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Abstract

Safety-critical Industrial Control Systems (ICS) are increasingly
targeted by Advanced Persistent Threats (APTs), exemplified by
attacks like Stuxnet, the Ukraine power grid breaches, and recent
U.S. water treatment facility intrusions. These sophisticated attacks
often target common sensors and actuator abstractions across differ-
ent ICS environments. While frameworks like MITRE ATT&CK for
ICS categorize attacker Tactics, Techniques, and Procedures (TTPs),
they fall short in assessing the physical impact on operational tech-
nology (OT). To bridge this gap, we introduce OTTHREAT, a novel
ontology that extends the Semantic Sensor Network (SSN) frame-
work by incorporating cyber attack abstractions and the safety
properties they target. Our approach enables the mapping of sim-
ilar physical processes across different ICS domains, facilitating
the adaptation of existing mitigations to new threats. We imple-
ment and validate a proof-of-concept threat inference framework
on three ICS use cases representing different physical domains,
including water treatment ICS and oil treatment ICS, that share
common sensor and actuator abstractions and demonstrate how
both threat assessment and potential mitigations for discovered
threats can be adapted across physical domains.
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1 Introduction

Advanced Persistent Threats (APTs) are increasingly targeting
safety-critical industrial control systems (ICS). High-profile such
as Stuxnet [10], Ukraine power grid attacks [18], attacks on water
treatment utilities in the US [20, 24], or even attacks on safety-
instrumented systems (SIS)-systems designed to prevent industrial
incidents [9], highlight a trend of attackers aiming to cause cata-
strophic damage in society. These attacks target various physical
sensors and actuators guiding safety-critical processes, and adver-
saries often exploit common vulnerabilities across different systems.
To proactively mitigate potential threats, it is crucial to infer poten-
tial APTs for ICS by mapping and understanding these cross-domain
threats.

APTs are often characterized by Tactics, Techniques, and Proce-
dures (TTPs) that attackers use to execute these complex threats.
The MITRE ATT&CK framework for Industrial Control Systems
(ICS) [4] has become an industry standard for systematically catego-
rizing these TTPs, providing a comprehensive knowledge base that
spans the entire lifecycle of an attack. Unlike traditional TTP frame-
works that focus solely on IT infrastructure, the MITRE ATT&CK
for ICS emphasizes the unique characteristics of industrial envi-
ronments, incorporating both IT and OT components. However,
while the framework conceptually maps TTPs, most assessments
focus on the tactics and techniques used to breach systems without
fully exploring the disruptions to physical processes and safety
mechanisms. Moreover, the frameworks serve as guidelines for
cybersecurity assessment and manually configuring the security
analyses across the complex connectivity of cyber-physical ICS
does not scale and requires cross-domain expertise.

Prior works have aimed to structure the unstructured knowledge
provided by TTP frameworks and other cyber threat intelligence re-
ports for cyber-security assessment using knowledge graphs (KGs)
to identify or infer attack techniques [19, 23, 30], including in the
ICS domain [26]. However, these works mainly focus on mapping
intrusions on the IT infrastructure rather than the impact on the
operational technology (OT). A large body of non-KG-based ap-
proaches emerged aiming to understand the IT/OT cross-domain
impact of attacks and mitigations [2, 8, 12, 15]. However, these are
often tailored analyses for physical domain-specific solutions. More
critically, all of the previous frameworks neglect the targeted sensor
and actuator semantics of any attack across physical domains, e.g.,
an attack that overflows a water treatment plant by continuously
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opening a valve will most likely apply to an oil treatment facil-
ity controlled by similar industrial pumps and valves. Conversely,
several works from the cyber-physical systems design space are
aiming to leverage common physical representations as a means to
semantically ground ICS components for seamless integration in an
increasingly connected world [16, 25], but neglect threat models.

In this paper, we seek to bridge the aforementioned gaps by in-
tegrating physical impact assessments into cyber threat ontologies,
enhancing our understanding of how APTs can propagate through
ICS environments and identifying candidate physical targets using
threat intelligence across physical domains. As an initial step, we
focus on how to represent the physical impact of threats across OT
environments. We introduce a formal ontology, OTTHREAT, that
builds upon a standard ontology framework for representing sense-
to-actuate relationships in cyber-physical systems, the semantic
sensor network (SSN) ontology [22]. OTTHREAT includes abstrac-
tions for attacks, as well as relations mapping the compromised
sensors or actuators, as well as abstractions for the safety prop-
erties targeted by the attacks for a given process. We provide the
preliminary formalization for how an ICS and an associated attack
dataset can be mapped to the OTTHREAT ontology from a variety
of unstructured sources, including ICS source operational manuals
and attack reports. Given a knowledge base of known ICS attacks
and their target ICSs represented as a KG using the OTTHREAT
ontology, we show how similar physical processes can be mapped
across physical domains. Moreover, we demonstrate how the KGs
can be used to not only infer and adapt known physical threats to
a target OT but also to adapt mitigations (e.g., anomaly detectors)
for said threats. We demonstrate the efficacy of our approach on
three preliminary ICS use cases with known attacks or datasets:
the Secure Water Treatment Testbed (SWaT) [21], the MiniSWaT
testbed—a scaled-down testbed of SWaT using Raspberry Pi’s, and
an oil treatment ICS cybersecurity testbed simulator [28].
Contributions. The contributions of this paper are summarized
as follows:

e We introduce a cyber-physical threat ontology, OTTHREAT,
to map and infer ICS physical threats across physical domains—
combining traditional semantic CPS ontology frameworks
with threat abstractions.

e We formalize a framework to map ICS representations to
knowledge graphs using the OTTHREAT ontology, which
can then be used to adapt threat intelligence across physical
domains. Additionally, we show how the KG representations
can be used to adapt existing mitigations across different ICS
domains.

e We demonstrate the feasibility of the proposed approach
through preliminary demonstrations and experimental val-
idation across 3 ICS physical domains: two different water
treatment ICSs and an oil treatment plant.

2 Background and Related Work
2.1 CPS Ontological frameworks

Many prior works have focused on representing Cyber-Physical
Systems and their components, primarily for the sake of semantic
integration of designs. The Semantic Sensor Network (SSN) [22]
ontology is an extension of the Sensor, Observation, Sample, and
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Actuator (SOSA) [17] ontology, both of which are combined and
provide a standard vocabulary for describing sensors, their capa-
bilities, observations, and the context in which measurements are
made. These ontologies have become the standard for integrating
heterogeneous sensor data from various sources, making combin-
ing and analyzing data from sensors and systems seamless and have
been adopted in industrial applications for asset tracking, condition
monitoring, and process optimization in various domains such as
manufacturing, energy, and transportation [29]. The SemCPS [14]
framework integrates different perspectives, including mechanical,
electrical, and software to represent a system. Other frameworks
have been proposed for semantic grounding of interoperability
across ICS [16] or providing grounded abstractions for ICS and
their digital twins [23]. In all cases, the ontologies typically focus
on semantic grounding across ICS designs but typically do not con-
sider CPS threats nor the physical impact an attack may have. Any
of these CPS ontological frameworks are amenable to integrating
threat intelligence, and in this paper, we choose to extend SSN/SOSA
ontologies! to represent safety properties, the associated physical
threats, and mitigation solutions given that the SSN/SOSA ontology
is the most expressive and granular for modeling sense-to-actuate
pipelines and is an adopted industry standard.

2.2 Threat Model and Assumptions

System Model. The goal of our framework is to provide security
analysts with candidate physical threats of a given ICS. Thus, to
build a KG representation of a given ICS, we initially assume that
we have access to various structured and semi-structured documen-
tation of the target ICS—including natural language operational
manuals, technical documentation, and even source code. Addition-
ally, we assume access to a large knowledge base of known threats
and high-profile attacks [5, 11], as well as academic papers describ-
ing cyber-physical attacks [13, 27, 31]. The data sources enable the
utility of the OTTHREAT ontology. A key feature of our approach
is that our ontology can provide graphical representations with
different levels of granularity. This flexibility allows for adaptable
threat modeling based on the available information and the specific
needs of the analysis. Future work will focus on scenarios with an
incomplete view of system architectures, addressing more realistic
situations where complete system information may not be available.
It is important to note that our model focuses on the operational
phase of an engineered system. We are considering the perspective
of a security analyst examining potential threats to a system that’s
already up and running. This means we are dealing with real-world
scenarios where the system actively processes data and controls
physical processes. Adversary Capabilities and Goals. We as-
sume that the goal of an attacker is to maximize physical impact
on the ICS while maintaining stealthiness. An attacker has various
levels of access to system components, including but not limited
to sensors, actuators, PLC, SCADA, and HMI. Thus, an attacker
can implement any necessary measures to compromise particular
components, but not all. The threat vectors may include sensor
spoofing, false data injection into sensors, actuator manipulation,
unauthorized commands to actuators, and control logic tampering.

!In this paper, we refer to SSN and SOSA ontologies together since they are used in
tandem.
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Figure 1: Overview of three use case ICSs, highlighting cross-domain threats and commonalities.

Additionally, we assume that an attacker would aim to repeat be-
haviors across physical domains based on previously successful
incidents.

2.3 Use Case Domains

In our study, we selected three ICS use cases to evaluate our ap-
proach comprehensively, depicted in Figure 1. Each use case is
associated with a set of known attacks. The first is the Secure Water
Treatment (SWaT) testbed [21], a well-established water treatment
testbed extensively used in cybersecurity research. SWaT offers a
realistic representation of a full-scale water treatment plant, making
it an ideal benchmark for our analysis. To complement SWaT, we
developed MiniSWaT, a surrogate testbed that mirrors the processes
of SWaT but utilizes different hardware components. We incorpo-
rated food coloring with RGB sensors in MiniSWaT to simulate the
closed-loop chemical dosing process, providing a cost-effective yet
functional alternative to actual chemical treatments. Our third use
case, an oil treatment system [28], introduces different processes
with common components and safety properties similar to water
treatment systems.

2.3.1 SWAT. We used the first process of SWaT. This process takes
water from a raw water source and feeds it into a tank. This water
will then be pumped into a second tank and treated with chemicals.
For this first process, the PLC::PLC1 controls the water inflow by
opening or closing the valve, Motorized Valve:MV101, and water
outflow by running the Pump::P101. The PLC::PLC1 monitors the
water level of the Tank::T101 using a level sensor, Level Indica-
tor:LIT101. The PLC::PLC1 operates another Pump::P102, which
works as a backup for the Pump::P101 in case the Pump::P101 does
not work. The PLC::PLC1 is responsible for keeping the water level
in Tank::T101 within a specific range: it should never hit an "un-
derflow" or an "overflow."

2.3.2  MiniSWaT. The first process of MiniSWaT is very similar to
the first process of SWaT. This process takes water from a raw water
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Tank::T1 and feeds it into a Tank::T2 to be mixed with food coloring.
The PLC::PLC1 controls the water outflow by opening or closing
the Valve::V1 and running the Pump::P1. The PLC::PLC1 monitors
the water level of the Tank::T1 using a Range Sensor::RS1, and the
outflow rate using a Flow Sensor::FS1. The PLC::PLC1 ensures that
the water level in the tank never hits an "underflow.

2.3.3 Oil Treatment Plant. For our final use case, we used the first
process of an oil treatment ICS cybersecurity simulator. The process
is controlled by a PLC, which monitors the Oil Storage Unit’s oil
level with a Tank Level Sensor. The PLC controls a Feed Pump that
fills the oil storage. The PLC is additionally tasked with operating
an outlet valve to facilitate the release of oil from the storage unit
once it has reached its maximum capacity.

3 Semantic Mapping of ICS Threats

In this section, we demonstrate the process of semantically map-
ping ICS threats to our proposed ontology. This mapping is crucial
for translating real-world ICS processes and their associated threats
into a structured, machine-readable format. To illustrate this ap-
proach, we first provide a detailed example of mapping a single
process scan cycle of SWaT, a real-world ICS according to our on-
tology. We then show, how we can represent safety properties and
potential threats to that particular process. Moreover, we introduce
an approach that leverages knowledge graph representations of
two distinct ICSs to infer potential threats to one system based on
known attacks to the other, thereby enabling cross-system threat
analysis and prediction. Finally, we describe how such threats can
be used to infer potential threat mitigations.

3.1 Use case: Mapping a single process

A PLC monitors and controls a system through a "scan cycle." Dur-
ing each scan cycle, the PLC reads the state of all input devices,
such as sensors, and saves them in memory. Next, it executes the
programmed logic to control the actuators, analyzing these inputs



RICSS 24, October 14-18, 2024, Salt Lake City, UT, USA

Jainta Paul, Lawrence Ponce, Mu Zhang, & Luis Garcia

- -
- L]
- L]
- -
L Hosts w
- L]
L] - madeByAc{ualcr;
.
.
Level
adeBySenso |ndicator:: é_ Hosts " Motorized
LIT101 . ControlWater) (- yzalye::
.
- MV101
hasOutput: haslnput usedPpocedure
WaterLevel - -
. hasResul
Observation -
hasOutput i
RawWater ValveControl | | [ ValveTrigger | *®
) " Transfer Command Condition 0
Estimated . = PumpWater Pump::P101 (—1
sedProcedure | \\aterLevel -
.
.
hasOutput -
Determine - usedProcedures
WaterLevel [asoutpu . A | A .
- umpContro umpTrigger I deByActuat
. Command Condition : madesyactuator
- Pump::P102 <
.
-
.
L] has\npul—l .
- L]

Figure 2: SSN/SOSA representation of a single process of a PLC scan cycle.

and making decisions depending on the instructions. In Figure 2,
we show our envisioned framework that takes the description of
a process as an input and outputs the representation of the scan
cycle using SSN and SOSA ontologies. As depicted in the figure,
the PLC works as a Platform that "hosts" Sensors and Actuators
and as a System that "implements" a Procedure. In this case, the
PLC::PLC1 "hosts" one Sensor, Level Indicator::LIT101, and three
Actuators: Pump::P101, Pump::P102, and Motorized Valve:MV101.
The PLC::PLC1 "implements" the Procedure RawWaterTransfer.
The input of this Procedure comes from an Observation called
WaterLevelObservation, which is "madeBySensor" Level Indica-
tor:LIT101. The Procedure outputs control logic for the Actuators.

3.2 Ontological Development of Cyber-Physical
Threat Ontology

As depicted in Figure 2, SSN and SOSA ontologies are not sufficient
to represent the safety properties, physical threats, and defense
mechanisms associated with a process. Figure 3 illustrates how
threats interact with the SWaT process in our extended ontology.
Class :: SafetyProperty. In the context of our ontology, a safety
property represents any type of safety requirement typically used as
a premise for safety verification and validation, anomaly detection,
or other safety-critical operations. These properties are usually
functions of observable properties. These safety properties often
become targets of attacks. In Figure 3, we can see that the Tank::T101
has a SafetyProperty called WaterLevelThreshold, which indicates
the water level in Tank::'T101 must always be within a certain
range?.

2Safety properties in our ontology can represent a wide range of requirements, from
simple threshold values to complex relationships between multiple system variables.
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Figure 3: OTTHREAT KG representation of attacks compro-
mising specific sensors or actuators and causing violations
for certain infrastructural safety requirements.

Class :: Attack. An Attack "compromises” a FeatureOfInterest and
"causesViolation" of a SafetyProperty. An ICS attack can compro-
mise any component that is controlled by a computer program. As
shown in Figure 3, the UnderflowAttack compromises the Level
Indicator::LIT101 and causes a violation of WaterLevelThreshold.
It’s important to note that our approach is not tied to any specific
safety property language, allowing for flexibility in representing
various types of safety requirements.
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Figure 4: Envisioned KG threat inference pipeline enabled
by OTTHREAT ontology.

Class :: Defense. A Defense "monitors" an ObservableProperty and
"detects” an Attack. In the above example, if a prior mitigation
technique was implemented to detect discrepancies in the water
threshold, e.g., through physical models [3], then the Defense node
would monitor the TankWaterLevel to detect the PipeBurst Attack?.

3.3 Cross-domain Threat Inference

This section formally represents our approach to infer threats
across different domains. Specifically, we formalize the threat cross-
domain inference enabled by our OTTHREAT ontology, as depicted
in Figure 4, assuming that the other KG pipeline components are
implemented. For instance, we assume there is a method to ex-
tract information from threat reports and operational manuals and
map it to our proposed representation. Given two KG representa-
tions and one known KG database, we envision that our framework
would query the database to infer threats for the other one. From
these representations, our algorithm enables entity linking between
two knowledge graphs, identifying corresponding entities based on
label similarity and structural context. As one potential implementa-
tion for cross-domain threat inference, we present an approach that
combines string-matching techniques with graph-based context
analysis. This method produces a set of entity alignments with con-
fidence scores, serving as a proof-of-concept for how our ontology
can be leveraged for cross-system threat analysis. In developing
this approach, we hypothesize that lower-level abstractions, such
as specific hardware components, are less likely to match across
different systems due to hardware variations, even when they sense
the same observable properties. However, we anticipate that higher-
level software abstractions, such as the results of observations or
process states, are more likely to align. This hypothesis informs
our entity-linking strategy, focusing on identifying similarities at a
more abstract level rather than relying solely on component-level
matching. It is important to note that this is just one of many pos-
sible applications of our ontological framework, and alternative

3While threat mitigations are orthogonal to our primary contributions, we provide an
example threat mitigation adaptation in Section 4.
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approaches could be developed to suit specific use cases or do-
mains. Below, we formally describe our algorithm as an illustrative
example of how our ontology can be utilized in practice.

Input: The algorithm takes as input two knowledge graphs G; =
(W1, E1) and Gz = (Va, Ez), where V represents the set of vertices
(entities) and E represents the set of edges (relations). Each vertex
v € V hasattributes: label and type. Each edge e € E has an attribute:
relation.

Output: The algorithm generates a set of entity alignments A =
(v1,02,5)|v1 € V1,02 € Vo, s € [0,1], where s represents the confi-
dence score of each alignment. A higher confidence score indicates
greater similarity between nodes. This alignment set facilitates
threat inference across systems: if an Attack A is known to compro-
mise a component C1, and C1 is determined to be highly similar to a
component C2 in another system (as indicated by a high confidence
score), then it can be inferred that C2 is potentially vulnerable to
Attack A.

Algorithm 1 Entity Linking for Cross-domain Threat Inference

Input: Two knowledge graphs G; and G;
: Output: Set of entity alignments A
: Initialize candidate set C for each entity in G;
: for all entities v, in G; do
for all entities v, in G, do
Compute string similarity between vy and v,
if similarity exceeds threshold then
Add v, to candidate set of vy
9: end if
10: end for
11: end for
12: for all entities in G; and G, do
13: Compute context information (neighboring nodes, types, relations)
14: end for
15: Initialize alignment set A
16: for all entities v; in G; do
17: Find best matching candidate based on:

IR AN N

18: - String similarity

19: - Context similarity (type, neighbors, relations)
20: if best match score exceeds linking threshold then
21: Add alignment to A

22: end if

23: end for

24: return Alignment set A

Complexity: The time complexity of the algorithm is dominated
by the candidate generation step, resulting in an overall complexity
of O(n?). The context analysis step has a complexity of O(n x d),
where d is the average degree of nodes, and the entity linking step
has a complexity of O(n X c), where c is the average number of
candidates per entity.

4 Implementation and Evaluation

We study the efficacy of our approach using three scenarios. We
show that if we have a knowledge graph representation of two ICSs
and we know the risks that are associated with one of them, we
can infer the threats that are associated with the second testbed.

4.1 Experimental Setup

We implemented our approach using Python. The ontology for
each selected process was represented using a consistent schema,
defining classes such as Sensor, Actuator, Process, and Attack, along
with their relationships. The implementation included functions
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Figure 5: Preliminary results of entity linking mapping the
SWaT and MiniSWaT KGs using the OTTHREAT ontology.

to map ontology classes and properties to graph nodes and edges,
ensuring semantic consistency across different ICS representations.
We applied our entity linking algorithm to three pairs of testbeds
(MiniSWaT-SWaT, MiniSWaT-Oil Treatment, SWaT-Oil Treatment),
identifying corresponding entities based on label similarity and
structural context.

4.2 Threat Mapping Across Physical Domains

4.2.1 SWaT-MiniSWaT. We evaluated two types of attacks for this
specific set of systems. The first attack is an Underflow attack, which
targets the Level Indicator::LIT101. The second attack is a PipeBurst
Attack, which targets the Pump::P102. Our analysis revealed that
the algorithm failed to identify any similarities between the pairs
Level Indicator::LIT101(SWaT)-Range Sensor::RS1(MiniSWaT), and
Pump::P102(SWaT)-Pump::P1(MiniSWaT). It is worth noting that
our approach uses string similarity as a simple initial method. How-
ever, we can establish mappings without relying on string similarity
when semantic structures can be inferred (such as identifying com-
ponents as pumps). This semantic-based comparison can be more
effective in cases where component names differ, but their functions
are equivalent. Interestingly, we identified similarities between
Pump::P101(SWaT)-Pump::P1(MiniSWaT). However, our domain
expertise tells us that Pump::P102 and Pump::P101 in SWaT likely
have similar roles and vulnerabilities. With this in mind, we can rea-
sonably conclude that a threat capable of compromising Pump::P102
in SWaT could also pose a risk to Pump::P1 in MiniSWaT. The entity
linking results are depicted in Figure 5. Furthermore, despite our
inability to identify similarities between the sensor pair, we were
able to identify similarities in their associated observable properties.
The result is consistent with the hypothesis we stated in Section
3.3. We simulated the attacks in the MiniSWaT by compromising
the relevant nodes. The physical impact of MiniSWaT was similar
to that of SWaT.

4.2.2  MiniSWaT-Oil Treatment. For this pair of ICSs, our entity
linkers were not able to link the node pairs: Range Sensor::RS1
(MiniSWaT) - TANK LEVEL SENSOR(Oil Treatment) and Pump::P1
(MiniSWaT) - FEED PUMP, but correctly identified the observable
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properties associated with the sensors. In this case, since the com-
ponent pairs were very similar, we inferred similar kinds of threats.
We did not simulate any attack in the Oil Treatment Plant. As a
result, we cannot say for sure about the physical impact. We could
be confident about the physical impact if we had a physical ICS or
data for the physical or the simulated ICS.

4.2.3  SWaT-0Oil Treatment. We observed a similar result as the pre-
vious one. Our entity linkers were not able to link the node pairs:
Level Indicator::LIT101(SWaT)-TANK LEVEL SENSOR(Qil Treat-
ment) and Pump:P102(SWaT)-FEED PUMP, but correctly identified
the observable properties associated with the sensors.

4.3 Defense Adaptation

We performed a preliminary analysis to understand how known
mitigation for the inferred threats can be automatically adapted and
suggested as a candidate mitigation for a target ICS. We leveraged
mitigations for both attacks from prior works [1, 3] that developed
an anomaly detector based on the physical invariant properties.
Our goal was to formalize how the state-based detectors can be au-
tomatically adapted. The SWaT anomaly detector code was written
as a simple Python script with the encoded control invariant prop-
erties to analyze traces for the target sensor values and raise a flag
when there was a discrepancy. Specifically, the control invariant
properties were defined based on observable properties (i.e., the
results produced from the sensor input scans). Thus, adaptation
was a simple matter of adapting the parameters of the threshold
values. In real-world settings, we envision candidate mitigation
can be parametrized either by the domain expert, known safety
thresholds for the target ICS (e.g., if the associated process already
had a safety property and we map the associated state abstractions)
or can be inferred through physics-based modeling or data-driven
approaches.

Results. We observed that we were able to detect both the un-
derflow and overflow attacks that were mapped to the MiniSWaT
testbed after adapting the SWaT attack mitigation code using the
MiniSWaT safety properties. However, we were not able to auto-
matically adapt the pipe burst attack. Intuitively, the pipe burst
attack targets the observable property associated with internal
pipe pressure—which we cannot directly observe. Such mitigation
would require manually encoding attacks that, e.g., detect that the
valve cannot be closed while an inflow pump is on. Nonetheless,
our framework would still suggest the candidate mitigation with a
property that is currently unobserved-implying that the develop-
ers should implement a solution to observe such a property. This
approach is aligned with the industry trend to provide resiliency
through redundancy.

5 Discussion

We demonstrated the feasibility of mapping and analyzing threats
across different ICS domains using our proposed ontological frame-
work. While these preliminary results are promising, they highlight
several challenges and limitations that demand further discussion.
One significant challenge we encountered was interpreting results,
particularly in cases where the physical impact of inferred threats
could not be directly realized due to the absence of a physical ICS or
comprehensive simulation data(Oil Treatment Plant). This shows
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how important it is to have access to a wide range of datasets when
conducting cross-domain threat inference. Finally, The defense
adaptation entailed adapting the parameters of existing mitigation
scripts. The mitigation was based on physical models of the control
processes. In practice, data-driven approaches have proven to be
more robust at anomaly detection [7]. However, end-to-end data-
driven approaches are difficult to adapt, given that the model is
finely tuned to the target ICS. Thus, future work can explore the
use of neurosymbolic programming [6] that leverages the power
of deep learning models while maintaining the benefits of sym-
bolic interfaces, e.g., to adapt parameters in a data-efficient manner
easily.

There are several critical areas for future work. End-to-end au-
tomation of the threat inference process and improving the scal-
ability of our approach are crucial next steps. Additionally, incor-
porating provenance analysis within the alignment module could
enhance inferred threats’ reliability and traceability. We also recog-
nize the need to expand our representation to include other critical
ICS components, such as Human-Machine Interface (HMI) and
Supervisory Control and Data Acquisition (SCADA).

Although our current approach does not adhere to a specific
language for defining safety properties, future research could ex-
plore how a grounded representation of safety properties in terms
of observable properties could enable more sophisticated reasoning
and improved adaptation of threats and defenses across different
domains. This could lead to more nuanced and context-aware threat
and defense inference mechanisms, further enhancing the practical
applicability of our framework in diverse ICS environments.

6 Conclusion

In this paper, we introduced OTTHREAT, a cyber-physical threat
ontology designed to map and infer ICS threats across physical
domains. We created a framework that enhances the detection
and mitigation of cross-physical-domain threats by integrating
cyber attack abstractions and safety properties into the Semantic
Sensor Network (SSN) ontology. We provided a proof-of-concept
evaluation of three different ICS systems with common sensor and
actuator abstractions targeted by known attacks. We discussed
future work focusing on the automation of information extraction
and the formalization of safety properties to facilitate cross-domain
threat mitigation adaptation.
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