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A B S T R A C T

Deep neural networks (DNNs) have remarkable potential to reconstruct ultrasound images. However, this
promise can suffer from overfitting to training data, which is typically detected via loss function monitoring
during an otherwise time-consuming training process or via access to new sources of test data. We present a
method to detect overfitting with associated evaluation approaches that only require knowledge of a network
architecture and associated trained weights. Three types of artificial DNN inputs (i.e., zeros, ones, and Gaussian
noise), unseen during DNN training, were input to three DNNs designed for ultrasound image formation,
trained on multi-site data, and submitted to the Challenge on Ultrasound Beamforming with Deep Learning
(CUBDL). Overfitting was detected using these artificial DNN inputs. Qualitative and quantitative comparisons
of DNN-created images to ground truth images immediately revealed signs of overfitting (e.g., zeros input
produced mean output values e0.08, ones input produced mean output values d0.07, with corresponding
image-to-image normalized correlations d0.8). The proposed approach is promising to detect overfitting
without requiring lengthy network retraining or the curation of additional test data. Potential applications
include sanity checks during federated learning, as well as optimization, security, public policy, regulation
creation, and benchmarking.

1. Introduction

Medical images are often employed to non-invasively view the con-
tents of the human body and render patient diagnoses. The formation
of these medical images are typically governed by strict criteria to
maintain accuracy and fidelity to the depicted anatomy [1]. The images
may then be post-processed prior to display to remove noise or artifacts.
Thus, each medical imaging method available in clinics today has a
standard set of image formation or post-processing algorithms applied
to create displayed images. Ultrasound imaging is one of the most
common medical imaging modalities that abide by these criteria.

In ultrasound imaging, conventional image formation methods, such
as delay-and-sum (DAS) beamforming, typically rely on known ar-
ray geometries and medium properties [2]. The DAS beamforming
method can be used to form real-time ultrasound images from raw
radiofrquency (RF) channel data received after plane wave transmission
(i.e., after targets of interest are insonified with one or more plane
waves), with a trade-off between speed and image quality based on the
number of transmitted plane waves. When compared to the traditional
DAS algorithm, ultrasound image formation with deep learning is
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advantageous because networks can be trained to directly output high-
quality images from raw sensor data, particularly after only a single
plane-wave ultrasound transmission [3310].

One common challenge when implementing deep neural networks
(DNNs), both in the field of medical image formation and more broadly
across many sectors of the deep learning arena, is the potential for
overfitting. Overfitting is generally defined as the exact fit of the model
to the training set, which is associated with the representation power
of the model, regularization techniques, and optimization methods,
and it is defined independently of the data size [11]. When overfit-
ting occurs in ultrasound beamforming, networks may perform very
well on training data, yet fail to generalize across different unseen
datasets [12].

Common methods such as early stopping, k-fold cross-validation,
or inference are widely adopted as effective approaches to prevent or
detect overfitting [13,14]. In early stopping, training and validation
errors are monitored, and validation errors are measured to represent
generalization errors (i.e., the errors associated with predicting out-
come values for previously unseen data). In addition, early stopping
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criteria are implemented to decide when to stop a training process and
achieve minimum generalization loss. Traditional early stopping crite-
ria include validation losses, quotient of validation losses, or progress
exceeding a particular threshold [15]. Cross-validation is one of the
most common methods to avoid network overfitting when there is a
limited dataset [16]. In k-fold cross-validation [17], a dataset is split
into ā groups and the fitting and evaluation process (based on ā − 1
training sets and 1 validation set) is performed ā times. The final
model skill score shows the generalization of the network quantita-
tively. Successful implementation relies on different data splits, which
require multiple data samples [18]. With an inference approach to
detect overfitting, additional test data are input to further evaluate
DNN performance [19,20]. This additional ultrasound sensor data can
be obtained through experiments or simulations, or from publicly
available datasets.

Major limitations of the early stopping, cross-validation, and infer-
ence methods are that they require training data, re-training of the
network, or curation of new test data. However, when presented with a
new DNN without access to training code, training data, and unseen test
data, implementation of these methods are not possible. In addition,
considering that the training process typically requires thousands of
training examples, it is not always feasible for a user to train a new
DNN to perform the same task as that learned with an existing DNN
to provide confidence that the network performs as expected. More
recent advancements in overfitting detection techniques (e.g., adversar-
ial examples [21], model selection [22], dynamic architectures [22])
suffer from these same challenges. These challenges are additionally
concerning with respect to regulatory procedures [23], optimization,
and trustworthiness of DNNs deployed on patient data.

In addition, when implementing federated learning [24326] ap-
proaches to address privacy concerns [27,28], models are collabora-
tively trained across multiple local edge devices or servers holding
decentralized local data samples. Federated learning can be realized
with different workflows, including an aggregation server with central-
ized training topology [29] or peer-to-peer clients with decentralized
training topology [30], without sharing training data between institu-
tions. In each of these cases, it is most ideal if training code and data
are not required to build confidence that an existing publicly available
DNN will perform well on new data related to the trained task.

In this paper, a novel method to more rapidly identify the overfitting
of DNNs trained to beamform ultrasound images when compared to
conventional overfitting detection approaches is proposed. The under-
lying premise is that a true beamformer should create images regardless
of the input data being real or artificial, or previously unseen by the
network. A DNN that recreates an image when presented with an
artificial input should therefore produce the same type of image that
would be produced by the ground truth beamformer after which the
DNN is modeled. A preliminary report of this approach was presented
in a conference paper [31]. Herein, new ultrasound image examples
are included (e.g., in vivo examples to show the potential clinical
impact), and all ultrasound image examples are now normalized to the
same scale to achieve more accurate visual comparisons (which is a
significant update to enable fair qualitative comparisons with respect
to the qualitative assessment component of the proposed approach).
In addition, we present a flowchart summarizing intended use (Fig. 1)
and new results (including additional metrics and results obtained with
progressive data removal from real to artificial RF data).

The proposed method does not require any training code, train-
ing data, or test examples. Thus, this method is effective when only
provided with a DNN and its input data structure. As a result, users
can employ the proposed method to determine if a DNN is overfitting
before any testing on previously unseen data (which may not be read-
ily available). Publicly available DNNs [5,6] and datasets [12,32,33]
that anyone can use are implemented to validate the promise of the
proposed method. In addition, the employed data and DNN models,
training weights, and/or code originated from multiple institutions,

Fig. 1. Flowchart describing when and how to deploy the proposed overfitting
detection method.

which mimics the decentralization component of federated learning
with no sharing of training data.

The remainder of this paper is organized as follows. Section 2
describes the artificial input data we propose, the DNNs investigated
in this work, and the metrics for evaluating network performance.
Section 3 presents images produced by the DNNs and corresponding
qualitative and quantitative analyses. Section 4 discusses major find-
ings and the associated implications for future implementation, and
Section 5 summarizes major contributions.

2. Methods

2.1. Artificial RF data for ultrasound imaging

Robust networks generalize across different datasets while overfit-
ted models perform well only on training data [34]. To test networks
on unseen data, we created three types of artificial RF channel data
based on the underlying premise stated in Section 1 to meet two basic
criteria. First, the artificial data are expected to have never been seen by
the networks because they do not resemble real data and should not be
included during training. At the same time, the artificial data should be
simple enough such that the associated image produced by a traditional
beamformer is predictable and understandable. The artificial data we
created meet these two criteria and are grouped into two categories:
(1) binary samples including zeros and ones and (2) random samples.

With zeros as the input, the output envelope image contained zeros
at each pixel location, resulting in invalid values after normalization.
To obtain a valid output, a value close to zero (i.e., 1 × 10−20) was used
instead. In addition, one RF channel data point at the center of the input
was set to 1 to achieve a normalized image that was representative of
the input and distinguishable from the second binary input. This second
binary input was a matrix of ones surrounding a center pixel value of
1 × 10−20 to address the same normalization challenges described above.

A matrix of random samples drawn from a Gaussian distribution
with mean ą = 0 and standard deviation ÿ = 1 was created to be the
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third type of artificial RF channel data. This type of data may resemble
electronic noise obtained from an ultrasound transducer when no image
target is present. To maintain the same range as the zeros and ones
input data described above, the random input values were normalized
to the range [0, 1].

2.2. Ground truth, test networks, and associated training/test data

The artificial channel data proposed in Section 2.1 were inputs to
a Pytorch DAS plane-wave beamforming algorithm [12] and to three
DNN models submitted by Rothlübbers et al. [5], Goudarzi et al. [6],
and Wang et al. [7] to the Challenge on Ultrasound Beamforming with
Deep Learning (CUBDL) [12,35]. For brevity, these three DNNs are
referred to as Network A, Network B, and Network C, respectively
(with architecture and associated training/test data summaries pro-
vided below, based on the details in [7,12]). The output single 0ë

plane wave images from the DAS beamformer served as the ground
truth, as each of the three test networks were modeled after the DAS
beamformer. Network C was flagged by the CUBDL organizers as over-
fitting to the training data during the evaluation phase for submitted
networks, given its performance on previously unseen, crowd-sourced,
test data [12], which is one of the currently subjective standards to
determine overfitting, as described in Section 1.

Network A [5] is a fully convolutional network with four lay-
ers. The network was designed to model the united sign coherence
factor (USCF) [36] by computing pixel-wise weighting (after data pre-
processing, which included delay compensation and apodization [5]).
The network input is time-delayed, magnitude-normalized, complex-
valued data from the 0ë plane wave transmission angle. The network
output is a real-valued weighting factor for each reconstructed pixel.
The final pixel values were obtained by multiplying the unweighted
sum absolute pixel values by the network output pixel weights, fol-
lowed by log compression and a correction for the maximum value.
The integration of Network A into the beamforming pipeline and the
network architecture are presented in Figs. 1 and 2 in [5]. This network
used an Adam optimizer with a learning rate decay of 0.1 every 5
epochs, and it was trained for 15 epochs. The loss was computed as a
linear combination of mean-squared error (MSE) and multiscale struc-
tural similarity (MS-SSIM) [37] loss on the log compressed, normalized
final images.

Training data for Network A consisted of 107 ultrasound raw data
sets of a phantom (Model 054GS, CIRS, Norfolk, VA), acquired with
multiple angles using a 128-element linear array transducer (DiPhAS,
Fraunhofer IBMT, Sankt Ingbert, Germany). High-quality target images
were reconstructed using multi-angle USCF imaging [36], utilizing
data from seven plane wave angles. The publicly available Plane-wave
Imaging Challenge for Medical Ultrasound (PICMUS) dataset [33] was
used to test the model.

Network B [6] utilizes the MobileNetV2 [38] architecture, as pre-
sented in Fig. 2 in [6]. The network was designed to estimate and
apply an apodization window to the input in-phase and quadrature (IQ)
channel data for minimum variance beamforming [39] (after data pre-
processing, which included delay and f-number compensation [6]). The
network input is a 2 × ă × Ą matrix in which first the two channels are
the real and imaginary parts of IQ data, Ą is the number of channels,
and ă is the length of the window considered for temporal averaging to
preserve the speckle statistics. The network output is a two-dimensional
vector containing real and imaginary parts of the beamformed data.
The output IQ data was then envelope detected and log compressed
to obtain the final B-mode ultrasound image. This network used an
AdamW optimizer [40]. The loss was computed as the ā1-norm between
the network output and the IQ pixel values obtained using minimum
variance beamforming.

Training data for Network B consisted of the publicly available
plane wave and focused transmission phantom, in vivo, and Field II-
simulated datasets available in the Ultrasound Toolbox [33,41,42]. The

plane wave data were acquired with a Verasonics (Kirkland, WA, USA)
Vantage 256 scanner and L11-4v probe (phantom and in vivo data) or
an Alpinion (Seoul, South Korea) E-Cube12R scanner and L3-8 probe
(phantom data). Focused imaging datasets were acquired with a Vera-
sonics Vantage 256 scanner connected to a P4-2v probe and an Alpinion
E-Cube12R scanner connected to a L3-8 probe. Images reconstructed
from data received after a single 0ë plane wave transmission were the
ground truth output images utilized during training.

Network C [7] is a conditional generative adversarial network
(cGAN) [43] consisting of one generator and two discriminators, de-
signed to directly transform RF channel data to a B-mode ultrasound
image. As presented in Fig. 1 in [7], the generator architecture is based
on U-Net [44], and the discriminator has an analogous design to the
contraction path, which was implemented twice to calculate the cross-
entropy loss between the input, ground truth, and generated images.
Adam optimization was applied with 800 epochs for pre-training, 800
epochs for training, and 200 epochs for fine-tuning, while the initial
learning rate was 0.0002.

Pre-training data for Network C consisted of 400 photographs from
the CMP Facades datasets [45], and the training data consisted of
1500 single plane wave ultrasound images from PICMUS [33] and the
Ultrasound Toolbox [41]. In addition, −2 dB Gaussian white noise
was added to each single plane wave RF signal. The ground truth
images for training were formed after incorporating the 75 plane wave
transmissions to create each corresponding DAS image. The entire
dataset was divided into dedicated training (60%), validation (20%),
and test (20%) datasets.

While there are multiple differences in the design and training
processes for Networks A, B, and C, two major differences emerge
based on the published reports (notwithstanding the architecture dif-
ferences summarized above). First, Networks A and B learned weights
(e.g., scaling, apodization) to be included in an otherwise traditional
DAS beamforming process, whereas Network C was designed to directly
transform RF channel data to a B-mode ultrasound image. Second,
Network C was pre-trained with examples from real-world photographs
(consisting of building facades), whereas Networks A and B appear to
have been exclusively trained using ultrasound data.

2.3. Evaluation methods to detect overfitting

Qualitative assessment and two classes of quantitative metrics were
employed to identify overfitting with the artificial inputs described in
Section 2.1, as summarized by the decision tree in Fig. 1. Initially,
qualitative assessment should be performed to determine similarity to
the ground truth. Results that are similar pass the first checkpoint and
are not suspected to be overfitting to the training data.

When the artificial inputs are introduced for additional evaluation
and assessment, the first class of quantitative metrics for each DNN
output and corresponding ground truth is the mean ± one standard
deviation of the envelope-detected ultrasound images. With the zeros
input, we expect the mean produced by this evaluation metric to be H0
(i.e., close to the ground truth zero mean result), unless the network is
overfitting. With the ones input, the mean pixel values of the ground
truth and DNN outputs are expected to be H1, unless the network is
overfitting. Similarly, with the Gaussian random input, we expect the
mean values to be close to that of the ground truth.

The second class of quantitative metrics for images that pass the two
checkpoints described above is an image-to-image comparison based on
ā1 and ā2 losses:

ā1 =
1

Ċ

Ċ1

Ą=1

|ĎĄ − ďĄ| (1)

ā2 =

√√√√ 1

Ċ

Ċ1

Ą=1

|ĎĄ − ďĄ|2 (2)

where Ď and ď denote the normalized DAS reconstructed ground truth
and the DNN output images, respectively, and Ċ is the total number
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of overlapping pixels evaluated when comparing the two images. Two
additional image-to-image metrics that consider specific patterns or
structures include the normalized cross correlation (NCC) [12]:

NCC =

1
Ą(ĎĄ − ąĎ)(ďĄ − ąď)

√
(
1

Ą |ĎĄ − ąĎ|2)(
1

Ą |ďĄ − ąď|2)
(3)

where ą represents the mean of the image data, and the structural
similarity index measure (SSIM) [46,47]:

SSIM = Ă(Ď, ď)ā(Ď, ď)ĉ(Ď, ď)
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(4)

where ÿ represents the standard deviation of the image data; Ă(Ď, ď),
ā(Ď, ď), and ĉ(Ď, ď) are luminance, contrast, and structure comparison
functions, respectively; and ÿ1, ÿ2, and ÿ3 = ÿ2∕2 are positive con-
stants used to avoid null denominators and are computed based on
the dynamic range of the image. We additionally report NCC and SSIM
between the outputs of Network C obtained with the proposed artificial
inputs and the output of the Pytorch DAS beamformer [12] when
inputting channel data from a PICMUS image of a CIRS Model 040GSE
Phantom obtained with 75 plane wave transmissions (which Network
C learned well and appears to overfit).

2.4. Validation with progressive data removal

To validate network performance expectations as inputs transi-
tion from realistic image targets to unrealistic patterns, PICMUS [33]
channel data acquired from a CIRS Model 040GSE Phantom were
progressively removed from real channel data received using the entire
128 transducer elements (i.e., 0% removal), in 5% increments. At each
increment percentage, a subset of transducer element locations were
randomly selected for removal, after rounding to the nearest integer.
The removed channel data associated with the selected elements were
replaced with near-zero values (i.e., 1 × 10−20). At 100% removal, the
artificial zeros input described in Section 2.1 was employed. DNN-
generated images were compared to the corresponding ground truth at
each step, both qualitatively and quantitatively using the metrics that
consider specific patterns (i.e., NCC, SSIM). The quantitative metrics
were plotted as functions of the progressively removed data percentage.

2.5. Calculating the number of trainable parameters

To determine the number of trainable parameters used to evaluate
network complexity and provide insight into the potential for overfit-
ting, the same method implemented by Hyun et al. [12] was employed.
In particular, the number of learnable parameters in each layer corre-
sponds to the number of weights and biases in each network, which
are determined by the number of neurons for a fully connected layer
and the number and the size of filters for a convolutional layer [48,
49]. These parameters require gradient computations, resulting in the
greater model complexity of neural networks than the conventional
DAS beamforming approach.

3. Results

3.1. Initial evaluation

Fig. 2 shows log-compressed ultrasound B-mode images created
with the publicly available PICMUS data [33]. These PICMUS data were
employed to train Network C (in tandem with simulated ultrasound
data) [7], while Network A was trained on data acquired by Rothlüb-
bers et al. [5], and Network B was trained on public data available with
the Ultrasound Toolbox [6,41]. The network-produced images were

Fig. 2. Baseline evaluation on PICMUS data [33] acquired from a CIRS Model
040GSE Phantom (first column), Field II [50,51] simulated data (second column), and
orthogonal cross sections of an in vivo carotid artery (third and fourth column). Images
are displayed with 60 dB dynamic range.

Fig. 3. Network-produced images with artificial radiofrequency channel data inputs,
including zeros (top), ones (middle), and Gaussian noise (bottom). Images are displayed
with 60 dB dynamic range.

similar to their respective ground truths, confirming that the networks
and data were correctly loaded. In particular, Network C performed
well on the dataset used for training of this DNN and generated cleaner
images than the ground truth. Without the additional analysis outlined
in Fig. 1, it remains a question as to whether this is a true improvement
or simply a reflection of overfitting.

3.2. Zeros input

The top row of Fig. 3 shows the proposed method employed to re-
veal the answer to the quandary regarding improvement vs. overfitting,
starting with an input of mostly zeros surrounded by a single pixel
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Table 1
Mean±one standard deviation of envelope-detected ultrasound data.

Zeros Ones Gaussian noise

Ground truth 0.0052 ± 0.0363 0.9998 ± 0.0013 0.2326 ± 0.1238
Network A 0.0068 ± 0.0383 0.9953 ± 0.0237 0.0858 ± 0.0676
Network B 0.0034 ± 0.0334 0.8186 ± 0.1063 0.2366 ± 0.1298
Network C 0.0871 ± 0.0627 0.0619 ± 0.0460 0.0966 ± 0.0702

Table 2
ā1 and ā2 losses between ground truth and network-produced ultrasound data.

Zeros Ones Gaussian noise

ā1 loss
Ground truth vs. Network A 0.0018 0.0045 0.1653
Ground truth vs. Network B 0.0018 0.1812 0.1403
Ground truth vs. Network C 0.0718 0.9394 0.1849

ā2 loss
Ground truth vs. Network A 3.20 × 10−5 0.0005 0.0415
Ground truth vs. Network B 3.16 × 10−5 0.0040 0.0316
Ground truth vs. Network C 0.0087 0.8846 0.0492

containing a value of 1 (i.e., zeros input). Networks A and B produced
images that look similar to the ground truth. In particular, the point
spread function (PSF) of the singular center pixel with a value of 1
seems to be represented. However, Network C did not replicate the
ground truth PSF and instead created an image that is similar to its
training data (see top left of Fig. 2).

Table 1 reports the mean ± one standard deviation of the envelope-
detected ultrasound image output. The mean and standard deviation
of pixel values in images created with the zeros input are generally
similar to their respective ground truths, with the exception of Network
C, which produces values that have the greatest deviation from the
ground truth (e.g., mean values e0.08, rather than values closer to a
mean of zero). Table 2 reports ā1 and ā2 losses between ground truth
and network-produced images. While these losses are minimal with
Networks A and B, Network C produced an image that has the largest ā1
and ā2 losses among the three networks. With the proposed zeros input
method, the qualitative results in Fig. 3 and the quantitative results in
Tables 1 and 2 demonstrate that Network C is overfitting to the training
data.

3.3. Ones input

The middle row of Fig. 3 shows output images generated with the
ones input. Networks A and B generated images that look like the
ground truth, containing a similar all-white appearance when each
image is displayed with the same dynamic range. However, Network C
created an image similar to one of its training data (see Fig. 2) without
reproducing the ground truth.

With the ones input, the mean values of envelope-detected images
generated by Networks A and B are similar to that of the ground truth,
which is close to one, as shown in Table 1, although the standard
deviations show greater deviations when compared to that of the
ground truth. The output image of Network C has a mean value that
shows the greatest deviation from the ground truth (e.g., mean values
d0.07, rather than values closer to a mean of one). Table 2 shows that
Network C produced an image that has the largest ā1 and ā2 losses
among the three neural networks, indicating the worst match between
the output image of Network C and the ground truth. These qualitative
observations and the associated quantitative analyses (i.e., mean, ā1,
and ā2) reveal overfitting of Network C when assessed with the ones
input.

3.4. Gaussian random input

The bottom row of Fig. 3 shows the output B-mode images with
the Gaussian random input. Networks A and B produced images with

Table 3
NCC and SSIM between ground truth and network-produced ultrasound data.

Zeros Ones Gaussian noise

NCC
Ground truth vs. Network A 0.9903 0.9480 0.8725
Ground truth vs. Network B 0.8795 0.9398 0.8695
Ground truth vs. Network C 0.1325 0.7893 0.7013
PICMUS Phantom vs. Network C 0.8861 0.8250 0.7951

SSIM
Ground truth vs. Network A 0.9776 0.8651 0.2852
Ground truth vs. Network B 0.9715 0.7933 0.4198
Ground truth vs. Network C 0.1030 0.0658 0.0313
PICMUS Phantom vs. Network C 0.6702 0.5434 0.4101

similar appearance to the ground truth while Network C created an
image that looks like its associated training data (see Fig. 2).

With the Gaussian random input, the mean ± standard deviation
of the envelope-detected image produced by Network B is similar to
that of the ground truth while Networks A and C both generated
images with greater deviations from the ground truth, as shown in
Table 1. The last column of Table 2 reports the largest ā1 and ā2

losses between ground truth and Network C among the three networks.
These results obtained with the Gaussian random input show that the
mean ± standard deviation measurement is not a suitable metric to
identify overfitting with the Gaussian random input, and qualitative
observations and ā1 and ā2 comparisons are more useful in this case. In
addition, specific values to expect with the mean, ā1, or ā2 comparisons
can be inconclusive for this type of input.

3.5. Evaluation of structural patterns

While the proposed approach is most concerned with DNN outputs
that provide seemingly believable ultrasound images (until alternative
artificial or real data inputs prove otherwise), the mean, ā1, or ā2

metrics do not completely represent structural or pattern differences
in the data (e.g., leading to qualitative evaluations being more repre-
sentative of overfitting with the Gaussian random input, as discussed
in Section 3.4). The results from two additional metrics to address
this concern are reported in Table 3, when comparing the expected
ground truth output to the output achieved with each artificial input.
Among the three tested networks, these NCC and SSIM metrics show
that Network C consistently produces images with the worst match to
the ground truth (i.e., d0.8 and d0.2, respectively).

The fourth and eighth rows of Table 3 additionally report the
NCC and SSIM between the image outputs of Network C obtained
with artificial inputs and the associated 75-plane-wave PICMUS image
created with a DAS beamformer which Network C appears to overfit (as
observed from Figs. 2 and 3). These NCC and SSIM results are greater
than corresponding values achieved when comparing the ground truth
outputs with the Network C outputs, which provides quantitative con-
firmation that Network C produces images that more closely resemble
the structural patterns in this particular training example, rather than
the otherwise expected ground truth output if overfitting were not
present.

3.6. Progressive data removal

Fig. 4 shows example ground truth and network-generated images
when gradually removing channel data at random transducer element
locations. From left to right, images progressively degrade with Net-
works A and B, as the percentage of data removed increases, which
is expected. However, Network C produces images that seemingly
maintain robustness relative to the initial (i.e., 0% removed) ground
truth data, as the percentage of data removed increases. Rather than
maintaining or breaking this seemingly excellent performance when
presented with less data (e.g., at 90% data removal), Network C instead
produces another previously learned pattern (i.e., one that is similar
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Fig. 4. Ground truth and network-produced images with 0%, 50%, 90%, and 95%, of channel data removed, followed by the zeros input (considered to 100% of channel data
removed). Images are displayed with 60 dB dynamic range.

Fig. 5. (a) Normalized cross correlation (NCC) and (b) structural similarity index measure (SSIM) as functions of the percentage of data progressively removed.

to another PICMUS phantom image included in the training data of
Network C). In addition, with Network A or B, the structure of the
input data (i.e., retaining entire RF channel data lines when removing
data from 0% to 95% vs. retaining a single high-amplitude pixel at
the center of the zeros input when transitioning from 95% to 100%
removal) is responsible for the appearance of the output images. One
similar feature across Networks A and B is the PSF caused by singular
high-amplitude information (e.g., associated with point targets in the
0% images), while data pre-processing (e.g., apodization, f-number
compensation) and element directivity patterns are likely responsible
for the underlying angular patterns output by Networks A and B.
Network C does not produce the same underlying patterns because it
more directly transforms RF channel data into a B-mode ultrasound
image.

Fig. 5 shows NCC and SSIM as functions of channel data removal
percentages. As the input data are progressively removed from 0% to
95%, the NCC and SSIM between ground truth and network-produced
images are relatively constant with Networks A and B, then increase

when the networks are presented with the zeros input at 100% removal.
However, with Network C, these values decrease with an increase in
removed data, followed by an additional decrease when this network
is presented with the zeros input at 100% removal. It is a stark contrast
that at 100% removal, Networks A and B generate images with the
greatest NCC and SSIM among the removal process whereas Network C
creates an image with the lowest NCC and SSIM, indicating the greatest
deviation from the ground truth.

3.7. Number of learned parameters

Network complexity was assessed based on the number of learned
parameters, including numbers of weights and biases in each layer
for each network. In particular, we compared the number of trainable
parameters of each neural network with that of the ground truth
method. The method described in Section 2.3 was applied to obtain
the number of learnable parameters for Networks A through C, with
corresponding values reported in Table 4. Network C has 134 orders of
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Table 4
Total number of trainable parameters in test networks.

# of Parameters

Ground truth 0
Network A 3059
Network B 2, 226, 146

Network C 54, 408, 833

magnitude more trainable parameters compared to those of Networks
A and B.

4. Discussion

With the goal of rapidly identifying DNN overfitting, this work is
the first to introduce a new type of analysis using artificial data as
the input to DNNs trained to output ultrasound images. Three types of
artificial ultrasound sensor data revealed overfitting of an ultrasound
image reconstruction network (i.e., ones, zeros, and random). Overfit-
ting was rapidly identified by qualitative observations. Quantitatively,
overfitting was rapidly identified based on the largest ā1 and ā2 losses
and the smallest NCC and SSIM between the network-produced images
and the ground truth results, after inputting the artificial sensor data
comprised of binary or Gaussian random values. This rapid overfitting
identification was confirmed with the NCC and SSIM between the
suspected overfit training example and the Network C outputs with
artificial inputs (Table 3), followed by a systematic demonstration of
persistent overfit results achieved with imposed data loss (Figs. 4 and
5).

The NCC metric generally provides the most conclusive and signif-
icant interpretation in terms of values to expect when implementing
the approach proposed in Fig. 1, as values closer to 1 consistently
indicate greater similarity with the underlying patterns. This effec-
tiveness benefits from the invariance of NCC to linear brightness and
contrast variations [52]. With the binary image input (i.e., zeros and
ones), overfitting was additionally identified based on the greatest
difference in mean pixel values between the network output and the
ground truth (Table 1). However, this metric failed to inform overfitting
with the Gaussian noise input, likely due to the absence of structural
considerations with the mean values and also no clear expected dif-
ference between the means of the ground truth output and the DNN
output. As noted above, overfitting was successfully identified with the
Gaussian noise output, followed by understandable interpretation of the
associated NCC results (Table 3 and Fig. 5), unlike interpretation of
the mean result (Table 1). Hence, among the metrics presented herein,
NCC is considered to be most suitable for this task. More generally,
metrics that consider structural patterns (including NCC and SSIM)
are well-suited for quantitative confirmation of overfitting assessments
with artificial inputs that produce subtle output patterns.

The proposed overfitting approach is promising because it does not
require a time-consuming retraining process using the training code
and training data or the collection of additional test data. Instead,
images produced by existing DNNs were evaluated after inputting
the proposed artificial sensor data (i.e., ultrasound channel data) to
provide more rapid identification of network overfitting when com-
pared to traditional overfitting detection approaches. While simpler
than simulating or curating large ultrasound datasets for testing (which
was the approach implemented by the CUBDL organizers to arrive at
the same overfitting conclusion for Network C [12,53]), the proposed
approach (i.e., inputting artificial channel data consisting of zeros,
ones, or Gaussian noise) is otherwise conceptually similar to inputting
real ultrasound channel data. Progressive data removal (Figs. 4 and
5) additionally supports the overfitting conclusions determined by
the CUBDL organizers, particularly when the evaluations herein were
performed with the more interpretable and conclusive NCC metric.

As reported in Table 4, the network that was identified as overfitting
with the approach presented in Fig. 1 (i.e., Network C) has 134 orders
of magnitude more trainable parameters compared to those of the other
networks (i.e., Networks A and B). While there are various reasons why
DNNs may overfit to training data, networks with greater complexity
tend to have greater overfitting potential [54]. Therefore, this greater
complexity is one possible reason for the observed overfitting. Another
potential reason for the overfitting susceptibility is that Network C
learned the entire beamforming process (i.e., from raw data to image
output), while Networks A and B learned weights applied to a subset
of this entire beamforming process.

Recognizing the statistical distinction between overfitting and gen-
eralization, while an overfit network may correlate with poor gen-
eralization performance, poor generalization performance does not
necessarily correlate with overfitting [55]. However, in the context
of beamforming, a network that is purported to beamform raw data
should be capable of generalizing while avoiding overfitting. Thus, the
two terms can be considered interchangeable in this context. From this
perspective, additional causes of overfitting include limitations in the
representation power of a model, the amount of training data utilized,
and insufficient computational resources to avoid optimization errors
[11].

One limitation of the proposed approach is that the artificial input
datasets used in this manuscript (i.e., zeros, ones, and Gaussian noise)
could potentially be incorporated in the training process, unbeknownst
to the user or evaluator who did not develop the associated network.
In this case, we encourage the development of unique artificial pat-
terns by the individual performing the proposed approach. From this
perspective, the proposed approach additionally has the potential to
address concerns regarding transparency when local training data are
kept private for federated learning [25,30], yet accurate testing is nec-
essary. In particular, the proposed artificial input approach (e.g., zeros,
ones, Gaussian noise, or any desired pattern combination that may be
introduced in the future) relies on ensuring that these type of unrealistic
inputs are never included in the private training data.

It may also be considered a limitation that our method lacks the
ability to determine the level of overfitting when the output image is
a combination of patterns from training data (e.g., Fig. 4, Network C),
rather than an exact replica of one of the training images (e.g., Fig. 3,
Network C). There can potentially be similar performance concerns
associated with Networks A and B, based on three observations of the
quantitative results reported in Tables 133. In Table 1, the mean of
the output image of Network A obtained with the Gaussian noise input
deviates more from the ground truth than that of Network B, whereas
the mean of output image of Network B obtained with the ones input
deviates more from the ground truth than that of Network A. In Table 2,
with the ones input, Network A produced an image with smaller ā1 and
ā2 losses relative to Network B, whereas with the Gaussian noise input,
Network B created an image with smaller ā1 and ā2 losses than Network
A. In Table 3, Network A produced images with higher NCC with the
zeros input and higher SSIM with the ones input, relative to Network B.
However, with the Gaussian noise input, Network B created an image
with higher SSIM relative to that of Network A. Based on these observa-
tions, there are potentially minor performance concerns with Networks
A and B, which may be more nuanced compared to the more obvious
overfitting observations achieved with Network C when implementing
our proposed method. Therefore, future work that quantifies the level
of overfitting can potentially provide a more comprehensive analysis
toward this end, after implementing new variations of the proposed
approach.

Additional future applications and extensions of this approach re-
quire the consideration of known principles regarding image formation
physics for ultrasound or other types of medical images. With a similar
linear array sensor to that employed in ultrasound imaging, it is notable
that a DNN designed to learn coherence-based beamforming [56358],
then adapted to photoacoustic imaging [59], successfully survived our
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proposed approach to demonstrate the absence of overfitting [59].
This achievement highlights the promise of extending the proposed ap-
proach to multiple beamforming applications. When implementing the
proposed approach for different imaging modalities with sensors and
physics that differ from ultrasound (and photoacoustic) imaging and
sensing principles, the applicable artificial input data can potentially
vary. In addition, the proposed approach has the potential to provide a
new layer of oversight and benchmarking for regulatory bodies tasked
with approving the deployment of DNNs on patient data.

5. Conclusion

This paper demonstrates applications of a novel method to rapidly
identify overfitting of DNNs trained to beamform ultrasound images.
The proposed approach consists of inputting artificial raw sensor data
into DNNs and comparing the outputs with ground truth images. This
approach does not require a time-consuming retraining process using
the training code and training data nor the collection of additional test
data. The artificial inputs must never be included in the training process
to ensure success of the proposed approach. Results demonstrate that
the proposed method is promising to be used as a general evaluation
approach to identify DNNs that may have unexpectedly overfit to
example input data that the networks were trained to reconstruct.
Potential applications include sanity checks during federated learning,
as well as optimization, security, public policy, regulation creation, and
benchmarking.
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