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Abstract— Objective: To develop the first known deep
learning-based photoacoustic visual servoing system uti-
lizing point source localization and hybrid position-force
control to track catheter tips in three dimensions in
real-time. Methods: We integrated either object detection
or instance segmentation-based localization with hybrid
position-force control to create our novel system. Cardiac
catheter tips were then tracked across distances of 40 mm
in a plastisol phantom and 25-64 mm in an in vivo swine in
real-time in nine visual servoing trials total. Results: Object
detection-based localization identified the cardiac catheter
tip in 88.0-91.7% and 66.7-70.4% of phantom and in vivo
channel data frames, respectively. Instance segmentation
detection rates ranged 86.4-100.0% in vivo. These catheter
tips were tracked with errors as low as 0.5 mm in phantom
trials and 0.8 mm in the in vivo trials. The mean infer-
ence times were >145.3 ms and >516.3 ms with object
detection-based and instance segmentation-based point
source localization, respectively. Hybrid position-force con-
trol system enabled contact with the imaging surface dur-
ing >99.43% of each visual servoing trial. Conclusion: Our
novel deep learning-based photoacoustic visual servoing
system was successfully demonstrated. Object detection-
based localization operated with inference times that are
more suitable for real-time implementations while instance
segmentation had lower tracking errors. Significance: After
implementing suggested optimization modifications, our
novel system has the potential to track catheter tips, needle
tips, and other surgical tool tips in real-time during surgical
and interventional procedures.
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force control, imaging, instance segmentation, object de-
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[. INTRODUCTION

ODERN interventional procedures such as cardiac

catheterizations require real-time visual information to
successfully guide surgical tool tips toward targets of interest
inside the patient. Traditionally, this information is obtained
using medical imaging modalities such as fluoroscopy [1].
However, fluoroscopy exposes patients and operators to ion-
izing radiation [2], increasing risks of cancer [3] and other
adverse biological effects [4]. In addition, fluoroscopy does
not provide depth information, limiting the ability to localize
surgical tool tips in three dimensions with a single fluoroscopy
image. Fluoroscopy machines are also large, expensive, and
difficult to transport, limiting their ability to improve global
access to quality healthcare. Ultrasound imaging overcomes
these limitations with its low cost, portability, availability of
depth information, and absence of ionizing radiation. However,
ultrasound can fail to localize catheter tips in contact with
tissue [5], [6]. In addition, ultrasound imaging fails in acous-
tically challenging environments characterized by significant
acoustic clutter [7], sound scattering, and signal attenuation.

Photoacoustic imaging is an emerging imaging modality
based on the photoacoustic effect, which enables acoustic
propagation from an optical source (i.e., optical transmission
to nearby optical absorbers causes local thermal expansion and
generation of acoustic wave propagation). This modality offers
utility when a region or target of interest has a higher optical
absorption than the surrounding tissue (e.g., nerve visualiza-
tion, blood vessel detection, surgical tool tracking, or cancer
screening [8]). Potential applications of photoacoustic image
guidance in monitoring treatment progression in minimally
invasive interventional procedures include tool tracking in
spinal surgeries [9], [10], photoacoustic-guided teleoperative
robotic surgeries [11], [12], guidance of minimally invasive
neurosurgeries [13]-[15], tumor boundary delineation [16],
[17], large vessel tracking during liver procedures [18], and
monitoring the proximity of tools to critical areas of interest
during hysterectomies [19].

Photoacoustic imaging inherently benefits from reduced
acoustic signal attenuation and increased tissue selectivity
compared to ultrasound imaging [7], [20]. The reduction in
acoustic signal attenuation is attributed to the one-way travel
path of acoustic waves from optical sources (which may be
located at surgical tool tips [6]) to acoustic receivers, as
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opposed to the two-way acoustic travel (from an ultrasound
transducer to a tool tip and back) required with a single ultra-
sound transducer. While acoustic transmitters may be located
at tool tips [21], this addition does not allow clear ultrasound
signal distinction between the tool tip and surrounding tissue
without advanced signal processing. Conversely, the optical
attenuation encountered during photoacoustic imaging ensures
that surgical tool tips, when coupled with optical fibers, are the
brightest signals of interest in amplitude-based photoacoustic
images.

Previous demonstrations with an ex vivo blood vessel re-
vealed a photoacoustic imaging setup consisting of an optical
fiber housed in a catheter tip, with an externally placed
ultrasound transducer, can successfully visualize the catheter
tip in the presence of surrounding tissue [5]. This ability of
photoacoustic imaging was leveraged to design systems en-
abling the detection, localization, and autonomous tracking of
surgical tool tips in phantom, ex vivo, and in vivo environments
[51, [20], [22], [23]. These systems, collectively referred to as
photoacoustic visual servoing systems, can perform amplitude-
based segmentations of delay-and-sum beamformed images
to detect and localize photoacoustic point sources (e.g., from
needle and catheter tips), then provide the segmentations to
robotic control algorithms to center ultrasound transducers
above the identified point sources [5], [20], [22]. Despite
the advantages of photoacoustic over ultrasound imaging,
amplitude-based photoacoustic visual servoing systems have
three limitations. First, these systems are sensitive to reflection
artifacts (e.g., from nearby scattering structures such as bone),
which limits consistent maintenance of tool tips in the field-of-
view (FOV) of the transducer. Second, the lateral localization
performance of these amplitude-based systems are limited
by lateral resolution in beamformed images, which worsens
with increasing target depth. Third, elevation displacement
information is limited in individual beamformed images [24],
limiting the ability of amplitude-based approaches to estimate
three-dimensional surgical tool tip locations.

Deep learning-based approaches to photoacoustic-based sur-
gical tool tip tracking have the potential to overcome the
limitations of amplitude-based segmentation techniques. Pre-
vious work [25], [26] leveraged the dimensions of optical
fibers integrated with surgical tool tips, which are typically
smaller than the lateral and axial resolution of ultrasound
transducers, enabling tool tips to be modeled as point sources.
Using this model, Allman et al. [26] demonstrated a deep
learning-based approach to distinguish point sources from re-
flection artifacts directly from raw photoacoustic channel data,
highlighting robust lateral localization performance despite
the poor lateral resolution with increasing target depth. This
approach was then integrated with robotic control systems,
resulting in deep learning-based photoacoustic visual servoing
systems [27], [28] that were deployed to track needle tips in a
plastisol phantom and ex vivo chicken breast tissue with 55.3-
67.7% mean reductions in needle tip tracking errors relative
to that of an amplitude-based image segmentation approach
[27]. The images acquired in these environments contained
a reflection artifact forming a larger bright region than the
needle tip, causing misclassifications and failed detections

with the amplitude-based segmentation approach. The deep
learning approach was more robust to these misclassification
errors compared to the amplitude-based approach, improving
the failure rates by 60.6% [27]. While these visual servoing
systems correctly identified and tracked needle tips within the
ultrasound transducer FOV, localization of out-of-plane targets
was not possible. As a result, additional search algorithms
were required to find targets moving orthogonal to the imaging
plane.

To detect and localize photoacoustic targets in three di-
mensions (3D) using beamformed images, Wang et al. [29]
developed a 3D photoacoustic-based needle tip localization
system by autonomously scanning the elevation dimension of
the ultrasound transducer using a robotic arm. However, this
system required 40 frames to generate each 3D photoacoustic
image grid. With a 10 Hz laser pulse repetition frequency
(PRF), this requirement resulted in each 3D image grid re-
quiring 4 seconds to be generated (i.e., effective frame rate of
0.25 Hz).

To provide a computationally efficient, real-time alternative
to 3D point source localization, our group leveraged the
previously demonstrated point source model [26]-[28], [30] to
counterintuitively introduce two deep learning-based photoa-
coustic point source localization systems offering 3D location
estimates of catheter tips from a single two-dimensional frame
of raw photoacoustic channel data [24]. The first system used
an object detection-based approach, while the second system
employed an instance segmentation-based approach with a
theory-based gradient descent algorithm to improve localiza-
tion performance. Both systems were demonstrated to detect
and localize stationary catheter tips within and outside the
imaging plane in phantom and ex vivo environments, with the
instance segmentation-based system achieving mean elevation
localization errors of 1.13 and 1.23 mm, respectively, from raw
2D photoacoustic channel data frames. However, these demon-
strations were performed offline and did not include real-
time robot-assisted tracking of the catheter tips. In addition,
the improved performance of the instance segmentation-based
system was achieved by increasing the required inference time
due to the iterative gradient descent. Furthermore, prior visual
servoing systems [5], [20], [27], [28] did not account for
uneven surfaces, which caused the ultrasound transducer to
lose contact with the skin, resulting in failed visual servoing
attempts [5].

In this paper, we demonstrate deep learning-based 3D point
source localization approaches to track surgical tool tips in
real time during interventional procedures, with four novel
contributions. First, we design an instance segmentation-based
photoacoustic point source localization system with a time-
optimized gradient descent algorithm, named WaveSegNet-1,
to improve inference speed compared to our previous work
[24], which employed a method that we call WaveSegNet-2
herein. Second, we integrate WaveSegNet-1 with our previ-
ous object detection-based point source localization system
[24], named DetectionNet herein, adding hybrid position-
force control and additional logic to form a novel real-time
deep learning-based photoacoustic visual servoing system.
Third, we compare the tracking performance of our previous
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WaveSegNet-2-based point source localization system [24]
with our real-time DetectionNet-based photoacoustic point
source localization system (to demonstrate the advantages of
instance segmentation over object detection in the context of
photoacoustic-based target tracking) and with our real-time
WaveSegNet-1-based system (to demonstrate the importance
of selecting an appropriate gradient descent algorithm to accu-
rately track catheter tips using instance segmentation on raw
photoacoustic channel data frames). Finally, we provide results
from the first known in vivo deployment of DetectionNet and
WaveSegNet-1 in photoacoustic-based visual servoing, with
force control to maintain required imaging contact at all times.

The remainder of this article is organized as follows. Section
IT presents the architecture of our deep learning-based pho-
toacoustic visual servoing system and describes processes to
demonstrate and assess the performance of our system during
phantom and in vivo visual servoing trials. Section III reports
the results of the presented methods. Section IV discusses
the implications and future potential of our work. Section V
presents a summary of our major findings.

Il. MATERIALS AND METHODS
A. Visual Servoing System Overview

Our photoacoustic imaging system consisted of an Opotek
Phocus Mobile laser (Carlsbad, California, USA) with a PRF
of 10 Hz (750 nm wavelength, mean energy of 2.0 mJ per
pulse), connected to a 1 mm core-diameter optical fiber. The
other end of the optical fiber was inserted into a 7F outer-
diameter 60 cm long non-steerable catheter (Boston Scientific,
Marlborough, Massachusetts, USA) to form a fiber-catheter
pair with coincident tips [5]. To receive the photoacoustic
signals originating from the catheter tip, a Verasonics (Kirk-
land, Washington, USA) P4-2v ultrasound transducer with 64
elements and a sampling frequency of 11.88 MHz was inter-
faced to a Verasonics Vantage 128 ultrasound scanner. This
transducer was attached to the end effector of a URSe robotic
arm (Universal Robots, Odense, Denmark) via a custom 3D-
printed adapter mounted on a Gamma NET-FT force sensor
(ATT Industrial Automation, Apex, North Carolina, USA).

The software components of our deep learning-based pho-
toacoustic visual servoing system are summarized in Fig.
1. Each laser pulse triggered the acquisition of a raw ra-
diofrequency photoacoustic channel data frame of dimensions
64x926 pixels, corresponding to the number of transducer
elements (64) and the imaging depth (926, based on 120
mm depth, 11.88 MHz sampling frequency, and an assumed
sound speed of 1540 m/s). This channel data frame was then
input to our real-time deep learning-based photoacoustic point
source localization systems, which output the catheter tip
position (Section II-B). The generated point source location
estimates were the input to a multi-track linear Kalman filter
(MTLKF), which determined multiple possible point source
location candidates and output the most likely location of the
point source (Section II-C).

To maintain contact with the imaging surface, force sensor
readings were employed to estimate the contact force along
the axial dimension of the transducer [31]. The point source

location and contact force estimates were then input to a finite
state machine (FSM), which generated robot motion plans to
center the transducer above the catheter tip with the desired
contact force (Section II-D). The motion plans were then
executed by the robot and the cycle shown in Fig. 1 was
repeated with the next laser pulse. The software components of
the visual servoing system were implemented using the Robot
Operating System [32].

B. Photoacoustic Point Source Localization

We developed three deep learning-based systems (i.e., De-
tectionNet, WaveSegNet-1, and WaveSegNet-2) to identify
and localize photoacoustic point sources in raw photoacoustic
channel data frames. Similar to previous work [24], these deep
learning-based systems used algorithms belonging to the fam-
ily of region-based convolutional neural networks (R-CNN)
implemented in the Detectron2 platform [33]. These networks
were pre-trained on the ImageNet dataset [34] and fine-tuned
on custom datasets of point sources and reflection artifacts
simulated using the k-Wave MATLAB toolbox [35]. Each
dataset contained 16,000 channel data frames with network-
specific image preprocessing and annotation strategies. Each
network was fine-tuned with a batch size of four and a
base learning rate of 0.001. The visual servoing system was
designed to use either DetectionNet or WaveSegNet-1 in
real time, while WaveSegNet-2 was used offline to provide
a performance baseline. For each input channel data frame
at iteration k, the selected deep learning-based point source
localization system output N (k) detections. Each detection
consisted of a confidence score ranging 0 to 1 and an estimate
of the source location in the transducer frame U, given by

UE ) = [V ), Ve ).V W] )

where k>0, 0<i<N(k), and Yz; (k), Y4 (k), and Y3 (k)
are the lateral, elevation, and axial components, respectively,
of source location estimate ¢ at time instant k. Due to the
elevation symmetry of the received waveforms, the point
source localization systems were unable to distinguish between
positive and negative source elevation displacements in the
frame U. Therefore, the elevation displacement estimates were
constrained to Y j; (k) > 0.

DetectionNet utilized an object detection-based approach
to identify waveforms in the input channel data frames,
categorize the waveforms by type (i.e., source or artifact)
and elevation displacement rounded to the nearest millimeter
(e.g., “Source-1.0"), and construct bounding boxes centered
on the lateral and axial positions of the corresponding source
or artifact. DetectionNet consisted of a Faster R-CNN network
[36] with a ResNet-101 [37] feature extractor fine-tuned for
80 epochs on a simulated dataset of 16,000 bounding box
annotated channel data frames [24]. To enable DetectionNet
to generate bounding boxes outside the lateral dimensions of
the transducer (i.e., £9.6 mm), each input channel data frame
was zero-padded to lateral and axial dimensions of 566 pixels
and 926 pixels, respectively, corresponding to the phased array
transducer beamformed data FOV dimensions of 169.7 mm
and 120 mm, respectively (i.e., after scan conversion).
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Fig. 1. Summary of deep learning-based photoacoustic visual servoing system. “DetectionNet” is an object detection-based photoacoustic point

source localization system, while “WaveSegNet-1” utilizes instance segmentation followed by gradient descent to estimate point source locations.
Both systems receive channel data frames as inputs and provide raw three-dimensional point source location estimates as outputs.

WaveSegNet-1 and WaveSegNet-2 utilized an instance
segmentation-based approach followed by iterative gradient
descent to segment waveforms in the input photoacoustic
channel data frames, categorize the waveforms as correspond-
ing to sources or artifacts, and estimate 3D source locations
in the transducer frame U [24]. The instance segmentation
component forming the first stage of WaveSegNet-1 and
WaveSegNet-2 consisted of a Mask R-CNN network [38]
with a ResNet-101 feature extractor [37] fine-tuned for 20
epochs on a simulated dataset of 16,000 segmentation mask
annotated channel data frames [24]. To improve segmentation
performance, the input channel data frames were laterally
upsampled to 256 pixels before being input to the network
[24]. The Mask R-CNN network output segmentations each
consisting of the predicted object type (i.e., sources or arti-
facts), a confidence score ranging O to 1, and a segmentation
mask corresponding to the waveform. For each waveform
corresponding to the source class, the peak of the segmented
waveform was used to obtain the initial estimates of the lateral
and axial positions of the source. The initial estimates of the
elevation position, sound speed, and wave thickness were set
to the values reported in Table I. These initial estimates and
the segmented waveform were provided to an iterative gradient
descent algorithm, which ran for 128 iterations with the output
of each iteration provided as an input to the next. WaveSegNet-
1 used the Gauss Newton algorithm [39] which considered
first-order gradient terms, while WaveSegNet-2 used Newton’s
method [40], which considered first and second-order gradi-
ent terms. To compensate for the inaccuracies arising from
neglecting second-order gradient terms in WaveSegNet-1, we

TABLE |
INITIAL, MINIMUM, AND MAXIMUM VALUES OF SOURCE AND MEDIUM
PROPERTIES ESTIMATED USING GRADIENT DESCENT IN SECOND STAGE
OF WAVESEGNET-1

Parameter Initial Minimum Maximum
Lateral Position [mm)] - -18.8 18.8
Elevation Position [mm] 0 0 10
Axial Position [mm] - 20 100
Sound Speed [m/s] 1540 1440 1640
Wave Thickness [mm] 0.5 0.3 0.7

saturated the outputs of each iteration to the maximum and
minimum values provided in Table I. These values form the
limits of the simulated parameters used to train the Mask R-
CNN network within WaveSegNet-1 (such saturation was not
required for WaveSegNet-2 due to the improved gradient de-
scent design compared to WaveSegNet-1). The source location
output by the final iteration of the gradient descent algorithm
was retained as the estimate U7 (k) for the given source
waveform. To optimize the achievable inference times of
WaveSegNet-1 and WaveSegNet-2, we directly implemented
the corresponding gradient descent algorithms in PyTorch [41]
rather than using the automatic gradient computation facility
provided with the PyTorch library.

To account for the possibility of negative elevation displace-
ments in frame U, the N (k) point source location estimates
obtained in Eq. (1) were reflected about the imaging plane of
the transducer to obtain N (k) additional estimates given by

T
ey () = Ve k), =g (0), V2 0] @
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where 0<i< N (k). The totality of 2N (k) point source location
estimates were then transformed from the transducer frame U
to the robot base frame B as

[ Bfil(m } T [ Ufil(k) } 7 3)

where 0<i<2N (k) and Ty (k) is the homogeneous trans-
form from the transducer frame U to the robot base frame B
at time instant k.

C. Multi-Track Linear Kalman Filter

Filtering (i.e., with MTLKF [42], [43]) was implemented
to identify the correct point source location from the 2N (k)
estimates obtained in Section II-B. This MTLKF consisted
of M (k) mutually independent linear Kalman filters [44] or
tracks. Each track maintained the position and velocity of a
source candidate given by

B_'.
%5 ) = | o2 0 ). @

where 0<i<M (k), 55, (k|k) is the state of track i at time
instant k, and Z; (k|k) and P, (k|k) are the updated source
position and velocity estimates, respectively, of source candi-
date ¢ at time instant k in frame B. Each track also maintained
the state covariance matrix P; (k|k). At the start of time instant
k+1, each track first predicted the updated state ©5; (k + 1|k),
given by

B3 (k+1|k) = AP35, (k|k), (5)
where A is the transition matrix, given by
| I3 Atls
A= [ 05 Iy } . (6)

Here, I3 is an identity matrix of size three, O3 is a 3x3
matrix of zeroes, and At is the duration of time between time
instants k£ and k 4 1. Each track also estimated the updated
state covariance matrix P; (k + 1|k), the measurement predic-
tion Z; (k + 1|k), and the measurement prediction covariance
S; (k+ 1) given by

P, (k+1|k) = (A[P; (k|k)] AT) + Q, (7
7 (k+1|k) = H 25, (k + 1|k), (8)

and
Si(k+1)= (H[P;(k+1k)]H") + R, 9)

respectively, where () is the state transition noise covariance, R
is the measurement noise covariance, and H is the observation
matrix given by

H=[1I 05]. (10)

Each track, ¢, was then associated with point source location
estimate, j, obtained in Section II-B satisfying the conditions

min (11)
0<I<2N (k+1),
di(k+1)<11.4

j=arg dy (k+1),

where d;; (k + 1) is the measurement prediction distance given
by

dig (k+1) = [vg (k+1)k)])7 1S5 (k+ D] v (k + 1]k)
(12)
and
va(k+1k) =28 (k+1) -z (k+1k).  (13)

The threshold of 11.4 corresponded to a 99% likelihood that
the source location estimate U (k4 1) could be obtained
from a point source located at “7; (k + 1|k). Multiple tracks
associated with the same measurement were merged. Each
track associated with a measurement was then updated to
obtain

B (k+1k+1) =
Bg(k+10k) + Wi (k+ 1) vy (k+1]k), (14)

and

P (k+1k+1) =P (k+1]k)
— Wi (k4+1)S; (k+1)[W; (k+ 1], (15)
where

Wi(k+1)=P (k+1k)HT[S; (k+1)]". (16)

Tracks not associated with a measurement for three consec-
utive time instants were deleted. The remaining unassociated
tracks were then updated as

B (k+1k+1) =25 (k+1Jk), (17)

and

Pi(k+1lk+1) =P (k+1]k). (18)

Finally, each source location estimate without an associated
track was used to generate a new track.

If the MTLKF contained at least one track at the end of
time instant k + 1, then the MTLKF output #, (k +1) at
time instant k£ + 1 was computed as

[ Uz, (k+1)

1

B
}:UTB(IH—l) xm(k+11|k+1)}7

(19)
where

Vg, (k1) = [V (k4 1), 75, (k4 1), 72, (4 1)]
(20)
YTy (k4 1) is the homogeneous transform from frame B to
frame U at time instant k+ 1, and m is the index of the longest
continuously running track.

D. Finite State Machine for Robotic Control

Table II describes the six states forming the FSM used in
our visual servoing system. The FSM prioritized maintaining
contact with the imaging surface, measured by the axial
component Y F',, of the estimated force in frame U If the value
of UF » reduced below 0.5 N, the FSM entered the No Contact
state and the transducer was translated vertically downward
toward the imaging surface. In the remaining states listed in
Table II, the robot translated the transducer along the axial
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Fig. 2. Rectangular ranges of lateral and elevation positions of point

sources detectable using a transducer (a) centered on frame Ui and
(b) rotated by an angle 6 about the axial dimension to frame Us. This
rotation brings a point source at a fixed location .S from (a) outside to (b)
inside the region of detectable positions.

dimension to maintain the contact force within a deadband
ranging 0.5 N to 2.0 N. This deadband was implemented to
minimize the vertical transducer motion required to meet our
goal of maintaining physical contact between the transducer
and the imaging surface. With the desired contact force
maintained, if the MTLKF did not output a valid point source
location estimate U, (k) at time instant k, then the FSM
entered the Search state. DetectionNet, WaveSegNet-1, and
WaveSegNet-2 were able to detect point sources with lateral
and elevation positions ranging -18.8 mm to 18.8 mm and -10
mm to 10 mm, respectively, as shown by the gray rectangle
in Fig. 2(a). The lateral and elevation displacements of the
point source from the center of the transducer were expected
to be small during the visual servoing process. The Search
state leveraged this expectation, rotating the transducer about
the axial dimension (as it was translated to maintain contact
with the surface) to bring the point source within the region
of detectable positions, as shown in Fig. 2(b).

In the event of a valid source location estimate from the
MTLKEF, we relied on two separate strategies to center the
point source in the lateral and elevation dimensions. The
Center Lateral state translated the transducer along the lateral
dimension to maintain the point source within 1 mm of
the transducer axis. This strategy relied on the low lateral
localization errors demonstrated with multiple deep learning-
based photoacoustic point source localization systems across
phantom, ex vivo, and in vivo environments [24], [26], [30]. To
resolve the elevation symmetry about the transducer imaging
plane, the Center Elevation state rotated the transducer about

the axial dimension to reduce the elevation displacement of
the point source (relative to the elevation center of the trans-
ducer), at the cost of increased lateral displacement (relative
to the lateral center of the transducer). The resulting lateral
displacement was corrected by transitioning back to the Center
Lateral state until the lateral displacement was less than 1 mm.
This strategy enabled elevation symmetry compensation and
minimized the elevation localization errors observed in our
previous work [24]. These rotations of the transducer brought
the point source within 1 mm of the imaging plane with
minimal deviation from the original trajectory. The transducer
was not translated in the lateral and elevation dimensions
during the Centering state (i.e., there was no motion if the
target was not completely at the lateral or elevation center of
the image), prioritizing consistent visualization over accurate
centering.

E. Visual Servoing Applied to Plastisol Phantom

To characterize the detection, tracking, and contact perfor-
mance of our visual servoing system, the fiber-catheter pair
was inserted into an 83 mm-radius hemispherical phantom
at a depth of approximately 30 mm as shown in Fig. 3(a).
Two checkpoints separated by a distance of 40 mm were
selected along the trajectory of the fiber-catheter pair within
the phantom. These checkpoints were marked on the catheter
at the insertion point into the phantom. With the fiber-catheter
pair positioned at the first checkpoint, the transducer was
placed in contact with the phantom. To center the transducer
above the catheter tip in the lateral and elevation dimensions,
the lateral dimension of the transducer was aligned with the
catheter, as shown in Fig. 3(a). The robot translated the
transducer along its lateral dimension until the peak of the
photoacoustic waveform corresponding to the catheter tip was
centered in the channel data. To center the catheter tip in the
elevation dimension of the transducer, the robot first rotated
the transducer by 90 degrees about its axial dimension, then
translated the transducer along its lateral dimension until the
corresponding waveform was laterally centered in the signal,
followed by another rotation by 90 degrees about the axial
dimension of the transducer to return to the original alignment
between the imaging plane and catheter, with the catheter tip
now centered in both the lateral and elevation dimensions of
the transducer.

Once the transducer was centered above the catheter tip, the
visual servoing system was engaged, and the fiber-catheter pair
was manually translated to the second checkpoint. Once the

TABLE Il
NAME, ENTRY CONDITIONS, AND TRANSDUCER MOTION ASSOCIATED WITH EACH STATE IN THE FINITE STATE MACHINE

State Name Contgct Force szli.d Latel;aAl Position Elevaltji?n Position Transducer Motion
F, Position |V, (K)| |V (K)|

Initialize - - - - Remain stationary
No Contact < 05N - - - Move vertically downward
Search >0.5N No - - Rotate about and translate along axial dimension
Center Lateral >0.5N Yes > 1 mm - Translate along lateral and axial dimensions
Center Elevation >0.5N Yes < 1 mm > 1 mm Rotate about and translate along axial dimension
Centered >0.5N Yes < 1 mm < 1 mm Translate along axial dimension
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Fig. 3. Photographs of (a) phantom and (b) in vivo experimental setups
to characterize system performance. See Supplementary Video 1 for
motion of transducer relative to catheter in vivo.

transducer was autonomously centered above the catheter tip
at the second checkpoint, the visual servoing system was dis-
engaged. We recorded raw photoacoustic channel data frames,
point source localization system outputs, MTLKF outputs,
processed force readings, and robot kinematic information at
each instant of time during the visual servoing trial. We con-
ducted a total of five visual servoing trials in the phantom with
DetectionNet as the selected real-time point source localization
system, as noted in Table III. As WaveSegNet-1 was unable
to detect the catheter tip in the phantom across multiple trials,
we are unable to report phantom results with this approach.

F. In Vivo Demonstration

To demonstrate the viability of our visual servoing system
in an in vivo setting, we performed a catheterization procedure
on an adult female Yorkshire swine weighing 32.2 kg. After
the swine was fully anesthetized with isoflurane, a 9F vascular
sheath was placed in the right femoral vein. The fiber-catheter
pair was inserted into this sheath and advanced into the
IVC. Two checkpoints were selected within the IVC using a
General Electric (Boston, Massachusetts, USA) OEC 9800 C-
arm fluoroscopy system. These two checkpoints were marked
in two places: (1) on the skin of the swine and (2) at the
insertion point of catheter in the vascular sheath. The catheter
tip was manually translated to the first checkpoint within the
IVC (using the mark on the catheter). The transducer was
placed in contact with the abdominal surface and centered
on the first skin checkpoint, with the imaging plane aligned
with the intended trajectory of the catheter tip. Real-time
ultrasound imaging was used to confirm that the transducer
was centered in the elevation dimension above the catheter tip,
with robotic translations performed to maximize the amplitude
of the catheter tip signal in the ultrasound images.

The visual servoing system was engaged and the catheter
was manually translated to the second checkpoint in an ap-
proximately linear path at depths ranging approximately 63
mm to 95 mm from the skin surface. The robot was allowed

TABLE Il
REAL-TIME POINT SOURCE LOCALIZATION SYSTEMS AND
CORRESPONDING GROUND TRUTH DISTANCES TRAVELED BY CATHETER
TIP DURING EACH PHANTOM OR in vivo VISUAL SERVOING TRIAL

Trial Number Real-Time System Distance [mm]

Phantom Trial 1 DetectionNet 40
Phantom Trial 2 DetectionNet 40
Phantom Trial 3 DetectionNet 40
Phantom Trial 4 DetectionNet 40
Phantom Trial 5 DetectionNet 40
In Vivo Trial 1 DetectionNet 25
In Vivo Trial 2 DetectionNet 64
In Vivo Trial 3 WaveSegNet-1 38
In Vivo Trial 4 WaveSegNet-1 38

to autonomously move the transducer to follow the motion
of the catheter tip. Once the transducer was centered above
the catheter tip at the second checkpoint, the visual servo-
ing system was disengaged. We recorded raw photoacoustic
channel data frames, real-time point source localization system
outputs, MTLKF outputs, processed force readings, and robot
kinematic information at each instant of time during the visual
servoing trial. We conducted a total of four visual servoing
trials with the catheter tip manually translated within the IVC
with either DetectionNet or WaveSegNet-1 as the selected real-
time point source localization system. The total travel distance
(i.e., distance between the catheter checkpoints) per trial per
point source localization system are listed in Table III. This
study was approved by the Johns Hopkins University Animal
Care and Use Committee.

G. Performance Characterization and Comparison with
WaveSegNet-2

To compare the performance of the real-time point source
localization systems DetectionNet and WaveSegNet-1 (as
noted in Table III) with the more computationally expen-
sive WaveSegNet-2, each channel data frame acquired during
the real-time visual servoing trials (Sections II-E and II-F)
was processed offline using WaveSegNet-2. The outputs of
WaveSegNet-2 were synchronized with the real-time photoa-
coustic point source localization system outputs and robot
kinematic information obtained during each visual servoing
trial. Detection, localization, tracking, and contact perfor-
mance were characterized.

To characterize detection performance, each detection or
segmentation output was defined as a true positive if: (1)
the confidence score of the detection was >0.5, and (2) the
axial position of the detection was within the ranges 25-
35 mm and 63-95 mm in the phantom and in vivo data,
respectively. The confidence score threshold of 0.5 was chosen
to minimize the rate of missed detections, assuming that the
corresponding increase in false positives will be filtered by
the MTLKF. The axial position range for the phantom data
accommodated the hemispherical shape of the phantom, while
the axial position range for the in vivo data is based on
the depth information in Section II-F. We did not require
additional filtering of true positive detections in the lateral
and elevation dimensions because the Faster R-CNN network
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forming DetectionNet and the Mask R-CNN network forming
the first stage of WaveSegNet-1 and WaveSegNet-2 contained
layers acting on potential regions of interest (ROI) named ROI-
Pool and ROI-Align, respectively, designed to merge candidate
detections or segmentations with sufficient overlap [36], [38].
These layers ensured that a given object (i.e., photoacoustic
waveform) corresponded to at most one network output. In
addition, both networks were fine-tuned with bounding box
annotations spanning the width of the channel data in each
image [24]. Therefore, source candidates corresponding to
the same axial position but with different lateral or elevation
position components were combined prior to being output by
the networks. Detections which did not satisfy one or both
of the criteria above were defined as false positives. The
axial component of each initial position estimate was used to
evaluate the second criterion to ensure that the detection per-
formance of WaveSegNet-1 and WaveSegNet-2 was assessed
independently of gradient descent errors. Based on these true
and false positive definitions, the precision, recall, and F1
scores [45] were reported per system per visual servoing trial,
using the acquired channel data frames.

To characterize localization performance, the elevation and
axial location estimates corresponding to true positive de-
tections in the transducer frame U were assessed. The cor-
responding lateral position estimates in the frame U were
ignored for this assessment, because the motion of the catheter
tip was primarily along the lateral transducer dimension.
Therefore, variations in lateral position estimates were more
reflective of tracking performance (see next paragraph), rather
than localization performance. The catheter tip trajectories in
the phantom and in vivo trials corresponding to the lowest
F1 scores achieved by DetectionNet and WaveSegNet-2 were
reconstructed using location estimates from the robot base
frame B. For ease of plotting, these trajectories were translated
to a frame B’ parallel to the original frame B. The origin of
B’ in each visual servoing trial coincided with the transducer
center at the first checkpoint of the trial.

To characterize tracking performance, the distance traveled
by the robot and the ground truth distance traveled by the
catheter were compared per visual servoing trial. The absolute
difference between these distances is the catheter tip tracking
error. In addition, the number of channel data frames with at
least one MTLKF track with a valid point source location

candidate were counted, ignoring frames which were not
processed by the real-time point source localization systems.

To validate our tracking performance characterizations, we
confirmed catheter tip positions with fluoroscopic images be-
fore and after each visual servoing trial using the fluoroscopy
system noted in Section II-F. In addition, the fluoroscopic
image acquired after In Vivo Trial 2, corresponding to the
largest travel distance of the catheter (Table III), was com-
pared with the corresponding catheter tip location estimates
of WaveSegNet-2. To perform this comparison, a subset of
the catheter tip estimates from WaveSegNet-2 (i.e., 10% of
the total) and the catheter appearance in the fluoroscopy image
were used to estimate the transformation between the 3D robot
base frame, B, and the 2D fluoroscopy frame, F', using Horn’s
quaternion-based method [46]. The rotational component of
the estimated transform was limited to the axis of B most
aligned with the axial dimension of the transducer, considering
the single x-ray projection of the anterior-posterior view,
resulting in F' primarily aligning with the lateral-elevation
transducer plane. This transform was then applied to the full
set of WaveSegNet-2 outputs for In Vivo Trial 2. The root
mean square error (RMSE), median error, and range of errors
between each output of WaveSegNet-2 transformed to frame
F' and the corresponding closest point along the catheter in the
fluoroscopy image were reported as quantitative performance
metrics.

To characterize contact performance, the component of the
measured force along the axial dimension of the transducer
was determined. In addition, the contact time duration was
measured per visual servoing trial (indicated by non-negative
contact forces along the axial dimension of the transducer).

A. Validation of Catheter Tip as a Point Source

RESULTS

Fig. 4 shows DAS-beamformed simulated (as described in
Section II-B) and experimental photoacoustic images to vali-
date the point source model of our visual servoing approach.
In Fig. 4(a), the simulated 1 mm-diameter photoacoustic
source was located at a depth of 76.2 mm. In Fig. 4(b),
the tip of the fiber-catheter pair was inserted in the swine
IVC at Checkpoint 1 of In Vivo Trial 4. The targets in both
images are qualitatively similar, which supports the rationale

TABLE IV
RECALL, PRECISION, AND F1 SCORES OF REAL-TIME (I.E., DETECTIONNET OR WAVESEGNET-1, AS INDICATED IN TABLE |lI) AND OFFLINE (I.E.,
WAVESEGNET-2) AXIAL POINT SOURCE DETECTION PERFORMANCE ACHIEVED DURING PHANTOM AND IN VIVO VISUAL SERVOING TRIALS

Trial Number Real. Time Omi.“e

Recall Precision ~ F1 Score Recall Precision  F1 Score
Phantom Trial 1 90.5% 60.7% 72.7% 70.0% 69.7% 69.8%
Phantom Trial 2 94.2% 68.5% 79.3% 69.6% 87.9% 77.7%
Phantom Trial 3 89.1% 76.2% 82.1% 78.5% 88.0% 83.0%
Phantom Trial 4 91.7% 69.6% 79.2% 82.0% 83.7% 82.8%
Phantom Trial 5 88.0% 74.9% 80.9% 65.5% 90.0% 75.8%
In Vivo Trial 1 70.4% 96.2% 81.3% 100.0% 100.0% 100.0%
In Vivo Trial 2 66.7% 97.5% 79.2% 86.4% 98.8% 92.2%
In Vivo Trial 3 100.0% 100.0% 100.0% 100.0% 97.7% 98.8%
In Vivo Trial 4 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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. B phantom and in vivo visual servoing trials. In the elevation
aE 5 dimension (Figs. 5(a) and 5(b)), DetectionNet outputs me-
%g 33 dian elevation displacement estimates ranging 6-7 mm and
_;;;" = Hf 7-10 mm of the catheter tip in the phantom and in vivo
a s trials, respectively. WaveSegNet-1 estimated median elevation
o — s displacements of 10 mm during In Vivo Trials 3 and 4.

Lateral [mm] In comparison, WaveSegNet-2 consistently output reduced
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Fig. 4. Delay-and-sum beamformed photoacoustic images of (a) a
simulated 1 mm-diameter point source and (b) the tip of the fiber-
catheter pair in an in vivo swine inferior vena cava, with corresponding
raw photoacoustic channel data frames in (c) and (d), respectively.

provided in Section I and in previous work [5], [20], [22]
to model the catheter tip as a photoacoustic point source. A
similar photoacoustic point source observation was previously
demonstrated with a catheter-fiber pair inserted in the plastisol
phantom (e.g., see Fig. 13 in [24] ). The channel data corre-
sponding to the example simulated and in vivo beamformed
images herein are presented in Figs. 4(c) and 4(d), respectively,
representing example inputs to DetectionNet, WaveSegNet-1,
and WaveSegNet-2. See Supplementary Video 1 for example
network outputs from channel data, overlaid on beamformed
images, from In Vivo Trial 4.

B. Detection Performance, Localization Performance,
and Efficiency of Point Source Localization Systems

Table IV reports the recall, precision, and F1 scores per
network per phantom or in vivo visual servoing trial. As
DetectionNet, WaveSegNet-1, and WaveSegNet-2 were each
fine-tuned with bounding boxes spanning the width of the
photoacoustic channel data and multiple network candidates at
a given target depth were merged prior to our filtering process,
this performance primarily represents performance in the axial
dimension. DetectionNet achieved comparable F1 scores in
the phantom and in vivo trials (ranging 72.7-82.1% and 79.2-
81.3%, respectively). These F1 scores corresponded to high
recall rates (i.e., >88.0%) in the phantom trials and high
precision rates (i.e., >96.2%) in the in vivo trials. In the phan-
tom visual servoing trials, WaveSegNet-2 achieved comparable
F1 scores to DetectionNet (ranging 69.8-83.0%). However,
WaveSegNet-1 and WaveSegNet-2 outperformed DetectionNet
during the in vivo trials with F1 scores ranging 92.2-100.0%.
These results demonstrate the dependence of the detection
performance of our deep learning-based photoacoustic point
source localization systems on the imaging environment used
to acquire raw photoacoustic channel data.

Fig. 5 shows box-and-whisker plots of the elevation and

elevation displacement estimates compared to DetectionNet
and WaveSegNet-1 with median values ranging 0.0-0.1 mm in
the phantom and in vivo environments. Elevation localization
errors can be determined from the distance between the
elevation position estimates in Figs. 5(a) and 5(b) and the
transducer center at an elevation position of zero. Similarly,
axial localization error can be determined from the distance
between the axial position estimates in Figs. 5(c) and 5(d) and
the axial depths reported in Sections II-E and II-F (i.e., 30 mm
for the phantom and 63-95 mm for the in vivo trials).

In the axial dimension of the phantom trials (Fig. 5(c)),
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Fig. 5. (a,b) Elevation and (c,d) axial position estimates of the catheter

tip output by photoacoustic point source localization systems from
(a,c) phantom and (b,d) in vivo visual servoing trials. The notches,
box heights, whiskers, and dots denote the medians, the interquartile
ranges, 1.5 times the interquartile ranges, and outliers, respectively.

TABLE V
RANGES OF VERTICAL (I.E., AXIAL) TRANSDUCER MOTION TO MAINTAIN
DESIRED CONTACT FORCE DURING VISUAL SERVOING TRIALS

Trial Number Vertical Motion Range (mm)

Phantom Trial 1 2.25
Phantom Trial 2 1.70
Phantom Trial 3 1.20
Phantom Trial 4 1.26
Phantom Trial 5 1.23
In Vivo Trial 1 3.69
In Vivo Trial 2 13.19
In Vivo Trial 3 7.48
In Vivo Trial 4 5.53
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Fig. 6. Inference times achieved with (a) DetectionNet and

WaveSegNet-2 in phantom visual servoing trials and (b) DetectionNet,
WaveSegNet-1, and WaveSegNet-2 during in vivo trials. Error bars show
=+ one standard deviation.

DetectionNet and WaveSegNet-2 output similar axial position
estimates of the catheter tip in the phantom, with median
values ranging 29.0-29.6 mm and 29.7-30.4 mm, respectively,
and interquartile ranges ranging 0.9-1.8 mm and 1.0-1.8 mm,
respectively. In the axial dimension of In Vivo Trials 1 and
2 (Fig. 5(d)), DetectionNet and WaveSegNet-2 output com-
parable axial location estimates with median values ranging
62.7-74.6 mm and 62.5-76.1 mm, respectively (interquartile
ranges ranging 1.2-6.8 mm and 2.4-5.0 mm, respectively). The
larger interquartile ranges relative to the phantom trials were
partially caused by the larger vertical motion of the transducer
to maintain the desired contact force, which is reported in
Table V. However, the even larger interquartile ranges of in
axial position estimates obtained with WaveSegNet-1 during In
Vivo Trials 3 and 4 (i.e., 30.0 mm and 14.8 mm, respectively)
relative to those of WaveSegNet-2 (i.e., 6.5 mm and 3.8
mm, respectively, for the same in vivo trials) are not due
to differences in transducer motion. Instead, these results
demonstrate the improved axial localization accuracy that can
be achieved by WaveSegNet-2 relative to WaveSegNet-1.

Fig. 6 shows the mean + one standard deviation of inference
times achieved by the photoacoustic point source localization
systems in each of the phantom and in vivo visual servoing
trials. DetectionNet consistently achieved the lowest mean
inference times among the three systems across the phantom
and in vivo environments, with mean inference times ranging
145.3 ms to 158.0 ms. WaveSegNet-1 achieved mean inference
times of 522.7 ms and 516.3 ms in In Vivo Trials 3 and 4,
respectively. WaveSegNet-2 performed inference slower than
both DetectionNet and WaveSegNet-1 with mean inference
times ranging 805.0 ms to 1103.8 ms across the phantom and
in vivo visual servoing trials. In addition, DetectionNet and
WaveSegNet-1 achieved comparably lower standard deviations
of inference times (ranging 7.3 ms to 14.0 ms and 32.5 ms
to 32.9 ms, respectively), relative to that of WaveSegNet-2
(i.e., 562.3 ms to 802.8 ms and 2.7 ms to 360.7 ms during
the phantom and in vivo trials, respectively). Hence, there are
increased computational costs associated with WaveSegNet-2.

C. Lateral Tracking Performance

Fig. 7 shows the reconstructed trajectories of the transducer
and catheter tip as estimated by the real-time (i.e., Detec-
tionNet and WaveSegNet-1) and offline (i.e., WaveSegNet-2)
photoacoustic point source localization systems in the fixed
frame B’ defined in Section II-E during Phantom Trial 1, In
Vivo Trial 2, and In Vivo Trial 3, which correspond to the
lowest F1 scores achieved by DetectionNet and WaveSegNet-2
(based on Tables III and IV). In Fig. 7(a), the transducer moved
in a curved path following the hemispherical surface of the
phantom, while the catheter tip moved in a straight line inside
the phantom. This linear motion of the catheter was captured
by DetectionNet with a small number of outliers, as shown by
the blue dots in Fig. 7(a). The catheter trajectory reconstructed
using WaveSegNet-2 contained a larger number of outliers
from the linear trajectory compared to DetectionNet, as shown
by the yellow dots in Fig. 7(a).

In Figs. 7(b) and (c), the height of the transducer increased
with the insertion of the catheter tip, following the abdominal
surface of the swine. However, the catheter tip continued
moving along an approximately linear trajectory within the
IVC. DetectionNet produced variations in the axial location
estimates of the catheter tip, which affecting the reconstructed
trajectory (Fig. 7(b)), while WaveSegNet-1 was unable to
capture the linear motion of the catheter (Fig. 7(c)). In
comparison, WaveSegNet-2 successfully reconstructed linear
trajectories in both cases. These results demonstrate the abil-
ity of WaveSegNet-2 to accurately track the trajectory of a
catheter tip during the in vivo visual servoing trials.

Table VI reports real-time tracking errors, based on the
difference between the ground truth start and end positions
in the x dimension, which are plotted in Fig. 7, and the
tracked start and end positions for each trial. Comparably
low tracking errors were achieved with DetectionNet during
the phantom and in vivo trials (i.e., 0.5-3.6 mm and 2.2-3.2
mm, respectively). Although Fig. 7 shows large deviations in
the axial dimension with WaveSegNet-1, and Fig. 5 shows
large deviations in the axial and elevation dimensions with
WaveSegNet-1, one benefit of WaveSegNet-1 is the reduced
lateral tracking errors during the real-time in vivo trials in
Table VI (i.e., 0.8-1.3 mm with In Vivo Trials 3-4), when
compared to the tracking errors achieved with DetectionNet

TABLE VI
REAL-TIME LATERAL CATHETER TIP TRACKING ERRORS ACHIEVED
WITH DETECTIONNET OR WAVESEGNET-1 DURING PHANTOM AND IN
VIVO VISUAL SERVOING TRIALS, AS INDICATED IN TABLE IlI

Trial Number Tracking Error (mm)

Phantom Trial 1 0.5
Phantom Trial 2 2.7
Phantom Trial 3 3.6
Phantom Trial 4 3.0
Phantom Trial 5 3.1
In Vivo Trial 1 2.2
In Vivo Trial 2 3.2
In Vivo Trial 3 0.8
In Vivo Trial 4 1.3
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Fig. 7. Transducer and catheter tip position during (a) Phantom Trial 1, (b) /n Vivo Trial 2, and (c) /n Vivo Trial 3, as noted in Section II-G. The real-
time photoacoustic point source localization systems DetectionNet and WaveSegNet-1 are compared with corresponding offline results obtained
with WaveSegNet-2. The + and > symbols indicate the start and end, respectively, of ground truth travel in the x dimension, based on checkpoints

marked on the inserted catheter (described in Section II-F).

WaveSegNet-2 =——»

Fig. 8.
2 within inferior vena cava with catheter tip location estimates from
WaveSegNet-2 superimposed. Clamp forceps rested on the chest to
externally mark the skin with the catheter tip location at Checkpoint 2.

Fluoroscopic image of catheter acquired after In Vivo Trial

(i.e., 2.2-3.2 mm with In Vivo Trials 1-2).

Fig. 8 shows the catheter tip location estimates output
by WaveSegNet-2 corresponding to In Vivo Trial 2, overlaid
on the fluoroscopy image of the catheter acquired after In
Vivo Trial 2, with starting and ending positions marked by
Checkpoints 1 and 2, respectively. The RMSE between each
output of WaveSegNet-2 in the fluoroscopy reference frame
F' and the corresponding closest point along the fluoroscopy-
based catheter trajectory was 1.1 mm. The median error was
0.5 mm, and the error range was 0-7.0 mm, which are both
larger than the 0.1 mm median and 0-6 mm error range
between 0 mm elevation location and the datapoints for In
Vivo Trial 2 in Fig. 5(b), indicating better accuracy with the
methods used to obtain the results presented in Figs. 5 and 7.

Fig. 9 shows the percentage of time during which the output
state of the MTLKF was tracking or not during each visual
servoing trial, which ultimately measures tracking success or
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Fig. 9. Tracking success and failure rates of the MTLKF during (a)
phantom and (b) in vivo visual servoing trials.

failure rates, respectively. In Fig. 9(a), the catheter tip was
successfully tracked (i.e., MTLKF maintained at least one
track associated with a point source location estimate from
within the previous three time instants) for time durations
ranging 84.5% to 93.6% of each total phantom visual servoing
trial length. The corresponding tracking rates were >75.4%
during the in vivo trials (Fig. 9(b)). These results demonstrate
the ability of the MTLKF to utilize the outputs of the real-
time deep learning-based point source localization systems to
consistently identify the position of the catheter tip.

D. Contact Performance

Fig. 10 shows box-and-whisker plots of the contact force
during the phantom and in vivo trials. In Fig. 10(a), our
hybrid position-force control-based visual servoing system
maintained contact 100.0% of the time during each phantom
trial (median and interquartile ranges of contact forces ranging
1.38 N to 1.51 N and 0.27 N to 0.32 N, respectively). In
Fig. 10(b), our system maintained contact with the abdomen
of the swine (i.e., positive force readings) between 99.43%
and 100.0% of the total time duration of each trial (median
and interquartile ranges of contact forces ranging 1.29 N to
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Fig. 10.  Contact forces during (a) phantom and (b) in vivo visual

servoing trials. The horizontal red lines, box heights, whiskers, and
red dots denote the medians, the interquartile ranges, 1.5 times the
interquartile ranges, and outliers, respectively.

1.43 N and 0.48 N to 0.63 N, respectively). The contact loss
(which only occurred during In Vivo Trial 2) and the increased
interquartile ranges of forces in the in vivo trials compared to
the phantom trials were caused by respiratory motion, resulting
in the robot moving the transducer to reacquire contact and the
initiation of the search state of the FSM if catheter tip motion
resided outside the transducer FOV (Table II). Our force
control implementation successfully enabled the transducer
to mostly remain in contact to provide necessary real-time
photoacoustic data of the catheter tip.

IV. DISCUSSION

This paper is the first to present a real-time deep learning-
based photoacoustic visual servoing system utilizing both
object detection and instance segmentation to estimate catheter
tip positions in three spatial dimensions. This system was
designed with two features not present in previous amplitude-
based [5], [20] and deep learning-based [27], [28] photoacous-
tic visual servoing systems. First, our point source localization
systems estimated the location of the catheter tip along the
elevation dimension of the transducer. Second, the integration
of force control into our visual servoing system improved the
tracking of targets across uneven imaging surfaces, overcom-
ing this stated limitation of our previous systems [5], [20],
[27], [28]. These features improve the potential of our novel
visual servoing system for clinical translation (e.g., cardiac
catheterizations, other interventional procedures).

It is encouraging that our novel visual servoing system
achieved catheter tip tracking errors as low as 0.5 mm and
0.8 mm in the phantom and in vivo environments, respectively
(Table VI). These errors are comparable to needle tip tracking
errors ranging 0.6-1.0 mm with our previous deep learning-
based visual servoing system [27], when tracking needle
tips in plastisol phantoms and ex vivo tissue. Notably, the
lowest lateral tracking errors were achieved with WaveSegNet-
1, which is promising for the implementation of real-time,
theory-based, instance-segmentation point source localization
approaches. In addition, both real-time and offline instance
segmentation-based point source localization systems (i.e.,
WaveSegNet-1 and WaveSegNet-2, respectively) successfully

detected the catheter tip in 100.0% of the input channel data
frames during a majority of the in vivo visual servoing trials
(i.e., 100% recall in Table IV).

There are a few suspected tradeoffs among source location
outputs, signal amplitudes, accuracy, and inference times.
First, the unexpectedly large elevation outputs of DetectionNet
(Figs. 5(a) and 5(b)) are likely due to differences in the
signal amplitude between the simulated data used to train
DetectionNet and the experimental data provided to the system
during the visual servoing trials. DetectionNet likely mis-
interpreted lower signal amplitudes as source displacements
relative to the elevation center of the transducer. This hypoth-
esis indicates that the performance of DetectionNet may be
improved by increasing the range of signal amplitudes in the
simulated training set. While the location estimation process
of WaveSegNet-1 depended on the shape of the segmenta-
tion masks rather than signal amplitudes, the large elevation
(Fig. 5(b)) and axial (Fig. 5(d)) outputs were likely caused
by inaccuracies from neglecting second order terms during
gradient descent. WaveSegNet-2 provided source locations
based on the same segmentation masks as WaveSegNet-1,
albeit with more consistent location estimates, likely due to
the inclusion of second order terms during gradient descent.
However, this inclusion negatively impacted inference times
(Fig. 6). WaveSegNet-1 and WaveSegNet-2 had the greatest
inference times due to the associated iterative gradient descent
algorithms being the most computationally expensive step.

The large inference time standard deviations achieved with
WaveSegNet-2 (Fig. 6) are caused by the large number of
false positives output by the Mask R-CNN algorithm imple-
mented prior to gradient descent (corresponding to decreased
precision values in Table IV). In comparison, WaveSegNet-
1 had greater precision (i.e., less false positives), and the
detections output by the Faster R-CNN network forming
DetectionNet were immediately output to the MTLKEF, both
resulting in smaller variations in inference times compared to
WaveSegNet-2. DetectionNet achieved mean inference times
as low as 145.3 ms, which is slower than the 10 Hz PRF of the
laser (i.e., 100 ms between pulses), but was demonstrated in
real-time nonetheless, with faster inference times than either
WaveSegNet-1 or WaveSegNet-2.

The MTLKEF is a computationally efficient alternative to
the consistency check presented in previous visual servoing
systems from our group [5], [20], [27], which required valid
outputs in five consecutive channel data frames and additional
position-based calculations to identify a tracked target as valid.
It is promising that this filter successfully resolved positive
and negative elevation source displacements arising from the
elevation symmetry of photoacoustic waveforms encountered
by our visual servoing system, enabling the generally low
tracking errors of 0.5-3.6 mm (Table VI). In addition, while
our visual servoing system required only a single output from
the MTLKEF, this filter potentially enables the development of
a visual servoing system that simultaneously tracks multiple
targets [26].

Two additional design choices contributed to the low
catheter tip tracking errors measured in the phantom and
in vivo environments (Table VI), despite the large ele-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2025.3584076

GUBBI et al.: IN VIVO DEMONSTRATION OF DEEP LEARNING-BASED PHOTOACOUSTIC VISUAL SERVOING SYSTEM 13

vation source displacements output by DetectionNet and
WaveSegNet-1 (Fig. 5). First, the FSM relied more on the
lateral rather than elevation position estimates. This choice
was derived from the more accurate lateral localization per-
formance of object detection-based and instance segmentation-
based systems compared to elevation performance observed in
our previous phantom and ex vivo experiments [24]. Second,
no robot motion was implemented if point sources were within
1 mm of the lateral or elevation transducer center (Table II),
which reduced the transducer motion required to maintain the
catheter tip near the center of the imaging plane, relative to
previous visual servoing systems [5], [20], [27], [28].

As expected, force control along the axial dimension of
the transducer enabled consistent contact with the imaging
surface (Fig. 10). While the transducer experienced motion in
the vertical direction following the shape of the hemispherical
phantom (Fig. 7(a)), the trajectory of the transducer did not
follow a circular arc matching the radius of the phantom.
This discrepancy was caused by the fixed orientation of the
transducer, which resulted in a different point on the transducer
being in contact with the phantom at each time instant. During
the in vivo trials, the transducer exhibited rapid oscillations
in the vertical direction (Figs. 7(b) and 7(c)) as a conse-
quence of the respiratory motion of the swine and the limited
force control model (i.e., hybrid-position force control in the
transducer axial dimension, ignoring effects of robot dynamics
on measured force readings). An example of the oscillations
is available in Supplementary Video 1. The force control
model was sufficient to achieve smoother transducer motion
during the phantom trials and did not appear to negatively
impact the in vivo tracking results relative to the phantom
results (Table VI), indicating that lateral tracking is robust to
respiratory motion. This unwanted axial transducer motion due
to respiratory and related effects during in vivo trials could
potentially be addressed with alternative control strategies
[47]. Sterility concerns with required transducer contact can be
addressed with commercially available transducer covers that
are readily available for ultrasound-guided patient procedures,
customized cardiovascular incise drapes [48], or a miniaturized
system that operates under existing sterile drapes [5].

Considering the multiple factors noted above (e.g., tradeoffs,
inference speed variability, localization and tracking perfor-
mance), DetectionNet offers the best real-time potential among
the three deep learning-based systems considered herein (Fig.
6), whereas WaveSegNet-1 is the first implementation of a
real-time instance segmentation-based point source localiza-
tion system, offering the best real-time axial point source
detection performance (Table IV) and real-time lateral track-
ing performance (Table VI). The poorer axial and elevation
position localization performance of WaveSegNet-1 relative
to WaveSegNet-2 (Fig. 5) indicates that second-order gradient
terms are critical for accurate localization of point sources
using our theory-based wave segmentation approach, which
is an unexpected outcome that we did not anticipate when
developing WaveSegNet-1. Despite current inference times
with WaveSegNet-2 prohibiting real-time implementation (Fig.
6), the in vivo potential of this approach to outperform
object detection-based methods (e.g., DetectionNet) has been

successfully demonstrated (Figs. 5 and 7), with additional
benefits likely achievable with future system optimizations
(e.g., enhanced speed via alternative network architectures
[49], gradient descent algorithms [50], and reduced image
dimensions [30], [51], [52)]).

Although successful in vivo performance is more impor-
tant than unsuccessful phantom performance when determin-
ing clinical translatability and future system optimizations,
WaveSegNet-1 failed to track the catheter tip in the phantom
likely because of first-order gradient terms, which are sus-
pected to have caused the large axial and elevation variations
in Figs. 5(b), 5(d), and 7(c), as indicated above. A similar
failure was not achieved with the in vivo trials, likely due to the
MTLKEF (yellow box in Fig. 1) receiving consistent catheter tip
location estimates from WaveSegNet-1 (see real-time perfor-
mance with In Vivo Trials 3 and 4 in Table IV). Considering
the reduced offline detection performance of WaveSegNet-2
in the phantom relative to in vivo trials (Table 1V) and the
identical first stages of WaveSegNet-1 and WaveSegNet-2 (i.e.,
Mask R-CNN), the detection performance of WaveSegNet-
1 in the phantom trials likely degraded the consistency of
the catheter tip location estimates provided to the MTLKE,
resulting in no phantom results with WaveSegNet-1.

The objective of an optimal photoacoustic visual servo-
ing system is to simultaneously maximize surgical tool tip
localization performance and achievable frame rates. Given
the failure of WaveSegNet-1 to successfully perform in the
phantom trials (Section II-E) or achieve our axial and elevation
localization goals in the in vivo trials (Fig. 5), we must con-
sider other possible approaches to leverage the improved local-
ization performance of WaveSegNet-2 [24] without suffering
from the associated low frame rates with existing computing
hardware. For example, amplitude-based [20] or coherence-
based [23] photoacoustic visual servoing approaches were
previously demonstrated to operate on delay-and-sum or short-
lag spatial coherence (SLSC) beamformed images in real time
(i.e., with execution times <100 ms, corresponding to the 10
Hz laser PRF). These real-time approaches could potentially be
combined with WaveSegNet-2 to receive periodic 3D source
location estimates (e.g., at the 1-2 Hz frame rates demonstrated
in Fig. 6) using techniques similar to sensor fusion algorithms
[53] employed in automotive [54] and aerospace [55] applica-
tions. The periodic elevation information from WaveSegNet-2
would provide periodic robustness to reflection artifacts and
lateral localization performance, while informing the system
of rotations about the axial dimension required to periodically
compensate for out-of-plane motion in lengthy surgical and
interventional procedures.

These multiple possible photoacoustic visual servoing op-
tions could be deployed either as a standalone system to
replace fluoroscopy or as an add-on to conventional imaging
modalities (e.g., ultrasound, fluoroscopy). As a standalone
system, photoacoustic visual servoing could be used to track
catheter tips, then the photoacoustic imaging component can
be used to assess ablated lesion boundaries [56]. As an add-
on, photoacoustic visual servoing may be augmented with
ultrasound to provide additional anatomical information or
with fluoroscopy images that provide intermittent checks of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2025.3584076

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2025

catheter tip positions.

One limitation of our study is the absence of a continuous
synchronized ground truth using an external system (e.g.,
fluoroscopy) for the visual servoing trials. While catheter tip
locations were confirmed with fluoroscopy at the start and end
of four in vivo trials, future work could potentially utilize flu-
oroscopic videos to characterize the instantaneous localization
performance of our visual servoing system across each visual
servoing trial. These videos would need to be acquired from
multiple fixed reference frames to compensate for the lack
of depth information in individual fluoroscopy images, which
would significantly extend the time required to complete a
single visual servoing trial. As an alternative, previous work
by Graham et al. [5] used an electromagnetic tracking system
to validate an amplitude-based photoacoustic visual servoing
system. This tracking system could potentially be used with
intermediate checkpoints separated by small distances (e.g., 5
mm) to provide additional points of comparison with our deep
learning-based photoacoustic visual servoing system.

A second potential study limitation is that the mean laser
energy of 2.0 mJ corresponds to a laser fluence of 254.6
mJ/cm? within the IVC. While this laser fluence value ex-
ceeded the 25.2 mJ/cm? laser safety limit defined for skin
at a wavelength of 750 nm [57], no such safety limit has
been published for internal tissue. Previous work by our group
demonstrated the use of higher laser energy levels during in
vivo swine studies without observable tissue damage in post-
exposure histopathological and immunohistochemistry studies
[51, [58], [59]. In addition, our group previously introduced
a theoretical framework linking predictions of required laser
energies to visual servoing performance through the general-
ized contrast-to-noise ratio (CNR) [60]. When evaluating this
theory alongside data acquired from a previous in vivo cardiac
catheterization experiment [61], gCNR values >0.56 were
achieved with laser energies >104.7 pJ (i.e., >13.3 mJ/cm?
fluence), corresponding to >97.8% predicted segmentation
success rates (reported as segmentation accuracy in [61]),
which could be viewed as expected success rates of visual
servoing with lower energies [60]. Although these values refer
to achievements that are possible with delay-and-sum beam-
forming, similar achievements are anticipated to be possible
for successful visual servoing within current safety standards,
with appropriate modifications to deep learning approaches
applied to photoacoustic channel data (e.g., histogram match-
ing [30], SLSC beamforming [23], [62], [63] combined with
pulsed laser diodes [64], acquisitions with optical wavelengths
that allow higher energies within fluence safety limits [6], [23],
[57D).

V. CONCLUSION

This work demonstrates a novel deep learning-based pho-
toacoustic visual servoing system tracking a catheter tip
during an in vivo catheterization procedure. We successfully
integrated object detection-based and instance segmentation-
based 3D point source localization systems (i.e., DetectionNet
and WaveSegNet-1, respectively), with MTLKF and a hybrid
position-force control system to ultimately track a catheter tip

in vivo. We also characterized the ability of our visual servoing
system to detect and localize the catheter tip in phantom and
in vivo environments, using raw photoacoustic channel data
frames as the input. Our system successfully followed the
catheter tip while continuously maintaining contact with the
imaging surface. In addition to real-time demonstrations, we
validated the potential of an offline instance segmentation-
based point source localization system using second order
gradient terms (i.e., WaveSegNet-2) to improve catheter tip lo-
calization at the cost of increased inference times, with the po-
tential for additional optimizations to increase implementation
speeds. These contributions are promising to autonomously
track and visualize catheter tips, needle tips, and other surgical
or interventional tool tips in real time.
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