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Abstract— Objective: To develop the first known deep
learning-based photoacoustic visual servoing system uti-
lizing point source localization and hybrid position-force
control to track catheter tips in three dimensions in
real-time. Methods: We integrated either object detection
or instance segmentation-based localization with hybrid
position-force control to create our novel system. Cardiac
catheter tips were then tracked across distances of 40 mm
in a plastisol phantom and 25-64 mm in an in vivo swine in
real-time in nine visual servoing trials total. Results: Object
detection-based localization identified the cardiac catheter
tip in 88.0-91.7% and 66.7-70.4% of phantom and in vivo
channel data frames, respectively. Instance segmentation
detection rates ranged 86.4-100.0% in vivo. These catheter
tips were tracked with errors as low as 0.5 mm in phantom
trials and 0.8 mm in the in vivo trials. The mean infer-
ence times were ≥145.3 ms and ≥516.3 ms with object
detection-based and instance segmentation-based point
source localization, respectively. Hybrid position-force con-
trol system enabled contact with the imaging surface dur-
ing ≥99.43% of each visual servoing trial. Conclusion: Our
novel deep learning-based photoacoustic visual servoing
system was successfully demonstrated. Object detection-
based localization operated with inference times that are
more suitable for real-time implementations while instance
segmentation had lower tracking errors. Significance: After
implementing suggested optimization modifications, our
novel system has the potential to track catheter tips, needle
tips, and other surgical tool tips in real-time during surgical
and interventional procedures.
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force control, imaging, instance segmentation, object de-
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I. INTRODUCTION

MODERN interventional procedures such as cardiac

catheterizations require real-time visual information to

successfully guide surgical tool tips toward targets of interest

inside the patient. Traditionally, this information is obtained

using medical imaging modalities such as fluoroscopy [1].

However, fluoroscopy exposes patients and operators to ion-

izing radiation [2], increasing risks of cancer [3] and other

adverse biological effects [4]. In addition, fluoroscopy does

not provide depth information, limiting the ability to localize

surgical tool tips in three dimensions with a single fluoroscopy

image. Fluoroscopy machines are also large, expensive, and

difficult to transport, limiting their ability to improve global

access to quality healthcare. Ultrasound imaging overcomes

these limitations with its low cost, portability, availability of

depth information, and absence of ionizing radiation. However,

ultrasound can fail to localize catheter tips in contact with

tissue [5], [6]. In addition, ultrasound imaging fails in acous-

tically challenging environments characterized by significant

acoustic clutter [7], sound scattering, and signal attenuation.

Photoacoustic imaging is an emerging imaging modality

based on the photoacoustic effect, which enables acoustic

propagation from an optical source (i.e., optical transmission

to nearby optical absorbers causes local thermal expansion and

generation of acoustic wave propagation). This modality offers

utility when a region or target of interest has a higher optical

absorption than the surrounding tissue (e.g., nerve visualiza-

tion, blood vessel detection, surgical tool tracking, or cancer

screening [8]). Potential applications of photoacoustic image

guidance in monitoring treatment progression in minimally

invasive interventional procedures include tool tracking in

spinal surgeries [9], [10], photoacoustic-guided teleoperative

robotic surgeries [11], [12], guidance of minimally invasive

neurosurgeries [13]–[15], tumor boundary delineation [16],

[17], large vessel tracking during liver procedures [18], and

monitoring the proximity of tools to critical areas of interest

during hysterectomies [19].

Photoacoustic imaging inherently benefits from reduced

acoustic signal attenuation and increased tissue selectivity

compared to ultrasound imaging [7], [20]. The reduction in

acoustic signal attenuation is attributed to the one-way travel

path of acoustic waves from optical sources (which may be

located at surgical tool tips [6]) to acoustic receivers, as
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opposed to the two-way acoustic travel (from an ultrasound

transducer to a tool tip and back) required with a single ultra-

sound transducer. While acoustic transmitters may be located

at tool tips [21], this addition does not allow clear ultrasound

signal distinction between the tool tip and surrounding tissue

without advanced signal processing. Conversely, the optical

attenuation encountered during photoacoustic imaging ensures

that surgical tool tips, when coupled with optical fibers, are the

brightest signals of interest in amplitude-based photoacoustic

images.

Previous demonstrations with an ex vivo blood vessel re-

vealed a photoacoustic imaging setup consisting of an optical

fiber housed in a catheter tip, with an externally placed

ultrasound transducer, can successfully visualize the catheter

tip in the presence of surrounding tissue [5]. This ability of

photoacoustic imaging was leveraged to design systems en-

abling the detection, localization, and autonomous tracking of

surgical tool tips in phantom, ex vivo, and in vivo environments

[5], [20], [22], [23]. These systems, collectively referred to as

photoacoustic visual servoing systems, can perform amplitude-

based segmentations of delay-and-sum beamformed images

to detect and localize photoacoustic point sources (e.g., from

needle and catheter tips), then provide the segmentations to

robotic control algorithms to center ultrasound transducers

above the identified point sources [5], [20], [22]. Despite

the advantages of photoacoustic over ultrasound imaging,

amplitude-based photoacoustic visual servoing systems have

three limitations. First, these systems are sensitive to reflection

artifacts (e.g., from nearby scattering structures such as bone),

which limits consistent maintenance of tool tips in the field-of-

view (FOV) of the transducer. Second, the lateral localization

performance of these amplitude-based systems are limited

by lateral resolution in beamformed images, which worsens

with increasing target depth. Third, elevation displacement

information is limited in individual beamformed images [24],

limiting the ability of amplitude-based approaches to estimate

three-dimensional surgical tool tip locations.

Deep learning-based approaches to photoacoustic-based sur-

gical tool tip tracking have the potential to overcome the

limitations of amplitude-based segmentation techniques. Pre-

vious work [25], [26] leveraged the dimensions of optical

fibers integrated with surgical tool tips, which are typically

smaller than the lateral and axial resolution of ultrasound

transducers, enabling tool tips to be modeled as point sources.

Using this model, Allman et al. [26] demonstrated a deep

learning-based approach to distinguish point sources from re-

flection artifacts directly from raw photoacoustic channel data,

highlighting robust lateral localization performance despite

the poor lateral resolution with increasing target depth. This

approach was then integrated with robotic control systems,

resulting in deep learning-based photoacoustic visual servoing

systems [27], [28] that were deployed to track needle tips in a

plastisol phantom and ex vivo chicken breast tissue with 55.3-

67.7% mean reductions in needle tip tracking errors relative

to that of an amplitude-based image segmentation approach

[27]. The images acquired in these environments contained

a reflection artifact forming a larger bright region than the

needle tip, causing misclassifications and failed detections

with the amplitude-based segmentation approach. The deep

learning approach was more robust to these misclassification

errors compared to the amplitude-based approach, improving

the failure rates by 60.6% [27]. While these visual servoing

systems correctly identified and tracked needle tips within the

ultrasound transducer FOV, localization of out-of-plane targets

was not possible. As a result, additional search algorithms

were required to find targets moving orthogonal to the imaging

plane.

To detect and localize photoacoustic targets in three di-

mensions (3D) using beamformed images, Wang et al. [29]

developed a 3D photoacoustic-based needle tip localization

system by autonomously scanning the elevation dimension of

the ultrasound transducer using a robotic arm. However, this

system required 40 frames to generate each 3D photoacoustic

image grid. With a 10 Hz laser pulse repetition frequency

(PRF), this requirement resulted in each 3D image grid re-

quiring 4 seconds to be generated (i.e., effective frame rate of

0.25 Hz).

To provide a computationally efficient, real-time alternative

to 3D point source localization, our group leveraged the

previously demonstrated point source model [26]–[28], [30] to

counterintuitively introduce two deep learning-based photoa-

coustic point source localization systems offering 3D location

estimates of catheter tips from a single two-dimensional frame

of raw photoacoustic channel data [24]. The first system used

an object detection-based approach, while the second system

employed an instance segmentation-based approach with a

theory-based gradient descent algorithm to improve localiza-

tion performance. Both systems were demonstrated to detect

and localize stationary catheter tips within and outside the

imaging plane in phantom and ex vivo environments, with the

instance segmentation-based system achieving mean elevation

localization errors of 1.13 and 1.23 mm, respectively, from raw

2D photoacoustic channel data frames. However, these demon-

strations were performed offline and did not include real-

time robot-assisted tracking of the catheter tips. In addition,

the improved performance of the instance segmentation-based

system was achieved by increasing the required inference time

due to the iterative gradient descent. Furthermore, prior visual

servoing systems [5], [20], [27], [28] did not account for

uneven surfaces, which caused the ultrasound transducer to

lose contact with the skin, resulting in failed visual servoing

attempts [5].

In this paper, we demonstrate deep learning-based 3D point

source localization approaches to track surgical tool tips in

real time during interventional procedures, with four novel

contributions. First, we design an instance segmentation-based

photoacoustic point source localization system with a time-

optimized gradient descent algorithm, named WaveSegNet-1,

to improve inference speed compared to our previous work

[24], which employed a method that we call WaveSegNet-2

herein. Second, we integrate WaveSegNet-1 with our previ-

ous object detection-based point source localization system

[24], named DetectionNet herein, adding hybrid position-

force control and additional logic to form a novel real-time

deep learning-based photoacoustic visual servoing system.

Third, we compare the tracking performance of our previous
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WaveSegNet-2-based point source localization system [24]

with our real-time DetectionNet-based photoacoustic point

source localization system (to demonstrate the advantages of

instance segmentation over object detection in the context of

photoacoustic-based target tracking) and with our real-time

WaveSegNet-1-based system (to demonstrate the importance

of selecting an appropriate gradient descent algorithm to accu-

rately track catheter tips using instance segmentation on raw

photoacoustic channel data frames). Finally, we provide results

from the first known in vivo deployment of DetectionNet and

WaveSegNet-1 in photoacoustic-based visual servoing, with

force control to maintain required imaging contact at all times.

The remainder of this article is organized as follows. Section

II presents the architecture of our deep learning-based pho-

toacoustic visual servoing system and describes processes to

demonstrate and assess the performance of our system during

phantom and in vivo visual servoing trials. Section III reports

the results of the presented methods. Section IV discusses

the implications and future potential of our work. Section V

presents a summary of our major findings.

II. MATERIALS AND METHODS

A. Visual Servoing System Overview

Our photoacoustic imaging system consisted of an Opotek

Phocus Mobile laser (Carlsbad, California, USA) with a PRF

of 10 Hz (750 nm wavelength, mean energy of 2.0 mJ per

pulse), connected to a 1 mm core-diameter optical fiber. The

other end of the optical fiber was inserted into a 7F outer-

diameter 60 cm long non-steerable catheter (Boston Scientific,

Marlborough, Massachusetts, USA) to form a fiber-catheter

pair with coincident tips [5]. To receive the photoacoustic

signals originating from the catheter tip, a Verasonics (Kirk-

land, Washington, USA) P4-2v ultrasound transducer with 64

elements and a sampling frequency of 11.88 MHz was inter-

faced to a Verasonics Vantage 128 ultrasound scanner. This

transducer was attached to the end effector of a UR5e robotic

arm (Universal Robots, Odense, Denmark) via a custom 3D-

printed adapter mounted on a Gamma NET-FT force sensor

(ATI Industrial Automation, Apex, North Carolina, USA).

The software components of our deep learning-based pho-

toacoustic visual servoing system are summarized in Fig.

1. Each laser pulse triggered the acquisition of a raw ra-

diofrequency photoacoustic channel data frame of dimensions

64×926 pixels, corresponding to the number of transducer

elements (64) and the imaging depth (926, based on 120

mm depth, 11.88 MHz sampling frequency, and an assumed

sound speed of 1540 m/s). This channel data frame was then

input to our real-time deep learning-based photoacoustic point

source localization systems, which output the catheter tip

position (Section II-B). The generated point source location

estimates were the input to a multi-track linear Kalman filter

(MTLKF), which determined multiple possible point source

location candidates and output the most likely location of the

point source (Section II-C).

To maintain contact with the imaging surface, force sensor

readings were employed to estimate the contact force along

the axial dimension of the transducer [31]. The point source

location and contact force estimates were then input to a finite

state machine (FSM), which generated robot motion plans to

center the transducer above the catheter tip with the desired

contact force (Section II-D). The motion plans were then

executed by the robot and the cycle shown in Fig. 1 was

repeated with the next laser pulse. The software components of

the visual servoing system were implemented using the Robot

Operating System [32].

B. Photoacoustic Point Source Localization

We developed three deep learning-based systems (i.e., De-

tectionNet, WaveSegNet-1, and WaveSegNet-2) to identify

and localize photoacoustic point sources in raw photoacoustic

channel data frames. Similar to previous work [24], these deep

learning-based systems used algorithms belonging to the fam-

ily of region-based convolutional neural networks (R-CNN)

implemented in the Detectron2 platform [33]. These networks

were pre-trained on the ImageNet dataset [34] and fine-tuned

on custom datasets of point sources and reflection artifacts

simulated using the k-Wave MATLAB toolbox [35]. Each

dataset contained 16,000 channel data frames with network-

specific image preprocessing and annotation strategies. Each

network was fine-tuned with a batch size of four and a

base learning rate of 0.001. The visual servoing system was

designed to use either DetectionNet or WaveSegNet-1 in

real time, while WaveSegNet-2 was used offline to provide

a performance baseline. For each input channel data frame

at iteration k, the selected deep learning-based point source

localization system output N (k) detections. Each detection

consisted of a confidence score ranging 0 to 1 and an estimate

of the source location in the transducer frame U , given by

U
x⃗i (k) =

[

U x̂i (k) ,
U ŷi (k) ,

U ẑi (k)
]T

, (1)

where k≥0, 0≤i<N(k), and U x̂i (k),
U ŷi (k), and U ẑi (k)

are the lateral, elevation, and axial components, respectively,

of source location estimate i at time instant k. Due to the

elevation symmetry of the received waveforms, the point

source localization systems were unable to distinguish between

positive and negative source elevation displacements in the

frame U . Therefore, the elevation displacement estimates were

constrained to U ŷi (k) ≥ 0.

DetectionNet utilized an object detection-based approach

to identify waveforms in the input channel data frames,

categorize the waveforms by type (i.e., source or artifact)

and elevation displacement rounded to the nearest millimeter

(e.g., “Source-1.0”), and construct bounding boxes centered

on the lateral and axial positions of the corresponding source

or artifact. DetectionNet consisted of a Faster R-CNN network

[36] with a ResNet-101 [37] feature extractor fine-tuned for

80 epochs on a simulated dataset of 16,000 bounding box

annotated channel data frames [24]. To enable DetectionNet

to generate bounding boxes outside the lateral dimensions of

the transducer (i.e., ±9.6 mm), each input channel data frame

was zero-padded to lateral and axial dimensions of 566 pixels

and 926 pixels, respectively, corresponding to the phased array

transducer beamformed data FOV dimensions of 169.7 mm

and 120 mm, respectively (i.e., after scan conversion).
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Fig. 1. Summary of deep learning-based photoacoustic visual servoing system. “DetectionNet” is an object detection-based photoacoustic point
source localization system, while “WaveSegNet-1” utilizes instance segmentation followed by gradient descent to estimate point source locations.
Both systems receive channel data frames as inputs and provide raw three-dimensional point source location estimates as outputs.

WaveSegNet-1 and WaveSegNet-2 utilized an instance

segmentation-based approach followed by iterative gradient

descent to segment waveforms in the input photoacoustic

channel data frames, categorize the waveforms as correspond-

ing to sources or artifacts, and estimate 3D source locations

in the transducer frame U [24]. The instance segmentation

component forming the first stage of WaveSegNet-1 and

WaveSegNet-2 consisted of a Mask R-CNN network [38]

with a ResNet-101 feature extractor [37] fine-tuned for 20

epochs on a simulated dataset of 16,000 segmentation mask

annotated channel data frames [24]. To improve segmentation

performance, the input channel data frames were laterally

upsampled to 256 pixels before being input to the network

[24]. The Mask R-CNN network output segmentations each

consisting of the predicted object type (i.e., sources or arti-

facts), a confidence score ranging 0 to 1, and a segmentation

mask corresponding to the waveform. For each waveform

corresponding to the source class, the peak of the segmented

waveform was used to obtain the initial estimates of the lateral

and axial positions of the source. The initial estimates of the

elevation position, sound speed, and wave thickness were set

to the values reported in Table I. These initial estimates and

the segmented waveform were provided to an iterative gradient

descent algorithm, which ran for 128 iterations with the output

of each iteration provided as an input to the next. WaveSegNet-

1 used the Gauss Newton algorithm [39] which considered

first-order gradient terms, while WaveSegNet-2 used Newton’s

method [40], which considered first and second-order gradi-

ent terms. To compensate for the inaccuracies arising from

neglecting second-order gradient terms in WaveSegNet-1, we

TABLE I

INITIAL, MINIMUM, AND MAXIMUM VALUES OF SOURCE AND MEDIUM

PROPERTIES ESTIMATED USING GRADIENT DESCENT IN SECOND STAGE

OF WAVESEGNET-1

Parameter Initial Minimum Maximum

Lateral Position [mm] - -18.8 18.8
Elevation Position [mm] 0 0 10
Axial Position [mm] - 20 100
Sound Speed [m/s] 1540 1440 1640
Wave Thickness [mm] 0.5 0.3 0.7

saturated the outputs of each iteration to the maximum and

minimum values provided in Table I. These values form the

limits of the simulated parameters used to train the Mask R-

CNN network within WaveSegNet-1 (such saturation was not

required for WaveSegNet-2 due to the improved gradient de-

scent design compared to WaveSegNet-1). The source location

output by the final iteration of the gradient descent algorithm

was retained as the estimate
U
x⃗i (k) for the given source

waveform. To optimize the achievable inference times of

WaveSegNet-1 and WaveSegNet-2, we directly implemented

the corresponding gradient descent algorithms in PyTorch [41]

rather than using the automatic gradient computation facility

provided with the PyTorch library.

To account for the possibility of negative elevation displace-

ments in frame U , the N (k) point source location estimates

obtained in Eq. (1) were reflected about the imaging plane of

the transducer to obtain N (k) additional estimates given by

U
x⃗i+N(k) (k) =

[

U x̂i (k) ,−
U ŷi (k) ,

U ẑi (k)
]T

, (2)
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where 0≤i<N(k). The totality of 2N(k) point source location

estimates were then transformed from the transducer frame U

to the robot base frame B as
[

B
x⃗i (k)
1

]

= BTU (k)

[

U
x⃗i (k)
1

]

, (3)

where 0≤i<2N(k) and BTU (k) is the homogeneous trans-

form from the transducer frame U to the robot base frame B

at time instant k.

C. Multi-Track Linear Kalman Filter

Filtering (i.e., with MTLKF [42], [43]) was implemented

to identify the correct point source location from the 2N(k)
estimates obtained in Section II-B. This MTLKF consisted

of M(k) mutually independent linear Kalman filters [44] or

tracks. Each track maintained the position and velocity of a

source candidate given by

B
s⃗i (k|k) =

[

B
p⃗i (k|k)

B
v⃗i (k|k)

]

, (4)

where 0≤i<M(k), B
s⃗i (k|k) is the state of track i at time

instant k, and
B
p⃗i (k|k) and

B
v⃗i (k|k) are the updated source

position and velocity estimates, respectively, of source candi-

date i at time instant k in frame B. Each track also maintained

the state covariance matrix Pi (k|k). At the start of time instant

k+1, each track first predicted the updated state
B
s⃗i (k + 1|k),

given by
B
s⃗i (k + 1|k) = A

B
s⃗i (k|k), (5)

where A is the transition matrix, given by

A =

[

I3 ∆tI3
03 I3

]

. (6)

Here, I3 is an identity matrix of size three, 03 is a 3×3

matrix of zeroes, and ∆t is the duration of time between time

instants k and k + 1. Each track also estimated the updated

state covariance matrix Pi (k + 1|k), the measurement predic-

tion z⃗i (k + 1|k), and the measurement prediction covariance

Si (k + 1) given by

Pi (k + 1|k) =
(

A [Pi (k|k)]A
T
)

+Q, (7)

z⃗i (k + 1|k) = H
B
s⃗i (k + 1|k) , (8)

and

Si (k + 1) =
(

H [Pi (k + 1|k)]HT
)

+R, (9)

respectively, where Q is the state transition noise covariance, R

is the measurement noise covariance, and H is the observation

matrix given by

H =
[

I3 03
]

. (10)

Each track, i, was then associated with point source location

estimate, j, obtained in Section II-B satisfying the conditions

j = arg min
0≤l<2N(k+1),
dil(k+1)<11.4

dil (k + 1) , (11)

where dil (k + 1) is the measurement prediction distance given

by

dil (k + 1) = [νil (k + 1|k)]
T
[Si (k + 1)]

−1
νil (k + 1|k) ,

(12)

and

νil (k + 1|k) = B
x⃗l (k + 1)− z⃗i (k + 1|k) . (13)

The threshold of 11.4 corresponded to a 99% likelihood that

the source location estimate
U
x⃗l (k + 1) could be obtained

from a point source located at
B
p⃗i (k + 1|k). Multiple tracks

associated with the same measurement were merged. Each

track associated with a measurement was then updated to

obtain

B
s⃗i (k + 1|k + 1) =

B
s⃗i (k + 1|k) +Wi (k + 1) νij (k + 1|k) , (14)

and

Pi (k + 1|k + 1) = Pi (k + 1|k)

−Wi (k + 1)Si (k + 1) [Wi (k + 1)]
T
, (15)

where

Wi (k + 1) = Pi (k + 1|k)HT [Si (k + 1)]
−1

. (16)

Tracks not associated with a measurement for three consec-

utive time instants were deleted. The remaining unassociated

tracks were then updated as

B
s⃗i (k + 1|k + 1) = B

s⃗i (k + 1|k) , (17)

and

Pi (k + 1|k + 1) = Pi (k + 1|k) . (18)

Finally, each source location estimate without an associated

track was used to generate a new track.

If the MTLKF contained at least one track at the end of

time instant k + 1, then the MTLKF output
B
x⃗v (k + 1) at

time instant k + 1 was computed as
[

U
x⃗v (k + 1)

1

]

= UTB (k + 1)

[

B
x⃗m (k + 1|k + 1)

1

]

,

(19)

where

U
x⃗v (k + 1) =

[

U x̂v (k + 1) , U ŷv (k + 1) , U ẑv (k + 1)
]T

,

(20)
UTB (k + 1) is the homogeneous transform from frame B to

frame U at time instant k+1, and m is the index of the longest

continuously running track.

D. Finite State Machine for Robotic Control

Table II describes the six states forming the FSM used in

our visual servoing system. The FSM prioritized maintaining

contact with the imaging surface, measured by the axial

component UF z of the estimated force in frame U . If the value

of UF z reduced below 0.5 N, the FSM entered the No Contact

state and the transducer was translated vertically downward

toward the imaging surface. In the remaining states listed in

Table II, the robot translated the transducer along the axial

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2025.3584076

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2025

Fig. 2. Rectangular ranges of lateral and elevation positions of point
sources detectable using a transducer (a) centered on frame U1 and
(b) rotated by an angle θ about the axial dimension to frame U2. This
rotation brings a point source at a fixed location S from (a) outside to (b)
inside the region of detectable positions.

dimension to maintain the contact force within a deadband

ranging 0.5 N to 2.0 N. This deadband was implemented to

minimize the vertical transducer motion required to meet our

goal of maintaining physical contact between the transducer

and the imaging surface. With the desired contact force

maintained, if the MTLKF did not output a valid point source

location estimate
U
x⃗v (k) at time instant k, then the FSM

entered the Search state. DetectionNet, WaveSegNet-1, and

WaveSegNet-2 were able to detect point sources with lateral

and elevation positions ranging -18.8 mm to 18.8 mm and -10

mm to 10 mm, respectively, as shown by the gray rectangle

in Fig. 2(a). The lateral and elevation displacements of the

point source from the center of the transducer were expected

to be small during the visual servoing process. The Search

state leveraged this expectation, rotating the transducer about

the axial dimension (as it was translated to maintain contact

with the surface) to bring the point source within the region

of detectable positions, as shown in Fig. 2(b).

In the event of a valid source location estimate from the

MTLKF, we relied on two separate strategies to center the

point source in the lateral and elevation dimensions. The

Center Lateral state translated the transducer along the lateral

dimension to maintain the point source within 1 mm of

the transducer axis. This strategy relied on the low lateral

localization errors demonstrated with multiple deep learning-

based photoacoustic point source localization systems across

phantom, ex vivo, and in vivo environments [24], [26], [30]. To

resolve the elevation symmetry about the transducer imaging

plane, the Center Elevation state rotated the transducer about

the axial dimension to reduce the elevation displacement of

the point source (relative to the elevation center of the trans-

ducer), at the cost of increased lateral displacement (relative

to the lateral center of the transducer). The resulting lateral

displacement was corrected by transitioning back to the Center

Lateral state until the lateral displacement was less than 1 mm.

This strategy enabled elevation symmetry compensation and

minimized the elevation localization errors observed in our

previous work [24]. These rotations of the transducer brought

the point source within 1 mm of the imaging plane with

minimal deviation from the original trajectory. The transducer

was not translated in the lateral and elevation dimensions

during the Centering state (i.e., there was no motion if the

target was not completely at the lateral or elevation center of

the image), prioritizing consistent visualization over accurate

centering.

E. Visual Servoing Applied to Plastisol Phantom

To characterize the detection, tracking, and contact perfor-

mance of our visual servoing system, the fiber-catheter pair

was inserted into an 83 mm-radius hemispherical phantom

at a depth of approximately 30 mm as shown in Fig. 3(a).

Two checkpoints separated by a distance of 40 mm were

selected along the trajectory of the fiber-catheter pair within

the phantom. These checkpoints were marked on the catheter

at the insertion point into the phantom. With the fiber-catheter

pair positioned at the first checkpoint, the transducer was

placed in contact with the phantom. To center the transducer

above the catheter tip in the lateral and elevation dimensions,

the lateral dimension of the transducer was aligned with the

catheter, as shown in Fig. 3(a). The robot translated the

transducer along its lateral dimension until the peak of the

photoacoustic waveform corresponding to the catheter tip was

centered in the channel data. To center the catheter tip in the

elevation dimension of the transducer, the robot first rotated

the transducer by 90 degrees about its axial dimension, then

translated the transducer along its lateral dimension until the

corresponding waveform was laterally centered in the signal,

followed by another rotation by 90 degrees about the axial

dimension of the transducer to return to the original alignment

between the imaging plane and catheter, with the catheter tip

now centered in both the lateral and elevation dimensions of

the transducer.

Once the transducer was centered above the catheter tip, the

visual servoing system was engaged, and the fiber-catheter pair

was manually translated to the second checkpoint. Once the

TABLE II

NAME, ENTRY CONDITIONS, AND TRANSDUCER MOTION ASSOCIATED WITH EACH STATE IN THE FINITE STATE MACHINE

State Name
Contact Force Valid Lateral Position Elevation Position

Transducer Motion
UF z Position

∣

∣

U x̂v (k)
∣

∣

∣

∣

U ŷv (k)
∣

∣

Initialize - - - - Remain stationary
No Contact < 0.5 N - - - Move vertically downward
Search ≥ 0.5 N No - - Rotate about and translate along axial dimension
Center Lateral ≥ 0.5 N Yes ≥ 1 mm - Translate along lateral and axial dimensions
Center Elevation ≥ 0.5 N Yes < 1 mm ≥ 1 mm Rotate about and translate along axial dimension
Centered ≥ 0.5 N Yes < 1 mm < 1 mm Translate along axial dimension
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Fig. 3. Photographs of (a) phantom and (b) in vivo experimental setups
to characterize system performance. See Supplementary Video 1 for
motion of transducer relative to catheter in vivo.

transducer was autonomously centered above the catheter tip

at the second checkpoint, the visual servoing system was dis-

engaged. We recorded raw photoacoustic channel data frames,

point source localization system outputs, MTLKF outputs,

processed force readings, and robot kinematic information at

each instant of time during the visual servoing trial. We con-

ducted a total of five visual servoing trials in the phantom with

DetectionNet as the selected real-time point source localization

system, as noted in Table III. As WaveSegNet-1 was unable

to detect the catheter tip in the phantom across multiple trials,

we are unable to report phantom results with this approach.

F. In Vivo Demonstration

To demonstrate the viability of our visual servoing system

in an in vivo setting, we performed a catheterization procedure

on an adult female Yorkshire swine weighing 32.2 kg. After

the swine was fully anesthetized with isoflurane, a 9F vascular

sheath was placed in the right femoral vein. The fiber-catheter

pair was inserted into this sheath and advanced into the

IVC. Two checkpoints were selected within the IVC using a

General Electric (Boston, Massachusetts, USA) OEC 9800 C-

arm fluoroscopy system. These two checkpoints were marked

in two places: (1) on the skin of the swine and (2) at the

insertion point of catheter in the vascular sheath. The catheter

tip was manually translated to the first checkpoint within the

IVC (using the mark on the catheter). The transducer was

placed in contact with the abdominal surface and centered

on the first skin checkpoint, with the imaging plane aligned

with the intended trajectory of the catheter tip. Real-time

ultrasound imaging was used to confirm that the transducer

was centered in the elevation dimension above the catheter tip,

with robotic translations performed to maximize the amplitude

of the catheter tip signal in the ultrasound images.

The visual servoing system was engaged and the catheter

was manually translated to the second checkpoint in an ap-

proximately linear path at depths ranging approximately 63

mm to 95 mm from the skin surface. The robot was allowed

TABLE III

REAL-TIME POINT SOURCE LOCALIZATION SYSTEMS AND

CORRESPONDING GROUND TRUTH DISTANCES TRAVELED BY CATHETER

TIP DURING EACH PHANTOM OR in vivo VISUAL SERVOING TRIAL

Trial Number Real-Time System Distance [mm]

Phantom Trial 1 DetectionNet 40
Phantom Trial 2 DetectionNet 40
Phantom Trial 3 DetectionNet 40
Phantom Trial 4 DetectionNet 40
Phantom Trial 5 DetectionNet 40

In Vivo Trial 1 DetectionNet 25
In Vivo Trial 2 DetectionNet 64
In Vivo Trial 3 WaveSegNet-1 38
In Vivo Trial 4 WaveSegNet-1 38

to autonomously move the transducer to follow the motion

of the catheter tip. Once the transducer was centered above

the catheter tip at the second checkpoint, the visual servo-

ing system was disengaged. We recorded raw photoacoustic

channel data frames, real-time point source localization system

outputs, MTLKF outputs, processed force readings, and robot

kinematic information at each instant of time during the visual

servoing trial. We conducted a total of four visual servoing

trials with the catheter tip manually translated within the IVC

with either DetectionNet or WaveSegNet-1 as the selected real-

time point source localization system. The total travel distance

(i.e., distance between the catheter checkpoints) per trial per

point source localization system are listed in Table III. This

study was approved by the Johns Hopkins University Animal

Care and Use Committee.

G. Performance Characterization and Comparison with

WaveSegNet-2

To compare the performance of the real-time point source

localization systems DetectionNet and WaveSegNet-1 (as

noted in Table III) with the more computationally expen-

sive WaveSegNet-2, each channel data frame acquired during

the real-time visual servoing trials (Sections II-E and II-F)

was processed offline using WaveSegNet-2. The outputs of

WaveSegNet-2 were synchronized with the real-time photoa-

coustic point source localization system outputs and robot

kinematic information obtained during each visual servoing

trial. Detection, localization, tracking, and contact perfor-

mance were characterized.

To characterize detection performance, each detection or

segmentation output was defined as a true positive if: (1)

the confidence score of the detection was ≥0.5, and (2) the

axial position of the detection was within the ranges 25-

35 mm and 63-95 mm in the phantom and in vivo data,

respectively. The confidence score threshold of 0.5 was chosen

to minimize the rate of missed detections, assuming that the

corresponding increase in false positives will be filtered by

the MTLKF. The axial position range for the phantom data

accommodated the hemispherical shape of the phantom, while

the axial position range for the in vivo data is based on

the depth information in Section II-F. We did not require

additional filtering of true positive detections in the lateral

and elevation dimensions because the Faster R-CNN network
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forming DetectionNet and the Mask R-CNN network forming

the first stage of WaveSegNet-1 and WaveSegNet-2 contained

layers acting on potential regions of interest (ROI) named ROI-

Pool and ROI-Align, respectively, designed to merge candidate

detections or segmentations with sufficient overlap [36], [38].

These layers ensured that a given object (i.e., photoacoustic

waveform) corresponded to at most one network output. In

addition, both networks were fine-tuned with bounding box

annotations spanning the width of the channel data in each

image [24]. Therefore, source candidates corresponding to

the same axial position but with different lateral or elevation

position components were combined prior to being output by

the networks. Detections which did not satisfy one or both

of the criteria above were defined as false positives. The

axial component of each initial position estimate was used to

evaluate the second criterion to ensure that the detection per-

formance of WaveSegNet-1 and WaveSegNet-2 was assessed

independently of gradient descent errors. Based on these true

and false positive definitions, the precision, recall, and F1

scores [45] were reported per system per visual servoing trial,

using the acquired channel data frames.

To characterize localization performance, the elevation and

axial location estimates corresponding to true positive de-

tections in the transducer frame U were assessed. The cor-

responding lateral position estimates in the frame U were

ignored for this assessment, because the motion of the catheter

tip was primarily along the lateral transducer dimension.

Therefore, variations in lateral position estimates were more

reflective of tracking performance (see next paragraph), rather

than localization performance. The catheter tip trajectories in

the phantom and in vivo trials corresponding to the lowest

F1 scores achieved by DetectionNet and WaveSegNet-2 were

reconstructed using location estimates from the robot base

frame B. For ease of plotting, these trajectories were translated

to a frame B′ parallel to the original frame B. The origin of

B′ in each visual servoing trial coincided with the transducer

center at the first checkpoint of the trial.

To characterize tracking performance, the distance traveled

by the robot and the ground truth distance traveled by the

catheter were compared per visual servoing trial. The absolute

difference between these distances is the catheter tip tracking

error. In addition, the number of channel data frames with at

least one MTLKF track with a valid point source location

candidate were counted, ignoring frames which were not

processed by the real-time point source localization systems.

To validate our tracking performance characterizations, we

confirmed catheter tip positions with fluoroscopic images be-

fore and after each visual servoing trial using the fluoroscopy

system noted in Section II-F. In addition, the fluoroscopic

image acquired after In Vivo Trial 2, corresponding to the

largest travel distance of the catheter (Table III), was com-

pared with the corresponding catheter tip location estimates

of WaveSegNet-2. To perform this comparison, a subset of

the catheter tip estimates from WaveSegNet-2 (i.e., 10% of

the total) and the catheter appearance in the fluoroscopy image

were used to estimate the transformation between the 3D robot

base frame, B, and the 2D fluoroscopy frame, F , using Horn’s

quaternion-based method [46]. The rotational component of

the estimated transform was limited to the axis of B most

aligned with the axial dimension of the transducer, considering

the single x-ray projection of the anterior-posterior view,

resulting in F primarily aligning with the lateral-elevation

transducer plane. This transform was then applied to the full

set of WaveSegNet-2 outputs for In Vivo Trial 2. The root

mean square error (RMSE), median error, and range of errors

between each output of WaveSegNet-2 transformed to frame

F and the corresponding closest point along the catheter in the

fluoroscopy image were reported as quantitative performance

metrics.

To characterize contact performance, the component of the

measured force along the axial dimension of the transducer

was determined. In addition, the contact time duration was

measured per visual servoing trial (indicated by non-negative

contact forces along the axial dimension of the transducer).

III. RESULTS

A. Validation of Catheter Tip as a Point Source

Fig. 4 shows DAS-beamformed simulated (as described in

Section II-B) and experimental photoacoustic images to vali-

date the point source model of our visual servoing approach.

In Fig. 4(a), the simulated 1 mm-diameter photoacoustic

source was located at a depth of 76.2 mm. In Fig. 4(b),

the tip of the fiber-catheter pair was inserted in the swine

IVC at Checkpoint 1 of In Vivo Trial 4. The targets in both

images are qualitatively similar, which supports the rationale

TABLE IV

RECALL, PRECISION, AND F1 SCORES OF REAL-TIME (I.E., DETECTIONNET OR WAVESEGNET-1, AS INDICATED IN TABLE III) AND OFFLINE (I.E.,

WAVESEGNET-2) AXIAL POINT SOURCE DETECTION PERFORMANCE ACHIEVED DURING PHANTOM AND IN VIVO VISUAL SERVOING TRIALS

Trial Number
Real Time Offline

Recall Precision F1 Score Recall Precision F1 Score

Phantom Trial 1 90.5% 60.7% 72.7% 70.0% 69.7% 69.8%
Phantom Trial 2 94.2% 68.5% 79.3% 69.6% 87.9% 77.7%
Phantom Trial 3 89.1% 76.2% 82.1% 78.5% 88.0% 83.0%
Phantom Trial 4 91.7% 69.6% 79.2% 82.0% 83.7% 82.8%
Phantom Trial 5 88.0% 74.9% 80.9% 65.5% 90.0% 75.8%

In Vivo Trial 1 70.4% 96.2% 81.3% 100.0% 100.0% 100.0%
In Vivo Trial 2 66.7% 97.5% 79.2% 86.4% 98.8% 92.2%
In Vivo Trial 3 100.0% 100.0% 100.0% 100.0% 97.7% 98.8%
In Vivo Trial 4 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Fig. 4. Delay-and-sum beamformed photoacoustic images of (a) a
simulated 1 mm-diameter point source and (b) the tip of the fiber-
catheter pair in an in vivo swine inferior vena cava, with corresponding
raw photoacoustic channel data frames in (c) and (d), respectively.

provided in Section I and in previous work [5], [20], [22]

to model the catheter tip as a photoacoustic point source. A

similar photoacoustic point source observation was previously

demonstrated with a catheter-fiber pair inserted in the plastisol

phantom (e.g., see Fig. 13 in [24] ). The channel data corre-

sponding to the example simulated and in vivo beamformed

images herein are presented in Figs. 4(c) and 4(d), respectively,

representing example inputs to DetectionNet, WaveSegNet-1,

and WaveSegNet-2. See Supplementary Video 1 for example

network outputs from channel data, overlaid on beamformed

images, from In Vivo Trial 4.

B. Detection Performance, Localization Performance,

and Efficiency of Point Source Localization Systems

Table IV reports the recall, precision, and F1 scores per

network per phantom or in vivo visual servoing trial. As

DetectionNet, WaveSegNet-1, and WaveSegNet-2 were each

fine-tuned with bounding boxes spanning the width of the

photoacoustic channel data and multiple network candidates at

a given target depth were merged prior to our filtering process,

this performance primarily represents performance in the axial

dimension. DetectionNet achieved comparable F1 scores in

the phantom and in vivo trials (ranging 72.7-82.1% and 79.2-

81.3%, respectively). These F1 scores corresponded to high

recall rates (i.e., ≥88.0%) in the phantom trials and high

precision rates (i.e., ≥96.2%) in the in vivo trials. In the phan-

tom visual servoing trials, WaveSegNet-2 achieved comparable

F1 scores to DetectionNet (ranging 69.8-83.0%). However,

WaveSegNet-1 and WaveSegNet-2 outperformed DetectionNet

during the in vivo trials with F1 scores ranging 92.2-100.0%.

These results demonstrate the dependence of the detection

performance of our deep learning-based photoacoustic point

source localization systems on the imaging environment used

to acquire raw photoacoustic channel data.

Fig. 5 shows box-and-whisker plots of the elevation and

axial components of point source location estimates from the

phantom and in vivo visual servoing trials. In the elevation

dimension (Figs. 5(a) and 5(b)), DetectionNet outputs me-

dian elevation displacement estimates ranging 6-7 mm and

7-10 mm of the catheter tip in the phantom and in vivo

trials, respectively. WaveSegNet-1 estimated median elevation

displacements of 10 mm during In Vivo Trials 3 and 4.

In comparison, WaveSegNet-2 consistently output reduced

elevation displacement estimates compared to DetectionNet

and WaveSegNet-1 with median values ranging 0.0-0.1 mm in

the phantom and in vivo environments. Elevation localization

errors can be determined from the distance between the

elevation position estimates in Figs. 5(a) and 5(b) and the

transducer center at an elevation position of zero. Similarly,

axial localization error can be determined from the distance

between the axial position estimates in Figs. 5(c) and 5(d) and

the axial depths reported in Sections II-E and II-F (i.e., 30 mm

for the phantom and 63-95 mm for the in vivo trials).

In the axial dimension of the phantom trials (Fig. 5(c)),

Fig. 5. (a,b) Elevation and (c,d) axial position estimates of the catheter
tip output by photoacoustic point source localization systems from
(a,c) phantom and (b,d) in vivo visual servoing trials. The notches,
box heights, whiskers, and dots denote the medians, the interquartile
ranges, 1.5 times the interquartile ranges, and outliers, respectively.

TABLE V

RANGES OF VERTICAL (I.E., AXIAL) TRANSDUCER MOTION TO MAINTAIN

DESIRED CONTACT FORCE DURING VISUAL SERVOING TRIALS

Trial Number Vertical Motion Range (mm)

Phantom Trial 1 2.25
Phantom Trial 2 1.70
Phantom Trial 3 1.20
Phantom Trial 4 1.26
Phantom Trial 5 1.23

In Vivo Trial 1 3.69
In Vivo Trial 2 13.19
In Vivo Trial 3 7.48
In Vivo Trial 4 5.53
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Fig. 6. Inference times achieved with (a) DetectionNet and
WaveSegNet-2 in phantom visual servoing trials and (b) DetectionNet,
WaveSegNet-1, and WaveSegNet-2 during in vivo trials. Error bars show
± one standard deviation.

DetectionNet and WaveSegNet-2 output similar axial position

estimates of the catheter tip in the phantom, with median

values ranging 29.0-29.6 mm and 29.7-30.4 mm, respectively,

and interquartile ranges ranging 0.9-1.8 mm and 1.0-1.8 mm,

respectively. In the axial dimension of In Vivo Trials 1 and

2 (Fig. 5(d)), DetectionNet and WaveSegNet-2 output com-

parable axial location estimates with median values ranging

62.7-74.6 mm and 62.5-76.1 mm, respectively (interquartile

ranges ranging 1.2-6.8 mm and 2.4-5.0 mm, respectively). The

larger interquartile ranges relative to the phantom trials were

partially caused by the larger vertical motion of the transducer

to maintain the desired contact force, which is reported in

Table V. However, the even larger interquartile ranges of in

axial position estimates obtained with WaveSegNet-1 during In

Vivo Trials 3 and 4 (i.e., 30.0 mm and 14.8 mm, respectively)

relative to those of WaveSegNet-2 (i.e., 6.5 mm and 3.8

mm, respectively, for the same in vivo trials) are not due

to differences in transducer motion. Instead, these results

demonstrate the improved axial localization accuracy that can

be achieved by WaveSegNet-2 relative to WaveSegNet-1.

Fig. 6 shows the mean ± one standard deviation of inference

times achieved by the photoacoustic point source localization

systems in each of the phantom and in vivo visual servoing

trials. DetectionNet consistently achieved the lowest mean

inference times among the three systems across the phantom

and in vivo environments, with mean inference times ranging

145.3 ms to 158.0 ms. WaveSegNet-1 achieved mean inference

times of 522.7 ms and 516.3 ms in In Vivo Trials 3 and 4,

respectively. WaveSegNet-2 performed inference slower than

both DetectionNet and WaveSegNet-1 with mean inference

times ranging 805.0 ms to 1103.8 ms across the phantom and

in vivo visual servoing trials. In addition, DetectionNet and

WaveSegNet-1 achieved comparably lower standard deviations

of inference times (ranging 7.3 ms to 14.0 ms and 32.5 ms

to 32.9 ms, respectively), relative to that of WaveSegNet-2

(i.e., 562.3 ms to 802.8 ms and 2.7 ms to 360.7 ms during

the phantom and in vivo trials, respectively). Hence, there are

increased computational costs associated with WaveSegNet-2.

C. Lateral Tracking Performance

Fig. 7 shows the reconstructed trajectories of the transducer

and catheter tip as estimated by the real-time (i.e., Detec-

tionNet and WaveSegNet-1) and offline (i.e., WaveSegNet-2)

photoacoustic point source localization systems in the fixed

frame B′ defined in Section II-E during Phantom Trial 1, In

Vivo Trial 2, and In Vivo Trial 3, which correspond to the

lowest F1 scores achieved by DetectionNet and WaveSegNet-2

(based on Tables III and IV). In Fig. 7(a), the transducer moved

in a curved path following the hemispherical surface of the

phantom, while the catheter tip moved in a straight line inside

the phantom. This linear motion of the catheter was captured

by DetectionNet with a small number of outliers, as shown by

the blue dots in Fig. 7(a). The catheter trajectory reconstructed

using WaveSegNet-2 contained a larger number of outliers

from the linear trajectory compared to DetectionNet, as shown

by the yellow dots in Fig. 7(a).

In Figs. 7(b) and (c), the height of the transducer increased

with the insertion of the catheter tip, following the abdominal

surface of the swine. However, the catheter tip continued

moving along an approximately linear trajectory within the

IVC. DetectionNet produced variations in the axial location

estimates of the catheter tip, which affecting the reconstructed

trajectory (Fig. 7(b)), while WaveSegNet-1 was unable to

capture the linear motion of the catheter (Fig. 7(c)). In

comparison, WaveSegNet-2 successfully reconstructed linear

trajectories in both cases. These results demonstrate the abil-

ity of WaveSegNet-2 to accurately track the trajectory of a

catheter tip during the in vivo visual servoing trials.

Table VI reports real-time tracking errors, based on the

difference between the ground truth start and end positions

in the x dimension, which are plotted in Fig. 7, and the

tracked start and end positions for each trial. Comparably

low tracking errors were achieved with DetectionNet during

the phantom and in vivo trials (i.e., 0.5-3.6 mm and 2.2-3.2

mm, respectively). Although Fig. 7 shows large deviations in

the axial dimension with WaveSegNet-1, and Fig. 5 shows

large deviations in the axial and elevation dimensions with

WaveSegNet-1, one benefit of WaveSegNet-1 is the reduced

lateral tracking errors during the real-time in vivo trials in

Table VI (i.e., 0.8-1.3 mm with In Vivo Trials 3-4), when

compared to the tracking errors achieved with DetectionNet

TABLE VI

REAL-TIME LATERAL CATHETER TIP TRACKING ERRORS ACHIEVED

WITH DETECTIONNET OR WAVESEGNET-1 DURING PHANTOM AND IN

VIVO VISUAL SERVOING TRIALS, AS INDICATED IN TABLE III

Trial Number Tracking Error (mm)

Phantom Trial 1 0.5
Phantom Trial 2 2.7
Phantom Trial 3 3.6
Phantom Trial 4 3.0
Phantom Trial 5 3.1

In Vivo Trial 1 2.2
In Vivo Trial 2 3.2
In Vivo Trial 3 0.8
In Vivo Trial 4 1.3
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Fig. 7. Transducer and catheter tip position during (a) Phantom Trial 1, (b) In Vivo Trial 2, and (c) In Vivo Trial 3, as noted in Section II-G. The real-
time photoacoustic point source localization systems DetectionNet and WaveSegNet-1 are compared with corresponding offline results obtained
with WaveSegNet-2. The + and ▷ symbols indicate the start and end, respectively, of ground truth travel in the x dimension, based on checkpoints
marked on the inserted catheter (described in Section II-F).

Fig. 8. Fluoroscopic image of catheter acquired after In Vivo Trial
2 within inferior vena cava with catheter tip location estimates from
WaveSegNet-2 superimposed. Clamp forceps rested on the chest to
externally mark the skin with the catheter tip location at Checkpoint 2.

(i.e., 2.2-3.2 mm with In Vivo Trials 1-2).

Fig. 8 shows the catheter tip location estimates output

by WaveSegNet-2 corresponding to In Vivo Trial 2, overlaid

on the fluoroscopy image of the catheter acquired after In

Vivo Trial 2, with starting and ending positions marked by

Checkpoints 1 and 2, respectively. The RMSE between each

output of WaveSegNet-2 in the fluoroscopy reference frame

F and the corresponding closest point along the fluoroscopy-

based catheter trajectory was 1.1 mm. The median error was

0.5 mm, and the error range was 0-7.0 mm, which are both

larger than the 0.1 mm median and 0-6 mm error range

between 0 mm elevation location and the datapoints for In

Vivo Trial 2 in Fig. 5(b), indicating better accuracy with the

methods used to obtain the results presented in Figs. 5 and 7.

Fig. 9 shows the percentage of time during which the output

state of the MTLKF was tracking or not during each visual

servoing trial, which ultimately measures tracking success or

Fig. 9. Tracking success and failure rates of the MTLKF during (a)
phantom and (b) in vivo visual servoing trials.

failure rates, respectively. In Fig. 9(a), the catheter tip was

successfully tracked (i.e., MTLKF maintained at least one

track associated with a point source location estimate from

within the previous three time instants) for time durations

ranging 84.5% to 93.6% of each total phantom visual servoing

trial length. The corresponding tracking rates were ≥75.4%

during the in vivo trials (Fig. 9(b)). These results demonstrate

the ability of the MTLKF to utilize the outputs of the real-

time deep learning-based point source localization systems to

consistently identify the position of the catheter tip.

D. Contact Performance

Fig. 10 shows box-and-whisker plots of the contact force

during the phantom and in vivo trials. In Fig. 10(a), our

hybrid position-force control-based visual servoing system

maintained contact 100.0% of the time during each phantom

trial (median and interquartile ranges of contact forces ranging

1.38 N to 1.51 N and 0.27 N to 0.32 N, respectively). In

Fig. 10(b), our system maintained contact with the abdomen

of the swine (i.e., positive force readings) between 99.43%

and 100.0% of the total time duration of each trial (median

and interquartile ranges of contact forces ranging 1.29 N to
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Fig. 10. Contact forces during (a) phantom and (b) in vivo visual
servoing trials. The horizontal red lines, box heights, whiskers, and
red dots denote the medians, the interquartile ranges, 1.5 times the
interquartile ranges, and outliers, respectively.

1.43 N and 0.48 N to 0.63 N, respectively). The contact loss

(which only occurred during In Vivo Trial 2) and the increased

interquartile ranges of forces in the in vivo trials compared to

the phantom trials were caused by respiratory motion, resulting

in the robot moving the transducer to reacquire contact and the

initiation of the search state of the FSM if catheter tip motion

resided outside the transducer FOV (Table II). Our force

control implementation successfully enabled the transducer

to mostly remain in contact to provide necessary real-time

photoacoustic data of the catheter tip.

IV. DISCUSSION

This paper is the first to present a real-time deep learning-

based photoacoustic visual servoing system utilizing both

object detection and instance segmentation to estimate catheter

tip positions in three spatial dimensions. This system was

designed with two features not present in previous amplitude-

based [5], [20] and deep learning-based [27], [28] photoacous-

tic visual servoing systems. First, our point source localization

systems estimated the location of the catheter tip along the

elevation dimension of the transducer. Second, the integration

of force control into our visual servoing system improved the

tracking of targets across uneven imaging surfaces, overcom-

ing this stated limitation of our previous systems [5], [20],

[27], [28]. These features improve the potential of our novel

visual servoing system for clinical translation (e.g., cardiac

catheterizations, other interventional procedures).

It is encouraging that our novel visual servoing system

achieved catheter tip tracking errors as low as 0.5 mm and

0.8 mm in the phantom and in vivo environments, respectively

(Table VI). These errors are comparable to needle tip tracking

errors ranging 0.6-1.0 mm with our previous deep learning-

based visual servoing system [27], when tracking needle

tips in plastisol phantoms and ex vivo tissue. Notably, the

lowest lateral tracking errors were achieved with WaveSegNet-

1, which is promising for the implementation of real-time,

theory-based, instance-segmentation point source localization

approaches. In addition, both real-time and offline instance

segmentation-based point source localization systems (i.e.,

WaveSegNet-1 and WaveSegNet-2, respectively) successfully

detected the catheter tip in 100.0% of the input channel data

frames during a majority of the in vivo visual servoing trials

(i.e., 100% recall in Table IV).

There are a few suspected tradeoffs among source location

outputs, signal amplitudes, accuracy, and inference times.

First, the unexpectedly large elevation outputs of DetectionNet

(Figs. 5(a) and 5(b)) are likely due to differences in the

signal amplitude between the simulated data used to train

DetectionNet and the experimental data provided to the system

during the visual servoing trials. DetectionNet likely mis-

interpreted lower signal amplitudes as source displacements

relative to the elevation center of the transducer. This hypoth-

esis indicates that the performance of DetectionNet may be

improved by increasing the range of signal amplitudes in the

simulated training set. While the location estimation process

of WaveSegNet-1 depended on the shape of the segmenta-

tion masks rather than signal amplitudes, the large elevation

(Fig. 5(b)) and axial (Fig. 5(d)) outputs were likely caused

by inaccuracies from neglecting second order terms during

gradient descent. WaveSegNet-2 provided source locations

based on the same segmentation masks as WaveSegNet-1,

albeit with more consistent location estimates, likely due to

the inclusion of second order terms during gradient descent.

However, this inclusion negatively impacted inference times

(Fig. 6). WaveSegNet-1 and WaveSegNet-2 had the greatest

inference times due to the associated iterative gradient descent

algorithms being the most computationally expensive step.

The large inference time standard deviations achieved with

WaveSegNet-2 (Fig. 6) are caused by the large number of

false positives output by the Mask R-CNN algorithm imple-

mented prior to gradient descent (corresponding to decreased

precision values in Table IV). In comparison, WaveSegNet-

1 had greater precision (i.e., less false positives), and the

detections output by the Faster R-CNN network forming

DetectionNet were immediately output to the MTLKF, both

resulting in smaller variations in inference times compared to

WaveSegNet-2. DetectionNet achieved mean inference times

as low as 145.3 ms, which is slower than the 10 Hz PRF of the

laser (i.e., 100 ms between pulses), but was demonstrated in

real-time nonetheless, with faster inference times than either

WaveSegNet-1 or WaveSegNet-2.

The MTLKF is a computationally efficient alternative to

the consistency check presented in previous visual servoing

systems from our group [5], [20], [27], which required valid

outputs in five consecutive channel data frames and additional

position-based calculations to identify a tracked target as valid.

It is promising that this filter successfully resolved positive

and negative elevation source displacements arising from the

elevation symmetry of photoacoustic waveforms encountered

by our visual servoing system, enabling the generally low

tracking errors of 0.5-3.6 mm (Table VI). In addition, while

our visual servoing system required only a single output from

the MTLKF, this filter potentially enables the development of

a visual servoing system that simultaneously tracks multiple

targets [26].

Two additional design choices contributed to the low

catheter tip tracking errors measured in the phantom and

in vivo environments (Table VI), despite the large ele-
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vation source displacements output by DetectionNet and

WaveSegNet-1 (Fig. 5). First, the FSM relied more on the

lateral rather than elevation position estimates. This choice

was derived from the more accurate lateral localization per-

formance of object detection-based and instance segmentation-

based systems compared to elevation performance observed in

our previous phantom and ex vivo experiments [24]. Second,

no robot motion was implemented if point sources were within

1 mm of the lateral or elevation transducer center (Table II),

which reduced the transducer motion required to maintain the

catheter tip near the center of the imaging plane, relative to

previous visual servoing systems [5], [20], [27], [28].

As expected, force control along the axial dimension of

the transducer enabled consistent contact with the imaging

surface (Fig. 10). While the transducer experienced motion in

the vertical direction following the shape of the hemispherical

phantom (Fig. 7(a)), the trajectory of the transducer did not

follow a circular arc matching the radius of the phantom.

This discrepancy was caused by the fixed orientation of the

transducer, which resulted in a different point on the transducer

being in contact with the phantom at each time instant. During

the in vivo trials, the transducer exhibited rapid oscillations

in the vertical direction (Figs. 7(b) and 7(c)) as a conse-

quence of the respiratory motion of the swine and the limited

force control model (i.e., hybrid-position force control in the

transducer axial dimension, ignoring effects of robot dynamics

on measured force readings). An example of the oscillations

is available in Supplementary Video 1. The force control

model was sufficient to achieve smoother transducer motion

during the phantom trials and did not appear to negatively

impact the in vivo tracking results relative to the phantom

results (Table VI), indicating that lateral tracking is robust to

respiratory motion. This unwanted axial transducer motion due

to respiratory and related effects during in vivo trials could

potentially be addressed with alternative control strategies

[47]. Sterility concerns with required transducer contact can be

addressed with commercially available transducer covers that

are readily available for ultrasound-guided patient procedures,

customized cardiovascular incise drapes [48], or a miniaturized

system that operates under existing sterile drapes [5].

Considering the multiple factors noted above (e.g., tradeoffs,

inference speed variability, localization and tracking perfor-

mance), DetectionNet offers the best real-time potential among

the three deep learning-based systems considered herein (Fig.

6), whereas WaveSegNet-1 is the first implementation of a

real-time instance segmentation-based point source localiza-

tion system, offering the best real-time axial point source

detection performance (Table IV) and real-time lateral track-

ing performance (Table VI). The poorer axial and elevation

position localization performance of WaveSegNet-1 relative

to WaveSegNet-2 (Fig. 5) indicates that second-order gradient

terms are critical for accurate localization of point sources

using our theory-based wave segmentation approach, which

is an unexpected outcome that we did not anticipate when

developing WaveSegNet-1. Despite current inference times

with WaveSegNet-2 prohibiting real-time implementation (Fig.

6), the in vivo potential of this approach to outperform

object detection-based methods (e.g., DetectionNet) has been

successfully demonstrated (Figs. 5 and 7), with additional

benefits likely achievable with future system optimizations

(e.g., enhanced speed via alternative network architectures

[49], gradient descent algorithms [50], and reduced image

dimensions [30], [51], [52]).

Although successful in vivo performance is more impor-

tant than unsuccessful phantom performance when determin-

ing clinical translatability and future system optimizations,

WaveSegNet-1 failed to track the catheter tip in the phantom

likely because of first-order gradient terms, which are sus-

pected to have caused the large axial and elevation variations

in Figs. 5(b), 5(d), and 7(c), as indicated above. A similar

failure was not achieved with the in vivo trials, likely due to the

MTLKF (yellow box in Fig. 1) receiving consistent catheter tip

location estimates from WaveSegNet-1 (see real-time perfor-

mance with In Vivo Trials 3 and 4 in Table IV). Considering

the reduced offline detection performance of WaveSegNet-2

in the phantom relative to in vivo trials (Table IV) and the

identical first stages of WaveSegNet-1 and WaveSegNet-2 (i.e.,

Mask R-CNN), the detection performance of WaveSegNet-

1 in the phantom trials likely degraded the consistency of

the catheter tip location estimates provided to the MTLKF,

resulting in no phantom results with WaveSegNet-1.

The objective of an optimal photoacoustic visual servo-

ing system is to simultaneously maximize surgical tool tip

localization performance and achievable frame rates. Given

the failure of WaveSegNet-1 to successfully perform in the

phantom trials (Section II-E) or achieve our axial and elevation

localization goals in the in vivo trials (Fig. 5), we must con-

sider other possible approaches to leverage the improved local-

ization performance of WaveSegNet-2 [24] without suffering

from the associated low frame rates with existing computing

hardware. For example, amplitude-based [20] or coherence-

based [23] photoacoustic visual servoing approaches were

previously demonstrated to operate on delay-and-sum or short-

lag spatial coherence (SLSC) beamformed images in real time

(i.e., with execution times ≤100 ms, corresponding to the 10

Hz laser PRF). These real-time approaches could potentially be

combined with WaveSegNet-2 to receive periodic 3D source

location estimates (e.g., at the 1-2 Hz frame rates demonstrated

in Fig. 6) using techniques similar to sensor fusion algorithms

[53] employed in automotive [54] and aerospace [55] applica-

tions. The periodic elevation information from WaveSegNet-2

would provide periodic robustness to reflection artifacts and

lateral localization performance, while informing the system

of rotations about the axial dimension required to periodically

compensate for out-of-plane motion in lengthy surgical and

interventional procedures.

These multiple possible photoacoustic visual servoing op-

tions could be deployed either as a standalone system to

replace fluoroscopy or as an add-on to conventional imaging

modalities (e.g., ultrasound, fluoroscopy). As a standalone

system, photoacoustic visual servoing could be used to track

catheter tips, then the photoacoustic imaging component can

be used to assess ablated lesion boundaries [56]. As an add-

on, photoacoustic visual servoing may be augmented with

ultrasound to provide additional anatomical information or

with fluoroscopy images that provide intermittent checks of
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catheter tip positions.

One limitation of our study is the absence of a continuous

synchronized ground truth using an external system (e.g.,

fluoroscopy) for the visual servoing trials. While catheter tip

locations were confirmed with fluoroscopy at the start and end

of four in vivo trials, future work could potentially utilize flu-

oroscopic videos to characterize the instantaneous localization

performance of our visual servoing system across each visual

servoing trial. These videos would need to be acquired from

multiple fixed reference frames to compensate for the lack

of depth information in individual fluoroscopy images, which

would significantly extend the time required to complete a

single visual servoing trial. As an alternative, previous work

by Graham et al. [5] used an electromagnetic tracking system

to validate an amplitude-based photoacoustic visual servoing

system. This tracking system could potentially be used with

intermediate checkpoints separated by small distances (e.g., 5

mm) to provide additional points of comparison with our deep

learning-based photoacoustic visual servoing system.

A second potential study limitation is that the mean laser

energy of 2.0 mJ corresponds to a laser fluence of 254.6

mJ/cm2 within the IVC. While this laser fluence value ex-

ceeded the 25.2 mJ/cm2 laser safety limit defined for skin

at a wavelength of 750 nm [57], no such safety limit has

been published for internal tissue. Previous work by our group

demonstrated the use of higher laser energy levels during in

vivo swine studies without observable tissue damage in post-

exposure histopathological and immunohistochemistry studies

[5], [58], [59]. In addition, our group previously introduced

a theoretical framework linking predictions of required laser

energies to visual servoing performance through the general-

ized contrast-to-noise ratio (gCNR) [60]. When evaluating this

theory alongside data acquired from a previous in vivo cardiac

catheterization experiment [61], gCNR values ≥0.56 were

achieved with laser energies ≥104.7 µJ (i.e., ≥13.3 mJ/cm2

fluence), corresponding to ≥97.8% predicted segmentation

success rates (reported as segmentation accuracy in [61]),

which could be viewed as expected success rates of visual

servoing with lower energies [60]. Although these values refer

to achievements that are possible with delay-and-sum beam-

forming, similar achievements are anticipated to be possible

for successful visual servoing within current safety standards,

with appropriate modifications to deep learning approaches

applied to photoacoustic channel data (e.g., histogram match-

ing [30], SLSC beamforming [23], [62], [63] combined with

pulsed laser diodes [64], acquisitions with optical wavelengths

that allow higher energies within fluence safety limits [6], [23],

[57]).

V. CONCLUSION

This work demonstrates a novel deep learning-based pho-

toacoustic visual servoing system tracking a catheter tip

during an in vivo catheterization procedure. We successfully

integrated object detection-based and instance segmentation-

based 3D point source localization systems (i.e., DetectionNet

and WaveSegNet-1, respectively), with MTLKF and a hybrid

position-force control system to ultimately track a catheter tip

in vivo. We also characterized the ability of our visual servoing

system to detect and localize the catheter tip in phantom and

in vivo environments, using raw photoacoustic channel data

frames as the input. Our system successfully followed the

catheter tip while continuously maintaining contact with the

imaging surface. In addition to real-time demonstrations, we

validated the potential of an offline instance segmentation-

based point source localization system using second order

gradient terms (i.e., WaveSegNet-2) to improve catheter tip lo-

calization at the cost of increased inference times, with the po-

tential for additional optimizations to increase implementation

speeds. These contributions are promising to autonomously

track and visualize catheter tips, needle tips, and other surgical

or interventional tool tips in real time.
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