.

Note that (5-3) implies that maxi j |pi j |< q. We can construct new von Neumann

algebras 0P and 0P¹1n2+1
. Clearly, we have the relation

0Q ↪→ 0Q′ ↪→ 0P ↪→ 0P¹1n2+1
.

We continue to denote by E0Q : 0P¹1n2+1
→ 0Q the conditional expectation. Let

în1
= in1

+ 2N , and let

ĵr =
{

jr + 2N if jr > N ,

jr otherwise.
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For fixed m, let

ĩn1
= în1

+ 4m N = in1
+ 2N + 4m N , j̃m = jm + 4m N ,

and let j̃r = ĵr for r ̸= m. In L2(0P¹1n2+1
), observing the repetition pattern in the

matrix P , we have

r(e j̃1) · · · r(e j̃m−1
)[l(e ĩn1

)∗r(e j̃m )]r(e j̃m+1
) · · · r(e j̃n2

)x

=
n2∑

u=m

¶ ĩn1
, j̃u

³∏

s=1

q̃in1
,ks

n2∏

v=u+1

p în1
, ĵv

r(e j̃1) · · · r(e j̃m−1
) · · · ř(e j̃u ) · · · r(e j̃n2

)x

=
³∏

s=1

q̃in1
,ks

n2∏

v=m+1

p în1
, ĵv

r(e j̃1) · · · ř(e j̃m ) · · · r(e j̃n2
)x,

where p în1
, ĵv

= qin1
, jv if jv ∈ {N +1, . . . , 2N } and p în1

, ĵv
= q̃in1

, jv otherwise. Note

that the term 4m N is used to guarantee that l(e ĩn1
)∗ only annihilates e j̃m . Let

I (m)=
{

jv : v ∈ {m + 1, . . . , n2}, jv f N
}
.

Then

(5-5) E0Q [l(ein1
)∗r(e j1) · · · r(e jn2

)x]

= q³
n2∑

m=1

¶in1
, jm

³∏

s=1

q̃in1
,ks

n2∏

r=m+1

qin1
, jr E0Q [r(e j1) · · · ř(e jm ) · · · r(e jn2

)x]

= q³
n2∑

m=1

¶in1
, jm q#I (m)

×
³∏

s=1

q̃in1
,ks

n2∏

v=m+1

p în1
, ĵv

E0Q [r(e j̃1) · · · ř(e j̃m ) · · · r(e j̃n2
)x]

= q³
n2∑

m=1

¶in1
, jm q#I (m)

× E0Q

[
r(e j̃1) · · · r(e j̃m−1

)[l(e ĩn1
)∗r(e j̃m )]r(e j̃m+1

) · · · r(e j̃n2
)x
]
.

Here, the conditional expectation is used in the second equality so that the change

in i and j will not affect the resultant value in L2(0Q). Note that the summand

in (5-5) does not depend on x for each fixed m. By linearity, (5-5) holds for any

x ∈ H³. We deduce from (5-4) and the triangle inequality that

∥∥E0Q [l(ein1
)∗r(e j1) · · · r(e jn2

)x]
∥∥

2
f Cq,n2

q³∥x∥2

for all x ∈ H³ . Since l(ein1
)∗r(e j1) · · · r(e jn2

)x is a linear combination of words with

fixed length, the above argument can be easily extended to handle more than one

annihilator. To get a norm estimate on E0Q [l(ei1
)∗ · · · l(ein1

)∗r(e j1) · · · r(e jn2
)(x)], it
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suffices to consider the configuration yielding the minimal power of q . This occurs if

i1, . . . , in, jn2−n+1, . . . , jn2
∈ {N + 1, . . . , 2N }.

In this situation, l(ei1
)∗, . . . , l(ein )

∗ need to cross at least ³ − (n1 − n) terms to

cancel with the e js’s. This gives q [³−(n1−n)]n . Using (5-4) to estimate the norm of

l(ein+1
)∗ · · · l(ein1

)∗ gives a constant Cq,n1
. Proceeding like so finishes the proof. □

We will use the normal form theorem of Wick products [Bożejko et al. 1997;

Krȯlak 2000] to estimate the norm of 8À,¸. We achieve this via the following result.

Lemma 5.7. Assume (5-3). Let À ∈ H ′n1 ∩ Fn and ¸ ∈ H ′n2 ∩ Fn . Then, for
³ > 2(n1 + n2) and x ∈ H³, we have

∥8À,¸(x)∥2 f Cq,À,¸q
n³/2∥x∥2.

Moreover, 8À,¸(x) ∈
⊕³+n1+n2−2n

´=³−n1−n2+2n H´ .

Proof. First we assume À =w(i), ¸=w( j) and identify x as a vector in (CN ·0)³ .

By the normal form theorem of Wick products [Bożejko et al. 1997] and [Krȯlak

2000, Theorem 1], we have

w(i)= W (ei1
¹ · · · ¹ ein1

)

=
n1∑

r=0

∑

Ã∈Sn1
/(Sr ×Sn1−r )

K (Q, Ã )l(eÃ(i1)) · · · l(eÃ(ir ))l(eÃ(ir+1))
∗ · · · l(eÃ(in1

))
∗,

where Ã(ir ) = iÃ−1(r), and K (Q, Ã ) is a product of certain entries of Q and only

depending on Q and Ã . The precise value of K (Q, Ã ) is irrelevant here. We only

need the fact that |K (Q, Ã )| f Cq,n1
for some constant Cq,n1

depending on q and n1.

We have a similar formula for w( j). It follows that

(5-6) 8À,¸(x)=
n1∑

r=0

n2∑

s=0

∑

Ã∈Sn1
/(Sr ×Sn1−r )

Ã∈Sn2
/(Ss×Sn2−s)

K (Q,Ã )K (Q,Ã)E0Q

[
l(eÃ(i1)) ··· l(eÃ(ir ))

· l(eÃ(ir+1))
∗··· l(eÃ(in1

))
∗r(eÃ( j1)) ···r(eÃ( js))r(eÃ( js+1))

∗···r(eÃ( jn2
))

∗(x)
]
.

By Lemma 5.6,

∥∥E0Q

[
l(eÃ(i1)) · · · l(eÃ(ir ))l(eÃ(ir+1))

∗ · · · l(eÃ(in1
))

∗r(eÃ( j1)) · · · r(eÃ( js))

r(eÃ( js+1))
∗ · · · r(eÃ( jn2

))
∗(x)

]∥∥
2

f Cq,n1,n2
q(³−(n2−s)−(n1−r−n))n∥x∥2.

Since ³− n1 − n2 + s + r + n g 1
2
³, it follows from the triangle inequality that

∥8À,¸(x)∥2 f Cq,n1,n2
qn³/2∥x∥2.
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Now suppose À, ¸ are linear combinations of special Wick words. Using the

triangle inequality again, we have proved the first assertion. As for the range

of 8À,¸, a moment of thought shows that the summand in (5-6) is of length

³ − n1 − n2 + 2s + 2r and that 0 f r f n1 − n, n f s f n2 because we must

have Ã(i1), . . . , Ã (ir ), Ã( js+1), . . . , Ã( jn2
)f N so that the right-hand side of (5-6)

is nonzero. This gives the “moreover” part of the lemma. □

Lemma 5.8. Let K =
⊕∞

n=0 Kn and T : K → K be an operator such that

(i) dim(Kn)f dn;

(ii) ∥T |Kn∥ f C³n for n g n0;

(iii) ³2d < 1.

Then T is Hilbert–Schmidt.

Proof. Let Pn : K → Kn be the orthogonal projection. Then

tr(T ∗T )=
∑

n

tr((T Pn)
∗T Pn)f

∑

n

∥T Pn∥2dn f C
∑

n

³2ndn.

Since the series is absolutely convergent the assertion follows immediately. □

Lemma 5.9. Let À, ¸ ∈ Fn and n >− ln N/ ln q. Then 8À,¸ : L2(0Q)→ L2(0Q) is
Hilbert–Schmidt.

Proof. Write L2(0Q) =
⊕∞

s=0 H s . Then dim(H³) f N³ and qn N < 1. By

Lemma 5.7, we have ∥∥8À,¸|H³

∥∥f Cq,À,¸(q
n/2)³.

The assertion follows from Lemma 5.8. □

Proposition 5.10. Let n > − ln N/ ln q. Then E§
n−1 is weakly contained in the

coarse bimodule L2(0Q)¹ L2(0Q).

Proof. The proof is given in [Avsec 2011, Proposition 4.1] using Lemma 5.9. □

Let Rt : R
N · R

N → R
N · R

N be the orthogonal transform

Rt =
(

e−t id −
√

1 − e−2t id√
1 − e−2t id e−t id

)
,

where id : R
N → R

N is the identity operator and we understand the canonical o.n.b.

in 0 · R
N to be {eN+1, . . . , e2N }. Recall from [Lust-Piquard 1999, Lemma 3.1]

that there is a second quantization functor 0Q which sends the category of Hilbert

spaces to the category of mixed q-Gaussian algebras. Let ³t =0Q(Rt). Then ³t is a

trace-preserving ∗-automorphism on 0Q′ and extends to an isometry on L2(0Q′). It

is easy to check that Tt = E0Q ◦³t coincides with the Ornstein–Uhlenbeck semigroup

on 0Q defined in Section 3D. The following is a modification of Popa’s s-malleable
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deformation estimate [Popa 2008, Lemma 2.1]. The proof modifies slightly that

of [Avsec 2011, Proposition 5.1]. We provide the difference here for the reader’s

convenience. Recall that L0
2(0Q′)=

⊕∞
m=1 H ′m .

Proposition 5.11. Let Pk : L0
2(0Q′)→ E§

k be the orthogonal projection. Then, for
k g 1, we have

∥(³tk − id)(x)∥2 f Ck∥Pk−1³t(x)∥2

for x ∈
⊕∞

n=k H n ¢ L2(0Q) and t < 2−k .

Proof. Note ³tk − id and Pk−1³t preserve the length of n-tensors for n g k and t > 0.

It suffices to prove the assertion for x ∈ H n with n g k. Identify H n with (CN ·0)¹n .

Let x = ei1
¹ · · · ¹ ein and y = e j1 ¹ · · · ¹ e jn . Then

ïPk−1³t(x), Pk−1³t(y)ð =
n∑

m=k

ïPFm³t(x), PFm³t(y)ð,

where the inner product is given by Proposition 3.9, and PFm : L0
2(0Q′)→ Fm is the

orthogonal projection. By the second quantization [Lust-Piquard 1999, Lemma 3.1],

³t(ei1
¹· · ·¹ein )= (e−t ei1

+
√

1 − e−2t eN+i1
)¹· · ·¹ (e−t ein +

√
1 − e−2t eN+in ).

It follows that

PFm³t(x)=
∑

B¢{1,...,n},|B|=m

(1 − e−2t)m/2e−t (n−m)eÃB(i1) ¹ · · · ¹ eÃB(in),

where ÃB(ik)= N + ik for k ∈ B and ÃB(ik)= ik otherwise. Similarly, we get

PFm³t(y)=
∑

C¢{1,...,n},|C |=m

(1 − e−2t)m/2e−t (n−m)eÃC ( j1) ¹ · · · ¹ eÃC ( jn),

where

ÃC( jk)= N + jk for k ∈ C and ÃC( jk)= jk otherwise.

By Proposition 3.9, ïPFm³t(x), PFm³t(y)ð is nonzero only if {ÃB(i1), . . . , ÃB(in)}
and {ÃC( j1), . . . , ÃC( jn)} are equal as multisets. Hence, the indices in B have

to be paired with the indices in C when we compute ïeÃB(i1) ¹ · · · ¹ eÃB(in),

eÃC ( j1) ¹ · · · ¹ eÃC ( jn)ð using Proposition 3.9. For every fixed B, pairing all the

possible C with B and the corresponding Cc with Bc gives all the bipartite partitions

of i ⊔ j . Using Proposition 3.9 again, we see that

ïPFm³t(x), PFm³t(y)ð = (1 − e−2t)me−2t (n−m)
∑

B¢{1,...,n},|B|=m

ïx, yð.

By linearity, this identity holds for arbitrary x, y ∈ H n . Hence,

ïPk−1³t(x), Pk−1³t(y)ð =
n∑

m=k

(1 − e−2t)me−2t (n−m)
( n

m

)
ïx, yð.
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Since the Ornstein–Uhlenbeck semigroup Tt is self-adjoint on L2(0Q) and ³t is

trace-preserving, we have, for x, y ∈ (CN · 0)¹n ,

〈
(³tk − id)(x), (³tk − id)(y)

〉
= 2

(
ïx, yð − ïx, Ttk (y)ð

)
= 2(1 − e−ntk

)ïx, yð.

The rest of the proof is just numerical estimate, which is provided in the proof of

[Avsec 2011, Proposition 5.1]. □

The following is the main result of this section.

Theorem 5.12. Let Q be a real symmetric N × N matrix with max1fi, jfN |qi j |< 1

and N <∞. Then 0Q is strongly solid.

Proof. The proof is the same as that of [Avsec 2011, Theorem B], with the help

of Theorem 5.5 and Propositions 5.10 and 5.11. The argument in [Avsec 2011]

follows literally the same strategy as that of [Houdayer and Shlyakhtenko 2011,

Theorem 3.5], which in turn is a suitable modification of [Ozawa and Popa 2010a;

2010b]. □

Appendix: Speicher’s central limit theorem

Proof of Theorem 3.1. The proof is rephrased from [Speicher 1993] and also follows

[Junge et al. 2015]. We first show that the convergence holds on average, and then

prove almost sure convergence using the Borel–Cantelli lemma. We write

(A-1) Äm (̃xi1
(m) · · · x̃is (m))= 1

ms/2

∑

k∈[m]s

Äm(xi1
(k1) · · · xis (ks))

= 1

ms/2

∑

Ã∈P(s)

∑

k∈[m]s

Ã(k)=Ã

Äm(xi1
(k1) · · · xis (ks))

=: 1

ms/2

∑

Ã∈P(s)

1Ã .

By the commutation/anticommutation relation, 1Ã = 0 if Ã contains a singleton.

Note |Äm(xi1
(k1) · · · xis (ks))|f1. If Ã has r blocks, then1Ãfm(m−1) · · ·(m−r+1).

Hence,

(A-2) lim
m→∞

1

ms/2
1Ã = 0

for r< s/2 and thus for Ã ∈ P(s)\P2(s) since the singleton case is automatically true.

Our argument so far is independent of É ∈�, so that (A-2) holds for all É ∈�. The

theorem follows immediately from (A-2) if s is odd. Thus, we only need to consider

Ã ∈ P2(s) in (A-1). To this end, we write Ã = {{e1, z1}, . . . , {es/2, zs/2}}. Since

Ã(k)= Ã is a pair partition, if k j = kl , then i j = il in order for xi j (k j ) and xil (kl)

to cancel out. Hence we may assume Ã f Ã(i). In this case, if {r, t} ∈ I (Ã ),
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then we have to switch xi(er )(k(er )) and xi(et )(k(et)) to cancel the corresponding

xi(zr )(k(zr )) and xi(zt )(k(zt)) terms, which yields

(A-3) Äm(xi1
(k1) · · · xis (ks))=

∏

{r,t}∈I (Ã )

ε([i(er ), k(er )], [i(et), k(et)]).

By independence and counting the elements in {k ∈ [m]s | Ã(k)= Ã }, we find

E(1Ã )=
∑

k∈[m]s

Ã(k)=Ã

∏

{r,t}∈I (Ã )

q(i(er ), i(et))

= m(m − 1) · · · (m − s/2 + 1)
∏

{r,t}∈I (Ã )

q(i(er ), i(et)).

Combining these, we have

(A-4) lim
m→∞

E
(
Äm (̃xi1

(m) · · · x̃is (m))
)
=

∑

Ã∈P2(s)
ÃfÃ(i)

∏

{r,t}∈I (Ã )

q(i(er ), i(et)).

It remains to prove the almost sure convergence. Put Xm =Äm (̃xi1
(m) · · · x̃is (m)) and

Em(³)={É : |Xm −EXm |g³}. Then we only need to show P(lim supm Em(³))=0.

By the Borel–Cantelli lemma and Chebyshev’s inequality, it suffices to show that

∞∑

m=1

P(Em(³))f 1

³2

∞∑

m=1

Var(Xm) <∞ for any ³ > 0,

where Var(Xm) is the variance of Xm . Decompose Xm as Xm = Ym + Zm , where Ym

corresponds to sum over all pair partitions in (A-1) and Zm = Xm −Ym . Since (A-2)

holds for Ã ∈ P(s) \ P2(s), we have limm→∞ Xm − Ym = 0 for all É ∈�. But Zm

is uniformly bounded, so limm→∞ Var(Zm)= 0. Therefore, we only need to show

that
∑∞

m=1 Var(Ym) <∞. Write

Var(Ym)= 1

ms

∑

Ã,Ã∈P2(s)

∑

k:Ã(k)=Ã
l:Ã(l)=Ã

Vk,l,

where

(A-5) Vk,l = E[Äm(xi1
(k1) · · · xis (ks))Äm(xi1

(l1) · · · xis (ls))]
− E[Äm(xi1

(k1) · · · xis (ks))]E[Äm(xi1
(l1) · · · xis (ls))]

= E

( ∏

{r,t}∈I (Ã )

ε([i(er ), k(er )], [i(et), k(et)])

×
∏

{r ′,t ′}∈I (Ã)

ε([i(er ′), l(er ′)], [i(et ′), l(et ′)])
)

−
∏

{r,t}∈I (Ã )

q(i(er ), i(et))
∏

{r ′,t ′}∈I (Ã)

q(i(er ′), i(et ′)).
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Let us analyze the product in the third and fourth lines of (A-5). If {k(er ), k(et)} ̸=
{l(er ′), l(et ′)} for all {r, t} ∈ I (Ã ) and {r ′, t ′} ∈ I (Ã), then Vk,l = 0. In order to

contribute for Var(Ym), there exists at least one pair {r, t} ∈ I (Ã ) and one pair

{r ′, t ′} ∈ I (Ã) such that {k(er ), k(et)} = {l(er ′), l(et ′)}. In this case, we have

#{k, l : Ã(k)= Ã, Ã (l)= Ã} f ms/2ms/2−2 = ms−2.

Note that |Vk,l | f 1 and C(s) := [#P2(s)]2 does not depend on m. It follows that

∞∑

m=1

Var(Ym)f
∞∑

m=1

C(s)

m2
<∞. □

Remark A.1. In the above argument, we assumed that the ε((i, k), ( j, l))’s are

independent for different indices. However, the independence assumption can be

weakened if the structure matrix is of the form Q ¹ 1n , where Q is an N×N symmet-

ric matrix with entries in [−1, 1]. In this case we require that the ε((i, k), ( j, l))’s
be independent (up to symmetric assumption) with (3-1) for (i, k), ( j, l) ∈ [N ]×N

and then

(A-6) ε((i +³N , k), ( j +´N , l))= ε((i, k), ( j, l))

for ³, ´ = 1, . . . , n − 1. In other words, ε = ε|1fi, jfN ¹ 1n . To verify the claim,

we only need to show the dependence introduced in (A-6) will not destroy the proof

of Theorem 3.1. Indeed, by (A-2) it suffices to consider pair partitions. Suppose

i´ = i³ + N . Then ³ and ´ are not in the same pair block of Ã(i). It follows that

k³ ̸= k´ since Ã(k)f Ã(i). (If k³ = k´ , then i³ = i´ in order for xi³ (k³) and xi´ (k´)
to cancel.) Hence, the random signs in (A-3) are pairwise different. Note that unlike

the case in the proof of Theorem 3.1, now we may have

ε((i³, k³), (iµ , kµ )) and ε((i´, k´), (iµ , kµ ))= ε((i³, k´), (iµ , kµ ))

in (A-3), but the two random signs are not equal because k³ ̸= k´ . In other words, the

second coordinates (k³, kµ ) in ε((i³, k³), (iµ , kµ )) are never the same for random

signs in (A-3) even under the weaker condition (A-6) so that (i³, iµ ) may be the

same for different random signs. The point is that the independence structure in

the proof of Theorem 3.1 is given via the second coordinates’ k³’s. The rest of the

argument is the same as for Theorem 3.1. We invite the interested reader to consider

the simplest case Q =q1N . In this case we can take ε((i, k), ( j, l))= ε((i, k), (i, l))
and require ε((i, k), (i, l)) to be independent for different k and l up to symmetry.

By this remark, the moment formula (3-2) remains valid with the weaker con-

dition (A-6). The same discussion applies in other parts of the paper when the CLT

argument is invoked with (A-6). This subtlety is crucial for our limiting argument

in Section 4.
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[Śniady 2004] P. Śniady, “Factoriality of Bożejko–Speicher von Neumann algebras”, Comm. Math.
Phys. 246:3 (2004), 561–567. MR Zbl



ULTRAPRODUCT METHODS FOR MIXED q -GAUSSIAN ALGEBRAS 147

[Speicher 1992] R. Speicher, “A noncommutative central limit theorem”, Math. Z. 209:1 (1992),

55–66. MR Zbl

[Speicher 1993] R. Speicher, “Generalized statistics of macroscopic fields”, Lett. Math. Phys. 27:2

(1993), 97–104. MR Zbl

[Voiculescu et al. 1992] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM

Monograph Series 1, Amer. Math. Soc., Providence, RI, 1992. MR Zbl

[Zeng 2014] Q. Zeng, “Poincaré type inequalities for group measure spaces and related transportation

cost inequalities”, J. Funct. Anal. 266:5 (2014), 3236–3264. MR Zbl

Received October 2, 2016.

MARIUS JUNGE

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ILLINOIS

URBANA, IL

UNITED STATES

mjunge@illinois.edu

QIANG ZENG

MATHEMATICS DEPARTMENT

NORTHWESTERN UNIVERSITY

EVANSTON, IL

UNITED STATES

Current address:

ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE

CHINESE ACADEMY OF SCIENCES

BEIJING

CHINA

qzeng.math@gmail.com



PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)

Department of Mathematics

University of California

Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner

Fakultät für Mathematik

Universität Wien

Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Vyjayanthi Chari

Department of Mathematics

University of California

Riverside, CA 92521-0135

chari@math.ucr.edu

Atsushi Ichino

Department of Mathematics

Kyoto University

Kyoto 606-8502, Japan

atsushi.ichino@gmail.com

Robert Lipshitz

Department of Mathematics

University of Oregon

Eugene, OR 97403

lipshitz@uoregon.edu

Kefeng Liu

Department of Mathematics

University of California

Los Angeles, CA 90095-1555

liu@math.ucla.edu

Dimitri Shlyakhtenko

Department of Mathematics

University of California

Los Angeles, CA 90095-1555

shlyakht@ipam.ucla.edu

Ruixiang Zhang

Department of Mathematics

University of California

Berkeley, CA 94720-3840

ruixiang@berkeley.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2024 is US $645/year for the electronic version, and $875/year for print and electronic.

Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box

4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,

PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department

of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at

Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.

Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/

© 2024 Mathematical Sciences Publishers



PACIFIC JOURNAL OF MATHEMATICS

Volume 331 No. 1 July 2024

1On relative commutants of subalgebras in group and tracial crossed

product von Neumann algebras

TATTWAMASI AMRUTAM and JACOPO BASSI

23Differential calculus for generalized geometry and geometric Lax flows

SHENGDA HU

77A normal uniform algebra that fails to be strongly regular at a peak

point

ALEXANDER J. IZZO

99Ultraproduct methods for mixed q-Gaussian algebras

MARIUS JUNGE and QIANG ZENG

149Equivariant min-max hypersurface in G-manifolds with positive Ricci

curvature

TONGRUI WANG


	1. Introduction
	2. Preliminaries and notation
	2A. Notation
	2B. Spin matrix model
	2C. Pisier's method for multi-index summations

	3. Construction and Wick word decomposition
	3A. Speicher's CLT and von Neumann algebra ultraproducts
	3B. Wick word decomposition
	3C. Fock spaces and mixed q-commutation relations
	3D. The Ornstein–Uhlenbeck semigroup on Q

	4. Analytic properties
	4A. Hypercontractivity
	4B. Derivations
	4C. Riesz transforms
	4D. L_p Poincaré inequalities

	5. Strong solidity
	5A. CCAP
	5B. Strong solidity

	Appendix: Speicher's central limit theorem
	Acknowledgements
	References
	
	

