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ULTRAPRODUCT METHODS
FOR MIXED ¢-GAUSSIAN ALGEBRAS

MARIUS JUNGE AND QIANG ZENG
We provide a unified ultraproduct approach for constructing Wick words

in mixed g-Gaussian algebras which are generated by s; = a; + a}‘.‘ for
j=1,..., N, where aia;‘f - q,-ja}‘fai =

the number operator is bounded, and the number operator satisfies the L,
Poincaré inequalities with constants C /p.

1. Introduction

Group measure space constructions go back to the original work of Murray and von
Neumann [1936]. In the last decades Popa and his collaborators have solved many
open problems about fundamental groups and uniqueness of Cartan subalgebras;
see, e.g., [Ozawa and Popa 2010a; 2010b; Popa and Vaes 2010; 2014; Houdayer
and Shlyakhtenko 2011]. In parallel, von Neumann algebras generated by g-
commutation relations (motivated by physics and number theory) were introduced
by Bozejko and Speicher [1991], and further investigated by Bozejko, Kiimmerer,
and Speicher [Bozejko et al. 1997], Shlyakhtenko [2004], Nou [2004], gniady
[2004], Ricard [2005], Kennedy and Nica [2011], and Avsec [2011], among others.
More recently, Dabrowski [2014] and Guionnet and Shlyakhtenko [2014] have
shown that for small g, the g-Gaussian algebras are isomorphic to free group factors.
All these results on factoriality, embeddability in R, and approximation properties
face a similar problem: how to derive properties of von Neumann algebras from
combinatorial structures given by the original g-commutation relations.
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In this paper we study generalized g-commutation relations: Given a symmetric
matrix Q = (g; J-)ﬁ/ j=1+ 4ij € [—1, 1], Speicher [1993] considered variables satisfying

(1-1) aia’;—qija;‘a,- Z(Sij.

The mixed g-Gaussian algebra I'p is generated by the self-adjoint variables s; =
ajf + a; and admits a normal faithful tracial state (see Section 3 for more details).
Bozejko and Speicher [1994] systematically constructed the Fock space representa-
tion of the so-called braid relations, which is more general than (1-1). Then various
properties were studied in, e.g., [Nou 2004; Krolak 2000; 2005]. As for (1-1),
Lust-Piquard [1999] showed the L, boundedness of the Riesz transforms associated
to the number operator of the system when ¢;; < 1. Other generalized Gaussian
systems related to our investigation have also been studied; see, e.g., [Gutd and
Maassen 2002; Guta 2003].

It is very tempting to believe that mixed g-Gaussian algebras behave in any
respect the same way as the g-Gaussian algebras with constant ¢g. Indeed, the L,
space of such an algebra admits a decomposition

o
Ly(Tp) = P Hp

k=0
into finite-dimensional subspaces H g of dimension N¥, which are eigenspaces of
the number operator. For fixed g;; = ¢ the number operator can be defined in a
functorial way following Voiculescu’s lead [ Voiculescu et al. 1992] for ¢ =0. Indeed,
for every real Hilbert H one finds the g-Gaussian von Neumann algebra I';, (H) and
a group homomorphism « : O (H) — Aut(I';(H)) such that foro€ O(H) and h € H

a(0)(s?(h)) = s9(o(h)).

Here, s9(ej) = s; and (e;) is an orthonormal basis for the N-dimensional Hilbert
space H. Then
I, = Ea(o)m,

where 7 : [, (H) — I, (H @ H) is the natural embedding with conditional expec-

tation E, and
o — e tid —/1—e"20id
TA\V1=eid e'id ‘

For nonconstant Q = (g;;) we can no longer refer to functoriality directly. One
of the first results in this paper is to provide a unified approach to the Ornstein—
Uhlenbeck semigroup for |g;;| < 1 including the classical cases g = 1 for bosons
and ¢ = —1 for fermions. The fact that the dimension of the eigenspace H g is not
more than N* uniformly for all Q is based on thorough analysis of different forms
of Wick words and probabilistic estimates (see Section 3).
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Another new feature of these generalized relations comes from studying the
operators

D(x) =E(SNt1XSN+1),

where x is generated by sy, ..., sy. For constant ¢;; = ¢ we find ®(x) = ¢/®x
can be easily computed in terms of the length function I(x) =k if x € H g The
formula for general Q is vastly more complicated. However, such expressions are
crucial building blocks in proving strong solidity.

Let us recall some notions in operator algebras. We always assume the von
Neumann algebras to be finite in this paper. Recall that a von Neumann algebra M
has the weak* completely bounded approximation property (w*CBAP) if there
exists a net of normal, completely bounded, finite-rank maps ¢, : M — M such
that ||¢yllcb < C for all o, and ¢, — id in the point weak* topology. Here,
I - llcb denotes the completely bounded norm. The infimum of such constants C is
called the Cowling—Haagerup constant and is denoted by A.,(M). Cowling and
Haagerup [1989] showed that a discrete group G is weakly amenable if and only if
its group von Neumann algebra LG has w*CBAP. Thus, a von Neumann algebra
with w*CBAP is also said to be weakly amenable. If A, (M) =1, M is said to
have the weak™* completely contractive approximation property (w*CCAP). See,
e.g., [Brown and Ozawa 2008] for more details of the approximation properties.
Following Ozawa and Popa [2010a], a von Neumann algebra M is called strongly
solid if the normalizer Ny (P) := {u e U(M) : u Pu* = P} of any diffuse amenable
subalgebra P C M generates an amenable von Neumann algebra. Here, U/ (M) is
the set of unitary operators in M.

Theorem 1.1. T'g has w*CCAP and is strongly solid provided max;<; j<n |gj| < 1.

These properties extend similar results due to Avsec [2011] for g-Gaussian von
Neumann algebras. The w*CCAP for I'g is proved using a transference method
based on Avsec’s w*CCAP result for the g-Gaussian algebras. Then we show a weak
containment result of certain bimodules. These results, together with a modification
of Popa’s s-malleable deformation estimate, leads to strong solidity using a, by
now, standard argument. The method used here follows that of [Houdayer and
Shlyakhtenko 2011; Avsec 2011]. However, the techniques are more difficult than
the case of g-Gaussian algebras. We have to use some nontrivial tricks to achieve
certain results similar to those in [Avsec 2011].

The ultraproduct method plays an essential role in many aspects of this paper.
It is well known that CCAP is a stepping stone for proving strong solidity. The
transference method mentioned above relies entirely on an embedding of I'p into an
ultraproduct of von Neumann algebras which preserves the Wick words. This allows
us to transfer the CCAP result of the constant g case of Avsec to the current mixed ¢
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case. The argument can be illustrated using the following commutative diagram:

Ty "n =
Fo —— [Tnu Tu(¢3) ® T,

l% l‘ﬂm (A)®id

Ty —
Fo —— [1nu T4(€3) ®T5ga,

The notation will be explained in the proof of Theorem 5.5. The map 7y, can be
understood as an approximate comultiplication. Without the help of the ultraproduct
method above, we will have to extend directly the argument for the constant g case
to the mixed g case, which may be very hard due to the involved combinatorial
structure.

We also prove some analytic properties for I'g following the unified ultraproduct
approach. The cornerstone is a Wick word decomposition result, whose proof in-
volves some complicated combinatorial and probabilistic arguments. In this context,
the ultraproduct construction provides a natural framework to encode Speicher’s
central limit theorem; see [Speicher 1992; 1993; Junge 2006]. Furthermore, the
Wick words are identified as some special sequences in the ultraproduct of spin
matrix models. Once we have the Wick word decomposition, it follows immediately
that the Ornstein—Uhlenbeck semigroup (7;),> associated to I'g is hypercontractive:
For1 < p,r < oo,

2t<p_1

ITlL,~z, =1 ifandonlyif e = < T
r_

Here, L, =L ,(I'g, Tp) is the noncommutative L , space associated to the canonical
tracial state g on I'g. This result is a vast generalization of the work of Biane
[1997] and Junge et al. [2015]. Indeed, we obtain hypercontractivity results for
free products of g-Gaussian algebras and, in particular, free products of Clifford
algebras. More exotic choices may be obtained for general g;;. We also recover and
extend the result of Lust-Piquard [1999] on the boundedness of Riesz transforms.
Let A be the number operator of I'g, which is also the generator of 7;. Define the
gradient form (Meyer’s “carré du champ”) associated to A as

T(f.8) =5(A(fMg+ f*Ag — A(f*8))
for f, g in the domain of A. We show that
(a) for p > 2,
A2 1L, < max{ITCf 21 ITCGE £ 210 < KA £

with ¢, = O(p?) and K, = O(p*/?);
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() forl < p <2,

KA = | inf {IEG ) 2l +IEGR) 21, < Cpl A2 71,
8€GS.heG',

with K,y = O(1/(p—1)¥?) and C, = O(1/(p — 1)?), where § is a derivation
related to the Riesz transforms and G, and G', are two Gaussian spaces (all
will be defined below).

Moreover, we obtain the L, Poincaré inequalities:

If —to(Hll, < Cy/pmax{IT(f, /)1, D HY2,} for p>2.

This is an extension of similar results for the Walsh and Fermionic system in [Efraim
and Lust-Piquard 2008]. It is known that the constant C,/p in such inequalities is
crucial for proving concentration and transportation inequalities; see, e.g., [Zeng
2014].

The paper is organized as follows. Some preliminaries and notation are pre-
sented in Section 2. We construct the mixed g-Gaussian algebras and the Ornstein—
Uhlenbeck semigroup in Section 3, where the Wick word decomposition result
is also proved with a lengthy argument. The analytic properties are proved in
Section 4, and the strong solidity is proved in Section 5.

2. Preliminaries and notation

2A. Notation. We write [N]={1,2,..., N} for N € N. The set of nonnegative
integers is denoted by Z.. For n € N, we denote by M,, the algebra of n x n matrices.
We will use some notation to analyze combinatorial structures following [Speicher
1992; Junge et al. 2015]. Denote by P (d) the set of all partitions of [d]={1, ..., d}.
For o, m € P(d), we write 0 <1 or m > o if o is a refinement of 7. We denote
the integer valued vectors by i, j, etc. Given i = (i1, ..., ig) € [N]%, we associate
a partition o (i) to i by requiriné k,l € [d] belonging to the same block of o (i) if
and only if iy =1i;.

We denote by |S| or #S the cardinality of a (finite) set S. If d is an even
integer, we define P»(d) to be the set of pair partitions of [d], i.e., P»(d) consists
of m ={Vi, ..., Vys2} such that | Vi| = 2 for every block V. Write V; = {ex, zx}
with ¢y < zx and e; < ey <--- <ey2. Given w € P>(d), the set of crossings of 7
is denoted by

2-1) 1(n)={{k,l}|1§k,l§d/2 and ek<eg<zk<zl}.

For d € N, we denote by P;(d) the one element set of singleton partition of [d], i.e.,
P1(d) = {oo} and o9 = {{1}, {2}, .. ., {d}}. Let P; 2(d) denote the set of partitions
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consisting of only singletons and pair blocks, and P.(d) = P(d) \ P 2(d). Let
o € P »(d) be given by
o= {V17 AR ] VS+M}’

where the V;’s are singletons (V; = {e; = z;}) or pair blocks (V; = {e;, z,}).
Assume there are s singleton blocks and u pair blocks in 0. Let o, be a subpartition
consisting of the u pair blocks of o € Py >(d). Denote by 1,(0) := I(0),) the set of
pair crossings of o given in (2-1) and define

Ip@)={irt} e <er=z <z

to be the set of crossings between pairs and singletons.

Given a discrete group G, the left regular representation is A : G — £,(G),
AMg)dp = 8, for g, h € G, and (§,)gec 18 a canonical basis of £,(G). The group
von Neumann algebra of G is denoted by LG and the canonical trace by 75. The
Kronecker delta function is denoted by §; ;. The use of two §’s will not appear in
the same place. It should be clear from the context which one we are using. We
let 1,, denote the n x n matrix with all entries equal to 1.

2B. Spin matrix model. We consider a general spin matrix model, following [Lust-
Piquard 1998; Junge et al. 2015]. Fix a finite integer N. Let Jy , = [N] x [m] and
Jy =[N] x N. We usually do not specify the dependence on N and simply write
Jm=Jn.m and J = Jy if there is no ambiguity. We equip J,,, with the lexicographical
order. Lete: J xJ — {—1, 1} be amap satisfying e(x, y) =&(y, x) and e(x, x) =—1
for all x, y € J. Consider the complex unital algebra A,, = A,,(N, ) generated by
(x; (k) (i, k)eJ,,» Where the x; (k)’s satisfy x; (k)* = x; (k) and

xi(k)x; (1) —e((, k), (, D)x;(Dx; (k) = 28i.x),j.1)

for (i, k), (j, 1) € J,,. It is well known that the x; (k)’s can be represented as tensor
products of Pauli matrices. Thus A,, can be represented as a matrix subalgebra
of M,vn. A generic element of 4, can be written as a linear combination of words
of the form

XB = xil(kl) o 'xid(kd)’

where B ={(i, k1), ..., (ig, ka)} C J. We say xp is areduced word if the x;, (k,)’s
in xp are pairwise different for r =1, ..., d. Using the commutation relation, every
word & can be written in the reduced form, denoted by E There is a canonical
normalized trace t,, on A, such that 7,,(xp) = §p & for a reduced word xp.

2C. Pisier’s method for multi-index summations. Let o € P(d) be a partition. In
the following we need to estimate the L, norm of

Y xitk) e xalka),

ke[m]?:0(k)>o
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where x; (k;) € () p<oo L,(t), and L,(7) is a noncommutative L, space associated
to a trace 7. To this end, we follow Pisier’s method [2000]. As illustrated in the
proof of [Pisier 2000, Sublemma 3.3], one can find & (ky), ..., &;(kg) € LG such
that 7 (§1 (k1) - - - §a(kq)) = 1 if and only if o (k) > o and 7 (&1 (k1) - - - E4(ka)) =0
otherwise. Here, G is a suitable product of free groups, LG is the von Neumann
algebra of G, and 74 is the canonical trace on LG.

Let us explain this in more detail using an example. We denote by [, the free
group with free generators (g;);c[m]. Suppose d =6 and o = {{1, 3, 5}, {2, 6}, {4}}.
In this case, G =F,, x F,, x [F,,, and for i € [m],

) =2g)"®1®1, () =10Arg)" ®1,
) =rg)R1®A(g)", &1H=1®1&1,
() =101QA(g), (i) =1®A(g) Q1.

Then ‘L’G(El (k]) s §6(k6)) =1 if and only if k] = k3 = k5 and kz = k6.
Returning to the general setting, consider the algebraic tensor product LG®L , (7).
Since 7s ® id extends to contractions on L, using Holder’s inequality, we have

Yo xlk)-xaka)

ke[m]4:0(k)>o

Y €k Eaka))xi(kr) -+ xa(ka)

ke[m]4

> &) @x1 (k) -+ -Eaka) ® xa(ka)

ke[m]?

-]

i=1

P p

=

p

Y &k @ xi(ki)

ki=1

pd

If i belongs to a singleton block of o, then &;(k;) = 1 and

Zxxk,»)'
ki=1

If i does not belong to any singleton of o, then it is well known that

pd pd

D& ki) @ xi (ki)
ki=1

D& ki) ®xi (ki) > g ®xi (ki)
kizl kl':l

pd pd

By [Pisier 2000, Lemma 3.4], we have, for any even integer p > 2,

p

> g ®xi (ki)
kizl |

2
(Zx,- (ki)x; (k»*)
ki

’

3
< — max
7 max| p

i

%
(in(k»*x,- (k»)
ki
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We record this result as follows. Denote by oiine and oy, the union of singletons and
the union of nonsingleton blocks of o respectively. Thus we have #oying +#0,,s =d.

Proposition 2.1. Let o € P(d) be a partition and x;(k;) € L,(t) for k € [m]?
and i € [d]. Then, for any even integer p > 2,

Z xy(ky) - - xq(ka)

kio(k)=0 P
37 H#opy m m %
< (T) [T x| TI max{ ‘(Z x; (ki) x; (k,->> :
i€05ing | ki=1 Pd ey ki=1 pd

m 1
‘(Z % <kl~>xz-<k,->*)2 }
ki=1 pd

This result will be used in a slightly more general setting. We may have other
fixed operators, y;’s, inside the product x (k) - - - x4(kg). In this case, we may
simply attach the y;’s to their adjacent x; (k;)’s and then invoke Proposition 2.1.

3. Construction and Wick word decomposition

The algebra we study here can be constructed using purely operator algebraic tech-
niques if max;<; j<n |gij| < 1 as shown in [Bozejko and Speicher 1994]. However,
we use the probabilistic approach due to Speicher [1992; 1993]. This is convenient
for studying the analytic properties following Biane’s original idea [1997]. The
main result of this section is Theorem 3.8. Although the proof is unexpectedly
lengthy, the analytic properties are easy consequences of this result. As a byproduct,
we also provide an alternative construction of the Fock space representation.

3A. Speicher’s CLT and von Neumann algebra ultraproducts. Let Q = (g;;) lN =1
be a symmetric matrix where g;; = ¢(i, j) € [—1,1]. Note that we do not
specify the values on the diagonal. Following the notation of Section 2B, we
consider a probability space (€2, P) and a family of independent random variables
e((i, k), (j,D): 22— {—1, 1} for (i, k) < (j, ) with distribution

P(e(, k), (. D) = —1) = 3(1 —q(, ),

P(e(i, k), (j. D) =1) = 3(1+4, ),
so that E[e((i, k), (j,1))] = q(i, j). Here, (i, k), (j,I) € [N] x N. Given w € £,
the commutation/anticommutation relation is fixed. We understand all generators
x;i (k)(w) to depend on w. Restricting k € [m] we get random A,,. Because the

dependence on w should be clear from the context, we will not write @ in the
following to simplify notation. Let X; (m) = \/Lﬁ Yo xi(k).

(3-1)
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The following central limit theorem result was due to Speicher [1993] and is a
generalization of [Speicher 1992]. We streamline Speicher’s proof in the appendix
for the reader’s convenience. The same strategy will be used repeatedly when we
prove Theorem 3.8.

Theorem 3.1. Leti € [N]*. Then

lim g (%, (m) T m) =8z Y ] alite.ite) as.

oePy(s) {r,t}el (o)
o<o(i)

Here and in what follows, we understand H{i,j}era q(i, j) to be equal to 1.

By Theorem 3.1, we can find a full probability set €29 C €2 such that the con-
vergence holds for all w € €. Fix a free ultrafilter &/ on N. By the well-known
ultraproduct construction of von Neumann algebras (see, e.g., [Brown and Ozawa
2008, Appendix A]), we have a finite von Neumann algebra Ay := [, 1 Am
with normal faithful tracial state 7, = lim,, ¢ 7,,. Put A7} = N <00 L ,(Ay). For
each w € Qo,

(Xi(m)(w))* € Ay

Here and in what follows, we write (X; (m)(w))* for the element represented by
(X; (m)(w))men in the ultraproduct. We have the moment formula

(3-2) w (@ m) @) - G m)(@)) =8ez Y, ] alen,ite).

o€Py(s) {r,t}el (o)
o=<o(i)

It follows that
7 (| (X (m) (w))*|") < Cp?.

By the uniqueness argument in [Junge 2006, Section 6], the von Neumann algebras
generated by the spectral projections of the (X;(m)(w))*, wherei =1, ..., N, for
different w € ¢ are isomorphic. We denote by I'g any von Neumann algebra in the
isomorphic class with generators (X; (m)(w))®, where i = 1, ..., N. This algebra
was introduced by Speicher [1993] and studied in [Bozejko and Speicher 1994; Lust-
Piquard 1999]. Note that (X;(m)(w))* may be an unbounded operator, therefore
may not be in I'p. But, by our construction, it belongs to Fg’ = p<oo Lp(To, T0).
In the following, whenever we say that the (X;(m)(w))*, wherei =1, ..., N, are
generators of Ip, we always mean (X; (m)(w))* € Fgo and I'p is generated by the
spectral projections of the (X; (m)(w))*’s. We call T'p the mixed g-Gaussian algebra,
and Q the structure matrix of I'g. Sometimes we also write Tp = 7[r,.

There is another way of constructing I'g. All the x; (k)’s are in fact in L~ (£2; A,,)
and thus X; (m) € Lo (2; A,,). Here, the trace on L (2; A,,) is given by E®Q 7,,,. By
the same CLT argument as for Theorem 3.1, we find the moment formula (A-4) in the
limit, which is the same as (3-2). Therefore, as before, the (X;(m))* fori=1,..., N
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generate a von Neumann algebra, denoted by Fé. We call it the average model.
Using the uniqueness results in [Junge 2006, Section 6], we have that Fé is
isomorphic to I'p. When we write (X;(m))*, it can mean either an element in
MNp<oo Ly(ITn o Loo(82: Ap)) or simply (X; (m)(w))* for some w € . It should
be clear from the context which one we are using. In fact, we may simply write
X1, ..., xy for the generators of I'p if we are not concerned with the construction.

By considering different structure matrix Q, we can construct various examples
as special cases of I'g. The same philosophy was used before by Lust-Piquard
[1999].

Example 3.2. T, (H), where q € [—1, 1] is fixed. If q(i, j)=q all 1 <i, j <N,
then we recover the classical g-Gaussian algebra I'; (H), where H is a real Hilbert
space with dim H = N.

Example 3.3. x7_, I, (H;), where q; € [—1, 1] is fixed fori =1, ..., n. Here, the
H;’s are real Hilbert spaces with dim H; =d;. Let N =d| + - - - +d,. Define Q as
follows. For k =0,...,n—1land 1 <a, 8 <d41, put

k k
Q(Zdj +«, Zdj +,3> = qk+1,
j=1 j=1

and ¢ (o, f) = 0 otherwise. Then by the moment formula (3-2), we recover
x!_, I;;(H;). The case ¢; = —1 for alli =1,...,n was considered in [Junge
et al. 2015].

Example 3.4. @?:I(F(ﬁ(Hi) * '), (K;)), where q;, p; € [—1, 1] are fixed. Here,
the H;’s and K;’s are real Hilbert spaces with dim H; = d; and dim K; = d;. Let
N=3Y7  di+d.Fork=0,...,n—1,define

i i gi if 1<a,B=di,
a( > (dj+d))+e, Z(dj+d‘;)+ﬁ) =1p ifdip+1<a B<dy+d,,,

o j=1 0 if l<a<diy1<B=dit1+d],

and ¢ («, B) = 1 otherwise. Let Q = (Gq,p)1<a,p<n- By the moment formula (3-2),
this model gives mixed products of g-Gaussian algebras. For example, consider the
von Neumann algebra of the integer lattice L(Z"). We may identify L(Z") with
_?:1FQ(R) via A(gk) > Xk, where the g;’s are the generators of Z" and the x;’s
are generators of @;’ZIFO(R). Alternatively, by extending A(gy) > Xok—1X2k, We
may embed L(Z") into @"_,T_1(R) * T_; (R).

3B. Wick word decomposition. For our later development, we need an analogue of
Wick word decomposition, i.e., rewriting (X;, (m))* - - - (X, (m))* as a linear combina-
tion of Wick words (to be defined) so that we can analyze the Ornstein—Uhlenbeck
semigroup easily. This procedure is conceptually clear with the help of Fock
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space representation because (Xj, (m))* - - - (x;,(m))* belongs to L,(I'g) and L, (Tp)
should coincide with the Fock space, which is spanned by Wick products; see
[Bozejko et al. 1997; Bozejko and Speicher 1994]. However, we do not know
the explicit formula for the decomposition of (X, (m))* - - - (X;,(m))* in terms of
matrix models. Moreover, the known Fock space construction usually requires
maxi,j|ql-j| < 1.

Our approach is again probabilistic. We refer the readers to Section 2A for the
notation used in the following. By definition

~ ~ 1 :
(X, (m))* - - - (Xi, (m))* = (W Z xiy (k) - - - xi (kd)) .
ke[m]?
Note that

> i k) - xiy (kg)

ke[m]4
= > D xk)xka+ Y Y xi k) xi (k).

0€P(d) o(k)=0 oeP (d) o(k)=0
We first record a simple algorithm which we will refer to later on.

Proposition 3.5. Leti € [N]?, k € [m]?, o (k) <0 (i) and o (k) € P, »(d). Then
there is a specific algorithm to interchange x;,(ky)’s in x;, (k1) - - - x;,(kg) such that

(1) x; (k) - - xjy(kg) = e, K)xj (7)) - - xj (Ly) - - - xj,(I)), where (i, k) is a ran-
dom sign resulting from interchanging x;,(ky)’s which is given by

e, k=[] edite) kel lier). k(e)])
{rst}EIsp(G(lj))
<[] elite. k(e Titen. k(e)D:

{rvt}€117(0(]£))

(2) (11, ....1}) are pairwise different and maintain their relative positions in k,
ie, (I1,...,1}) is obtained from k by removing the ky’s which correspond to
pair blocks;

3) l§~+1 :l;+2’ SRR l:i—1 = léz-

Proof. Since o (k) € Py 2(d), for each k,, in k, there is at most one kg in k equal to k.
We can find the first k, corresponding to a singleton in o (k), and move x;, (kq)
to the beginning of the word by interchanging it with the x;, (kg)’s which are to
the left of x;,(ky,). Rename this x;, (ky) to be x, (li). This process produces a
product of random signs of the form &((iy, ks), (ig, kg)), where k, corresponds
to a singleton and kg corresponds to a pair block in o (k). Then we repeat this
procedure for the second k, corresponding to a singleton in o (k), and rename
it xj, (lé). We continue until all the x;,(ky) corresponding to singletons in o (k)
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are in front of the remaining Xig (kg)’s corresponding to pair blocks in o (k). In
this way, we get x;, (1) - - - x;, (I;) and a product of random signs. Afterwards, we
rename the variable x;, (k) right-adjacent to x; (I;) tobe x;, (I ; +1)- Then move the
other term with the same k, to the right of x; (/. ), and call it x;_, (/). This
produces a product of &((iy, ko), (ig, kg)), where kg and k, correspond to different
pair blocks. Repeat this procedure for the next pair of k,’s. After finitely many
steps, the algorithm will stop and we obtain e (i, k)x;, (1)) - - - x;, (I}) - - - x, (1)) with

the desired three properties. ([l
We write

(3-3) s ) = keqrys - -5 kn(a))s

where 7 is a permutation determined by the algorithm. Similarly, (ji, ..., ji) =

(xctys -+ ix@)). Let

G4 L=, ... L=l L=l =l, ... L=l =1

Here, s and u are the number of singletons and pair blocks of o (k), respectively.

Lemma 3.6. Let o € Py 2(d). Then, for all 2 < p < 0o and fixed w € 2,

) 1
lim HW Yo x k) xi k)

m— 0o
kelml?:o (k)=0

1
) Z En, o lxi, (k1) - - - xi, (ka)]
ke[m]?:0(k)=0

=0.
Lp(»Am’Tm)

Here, N (k) denotes the von Neumann algebra generated by all the x;,(ky)’s, where
the ky’s correspond to singleton blocks in o (k).

Proof. Let s and u denote the number of singletons and pair blocks of o, respectively.
Clearly, s 4+ 2u = d and there are

Mgy ;=mm—1)---(m—s—u+1)
vectors k € [m]¢ with o (k) = o. Let [ be given in (3-4). [ is a vector of length s 4 u.
Let 4y, ..., 8, be i.i.d. random selectors uniformly distributed on {1, 2, ..., s + u}
which are independent from L, (€2; A,,). If all the /,’s are pairwise different, then

by independence,

Es (Lsy, =111, =21 -+ sy, =su) = (s +u) 777,

where E; is the expectation with respect to the §;,’s. Define random sets B, for
g=1,...,s+uby
B, ={l; € [m]: 81q =gq}.
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Then, for each instance of the s, the B,’s are pairwise disjoint and their union
is [m]. By (3-3), there is a 1-to-1 correspondence between k and /. We may rewrite

Do xik) - xig(ka)

ke[m]?:o(k)=oc

= > xiy (k1) -+ - xi, (ka)

le[mPH:o(De P (s+u)

=@+w™ " Eslly, —ulis,=21 - Lisy,,, =s-tanXi (k1) - - X, (ka)]
Lio()ePi(s+u)

:(S+u)s+u[E3( Z inl(kl)"'xm(kd))y

lA’+u eBJ+u ZIEBI

where o (/) € Pi(s + u) amounts to saying that all the /,’s are pairwise different.
Forg=s,s+1,...,s +u,let N, (k) be the von Neumann algebra generated by

{xj,(I}) a <s4+2(q —9)}

Recall that [, = kn(d—l) = kﬂ(a’). Let

wigUop) = Y o > xi (k) xi, (ka).

l.v+u71€Bx+ufl IIEBI

Here we only fix /;4, and sum over all the other indices. It is straightforward to
check that

{wlvl (ls‘Hl) - Ev/\/S+I.l*1 (]S) (wlal (lY‘Hl)) }lx+u EBXJru

is a sequence of martingale differences. Using the noncommutative Burkholder—
Gundy inequality [Pisier and Xu 1997], we have

S0 (i Gk - xiy (ka) = En ol (R0 -+ i, (ka)])

J+u€Ba+u lleBl

= “ Z (wl’l (ls+”) - ENH—M—I (k) (wl,l (lS-Hl)))

p

15+14€BA'+M I
2
scp( Y i) = Exp o wii Gs )|
ls+u€BA'+u

%12 \2
+ (Wi g Us) = Engp Wi 1 Us )| )
p

I
€
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By the triangle inequality, we have

v < Cp\/ |Bs+u| sup ”w[,[(ls—m) - EM-Jru,l(lg)(wg,[(ls—l—u))”p

lv+u 63r+u

<2C,V/I[Bstul sup  lw; i Usri)llp-

A‘HAEBA‘HA

Recall that ko = [;-1(,) if & is a singleton of o. In this case, Ig € Bg if and only if
ko € By-1(4), Where (B) = . Replacing p by a larger even integer if necessary,
arguing as for Proposition 2.1, or simply adding zeros to apply Proposition 2.1, we

find
el < () TT ] 2 ko) [1n"

QETsing kaEBn—l(a) pd QEDT s

Here, o is obtained from o by erasing one pair block containing 7 (d) so that
#0,s = 2(u — 1). We mention one subtlety here in applying Proposition 2.1.
Since s, is fixed, the term x;, (/;4,) is regarded to “attach” to its adjacent term.
For instance, x; ,(k )X, (Ls+u)Xi; (kj) is regarded as a product of two terms, i.e.,
[x; /(k DX, (lv+u)]xlj (k;) or x; /(k DIETS (lg+u)xlj (k;)]. Using the noncommutative
Khmtchme inequality [Lust- P1quard 1986; Lust-Piquard and Pisier 1991] or the
Burkholder—Gundy inequality [Pisier and Xu 1997], we have, for o € O’smg,

> i, (ka)

kaEanl(a) pd
1/2 1/2
<Cpa max{ > i, (ko) xi, (k) > i, (ka)xi, (ka)* }
ke pd/2 ke pd/2
< deml/z.

It follows that [[w; ;(ls+u) || p < Cp.om*/? =1 and thus ¥ < Cp, ,m*/>F4=1/2. We
have shown that

(5 — /2 Yoo (k) - xi (kg
ls+u€Bstu  LIEB) Cp o
— Eno ol (k1) -+ xiy (k)] | < 2
p m
Repeating the argument u — 1 times by replacing u withu —1,u—2, ..., 1, we find
1
| 2 2o (Bl () - xiy (k)] = Ex oL (k) -+ i (ko))
quBq 11631 P
< Cp,o
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forg=s+u—1,...,s+1. In this iteration argument, we use the same “attaching”
procedure as described above in order to apply Proposition 2.1. By the triangle
inequality, we have

c
md/2 Z Z xll(kl) xid(kd)_EM(lj)[xil(kl) : "xid(kd)]) =< mll)’/z
ls+u€Bsyy L €B p
Hence, by Jensen’s inequality,
1
H —m 2 Sk xi k)= Y Enaoli (1) g (k)]
kio(k)=0 k o(k)=0 Lp(AmsTm)

(s +u)s+u
=B D o D (k)i (k) = Exg e [ (k) - xig (ko))
Z.H—u EBs+u IIEBI p
< Cp.o
= 2
In the last inequality, the upper bound holds for every instance of § and thus holds
for the average. The proof is complete by sending m — oo. ]
Lemma 3.7. Let 0 € P.(d). Then, for all p < oo and fixed w € L,
1
Jn ks 2w me| <o
k:o(k)=0 Lp(Ap,tm)

Proof. We follow the same argument as for Lemma 3.6 and only indicate the
differences. For o € P,(d), there is at lease one block with more than two elements.
Without loss of generality, assume there is only one block in o with more than two
elements. Suppose this block has, say, three elements. We list the running indices k
in the sum as {/1, ..., L, ls+1, .-, Lstu, ls4u+1}, Where there are s singletons, u
pairs and one block with three elements in o. Using the random selectors, it suffices

to show that
1
WH Do D xi k) e xi, kg

Is+ut+1€Bstut1 lieB;

p

as m — oo, where By, ..., By, are disjoint random sets with union [m]. Denote
by N4 (k) the von Neumann algebra generated by x;,, (I;,) for all & < s +2u,
where [' is a permutation of k so that [y =1}, ..., [y =1, i1 =1 | =1, etc.
Then using the noncommutative Burkholder—Gundy inequality, we can show that

1
Py H S0 ) (i k) e xiy k)= E o Dxi (k) - i, (ka)])

Istu+1€Bsqut1  11€B) p

Cp76m5/2+u+1/2

= T st -0
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as m — oo. It remains to show

1
—7 ( Yooy Em(k)[xixkl)---xid(kd>]) — 0.
ls+u+l€Bs+u+l IIEBI p
Note that
1
2 ( Z Z EM-+L,(k)[xi1(kl)'"xid(ka')])
Istus1€Bsyur1  11€B) 14

Do xi k) - xiy(ka)

Y+MEBY+IA IIEBI

1
< —
<~ Y

IS+M+1 EB.Y+M+1

P
Now apply Proposition 2.1 with the same “attaching” procedure as above, yielding

Do Y k) - xiy (ka)
p

ls+u€Bsty LeB

< prams/Z-i-u ,

which gives a decay factor and completes the proof.

Theorem 3.8. Let (X;(m))* € (), o0 Lp(ITnos Loo(S2 An)) for j =1,...,d.
Then
E m)* - %, ) = > wo(),

UEPl_z(d)
o=<o(i)

where the equality holds for all w € Q and
. 1 ’
(3-6) we (i) = (W Z En, o lxi (k1) - - 'xid(kd)]> .
ke[m]?:0 (k)=0
Proof. By Lemmas 3.6 and 3.7, we have
~ . ~ 3 1 :
&, m)* - Gy (m) = > (W Y Exwlx k) -xid(kd)]) :
oePa(d) ke[ml?:o (k)=0
By Proposition 3.5, we write
s vvsda) = Gqys - v in@)  and (G, .. 1) = (ka(1)s - - - s kn(a))-

It follows that
E N, Lxi, (k1) - - - xiy (ka)) = &G, k) (1) - - - x5, (T8 oy joa = Sjara

Note that En;, ) [x;, (k1) - - - xi,(kq)] is nonzero only if ji11 = js42, ..., ja—1 = Jja-
Since o (k) = o, we have o < o (i). Ul

If o <0o(i), we call the w, (i) defined in (3-6) the arbitrary Wick words. By
Theorem 3.8,

L(T'g) C Ly-span{w, (i) :i € [N]?, 0 € Py »(d).d € N}.



ULTRAPRODUCT METHODS FOR MIXED ¢q-GAUSSIAN ALGEBRAS 115

Here and in what follows, L ,- span W means the L ,(7y) closure of linear combi-
nations of elements in W. We want to identify L, (I"p) with the span of fewer Wick
words. Let i € [N]® for s € N. We define the special Wick words

| .
3-7) w(i) = (m Yoo k) x, (ks)) :

kelm):o(k)ePi(s)

Leti’ € [N ¥, In order to understand the inner product of w(i) and w(i’), we
first introduce some notions. Let {2-1,2-2,...,2-s} be a multiset, each element
with multiplicity 2. One can regard it as a set of cardinality 2s given by [25] =
{1,2,...,s, T, 5, ...,5). Leto’ be a partition of the set [2s]. We call it a bipartite
pair partition of [2s] if

ab={{ek,zk}:ek=1,2,...,s,zk=T,§,...,?}.

Let Pb(2s) denote the set of all bipartite pair partitions. Let i, i’ € [m]®, where i’ is
understood as a map i’ {1 2,. ., 5} — [m]. Define the concatenation operation by

(3-8)

le~.

Ul_=(11,...,is,i%,...,i§).

We denote by o (i LUi’) the partition induced by i and i’ on the multiset [2s]. For
example, {k, [, k} are in the same block of o (i LIi") if iy =i; = i,E‘ Giveno’ € P2b(2s),
define the set of bipartite crossings by

P ={{k.l}: 1<k l1<s e <e, 2> 2}
Recall that (w (@), w(i)) = wlw @) w(@)].

Proposition 3.9. Let w(i) and w(i’) be special Wick words. Then there exists a full
probability set Qo C Q2 such that for all w € Q,

Yo 1 aGeite) it ... iy=tif. ... i)

(w(i), w(i’)): obePb(2s) (rt}elb(o?)
B - ob <o (iui’)
0 otherwise,
where {i, ..., is} = {i],..., i} means that i and i’ are equal as multisets, i.e.,

both the elements and their multiplicities are the same.

Proof. We follow the same argument as for Theorem 3.1. By definition,

. ./ 1 / /
(WD), wi) =lim — T walr (k) - (i (k) -, (K]

k,k':0(k)ePi(s)
o(k')eP(s)

Since all the ks are pairwise different, 7, [x, (k) - L X1 ((kDxi (k) - xi (k)] =
unless s = s’. Moreover, every x;, (ky) has to be the same as exactly one xit (k’ )
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to contribute to the sum. This implies i and i’ are equal as multisets. We rewrite

Do Tl (k) xR, (R - x ()]
kKo (k)ePi(s)
a(K)ePi(s")

= > Tl k) xy RDxi (k) - xi, (k)]
o (k).0 (K)e Py (s)
= > > talxg k) - xy kD, (K - x (k)]
obePl(2s) o (kuk)=o"
ol <o (iui’)
If {r, t} € I”(c?), then we have to switch x;(,)(k(e,)) and x;(,(k(e;)) to cancel
the corresponding x;(;,y(k(z,)) and x;(,)(k(z;)) terms. It follows that

T 6 (k) - - - xip (k) xi, (k) -+ i, (k)] = 1_[ e(li(er), kep)], [ier), k(e)]).

{r.t}elb(a?)
Since k € P;(s), by independence, we have

1
— Z i [xiy (ky) - - g (kDxiy (k) - - - xi ()]

o (kuk')=o" =m(m_1)(m—s+1) 1—[ q(ie,), i(e)).

ms
(rt}elb(o?)

Hence, if i =i’ as multisets, then

Ew@), wi)= > ] aln, i)
abePb(2s) (rt}el(a?)
ol <o (iui’)

To show almost sure convergence, let
1

Xm=—o 3 2 b (k) oy (6D, (k) o (k)
o’ e P (25) o (kuk))=c?
ob<o(iLi’)

Since P(w : |X,n — EX,n| > n) < Var(X,,)/n?, by the Borel-Cantelli lemma, it
suffices to show that Z;’le Var(X,,) < oo. But

Var(Xm)zﬁ > > Vi

ob,wbe Pl (2s) o (kuk))=0"
o(Que)=m’
where

Vieo = E(lxig (k) - - - xi (KD xiy (k) - - Xz, (ks )]
X T [Xi7 (€5) - - - xir (€)X, (€1) - - - xi, (€5)])
— E(mmlxiy (kg) - - - xip (ki (k) -+ - xi, ()]
X BTl (€9) - - - xi () xi, (1) - - - X1, (€5)])
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= [E[ [ eiten). k(enl. li(er). kel
{r,t}el’(o?)
<[] editen). tle)l. liter), E(em)]

{(r',t'}elb(m?)

- ] atie)ien ] atien, iten).

{rt}elb(o?) {r',t'}elb(zb)

By independence, Vj ¢ is nonzero only if there are two pairs {r,t} € I b(o?) and
{r', '} € I’(w?) such that {k(e,), k(e;)} = {£(e,), £(e;)}. In this case,

#k K, € okuk)=0"and o) = 7"} <m*m’ 2 =m> 2,

Since Vi ¢ is uniformly bounded and C(s) := [#sz (25))? is independent from m,

] oo C(S)
E Var(X,,) < E " < 00. U
m=1 m=1

Recall the notation /(o) and Iy(o) from Section 2A. For i € [N 1 and o €
P12(d) with o <o (i), put

(3-9) 0= J] ate)ie) T[] atite. i),

{rtiel, (o) {r.it}elsp(o)
with the convention that the product over an empty index set is 1.

Proposition 3.10. Let o € Py 2(d) and o’ € Py »(d’) be partitions. Let w, (i) and
Wy (i") be arbitrary Wick words as defined in (3-6). Then, for almost all € 2,

(3-10)  (wq (1), wor (i)
_ {(fa(i)w(l.np)v fa’(!)w(!np» if o <o(i) and o' < U(L/),
0 otherwise.

Here, iy, is the vector obtained by removing coordinates in i which correspond to
the pair blocks of o.

Example 3.11. Suppose thati = (2,4,7,4,7) and o = {{1}, {2}, {4}, {3, 5}}. Then
inp=(2,4,4).

Proof of Proposition 3.10. By definition,

. ) ) 1
(wo (), wo (1)) =lim —rs Do Tl (k) -y () (k) -+ xiy (k).
kk:o(k)=c
o (kK)y=o'
Note that w, (i) is nonzero only if o < o (i). Then ky = kg implies i, =ig. By (A-2),
we may assume that, in x;, k) -- - X! (kD xi, (ky) - - - xi, (kq), if ko = kg for a # B,
then k; # ko for all y € [d']. In other words, k, # k;, forall « € [d] and y € [d'] if



118 MARIUS JUNGE AND QIANG ZENG

both of them belong to pair blocks. Applying Proposition 3.5 to x;, (k1) - - - x;, (kq)
and x;/ (k) - - Xt (k,), we find

Tlxir, (k) -+ - xig (ki (k) -+ - xiy (k)]
=e(i, ke, K)tmlxy, (€g) -+ xj1 (€)x, (€1) -+ xj (€],

where £ € Pi(s), £’ € Pi(s), j = inp, j' = i'np, and (i, k)e(@’, k') is given in
Proposition 3.5. By independence, we have

Ermlxir, (ki) - xig (R, (k) - - i, (k)]
= ] atie)ie) [] qlen.ie) [ gl i)

{r1}el, (o) {r1)elyp(o) {r',t"Yel (o)
< 1 atiter.iten)Ennley, (€h) - xj(€)xj, (€1 - x, (€]
{r' 1"}l (o”)
As shown in Proposition 3.9, 7,[x;, (15;,) X ()xj,(Ly) - - - xj,(£y)] is zero if
£ and ¢’ are not equal as multisets, and there is nothing more to prove. Assume
£ and ¢ are equal. Let u and u’ be the number of pair blocks in o and o’. By
Proposition 3.9, we find
m---(m—s+1) (m—s)---(m—s—u—u+1)
ms ) mutu’
X fo (D) for ) Erm[x 7, (€g) -+ xj (€)X, (€1) -+ xj (s)]
= fo @) for (DEw (inp), w(i'np))-
The almost sure convergence follows from the same argument as for Proposition 3.9
using the Borel-Cantelli lemma and independence. ([

E{we (i), wo' (i) = };rz{{l

In the two proofs above, the Borel-Cantelli lemma may be avoided if we use the
average model I'Y); see Section 3A. Note that for i € [m]*, w, (i) = w(i) for any
o€ P (S)

Corollary 3.12. Let o0 <o (i). We have ws (i) = f5 () w(inp) for almost all w € Q2.
Proof. Since 14 is faithful on I'g, it suffices to show
T ((wo (D) = for (Dw(inp))* (Wo (i) = fo (DHw(inp))) =0,
But, by Proposition 3.10, we have
(W(inp), Wo (1)) = fo (D) (W (inp), w(inp))-
From here the claim follows by linearity. U
This result yields the identification
L,-span{w, (i) :i € [N1, 0 € P12(d),d € Z4} = L,-span{w (i) :i € [NT*, s € Z,.},

with the inner product relation given by (3-10).
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Proposition 3.13. Ly(Tg) = Ly-span{w(i) :i € [N]*,s € Z}.

Proof. Write Hy,, := Ly-span{w(i) : i € [N]’,s € Z;}. By Theorem 3.8 and
Corollary 3.12, Lo(I'g) C Hy,. It remains to show that H,, C L»(I'g). We proceed
by induction on the length s of special Wick words w(i). First observe that if
o (i) € Pi(s), then the only partition o < o (i) is o (i) itself. In this case, by
Theorem 3.8, we have

(3-11) (Xi, (m))" - -+ (Xi, (m))* = we (i () = w(i) € L2(Tp),

since every (X;, (m))* isin () L,(Tp). Ifs=1,

p <00
1 m .
w(i) = (ﬁ kZ] xh(kl)) € Ly(Tp)
=
by definition. If s = 2 and iy # i, then w(i) € L,(I'p) by (3-11). If i; =i», using
Theorem 3.8, we find

(i, (m))* (Xiy (m))” = wor (i) (D) + We, (D) = 1+ we, (D),

where o € P;(2). It follows that w(i) = wg, (i) € L2(I'g). Suppose w(i) € L2(I'p)
for all i with |i| < s. Consider i € [N]*. We know w(i) € L,(I'g) if o (i) € P;(s).
If 0(i) & Pi(s), by Theorem 3.8, we have

(3-12) (X, (m))* -+ - (x5, (m))* = we,y (D) + Z we (1),
oePyo(s)
o=<o(i),0c¢Pi(s)
where o € Pyi(s). By Corollary 3.12, we have w, (i) = f5 ({)w(inp), and ipp is a
vector of dimension at most s — 2. By the induction hypothesis, w, (i) € L2(I'p)
for o & Pi(s). We deduce from (3-12) that w(i) = wg, (i) € L2(T'g). O

3C. Fock spaces and mixed q-commutation relations. From the work in the
previous section, we can describe the Fock space and creation/annihilation operators
associated to I'p. Given a vector i, we denote by |i| the number of nonzero
coordinates ini. Let H AQ =span{w (i) : |i| =s}. We define the mixed Fock space by

oo
(3-13) Fo =P H).
s=0

Clearly, 7o = Ly-span{w(i) : i € [N]*, s € Z,}, which can be further identified
with L>(I'g) by Proposition 3.13.
Proposition 3.14. Ler x; = (ﬁ Y xik) e Iy’ for j=1,..., N be genera-
tors of T'g and w(i) € Hé Then

s -1
xjw() =w(ui)+ Y 8wl —i) [ [qGr ip.

=1 r=1
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Here, jui = (j, i1, ...,is) € [N]**! is the concatenation operation defined in (3-8),
i—ip =1,y ii—1,0141,...,05) With |i —ij| = s — 1, and we understand the
product over empty index set to be 1. Therefore,

o0 o0
Xj= Z Psy1xj Py + Z Ps_1x; Py,
s=0 s=1

where Ps : Fo — H é is the orthogonal projection.
Proof. By definition,

1 <& 1 ’
”w@=(7ﬁ§:”@“Eﬁ' > m%o~wah0

ko=1 ke[m]*:o (k)ePi(s)

| .
_ <W Z xj(ko)xi (k1) - -+ xi, (ks))

kouke[m1+!: o (koLk)e Py (s+1)

N 1 *
+ Z(W Z xj(ko)xi (k1) - -« x;, (ks)) .
=1

kouke[m* ! ko=k;
a(k)ePi(s)

The first term in the above equation is clearly the special Wick word w(j Li). To
understand the second one, we define o; € Py 2(s + 1) by 07 = o (ko L k) for ko = k;
and k € Py (s), i.e.,

o ={{LI+1}, 2% .... (1L {{+2}, ..., {s+1}}.
Using (the proof of) Lemma 3.6, we deduce that the arbitrary Wick word satisfies
mG+D/2

kouke[m] T ko=k;
o (k)ePi(s)

| .
(— Z Xj(ko)xil (k) - -  Xig (ks)> = Wgq; (Jui).

Note that wg, (j LIi) is nonzero only if 0; < o (j Ui) or equivalently j =i;. Using
(3-9) and Corollary 3.12, we find
-1
We, (j L) =87, [ [ G inw( — i) O
r=1

Define operators c; and a; acting on Fg by
s -1
(3-14) ciwd)=w(jui), aw@ =Y 8 wi—i]]adi.
=1 r=1

Clearly x; = ¢j +aj, ¢; = Y oo Psr1x; Py and aj = Y oo Ps_jx;P;. Since
xj=x7%, we have cjf =a;. We call ¢; and a; the creation and annihilation operators
respectively for j =1, ..., N. The following result is simply a recapitulation; see,

e.g., [Brown and Ozawa 2008] for more about QWEP C*-algebras.
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Corollary 3.15. Let FQ be the von Neumann algebra generated by (the spectral
projections of ) cj +aj for j =1,...,N. Then I'g = T'g. In particular, T'g is
QOWEP.

Proposition 3.16. For j,k=1,..., N, c¢; and c’; satisfy the mixed q-commutation
relation
(3-15) crci—q(j, k)cjcg =38 l.

Proof. Let w(i) € Hé. Then
s -1
ciejw(@) =ciw(ui) =w@+ Y 8;,w(i Ui —ing(,in [ [ qGr i)
=1 r=1

But
-1

N
ciciw(@) =Y 8;,w(iu—in) [[at i
=1 r=1
Hence c;fcjw(g') —q(J, j)cjc;fw(g') =w(i). If j #k, then
K -1
crejw(@) = ciw(jui) =Y Seiw(Gul —iNg (. i) [ [ ip.
=1 r=1

and
-1

S
cicqw@ =Y S uw(iuG—i)) [ [qGr.in.
=1 r=1
Hence c;c;w(i) —q(j, k)cjciw(@) = 0. O

Remark 3.17. The Fock space representation was studied in more general setting
by Bozejko and Speicher [1994]. Let (e;) be an orthonormal basis (0.n.b.) of a
Hilbert space H. One can construct the Fock space Fo(H) following [Bozejko
and Speicher 1994; Lust-Piquard 1999]. Let €2 be the vacuum state and W be the
Wick product, i.e.,

W(eil ®“'®eis)Q=ei1 ®"'®eis-

The Wick product was studied in detail in [Krolak 2000]. Suppose i € [N]* and
j € [NT¥. We have

(w@), w())=(e; @ - Qei,e;, Q- ®ej,),

where the left side is given by Proposition 3.9 and the right side is understood as
the inner product in Fo(H); see [Bozejko and Speicher 1994; Lust-Piquard 1999].
Our argument shows that one can alternatively implement (3-15) and construct the
Fock space using the probabilistic approach (Speicher’s CLT) and the von Neumann
algebra ultraproduct. If sup;; gi;j <1andi € [N]*, we can identify our special Wick
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words w(i) with W(e;, ® - - - ® e;,). Thus we can also identify H é with H®S. This
identification will play an important role when we study the operator algebraic
properties of I'p in later parts of this paper.

3D. The Ornstein-Uhlenbeck semigroup on I'g. Let T;" denote the Ornstein—
Uhlenbeck semigroup acting on A,,; see [Biane 1997, Section 2.1]. T;" is given by

T x;, (ky) - - - xiy (ka) = e "x; (ky) - - - xi, (ka)
if o (k) € Pi(d). Let us first recall an elementary fact.

Lemma 3.18. Let (N, t) be noncommutative W* probability space, where N is a
von Neumann algebra and t is a normal faithful tracial state. Let T : N' — N be a
x-preserving linear normal map with pre-adjoint map Ty : Ny — Ni. Suppose T is
self-adjoint on Lo(N, ). Then T = T |-

Proof. Let x, y € N. Denote the dual pairing between x, € NV, and x by (x4, x),
which can be implemented by (x,, x) = T(x.x). Since N C N, = L1(\N, 1),

(Tx,y)=t((Tx)y) =(Tx,y" ), =1(x(Ty)) = (x, Ty) = (Tyx, y). O

Let (T;")« : L1(Ay) — L1(A,,) be the pre-adjoint map of 7;. By Lemma 3.18, it
coincides with 7; on A,,. Let ]_[m’u L1(A,,) be the ultraproduct of Banach spaces
Li(A,,). Recall that 4, = ]_[m’u Ay, 1s the von Neumann algebra ultraproduct in
Section 3A. Note we have the canonical inclusion L; (A, 1) C l_[m,u Li(Ap, th)-
Let ((T/").)* be the usual ultraproduct of (7;"). If (x,,)* € Ay, then

(T (em)* = (1" xm)* € Ay

because sup,, ||7;"x, || < sup,, llxn|l < co. Hence, ((7;").)* leaves Ay invariant.
We have checked the commutative diagram

Ay —— Li(Ay, ) — [ L1(Ams i)

l((T,’”)*)'IAM J{((T/m)*)”LI(AM‘tM) J((T,’")*)'

Au(_> Ll(Alzh TZ/{) — Hm’z/{L](AWM Tm)

We define T, = (((T")+)"|1,(4u.n0) - Then, by construction, T; : Ay — Ay is a
normal unital completely positive map which is self-adjoint on L, (A, 7). By
Lemma 3.18 again, 7; coincides with ((7;"),)* on Ay and thus on Ly (Ay, ).
Since I'p C Ay is a von Neumann subalgebra, Lo(I'g) C La(Ay) C Li1(Au).
Therefore, for i € [N]* and w(i) € L2(I'p),

T,w(i) = (# S e k) o, (h)) = ¢ w(i) € Lao(Tp).

k:o(K)eP1(s)
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Since Ly(T'g) N Ay =T'g, T; leaves I'g invariant. Also, we see that (7;),>0 is a
strongly continuous semigroup in L>(I'p). Note that in general (7;),>0 may not be
a point o -weakly continuous semigroup in ¢, hence may not extend to a strongly
continuous semigroup on L;(A;.). By Theorem 3.8,

T (@ m) - Gum)?) = D el i)=Y el (Dwin).
UEPl.z(d) U€P1.2(d)
o=<o(i) o=<o(i)
where |oging| is the number of singletons in o, and |i,p| is the dimension of ipp.
fo (i) and iy, are defined in (3-9) and Proposition 3.10. The generator of 7; is the
number operator, denoted by A.

4. Analytic properties

Our goal of this section is to prove some analytic properties for I'g. This will be
done via a limit procedure, as was used in [Biane 1997; Junge et al. 2015] for
proving hypercontractivity.

4A. Hypercontractivity. Biane [1997, Theorem 5] proved the Ornstein—Uhlenbeck
semigroup acting on A, = A,, (N, €) is hypercontractive.

Theorem 4.1. Let 1 < p,r < co. Then, for every w € R,

p—1

1T/, ~, =1 ifandonlyif e > < —

With the hard work done in the previous section, it is very easy to prove the
following result.

Theorem 4.2. Let T; be the Ornstein-Uhlenbeck semigroup on I'g for an arbitrary
N x N symmetric matrix Q with entries in [—1, 1]. Then, for 1 < p,r < 00,
. . —2t p— 1
1Tl oz, =1 ifandonlyif ™ < Z—.
r —

Proof. The “only if” part follows verbatim Biane’s argument [1997, p. 461]. For
the converse, since the special Wick words span L ,(I'p), it suffices to prove that if
e 2 <(p—1)/(r—1) then

T, < Do w@) <

i

r

> (i)

p

where ), ;w(i) is a finite linear combination of special Wick words.
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But, by Theorem 4.1,

o
" (Z md(é)/z Z xiy (k) - - *Xiga (kd(i)))

i ke[m]1D:o (k)€ P1(d (D))

r

o
=< “ Z mTi)ﬂ Z Xiq (kl) X (kd(j))
i

ke[m]4®:0 (k)€ Py (d(i)) P

Since there is a canonical inclusion L ,(I'p) C Hm,Z/I L,(A, t,,), we have

H > ew(i)

Similarly,

E(Zaiw@)
= H Zaie*f\ilw(i)

—tli

o;e
Z md/2 Z Xiy (k1) -+ Xigg, (Ka@iy)

i kelml41D:0 (k)€ Pi(d ()

]
" < > —on > xiy (K1) -+ iy <kd<l~>>>

i ke[m]41D:0 (k)€ Py (d ()

p

ai
> TaYE) > xiy (k1) -+ - Xy, (kagiy)

= lim
m,U
p i ke[m)4®:0 (k)e P (d (i)

r

= lim

r

=lim
m,U

r

The assertion follows immediately. ([

This result in particular implies the hypercontractivity results for I, (H) due to
Biane [1997] and for the free product of I'_; (R") obtained in [Junge et al. 2015].
See also [Krolak 2005] for another generalization with the braid relation. Using the
standard argument [Biane 1997], the log-Sobolev inequality follows from optimal
hypercontractivity bounds. Recall that A is the number operator associated to I'p.

Corollary 4.3 (log-Sobolev inequality). For any finite linear combination of special
Wick words f =3, ajw(i),

to(If1PInlf1) = I FI3Inl £1I5 < 2To(fAf™).

4B. Derivations. Given the N x N matrix Q = (g;;), we define a 2N x 2N matrix

Q' by
11\ (00
Q‘Q®(1 1)‘(Q Q)'
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Recall that A, (N, ¢) is the spin matrix system with Nm generators as in Section 2B
and Jy , = [N] x [m]. We can extend the function ¢ to Jon ,, X Jon,m as follows:

(@, k), (7, D) if (i,k),(j,1) € Iy m,
G G D) = e((i—=N,k),(j, 1) if 1<j<N+1=<i<2N,
ERLEL =N e k), G =N, D) if1<i<N+1<j<2N,

e(i—N,k),(j—N,I) if N+1<i,j<2N.

In other words, &' =& ® (i }) We may write ¢ for ¢’ without causing any ambiguity.
Now we define a linear map

“4-1) 6:A,(N,e)—> A,(2N, 8/),
xi, (k)xiy (ko) - - - x;, (kn)

> ZX"I (k1) -+ xiy (ko= Xiy+N (ko) Xy, (k1) - - - X3, (k)
a=1

where x;, (k1)x;,(k2) - - - x;, (k) is assumed to be in the reduced form. See also
[Lust-Piquard 1999]. It is easy to see that § is x-preserving.

Lemma 4.4. § is a derivation, i.e., §(§n) = §(§)n+E8(n) for two words & and 7.

Proof. The assertion follows from the fact that § is the derivative of certain one
parameter group of automorphisms; see [Lust-Piquard 1998; 1999; Efraim and
Lust-Piquard 2008]. We provide a direct elementary proof here. Note that if & and
are two reduced words with no common generators, the derivation property follows
easily from (4-1). It remains to verify the derivation property when & and n have
common generators. Let & =x;, (k1) - - - x;, (k) € Ay (N, €) be areduced word, and
let a be an arbitrary generator. Assume a = X;(qy)(k(ap)) and write the reduced
form of a& as c?é. Then

C’l\é = 8((i1’ kl)v (ia07 kOl())) e 8(00{0—1, ka0—1)7 (i()l()’ kao))xil (kl)
tet )\éio(O (kao) c Xy, (kn),

where X means the generator x is omitted in the expression. We have
§(a&) =e((i1, k1), Gag kag)) -+ € (Gay1 kag—1): (g Kary))
n

x> xi (k) e Xy Gk D)X g o) Xy (k) -+ X, (K.

a=1,a#wg

Here we understand that if &« = g — 1 then iy is actually iy 4o because iy, (ko) 1s
omitted. Similar remark applies when o = o9+ 1 and we will follow this convention
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to ease notation in this proof. On the other hand,

8(a)§ +ad(§) = xiy +n (koo xiy (k1) - - x5, (kn) + axiy (k1) - - Xig 4N (Kay) - -+ Xi,
ap—1

+ [ 8 k), Gags ka))

j=1

)Y xi Gk (ke D)X 8 o)Xy (Ran) -+ i, ()

a=1,a#ap
ag—1
= l_[ 8((lj, k]), (iol()v kozo))
j=1
Y xi k)i, ke )X 8 o)Xy (Ragn) -+ i, (k).
a=1,a#ap

Here we used the commutation relation given by ¢ in both equalities. Hence,

(4-2) 8(a&) = 8(a)k +asd(&).

Now assume 8(775 ) =68(n)& +nd (&), where both & and 5 are reduced words and
the generators of n are all in &, i.e., n is a subword of £. We want to show that
5(57\]/5;‘) = §(an)é +and (&), where a is a generator. Note that afr\fg = aﬁé. By (4-2)
and the induction hypothesis,

5(ang) = 8(a)nk + ad(nE)
= 5(a)n& +ad(n)E +and (&) = 8(@n) +and (&).

The derivation property is verified when 7 is a subword of &. For arbitrary reduced
words £ and 7, using the commutation relation we can write n = 17, so that n;
and £ have no common generators and the generators of 7, are in §. Then

S(E) = 8(mmE) = 8(1)1E +m8(mE) = (n)mé + mdm)E + nimd (&)
=8(mn2)& +mn28(&) =8(mE +nd&). O

This lemma implies in particular that §(§) can be defined by (4-1) and is equal
to 8(?) even if £ is not a reduced word. We will simply write §(§) for any word &
in the following. If we denote by A” the number operator associated to the spin
system A,, (N, €), the gradient form is defined as

T (f, ) = 5 (A" (g + f*A"(g) — A" (f*2))

for f, g € A,y(N, €). The superscript m is used to distinguish the operators from
their counterparts defined for the limiting algebra I'p. We may simply omit this
superscript if there is no ambiguity.



ULTRAPRODUCT METHODS FOR MIXED ¢q-GAUSSIAN ALGEBRAS 127

Lemma 4.5. Let f, g € A, (N, ¢€). Then
I'(f,8)=E@B(f)*8(g)),

where E : A,,(2N, &) = A,,,(N, ¢) is the conditional expectation satisfying

E(xB) = dBn(N+1,....2N}x[m]),2XB
for a reduced word xp.
Proof. By linearity, it suffices to check I'(f, g) = E(5(f)*8(g)) if f and g are re-
duced words in A,, (N, ¢). Let Xp = x;, (k1) - - - x;, (kp,) and X¢c =x;, (I1) - - - x; (L)
be two reduced words, where B, C C [N] x [m] consist of (i, ki) and (jg, lg)
respectively. By the derivation property (4-1),

E(8(X5)*8(Xc))
=Y Y B, (k) - Xigyn () - xi k1)xj (D) < Xy Tg) -+ x5, (1),
a=1 p=1

We claim that the only nonzero terms in the above sum are those with (iy, ko) =
(jg, lp). Indeed, the conditional expectation simply computes the trace of generators
with subscript greater than N in the reduced form of

Xi, (kn) -+ - X4 N (k) -+ xiy (kD) xjy (L) - xjen Ug) -+ - X (L)
Thus x;,4 (ko) and x JpN (/g) have to be the same to cancel out in order to con-
tribute to the sum. It follows that

(4-3) E(6(Xp)"8(Xc))

= > E (x;, (kn) - Xigon (ko) -+ iy (k1) xj, (1)

k=) o xjenUg) - x, (1))

= > i) xi (ke) o xi kg (L) - xjy g - xg, Us).
o, B (ia,ka)=(jp.lp)
Here we used the extended commutation relation on A(2N, ) given by ¢ in the
last equality. Since X g and X ¢ are reduced, given (i,, ky) € B there is at most one
(jg, lg) € C such that they are equal, and vice versa. We see that there are |[B N C]|
terms in the sum of (4-3). Hence, we find
E((Xp)*8(Xc) =|BNC|XpXc.
On the other hand,
I'(Xp, Xc) = 3(AX3) X+ X5A(Xe) — A(X5X ()
= 3(IB|+1C| = [BAC))
X xi, (kp) -+ - Xig (ko) -+ xiy (k)xj (L) -+ - xj, (Lg) -+ - xj ().
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Note that we have the same word here as the summand of (4-3). Since 2|BNC| =
|B|+ |C| — |BAC|, we must have

I'(Xp,Xc)=|BNC|X3Xc=E@B(Xp)"8(Xc)). (]

Letw(i) e H SQ be a special Wick word with length s € Z. We define a linear
map & : Hj) — Hp,

1
(4-4) 5(w(i))=<m Z 8m[xi1(kl)"‘xis(ks)]>

k:o (k)€ Py (s)

.
’

where 6™ is the derivation defined in (4-1). Here we used Remark A.1 implicitly.
Note that §™ is bounded when acting on words with fixed length s although it is not
uniformly (in m) bounded on A,,. Hence § = (6™)* is well-defined on H é Since
Ly(Tp) = QB?(:’O H é, we can define § on each HSQ by (4-4). By definition, § is
densely defined on Fp = L>(I'g) and Dom(§) = Dom(A) can be identified with
the linear span of special Wick words with finite length, where A is the number
operator on L>(I'p). Since each w(i) is actually in Fg’, S(w(i)) is in Fg,’.

Proposition 4.6. 5 : L>(I'p) — L2('g) is a closed derivation.

Proof. Let Py : Lr(I'g) — H& and P;: Ly(Tp)) — H é/ be the orthogonal projections.
Suppose x,, € Dom($), lim,— o || ]2 = 0 and lim,,_, » [|§(x,) — ¥|l2 = 0. Then
Psx, — 0 for each s € Z. It follows that

P[8(xy) =8(Ps(xn)) > 0 as n — oo.

But P/5(x,) — Py, we find P/y = 0 and thus y = 0. Hence § is closed. The
derivation property follows from the definition (4-4), (4-1) and Remark A.1. [

Denote by A;/(N) the von Neumann algebra ultraproduct of A,,(N). Then
E=(E"™)*:Ay(2N)— Ay(N) is the canonical conditional expectation, where E™ :
An(2N) = A, (N) is given in Lemma 4.5. Since I'p C Ay (N) as a von Neumann
subalgebra, there is a trace-preserving conditional expectation E : I'g — I'g which
extends to contractions on L, for 1 < p < oo. Recall that I'(-, -) is the gradient
form associated with the number operator A on I'p.

Proposition 4.7. Let f, g € Dom(8). Then

T(f,8)=E@(f)*8(g)).

Proof. By linearity, it suffices to check the claim for f = w(i) and g = w(i’).
By the construction of conditional expectation, the proof of Lemma 4.5 and the
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construction of the Ornstein—Uhlenbeck semigroup on L,(I'g) in Section 3D,

E[§(w(@)*8(w(i))]

1 *
:<WEM<8’”( 2 xl"("‘)"'x"f’(k”’))
k:o(k)ePi(d)
* 5m( DR AR ("‘/f’))))
)

K:o(k)ePy(d
= 5[AWEHWE) +w@)*Aw ) — Aw@) wi)N] =T w@), wi)),

where A is the number operator on I'p. U

4C. Riesz transforms. Lust-Piquard [1998] showed the boundedness of Riesz
transforms for the general spin system. Let T € A,,(N, ¢) with 7,,(T) = 0. Recall
that the Riesz transforms satisfy R;(T) = D;(A™)~1/2(T), where D; is the annihi-
lation operator and A™ = Zjvfl Djf D; is the number operator for the spin system
A (N, €). By [Lust-Piquard 1998, Lemma 3.2 and Proposition 1.3], we have

Nm

Z P;jR;(T)
j=1

@35 KT, < <K,IT|, for1<p<oo,

p

where K, = O(p*/(p—1)*/?), 1/p+1/p’ =1, and P; is a certain tensor of Pauli
matrices in the general spin system; see [Lust-Piquard 1998, Definition 2.1]. It
is known that || Zj.V;"I PiR;(T)|l, = 8" (A™)~2(T)||, (see [Lust-Piquard 1999,
p. 547]), where 8™ is the derivation defined in (4-1). By considering T = (A™)!/% f,
(4-5) can be rewritten as

(4-6) K NA™MY2F 1, < 18" (D1 < KpIA™ 2 1.

Now it is easy to recover the main result in [Lust-Piquard 1999]. Recall that A is
the number operator on I'p.

Theorem 4.8 (Lust-Piquard). Let 1 < p <ocoand 1/p+1/p’ = 1. Let § be defined
by (4-4). Then, for any f € Dom($),

KA Fp < 18CHIp < Kpl AV £,
where K, = 0(p*/(p —1)*?).

Proof. We may assume without loss of generality that f = Zi o;w(i) is a finite
linear combination of special Wick words. Write w(i) = (X (i, m))*. Then

18CH1, = H > esw(i)

p:}ni’rgu IZa,-swx(z,m))

p
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Similarly,
14T £l = lim ” D e/lilXGm) Hp = lim [|(A™) 2/ ]
1
The assertion follows from (4-6) with a limiting procedure. (]

In fact, we can give more precise estimates using the gradient form. Let
G, =L,-span{w(i) :i € [2N]*, s e N, 1 < i < N for all but at most one k}.

Since L,(I'p) C G, C L,(I'g/), we have E : G, — L,(I'p) given by the restriction
of the conditional expectation E : I'o — I'g. If f € Tg/, we define || fllzoe) =
IECF* £)Y2, and || Fller ey = 11 f*llLs (). The conditional L, (Ig') space is

Ly(E)+L(E) if 1=p=2,

ch E —
» (E) {L;(E)mL;;(E) if 2<p<oo.

Define G;, (resp. G;) as the space of G, with the norm inherited from L;(E ) (resp.
L%, (E)). Now we follow [Junge et al. 2014] to derive a Khintchine-type inequality.
First, since E : I'pr — I'p extends to contractions on L, for 1 < p < oo, we have,
for f € L,(T'p) and 2 < p < o0,

(4-7) max{[|ECf* )21, 1EGFH 1} < 1 f I,
This means that L ,(I'y/) C L;,"(E ) contractively for 2 < p < oo.
Lemma4.9. Let E : G, — L,(I'g) be as above. Then, for 2 < p < 00,

Iflle, < Cy/Pmax{IEf* ), IECEFHY2,} < CyPI fllg,
and for1 < p <2,
. P
Ifle, < inf {NEE"®) "y +IEGRY P} <€\ [ f e,
8€G', heG),

Proof. Let 2 < p < oo. The right inequality is a special case of (4-7). For the left
inequality, letn e N and i € [2N]*. For j =1, ..., n, define

¢ [2NF — [2N]™.  ¢;()=0u---0uiu0--- L0,
where i occurs in the j-th position. Put ﬁj (w(@)) =w(ep;(i)), where w(g;(i)) is
the special Wick word associated to ¢;(i). Define

1 n
m:To = Foen, Tu(w(D) = —= > w(gj ).
j=1

Here, 1, is the n x n matrix with all entries equal to 1. The map m,, extends to a
trace-preserving *-homomorphism. Alternatively, one may define r,, via the second
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quantization functor as in [Lust-Piquard 1999]. It is crucial to observe that the
7j(w(i)), where j =1, ..., n, are fully independent over I'pg1, (see [Junge and
Zeng 2013]) if w(i) € G, as can be checked from the definition of Er, : I'gr — I'g.
We may assume f is a finite linear combination of special Wick words in G ,. By the
noncommutative Rosenthal inequality [Junge and Xu 2008; Junge and Zeng 2013],

[EAG]E
n 1
Cp ~ 2\’

< —ﬁ(; |In](f)||,,)

n l n l
C ~ ~ 2 ~ ~ 2
+ —ﬁmax{ ‘(Zﬂm(f)*m(f)]) : (ZE[nj(f)ﬂj(f)*]) }

We have extended the conditional expectation E : I'g — I'g to E : T'g'g1, = o1, -
Note that E[77;(f)*7; (£)]=7;[E(f* )land [|7; (), =1 £l - Sending n — oo,
for 2 < p < oo, we have
(4-8) 1fllG, = Cy/pmax{lECS* )21 p, IECFHY2I,)-
For the case 1 < p < 2, we argue by duality. Define the orthogonal projection
P : Ly (E) — G2 N LY(E). By orthogonality, for g € Ty,

E(g*g) = E(Pg*Pg) + E(P g"P*g) = E(Pg*Pyg).
Similarly, E(gg*) > E(PgPg™). Since
max{||E(Pg*P&)' I, IE(PgPg*)' Il } < max{ll E(g*9) Il . 1E (88?1},
we deduce from (4-8) that P extends to a bounded projection with norm

|P: L (E)— L,(Tg)ll <Cy/p

for2 < p <oo.Forl < p<2and f € Gy, since P* = P, we have by duality

I fllzreey =P fllerecey < CV P IlL g

where 1/p +1/p’ = 1. By density, this inequality extends to f € G . It suffices
to consider the decomposition of f € G in G; + G;, when we compute || f || Lre(E)-
This gives the right inequality. The left inequality follows from duality and (4-7). [

Remark 4.10. In fact, the above argument also shows that G, is complemented
in L,(y/). Morally speaking, G, is a [p—I'g bimodule corresponding to differen-
tial forms of order one.

Corollary 4.11. (a) Let2 < p < o0o. Then, for every f € Dom(A),
A2 1l <max{ITCL O 21 TG £ E < Kpl AV £,
where ¢, = O(pz) and K , = O(p3/2).
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(b) Let 1 < p <2. Then, for every f € Dom(A),

KA SN, < inf {IE@ 1, +IEGRDP1,) < Col AT f,
geG;,heG;

where K,y = O(1/(p —1)*/?) and C, = O(1/(p — 1)?).

Proof. Note that §(f) € G, if f € Dom(A). Since E(5(f)*6(f)) =T'(f, f), using
Lemma 4.9 for 2 < p < oo, we have

18CHIp < C/pmax{IT(f, O, ITC*, £, < CO/PISO) .

Now apply Theorem 4.8 to conclude (a). For the constants, K, = O( p>/?) is trivial.
Since K,y = O(p"/(p' — 1)*/?) = O(p*/?), we have ¢, < O(p?). Assertion (b)
follows similarly using Lemma 4.9 and Theorem 4.8. ([

Compared with Theorem 4.8, which was proved in [Lust-Piquard 1999], this
result is closer to Lust-Piquard’s original formulation of the Riesz transforms on
the Walsh system and the fermions given in [Lust-Piquard 1998]. In particular, we
get the exact order of constants as in [Lust-Piquard 1998].

4D. L, Poincaré inequalities. Efraim and Lust-Piquard [2008] proved that the L,
Poincaré inequalities (2 < p < 00),

@9 Nf =Dl < Cy/pmax{IT™(f, OV, T Y2,

hold for Walsh systems and CAR algebras. In fact, the same proof also works
for the general spin matrix system .4,, with some technical variants as shown in
[Lust-Piquard 1998]. Indeed, Lemmas 6.2—6.5 in [Efraim and Lust-Piquard 2008]
hold for the general spin systems, from which (4-9) follows. Recall that we denote
by A the number operator on I'g.

Theorem 4.12. Let 2 < p < oco. Then, for every f € Dom(A),

If —7o(Hllp < Cy/pmax{IT(f, )21, T* 52,

Proof. Assume without loss of generality that f = ), ;w(i) = (f™)* is a
finite linear combination of special Wick words. Note ‘that E(8( () =
(E™[8™(f™)8™(f™)])°. Then the assertion follows from (4-9) and a limiting proce-
dure as for Theorems 4.2 and 4.8 with the help of Lemma 4.5 and Proposition 4.7. [J

5. Strong solidity

SA. CCAP. LetI,(H) be the g-Gaussian von Neumann algebra associated to a
real Hilbert space H with dim H > 2; see, e.g., [Bozejko et al. 1997] for more
information on I, (H). Avsec showed that I, (H) for —1 < g < 1 has the weak*
completely contractive approximation property (w*CCAP) in [Avsec 2011]. In
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particular, I'; (H) is weakly amenable. Our goal here is to prove that I'g also has
w*CCAP if maxi<; j<nlg;j| < 1. Our argument is based on Avsec’s result.

Assume that max; ;|g;;| < 1. We may find ¢ such that max; ;|g;;| < g < 1.
Let O = qé, where O = (gij) satisfies max; j|g;j| < 1. For h € H, let c?(h)
and (¢?)*(h) be the creation and annihilation operators, respectively, acting on
the g-Fock space F,(H), where dim H = N. We write the g-Gaussian variables
as s7(h) = c¢?(h) + (c?)*(h). In particular, for an orthonormal basis (0.n.b.) (e;)
of H, we write sq = s9(e;). Similarly, we write s2(h) = c2h) + (c9)*(h) for
the mixed g- Gaussmn variables of I'p; see [Lust-Piquard 1999]. In particular,
sz —sQ(e,) We write x; ; _SQ®]1 n( fi ®e,) where (f;) is an o.n.b. of €2, and
(ej) is an o.n.b. of £7. Clearly, the x; ;’s generate I'5q, . We first construct an
“approximate comultiplication” for T'p.

Proposition 5.1. Let my : Tg — [],,,, Ty (€5) ® I'5g1, be a x-homomorphism
given by

1 .
nu(sQ) = (ﬁ ZSZ ®x,‘,k> .
k=1

Then my is trace—preserving Therefore, I'g is isomorphic to the von Neumann
algebra generated by my, (s ).

Proof. Let d be an even integer. By the moment formula (3-2),

Z Ty ® T, (¢, -+ 51L) ® (i ky -+ Xig k)]

ke[m]¢
= > Y d"? J] dhen. it

oc€ePy(d),0<0(i) o(k)=0 {r,t}el (o)

- Z Z 1_[ q(i(er),i(er)),

ocePy(d),0<0(i) o(k)=0o {r,t}el (o)

where I (o) is the set of inversions for the partition o. Counting the number of k&
with o (k) = o, we have

| .
m(m Z(s,?l---s;’d)@z»(x,-l,kl---xid,kd>) = > ] qte)it.

ke[m]d o€Py(d) {r,t}el (o)
o=<o(i)

This coincides with 7 (sl.? - sig) given by (3-2). ([l

Now we want to understand the image of Wick words of I'p under 77,. We need
a Wick word decomposition result similar to Theorem 3.8. For i € [N 14, we define

1 .
(5-1) ws(i) = (W Z (SZI e 'SZd) & (Xiy kg + ‘Xid,kd)) .

k:o(k)ePi(d)
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Proposition 5.2. Following the notation of Proposition 5.1, we have

mu(sy s = Y whD.
oePa(d)
osifz@

Here, w; (i) = fo (i)W’ (inp), fo(i) and iy, are the same as those in Proposition 3.10.

Proof. Following verbatim the argument for Theorem 3.8, we have

My s = ) wh(@).
UEPl,z(d)
Here we have

wcsf (E) = (# Z ENs(k)[(le to de) ® (xil,kl tee xid,kd)]) s
ke[ml¢:o (k)=c
and N; (k) is the von Neumann algebra generated by all the s,‘fa ® xi, k'S, where
the k,’s correspond to singleton blocks in k. To simplify the conditional expectation
in the ultraproduct, we denote by N, vl (k) and ./\/S2 (k) the von Neumann algebras
generated by the s,’fa ® ', s and I (£5) ® x;, x,’s, respectively, where the ky’s
correspond to singleton blocks in k. Clearly, N (k) C N (k) N N2 (k). We claim

(52)  Enoo(1® (i, -+ Xig i)

0 otherwise,
where (I, ..., [s) is obtained by deleting pair blocks in k, which also gives the
corresponding (ji, ..., js), and
Lo = ] dGe)ie) [[ Gt i)
{r.t}el, (o) {r.t}elsp(o)

Unlike in the matrix models, the x;, ;s do not have commutation relations. We
check (5-2) by calculating the inner product of Epq2qy (1 ® xi, k, - - - Xiy,k,) and
monomials generated by the 1 @ x;, x.’s in /\/Sz(l_c). Letl® Xjr kv Xig k€ /\/'Sz(l_c)
be a monomial. Since E2 is trace-preserving, by the moment formula (3-2) for
mixed ¢-Gaussian algebras,

T3e, Xk, - Xil k! Eara iy - Xig k)]
15,6501, ik, Xit ki Xy X)) if o =0 (k) <o),
0 otherwise.

Hence (5-2) is verified. Similarly, it can be checked that
Exo (5, -+ 5¢,) ® 1) = g " T

Note that f, (i) = g*lr(@)+#lp©) f,5(@). The assertion follows from the fact that
En,w = Ex,0 Ext o En2)- O
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Proposition 5.3. 7y, extends to an isomorphism
La(Tp) = Ly-span{w’ (i) :i € [N]9,d € Z.,}.

Proof. Put Hy = Ly-span{w®(i) : i € [N]¢,d € Z,}. By Proposition 5.2, we
know that 3, (L»(I'g)) C Hw. The converse containment follows from the same
induction argument as for Proposition 3.13. (]

Remark 5.4. In fact, one can prove that 7, (w(i)) = w®(i) using the Fock space
representation. Since we do not need this fact, we leave it to the reader.

Now we are ready for the first main result of this section.

Theorem 5.5. T'g has the weak* completely contractive approximation property
forall Q with maxi<; j<nlg;j| < 1.

Proof. Let H be areal Hilbert space and —1 < ¢ < 1. In [Avsec 2011], Avsec proved
that there exists a net of finite-rank maps ¢, (A) which converges to the identity map
on I, (H) in the point-weak* topology and such that ||¢y(A)llcp < 1+ & for some
prescribed e. Here, || - ||cb is the completely bounded norm and ¢, (A) only depends
on the number operator A on I';(H). Let Q = ¢ é as above. Consider the diagram

Ty i
To —— [y Te(45) ® g,

lWa J{‘Pa (A)®id

Ty —
To —— [ Ta(47) ® T,

where we define ¥, = 7, o (9o (A) ®1id) o . Here, ¢, (A) ® id is well-defined
on the ultraproduct of von Neumann algebras because it is uniformly bounded in
each [, (¢5) ® I'5g1,,- By an argument similar to that in Section 3D, ¢, (A) ®@1id is
a normal map. Note that v, is well-defined because 7, is injective and ¢, (A) ® id
acts as a multiplier. We claim that v, is the desirable completely contractive
approximation of identity. By construction, the only nontrivial thing to check is
that v, is of finite rank. To this end, it suffices to show that ¢ (A), ®id restricted to

u(L2(To)) = Lo-span{w’ (i) :i € [N]?,d e N}

is of finite rank thanks to Proposition 5.1 and 5.3. Since ¢, (A) is of finite rank,
suppose its range is span{s/ ---s{ : o (k) € J,en P1(n), k € B} for some finite
set B. Then the range of ¢, (A) ® id |7TZ/{(L2(FQ)) is

span{s,f1 --‘s,?n Xy ky ** Xiyk, 10(k) € U Pi(n), ke B}.

neN

Therefore ¢y (A) ® id |7, (L,(ry)) 18 a finite-rank map. g



136 MARIUS JUNGE AND QIANG ZENG

5B. Strong solidity. We follow closely the argument in [Avsec 2011; Houdayer
and Shlyakhtenko 2011]. The strategy is to first prove a weak containment result
of bimodules and then use it to prove strong solidity of I'g. See, e.g., [Brown and
Ozawa 2008; Avsec 2011] for more details on bimodules and weak containment.
For simplicity, we write Q' = 0®1, = 0 Q ( } }) as in Section 4B. Here we assume
5-3 il <q* L.

(5-3) lgr??;(quj|<q <q<

Recall that Lg(FQ/) denotes the subspace of L,(Ipr) which consists of mean zero
elements. Define the following subspaces of Lg(FQ/):

F = Lo-span{w(i) :i € 2N]*,s eN, s >m, iy, ..., im € {N+1,...,2N}},
m

E,=EP F.
k=0

Clearly, E;- is a ['p-T'p-subbimodule of L(I'p)). We want to show that E;- is
weakly contained in the coarse bimodule L;(I'g) ® Ly(I'p) for m large enough.
By Proposition 3.13, we may identify L;(I'p’) with the Fock space Fy'. For
£,n € LY(Tg), define @ ,, : Lr(Tp) — La(Tp) by

@z (x) = Ery(§x1).

To distinguish the left action and the right action of I'pr on Ly (I'gr), we write [(h;)
(resp. r(h;)) as the left (resp. right) creation operator associated to 4; acting on the
Fock space o, i.e.,

l(h,)(l’l,l K- ®hjn) =h; ®hj1 K- ®h‘/‘n,

rthi)(hyy ® - Qhj)=h; ® --Qhj, ®h;.
Here, the h;’s are elements in C2Y = CN @ CV. We write [(h;)* (resp. r(h;)*) as
the left (resp. right) annihilation operator acting on the Fock space Fp/. See more

details for these operations in [Bozejko and Speicher 1994; Lust-Piquard 1999].
One can also define them following Section 3C after choosing an o.n.b. Write

H"” =span{w(i)€ L2(Ty):i €[2N]’} and H’=span{w(i)€L,(I'p):i €[N]'}.

Lemma 5.6. Assume (5-3). Let (ei)l.zjzv1 be an o.n.b. of C*N. Suppose i € [2N1"" and
J€ [2N]". If {N+1, ..., 2N} contains exactly n elements of {i;y1, ..., in,}, then

|Er,[Iei) - - Lei) e, )* -+ - L(ei, )ries) - - r(ej)r(e ) - r(e, ) (0],

(a—(np—s)—(nj—r—n))n |

=< Cq,nl,nzq |)C||2

forall x € H®.
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Proof. Note that among all possible configurations, the assertion is nontrivial only if

ilv"'vir’js-i-]?"'ajl’lzSN-

By [Bozejko and Speicher 1994, Theorem 3.1],

1

: <
o el = Nk
We may assume without loss of generality that r = 0 and s = n, and estimate the
norm of /(e; )* - - -l(e,-nl)*r(ejl) -+ -r(ej,,). The idea is that all the ¢;,’s with i, > N
have to pair with the ¢;’s to cancel out, and moving across the element x will
yield a power of g. Let us assume i,,, > N to illustrate the argument. Note that by
Remark 3.17, H® can be identified with (CV & 0)®* via

(5-4) I (e;)"Il <

VI=¢q

wi)— W, ® - -Qej)—e, Q- -Qe,.

First assume x = ¢, @ - - Q@ ex,,. Using (3-14) (or the formula on p. 109 of [Bozejko
and Speicher 1994]), we find

I(ei, )"r(ej) - 'r(ejnz)x

- Z 81n1 Jm 1_[qlnl ks 1_[ qlnl .]rx ®e]n ® T ®é.]m ® e ®ejl
r=m+1

= Z lVl] ./m l_[qln] 1_[ qln] ]rr(ejl) r(ejm) e r(ejnz)x’

r=m+1

where ¢, and 7 (e, ) mean that e; and r(e;,) are omitted in the expression. The
difficulty is that the coefficient in front of x depends on x. In order to extend the
above equation to arbitrary x € H%, we will find a linear operator for any fixed m
\ia deformation and enlargement of the algebra. Define g;; = g;;/q for 1 <i, j <N,
0 = (gij), and N
p_ (Q@h Q®112>
01 0®1,)"

Note that (5-3) implies that max;;|p;;| < g. We can construct new von Neumann
algebras I'p and I'pga,, . Clearly, we have the relation

FQ —> FQ/ —> Fp —> Fp®1n2+1.

We continue to denote by Er, : I'pg1
in, =1ip, +2N, and let

.1 — o the conditional expectation. Let

Jr=

» _|jrt2N if j, >N,
Jr otherwise.
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For fixed m, let
In, =fn|+4mN=inl+2N+4mN, .}T?tzjm +4mN,

and let JN, = fr for r #m. In L>(T'pg1,,,,), observing the repetition pattern in the
matrix P, we have

r(e;l)...r(eN UGN r(e]n)] r(e5,,) ey )x
— Z ing Ju 1_[qln1 1_[ pln ]v (6 -I"(efm_l)...f(e;l) r(e )x
v=u+1
o ny
:Hanl 1_[ pl"l Ju (e ( ]m) (e )xv
s=1 v=m+1
where Pl gy = dinydo if jy€{N+1,...,2N}and p; : =gj,j, otherwise. Note

that the term 4mN is used to guarantee that I(e7, )* olnly annihilates e . Let

Im)={j,:ve{m+1,...,n}, j, <N}
Then

(5-5)  Er,li(e;, )r(ej) - V(ejnz)x

=q Z 81n1 Jm qunl ks 1_[ qlnl Jr EFQ [r(e.]l) o ;(ejm) e r(e.jnz)x]

r=m+1
_ § : . #I(m)
q ln] /m

x]'[q,nl & H pi,, s Erolr(e) - -F(ez,) - r(es, )]

v=m+1
nz
— (YE o #(m)
=dq 8lnls]mq

m=1
X Erg[r(ez) - r(ey, Dy )rez)r (e

Jm+1

) --r(eﬁz)x].

Here, the conditional expectation is used in the second equality so that the change
in i and j will not affect the resultant value in L>(I'g). Note that the summand
in (5-5) does not depend on x for each fixed m. By linearity, (5-5) holds for any
x € H*. We deduce from (5-4) and the triangle inequality that

| Erylltei, ) r(ej) -+ -r(e;, x|, < Cqmgq®lxll2

forall x € H*. Since [ (e,-nI Yir(ej)---r(e Jny )x is a linear combination of words with
fixed length, the above argument can be easily extended to handle more than one
annihilator. To get a norm estimate on Er,[/(e;,)* - - - l(ein, Yr(ej):---r (ejn2 )(x)], it
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suffices to consider the configuration yielding the minimal power of ¢. This occurs if
i1y oo oslny Jagmntls oo oy g E{N+1,...,2N}.

In this situation, /(e;,)*, ..., [(e;,)* need to cross at least « — (n] — n) terms to
cancel with the e;’s. This gives gle—tn=mln Using (5-4) to estimate the norm of
l(ej, )" -l(e,»nI )* gives a constant C, ,,,. Proceeding like so finishes the proof. []

We will use the normal form theorem of Wick products [Bozejko et al. 1997;
Krolak 2000] to estimate the norm of ®¢ ;. We achieve this via the following result.

Lemma 5.7. Assume (5-3). Let £ € H™" N F, and n € H™ N F,. Then, for
o >2(ny+ny) and x € H*, we have

no/2

g0 (2 = Cqeng™ " llxll2.

-2
Moreover, @, (x) € @I 2, HY

Proof. First we assume § = w(i), n = w( l ) and identify x as a vector in (CN @ 0)~.
By the normal form theorem of Wick products [Bozejko et al. 1997] and [Krolak
2000, Theorem 1], we have

w(i) =Wie, ® --®e;,)

=Y > K(Q.0)M(eoi) Leai)en, )" - Lea, )"

r=0 6€Sy, /(S X Sny—r)

where o (i;) = i,-1(, and K(Q, o) is a product of certain entries of Q and only
depending on Q and o. The precise value of K (Q, o) is irrelevant here. We only
need the fact that | K (Q, 0)| < C », for some constant C, ,, depending on ¢ and n;.
We have a similar formula for w( J). It follows that

ny np

(5-6) Pen(0=D % > K(Q,0)K(Q,1)Ery[l(es) +I(eniy)
r=05=00€Sy, /(S XSn )
JTES,,Z/(Sx X Snz—x)

Ao iy ) 1o i) T (€r () -+ T (€r ()T (€n (o) T (€r(ju)) (0]

By Lemma 5.6,

|Ery[llea) - - - Lea i) (eo, ) -+ Lo (i,)) T (en(in) - T(ex(jy)

r(en(jerl))* - "’(en(jnZ))*(x)] “2

(@=(na—s)—(n1—r—n)n

=< Cq,nl,nzq ”x”Z

Sinceax —ny—ny+s+r+n> %oz, it follows from the triangle inequality that

na/2

”(I)é,n(-x)”Z =< Cq,nl,nzq ||X||2
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Now suppose &, n are linear combinations of special Wick words. Using the
triangle inequality again, we have proved the first assertion. As for the range
of ®;,, a moment of thought shows that the summand in (5-6) is of length
a—ny—ny+2s+2rand that 0 <r <n; —n,n <s < np because we must
have o (i1), ..., 0(;), T(js+1)s - - - » T(Ju,) < N so that the right-hand side of (5-6)
is nonzero. This gives the “moreover” part of the lemma. ([

Lemma 5.8. Let K =@,-, K, and T : K — K be an operator such that
() dim(K,) <d";

(i) [Tk, |l = Ca" for n = no;

(iii) o?d < 1.

Then T is Hilbert—Schmidt.

Proof. Let P, : K — K,, be the orthogonal projection. Then

w(T*T) =Y (TP TP) <Y IITP*d" <CY a™d".

Since the series is absolutely convergent the assertion follows immediately. ([

Lemma5.9. Leté,ne€ F,andn > —InN/Inq. Then ®¢ ,, : Lr(T'g) — L2(I'g) is
Hilbert—Schmidt.
Proof. Write Ly(I'g) = @Sio H*. Then dim(H%) < N* and ¢"N < 1. By
Lemma 5.7, we have

| ®e.nlme || < Coen@™™®.

The assertion follows from Lemma 5.8. O

Proposition 5.10. Let n > —InN/Ing. Then En{1 is weakly contained in the
coarse bimodule L>(I'g) ® L, (I'p).

Proof. The proof is given in [Avsec 2011, Proposition 4.1] using Lemma 5.9. [
Let R, : RN o RY — RN @ R" be the orthogonal transform

R e'id  —V1—e2id
TA\V1T=eid e 'id ’

where id : RY — R" is the identity operator and we understand the canonical o.n.b.
in 0@ RY to be {en+1, ..., exn}. Recall from [Lust-Piquard 1999, Lemma 3.1]
that there is a second quantization functor I'p which sends the category of Hilbert
spaces to the category of mixed g-Gaussian algebras. Let a; =I'g(R;). Then «; is a
trace-preserving *x-automorphism on I'p- and extends to an isometry on L,(I'g/). It
is easy to check that T; = Er, oo, coincides with the Ornstein—Uhlenbeck semigroup
on I'p defined in Section 3D. The following is a modification of Popa’s s-malleable
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deformation estimate [Popa 2008, Lemma 2.1]. The proof modifies slightly that
of [Avsec 2011, Proposition 5.1]. We provide the difference here for the reader’s
convenience. Recall that Lg(FQ/) =P, H™.

Proposition 5.11. Let Py : Lg(FQ/) — E kL be the orthogonal projection. Then, for
k> 1, we have

[l (e —id)(xX) [l2 < Cill Pe—r0te () 12
forx e @re, H" C Ly(Tp) and t < 27F.
Proof. Note o;x —id and Py_ ;o preserve the length of n-tensors for n > k and t > 0.
It suffices to prove the assertion for x € H" with n > k. Identify H" with (CV @0)®".
Letx=¢;, ®---Qe¢;,and y=¢; @---Qej,. Then

n

(Peorey (x), Poron(3)) = Y (Pr, e (x), Pr,ai(y)),

m=k
where the inner product is given by Proposition 3.9, and Pg, : Lg(FQ/) — F,, is the
orthogonal projection. By the second quantization [Lust-Piquard 1999, Lemma 3.1],

(e, ® - ®e;,)=(e e +V1I—e ey @ - ®(e e, +vV1—eMeyi,).
It follows that

Ppoy(x)y= Y (1= )" e i) @ ® enyii-
Bc{l,...,n},|B|=m

where g (ix) = N + i for k € B and 7 (ix) = iy otherwise. Similarly, we get

Ppoay(y)= Y (I=e )" e (1)@ @ ey,
ccll,....n},|C|=m
where

mc(jx) =N+ ji for keC and e (jx) = jr  otherwise.

By Proposition 3.9, (Pf, a;(x), Pr,a;(y)) is nonzero only if {mp(i1), ..., wp(ix)}
and {rwc(j1),...,mc(ju)} are equal as multisets. Hence, the indices in B have
to be paired with the indices in C when we compute (ex,i,) ® -+ ® exy(i,)s
erc(j)) ® -+ @ ex(j,)) using Proposition 3.9. For every fixed B, pairing all the
possible C with B and the corresponding C¢ with B¢ gives all the bipartite partitions
of i U j. Using Proposition 3.9 again, we see that

(Pr,0u (), Pr,aa () = (1= 2yme 20mm 37 gy,
Bc{l,...,n},|Bl=m

By linearity, this identity holds for arbitrary x, y € H". Hence,

n

(Pi_r0(x), Pro1a () = 2{(1 - e—2t)me—2t(n—m><m

). x).
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Since the Ornstein—Uhlenbeck semigroup 7; is self-adjoint on L>(I'p) and «; is
trace-preserving, we have, for x, y € (CN ®0)®",

(@ —id) (), (@ —id) () = 2((x, y) — (x, T () =2(1 — e )(x, y).

The rest of the proof is just numerical estimate, which is provided in the proof of
[Avsec 2011, Proposition 5.1]. U

The following is the main result of this section.

Theorem 5.12. Let Q be a real symmetric N X N matrix with max|<; j<n|q;j| <1
and N < 0o. Then I'g is strongly solid.

Proof. The proof is the same as that of [Avsec 2011, Theorem B], with the help
of Theorem 5.5 and Propositions 5.10 and 5.11. The argument in [Avsec 2011]
follows literally the same strategy as that of [Houdayer and Shlyakhtenko 2011,
Theorem 3.5], which in turn is a suitable modification of [Ozawa and Popa 2010a;
2010b]. O

Appendix: Speicher’s central limit theorem

Proof of Theorem 3.1. The proof is rephrased from [Speicher 1993] and also follows
[Junge et al. 2015]. We first show that the convergence holds on average, and then
prove almost sure convergence using the Borel-Cantelli lemma. We write

~ ~ 1
AD g Om) Ty m) = — Y Ty (k) -, (k)
ke[m]*

1
= Do > i Gk (k)
oeP(s) ke[m]®
o(k)=o
1

=: oy Z Ag.

oeP(s)

By the commutation/anticommutation relation, A, = 0 if o contains a singleton.
Note | T, (x;, (k1) - - - x;, (ks))| <1. If o has r blocks, then A, <m(m—1)--- (m—r+1).
Hence,

1
(A-2) lim

lim WAJ =0

for r < s /2 and thus for o € P (s)\ P> (s) since the singleton case is automatically true.
Our argument so far is independent of w € €2, so that (A-2) holds for all w € 2. The
theorem follows immediately from (A-2) if s is odd. Thus, we only need to consider
o € Py(s) in (A-1). To this end, we write o = {{ey, 21}, ..., {es2, Z5/2}}. Since
o (k) = o is a pair partition, if k; = k;, then i; = i; in order for Xi; (kj) and x;, (k;)
to cancel out. Hence we may assume o < o (i). In this case, if {r,t} € I(0),
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then we have to switch x;,)(k(e,;)) and x;(,)(k(e;)) to cancel the corresponding
Xi(z,)(k(z;)) and x;(,,)(k(z,)) terms, which yields

(A-3) T (X4, (k) - - - x4, (kg)) = 1_[ e(li(er), k(e [i(er), k(e)]).

{r,t}el (o)

By independence and counting the elements in {k € [m]* | o (k) = o}, we find

EAo) = Y J] ale) i)
kelm]® {r.t}el (o)
o(k)=o

=mm—1)---(m—s/2+1) [] aqlile) i(e)).
{r.t}el (o)
Combining these, we have

A4 dim E(gu @ 0m) T )= Y [ gtiten).ien).

o€Py(s) {rt}el (o)
o=<o(i)

It remains to prove the almost sure convergence. Put X, = 7, (Xj, (m) - - - X;, (m)) and
E,(a)={w:|X;,—EX,;,| > o}. Then we only need to show P(limsup,, E, () =0.
By the Borel-Cantelli lemma and Chebyshev’s inequality, it suffices to show that

o0 o0
1
Z P(En(@)) < — ZVar(Xm) <o0o forany a >0,
o
m=1 m=1
where Var(X,,) is the variance of X,,. Decompose X,, as X,,, =Y, +Z,,, where Y},
corresponds to sum over all pair partitions in (A-1) and Z,,, = X,;, — ¥},,. Since (A-2)
holds for o € P(s) \ Px(s), we have lim;,, - X,, — Y, = 0 for all w € Q. But Z,,
is uniformly bounded, so lim,,_, o, Var(Z,,) = 0. Therefore, we only need to show
that Y >, Var(Y,,) < co. Write

Var(Ym)=% YooY Ve

o,mEPy(s) k:o (k)=0
Lo()=m

where
(A-5) Vi = k1 (xiy (ky) - - - xiy (kg ) T (i (Ly) - - - X3, ()]
— E[tm (xiy (k) - - - xi (k) JE[ T (i, (21) - - - X, (L)) ]

=[E< l_[ e([i(er), k(er)], [i(er), k(er)])
{r,t}el (o)
X 1_[ 8([i(er’)7l(er’)]’[i(et’)al(et’)]))

{r',t'}el ()

— I aGenien ] aten.ien.

{r,t}el (o) {r',t'}el ()
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Let us analyze the product in the third and fourth lines of (A-5). If {k(e,), k(e;)} #
{I(e;), l(ey)} for all {r,t} € I(0) and {r', t'} € I (), then Vi ; = 0. In order to
contribute for Var(Y,,), there exists at least one pair {r, ¢} € I(0) and one pair
{r',t'} € I (;r) such that {k(e,), k(e;)} = {l(e,), L(e;)}. In this case, we have
#kl:o(k)=0,0)=n}<mPm**=m' >

Note that |Vi ;| <1 and C(s) := [#P>(s)]* does not depend on m. It follows that

00 00 C(s)
E V. E .

ar(Y,,) < " < 00 O
m=1 m=1

Remark A.1l. In the above argument, we assumed that the ¢((i, k), (j,[))’s are
independent for different indices. However, the independence assumption can be
weakened if the structure matrix is of the form Q ® 1,,, where Q is an N x N symmet-
ric matrix with entries in [—1, 1]. In this case we require that the £((i, k), (j, [))’s
be independent (up to symmetric assumption) with (3-1) for (i, k), (j, 1) € [N] x N
and then

(A-6) e((i+aN,k), (j+BN,D) =e(( k), (j, D)

fora,B=1,...,n—1. In other words, ¢ = ¢||<; j<y ® 1,,. To verify the claim,
we only need to show the dependence introduced in (A-6) will not destroy the proof
of Theorem 3.1. Indeed, by (A-2) it suffices to consider pair partitions. Suppose
ig =iy + N. Then o and B are not in the same pair block of o (i). It follows that
ko # kg since o (k) <o (i). (If kg, = kg, then iy =iy in order for x;, (ky) and x;, (kg)
to cancel.) Hence, the random signs in (A-3) are pairwise different. Note that unlike
the case in the proof of Theorem 3.1, now we may have

8((ia’k0l)a (i}/7k}/)) and 8((lﬂvkﬂ)’ (i)/vk]/)) =8((iavkﬂ)’ (i)/»k]/))

in (A-3), but the two random signs are not equal because k, # kg. In other words, the
second coordinates (kq, k), ) in €((iy, ko), (i), ky)) are never the same for random
signs in (A-3) even under the weaker condition (A-6) so that (iy, i,,) may be the
same for different random signs. The point is that the independence structure in
the proof of Theorem 3.1 is given via the second coordinates’ k,’s. The rest of the
argument is the same as for Theorem 3.1. We invite the interested reader to consider
the simplest case Q =¢1y. In this case we can take ((i, k), (j, 1)) =¢&((, k), (i, 1))
and require €((i, k), (i, [)) to be independent for different k and [ up to symmetry.

By this remark, the moment formula (3-2) remains valid with the weaker con-
dition (A-6). The same discussion applies in other parts of the paper when the CLT
argument is invoked with (A-6). This subtlety is crucial for our limiting argument
in Section 4.
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