Downloaded via MASSACHUSETTS INST OF TECHNOLOGY on October 1, 2025 at 03:04:19 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles

Hacromolecules

pubs.acs.org/Macromolecules

| Article |
Simple Calibration of Block Copolymer Melt Models
Artem Petrov,™ Hejin Huang, and Alfredo Alexander-Katz*

Cite This: Macromolecules 2024, 57, 8212-8222 Read Online

F

ACCESS |

ABSTRACT: According to the universality hypothesis, the phase behavior of different
block copolymer melt models having a fixed chain architecture depends solely on two
parameters: the invariant chain length N and the effective interaction parameter yN. If
models behave universally, they can be compared to each other and can predict
experiments quantitatively. The majority of simulations, however, do not use the Flory—
Huggins parameter y directly but instead operate with the exchange energy a = €,5—
(ean+ €p3)/2, where €, is the interaction energy between monomers of type x and y.
The simplest Flory-like definition of y is a standard linear relation: y o a; however,
previous studies have shown that the universality hypothesis does not hold for all
models using this approximation. Here, we analyzed the behavior of more than 30
coarse-grained symmetric diblock copolymer melt models. We discovered that the
phase behavior of a wide family of models depends only on two parameters, N and yN,
if the simple linear definition of y is imposed. This family is comprised of the models in
which the monomer interaction potential energy z has a near-symmetric distribution around its mean. This phenomenon could be
explained by the coincidence of normalized peak scattering intensity at the same yN and N, which was observed for selected models
with symmetric z-distribution when the y « a expression was used. Our results indicate that the main parameter controlling the
symmetry of the z-distribution is the monomer density p. Above certain p, models have symmetric z-distributions, and their order—
disorder transition points follow a master curve similar to the one predicted by Fredrickson—Helfand theory in the experimentally
relevant N > 10* range. On the other hand, low-p models exhibit skewed z-distributions, and the simple ¥ o @ formula is no longer
universally applicable to them. We provided a table containing the linear y(@) mapping; if that mapping is used, all models with a
symmetric z-distribution have the phase behavior depending solely on N and yN. Our results will enable a simple comparison
between a broad family of coarse-grained models and experiments and can guide block copolymer model building. This, in turn, will
facilitate the screening of new block copolymer morphologies and support material design.

[l Metrics & More | Article Recommendations | @ Supporting Information

1. INTRODUCTION

Melts consisting of block copolymers are able to form ordered
microphases in which the monomers of different types are
distributed periodically in space. Such structures have immense
importance in nanotechnology applications, especially in
nanophotonics, green plastics, and nanolithography.' The
simplest example of a block copolymer is a symmetric diblock
copolymer that consists of two A and B blocks having equal
volume fractions. Such polymers are able to self-assemble into
nanometer-scale periodic lamellar structures at the so-called
order—disorder transition (ODT) temperature. Predicting the
location of the ODT point from the physicochemical
properties of polymers, which is crucial for building a phase
diagram of any block copolymer material, still remains an
unsolved problem despite the simplicity of this polymer system
and five decades of research.”

The classical measure of dissimilarity between the
monomers of type A and B is the Flory—Huggins parameter
J; it characterizes the positive enthalpic contribution to the
free energy of a block copolymer melt.’ Both Leibler’s
incompressible fourth-order random phase approximation
(RPA) theory and the self-consistent (mean) field theory

(SCFT) predicted that the product of y at ODT and the chain
degree of polymerization N equals to a single number (yN)qpr
= 10.495.° However, these theories disregarded density
fluctuations at scattering vectors different from the instability
vector near the ODT point; as a result, SCFT is expected to
work only for infinitely long polymers.”

We can characterize how close a certain system is to the
mean-field SCFT regime by the invariant chain length N =
(pR*/N)? which plays the role of the Ginzburg parameter,’
where p is the monomer concentration (the number of
monomer units per unit volume), and R is the mean end-to-
end distance of a copolymer. After the seminal work of Leibler,
a number of researchers attempted to take density fluctuations
at ODT into account more correctly. Following Brazovskii,’
the first theory that included fluctuations was developed by
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Fredrickson and Helfand (FH)” and corrected by Olvera de la
Cruz (OC) and co-workers.” They found that the (yN)qpr
value for finite symmetric diblock copolymers should be larger
than the SCFT prediction as

(xN)opr = 10495 + 41.0N /3 (1)
The FH theory was supported by several experimental
works.” ™!

In the last few decades, with the advent of fast computers, a
lot of attention in polymer science was attracted to computer
simulations. Modeling provides researchers with an inex-
pensive way to study the complex phase behavior of block
copolymers at the most detailed level. However, the biggest
challenge arising when one tries to compare the results of a
simulation to an experiment is the difficulty of mapping the
simulation parameters onto experimentally measurable quanti-
ties. For instance, the y parameter, which is utilized in
experiments to control the miscibility of A and B blocks, is not
used as an input parameter in most simulations. In field-
theoretic modeling, a “bare” interaction parameter y, is
adjusted; in particle-based simulations, the exchange energy
a = eup—(€gat€pp)/2 is varied. The y parameter is a
monotonically increasing function of either y, or a; however,
there exists a plethora of mappings between these quanti-
ties.”'*~*° The most widely used relation is a simple linear
approximation y = z,,,4&t/kgT, where T is temperature and z,,,4
is a model-dependent prefactor characterizing the monomer
coordination number.”'>*'™>* This linear approximation is
expected to be true in the limit of small ¢; at large @, nonlinear
terms are permissible in principle.””’"***> This natural
approximation has a clear physical meaning: the free energy
of interaction per monomer is proportional to the potential
energy of a monomer—monomer contact. Another great virtue
of this relation is its direct applicability to various types of
block copolymers.

However, it turned out that this approximation had a serious
disadvantage. Several simulation works””"** pointed out that if
the y o« a expression was assumed, the (yN)opr values
depended not only on N but also on other model details that
do not have strict correspondence to the characteristics of real
polymer systems. Moreover, when the y « a formula was used,
the excess free energy per chain and the peak of the invariant
structure factor did not depend solely on yN and N, contrary
to the expectations. In other words, the y o a approximation
yielded a so-called "nonuniversal” behavior of polymer models
at ODT, which hampered the comparison of simulations to
experiments. This effect was observed for the values of N that
are usually achieved experimentally: 10*> < N < 10*

The solution to this problem was found by Morse and co-
workers””' who showed that a nonlinear y(c) relation leads to
the universal (yN)opr(N) dependency for a variety of particle-
based models. Moreover, they demonstrated that the (¥N)qpr
values were substantially larger than the FH prediction in the
range 10% < N < 10* (eq 2).

(YN)opr = 10.495 + 41.0N™'/? + 123.0N7*% Q)
Later, Matsen and co-workers found that the same formula
predicted well the (yN)opr values in field-theoretic simu-
lations if ¥ was allowed to be a nonlinear function of y,.>*°

This nonlinear y(a) relation is model-specific and can be
found from mapping the peak of the structure factor in the
disordered phase of a diblock copolymer melt model to the
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universal function predicted by the renormalized one-loop
(ROL) theory.**”*® One of the downsides of this mapping is
that it is rather difficult to perform: it requires simulation of the
systems and the measurement of the structure factor at
different values of a and N as well as solving complex integrals
numerically in addition to the determination of the z,,,4
parameter described above. Moreover, strictly speaking, ROL
theory has only been developed for binary blends and diblock
copolymers; it is still an open question whether the current
form of the theory is applicable to other types of block
copolymers which, in turn, are of much interest and
technological importance. In addition, the physical nature of
the nonlinear terms in y(a) is still unclear.

As a result, the majority of simulation works currently
operate with the simple y & a expression'”*"~** despite the
issues with unphysical model-dependent behavior of simulated
systems and the lack of understanding of when this formula is
applicable, i.e., whether the nonlinear corrections predicted by
lattice cluster theory (LCT)'”~*° and allowed by ROL
theory”** can be neglected for practical applications in a
certain subset of models. This question arises in the light of the
LCT which analytically derived the nonlinearities and showed
that they vanish at small « (i.e, they vanish at ODT for the
models with long chains and/or with a high coordination
number if it scales inversely with ). However, it is hard to
employ this theory directly to quantitatively evaluate the
magnitude of y(a) nonlinearities in different models, since (i)
it was quantitatively developed only for hypercubic lattices and
(i) it does not capture the dominant ox1/N"? correction to
the free energy of mixing.”” On the other hand, ROL theory
does not predict the nonlinear corrections analytically and
gives the y(a) function through the complex procedure
described in the previous paragraph, although allowing the
linear y o a growth if @ < (€44+€55) /2 in some models.” At
the same time, modern experimental research groups, which do
not have expertise in the peculiarities of ROL theory, tend to
perform block copolymer simulations to gain more detailed
insight into the observed phenomena.’*™” This emphasizes
the need for the method of deriving the y() function which
(i) is as simple and general as possible and (ii) yields the phase
behavior (characterized by the phase transition points and/or
the free energy function) that depends only on chain
architecture, N, and yN, and not on other model parameters.

Here, we propose a solution to this problem. We show that
the simplest y « a approximation, which does not require the
structure factor fitting, leads to such phase behavior in a wide
class of block copolymer melt models in which the effective
coordination number z(N) has a (quasi) symmetric distribution
around its mean. z(IN) represents the dimensionless potential
energy exerted on a monomer by other polymer chains of
length N;** this quantity determines the prefactor in the y =
zat/kyT expression as z = z(N — o) . In turn, the z(N)-
distribution is nearly symmetric if model density is large
enough. In addition, the normalized peak scattering intensity
coincided for selected models belonging to this class at similar
N and yN if y was defined as y = za/kgT. This, in turn, can
explain the aforementioned phase behavior. Moreover, we
found that the (yN)opr(N) master curve exhibited by such
models has the functional form of the FH—OC model and is
rather close to the original prediction by Fredrickson and
Helfand (eq 1) and not to the expression of Morse et al. (eq 2)
for N > 10% Thus, it will be beneficial to utilize the models
having symmetric z(N)-distribution in the future research on
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Table 1. Parameter Ranges of the Studied Models: Freely-Jointed Chains (FJC), Gaussian Chains (G), Multiple- and Single-
Occupancy Lattice Models,” and Field-Theoretic Simulations (FTS)”

model P N
FJC [3-20] [20-80]
G [1.5-15] [16—80]
lattice, mult. 2.4 [16—100]
lattice, single 0.4 [30—180]
FTS 8.0 [16—64]

K ro N
100.0 [0.7—-1.31] (3 x 10*-1.2 x 10%)
[0.867—4.0] 0.0 (2 x 10°—4 x 10%)
0 V2 (9 X 10°=6 X 10°%)
o0 V2 (1 x 10*=9 x 10%)
N/A N/A (1 x 10°-5 x 10%)

“Data taken from ref 14 and ref 21, respectively. “Data taken from refs 25 and 26.

00407 —a—FUC, p=5, N=20, r,=1 (N=795) 00301 ! —=—FJC, p=3, N=20, rj=1 (b=1.116)
p=5, N=20, r=1 (N= _ ) , p=3, N=20, r,=1 (b=1.
0,035 4 |—8— G, K=4, p=5, N=38 (N=785) (2(N))=0.3382 —=— G, K=1.135, p=3, N=16 (b=1.690)
—=— G, K=3.406, p=3, N=64 (N=961) 0,025 + G, K=1.135, p=1.5, N=16 (b=1.726)
0,030 G, K=1.135, p=1.5, N=16 (N=052) | M —=— FJC, p=1.5, N=16, ;=1 (b=1.192)
= 0,020 !
0025 |(z(N))=0.7140 > !
3 , & |
3 0,020 S 0,015 X
8 (2(N))=0.5983 8 '
L 0,015 ! . 2 i
! s
0,010 | by (2(N))=0.2566
I
0,005 : HE «
1
0,000 T T T
0,0 0,5 1,0 1, 2,0 25 0,0 05 1,0 15 20 25 3,0
z(N)/(z(N)) z(N)/(z(N))
(@) (b)
0,030 [—=— G, K=1.135, N=16 (b=1.690)
—=—FJC, N=20, r;=1 (b=1.116)
0,025 G, K=3.408, N=16 (b=1.088)

0,020

Frequency
o
2
o

—=— G, K=6.0, N=16 (b=0.945)

(z(N))=0.2274

T
1,5

2,0

25

z(N)/(z(N))

()

Figure 1. Distribution of z(N) in different models of homopolymer melts. The z(N) values were divided by the average z(N) value (z(N)) for each
model. Values of (z(IN)) are included in the plots. The vertical dashed line shows z(N) /{z(N)) = 1. Model parameters are included in the legends,
and curves having same colors in different graphs correspond to the same system. (a) Models having similar values of N. (b) Models having
different densities p. The statistical segment length b for each model is listed in the parentheses. (c) Models having different values of b at the same

p =3

phase separation of block copolymers, since such models will
not require the complex nonlinear renormalization of y and
will give physically correct results even for polymers with
moderate N. As a result, it will be possible to compare the
phase behavior and mesoscale structure of models belonging to
this class easily. Moreover, one can determine the experimental
x(T) = A/T + B function for symmetric diblocks of a certain
monomer chemistry directly from the master curve equation
(¥N)opr(N) as done in ref 9. After this, if one matches N in an
experimental melt of the same chemistry and in a model with
symmetric z(N)-distribution, it will be possible to relate the
energy « in simulations to temperature T in experiments using
the T = A/[za/(kzT) — B] formula. As a result, one could
compare the simulations of the models with symmetric z(N)-
distributions to experiments easily without performing the
nonlinear ROL-theoretic y(a) calibration.

2. METHODS

We modeled symmetric diblock copolymer melts using dissipative
particle dynamics (DPD) in NVT ensemble and a bead-and-spring
representation of polymers."” Soft-core repulsion forces Fj acted
between all beads and defined the A-B repulsion energy a. In DPD,
the repulsive forces are short-ranged and act only if particles are
located closer than a certain cutoff distance:

rij
a,(1 - r,j)r—, r <1
i

r.>1

ij 3)

0,

Here, a,, is the repulsion parameter between beads i and j having

%y
types x and y, respectively (x = A,B, y = A,B). In this notation, a = a,
— a,, since a,, = a,, = agp.

Chain connectivity was modeled using a harmonic spring force Ff;

as
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Figure 2. Order—disorder transition points ((¥N)opr) of symmetric diblock copolymer melt models having different N. Red, black, and thick
dashed curves represent the predictions of eqs 2, 1, and SCFT, respectively. (a) The data for the models having symmetric z(IN)-distribution.
Snapshots show the disordered (bottom) and ordered (top) states near ODT for the FJC model with p = 3, N = 80. Data for field-theoretic
simulations (FTS) are taken from refs 25 and 26. (b) The data for all studied models. The models having symmetric z(N)-distribution (data from
(a)) are shown in gray, colored triangles and circles represent DPD models with skewed z(IN)-distributions. The data for multiple- and single-
occupancy lattice models are taken from ref 14 and ref 21, respectively. Table S1 contains correspondence between the symbol shape and the set of
model parameters. Separate (yN)opr(N) plots for each class of models are shown in Figure S4. Error bars for N are within the symbol size for all
models. Error bars of (¥N)opr represent the width of the hysteresis of transition, i.e., the difference between the lowest and the highest values of yN
leading to spontaneous ordering and disordering, respectively (see SI section 3). The error of determination of z is much smaller than the hysteresis

width.

b

b
Fi; = _K("i/ - ”o)_

T (4)
Here, r;; is the vector between beads i and j (bonded beads only for eq
4), and K is the bond stiffness. A full description of the simulation
procedure is given in the Supporting Information (SI) section 1. For
freely jointed chain models (FJC), which have a nonzero bond rest
length ry, we chose a stiff spring with K = 100,2%*° while for ”Gaussian
chain” models we varied K from K = 0.867 to K = 4.0 with r, = 0. The
soft-spring Gaussian models are traditionally used in particle-based
simulations.>*' We constructed 33 DPD models of symmetric diblock
copolymers by varying different simulation parameters (excluding a,p,
which was varied for each model to change @). The varied parameters
included N, p, r,, K, and the a,, parameter that controlled the
compressibility of a system (see SI section 1 for details). All our
models had experimentally relevant invariant chain length values 10
< N < 10* (Table 1). We calculated N according to the definition N =
N(pb®)?, where p is the number of beads per unit volume and b is the
statistical segment length determined from extrapolating the radius of
gyration R; = N b?/6 to N = oo (see SI section 2). The full set of
parameters for each model is given in Table S1. To support our
conclusions, we also compared our results to the previously published
data on the following non-DPD models of symmetric diblock
copolymer melts: (i) field-theoretic simulations (FTS),**° which
used the standard Gaussian model of polymer chains,** and (ii) lattice
models with single or multiple occupancy of a lattice site.'#*' Table 1
includes ranges of parameters for all studied models.

3. RESULTS

3.1. z(N)-Distributions. Before studying the disorder-to-
lamellae phase transition (ODT), we investigated the z(IN)-
distributions of the DPD models at y 0 (ie, fully
homogeneous phase). z(N) is proportional to the potential
energy of interaction of a bead with other chains; z(INV)
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characterizes the effective coordination number of each bead
and the z(IN)-distribution shows how this quantity fluctuates
from bead to bead at any given time or, conversely, how z(IN)
fluctuates for a single bead in time. For the DPD interaction
potential (eq 3), z(N) was calculated for each bead i at a given
time according to eq S.

z(N) = z(N) = Z 0.5(1 — 1,1_}_)2
j (3)

Here, the distance between beads is r;; < 1 (i, the sumineq$§
includes only those neighbors of the bead i that are located
within the interaction force cutoff in eq 3). The beads i and j
cannot belong to the same chain. The data for the distribution
was collected over all beads in the system and over 10
structures obtained every 10° DPD time steps after
equilibration. The system-averaged value of z(N) was
determined as (z(N))yy = 2z(N)/(NM), where M is the
total number of chains in the system; (z(N)),,, was then time-
averaged across the analyzed 10 structures to obtain the final
averaged z(N) value denoted as (z(N)).

To evaluate whether the parameters of models had any effect
on the z(N)-distribution, we constructed four different models
having roughly similar N. Figure la shows that the
distributions behaved qualitatively differently depending on
the model. For the high-density FJC and Gaussian models, the
distributions of z(N) had symmetric, near-Gaussian form.
However, upon a decrease of system density below p =~ 3, the
distributions became strongly skewed.

To investigate the effect of the model parameters on the
skew of the distributions in more detail, we analyzed the two
sets of models having different p but similar b, K, and N. Figure

https://doi.org/10.1021/acs.macromol.4c00680
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1b demonstrates that a decrease of density led to a strong skew
of the distributions regardless of the chain model (FJC or
Gaussian). Figure 1c shows that a decrease of the bond length
at moderate density p = 3 also led to a slight skew of the z(N)-
distribution, although b affected the skew much more weakly
than p (Figure 1b). Finally, making systems more compressible
(decreasing a,,) also led to slightly more skewed z(N)-
distributions (Figure S2a).

This behavior can be explained by examining the micro-
scopic structure of a simple DPD liquid. A decrease of p leads
to a decrease in the number of neighbors around a monomer
(Figure S2d), which causes a decrease of (z(N)). At some low
p, beads with zero neighbors (i.e., with z(N) = 0) appear in the
system, and the average number of neighbors k becomes very
small (k =~ § at p = 1.5, Figure S2d). This, in turn, makes z(IN)
fluctuate strongly from bead to bead due to a small number of
summands in eq S, thus increasing the relative spread of the
z(N)-distribution (Figure S2b). These strong fluctuations of
z(N), combined with a small average z(N), give rise to a right-
skewed z(N)-distribution due to the nonnegativity of z(N)
(Figure S2b). In a polymer liquid, a bead experiences fewer
contacts with monomers from other chains upon a decrease of
density or bond length (Figure 1, S2¢, S9). As a result, the
z(N)-distribution becomes skewed at low p and b (Figure
1b,c). Compressibility of the system also has an effect since less
compressible systems have narrower and, therefore, less
skewed z(IN)-distributions (Figure S2a). However, despite an
abundance of parameters defining the shape of the z(N)-
distribution, the system density plays the dominant role as
shown in Figure 1b. We can confirm these qualitative
considerations quantitatively by constructing a simple
analytical theory that describes the skewness of the z(N)-
distributions in the models with DPD-like interaction potential
(eq 3) (see SI section 6). One of the main assumptions
underlying the theory states that the summands in eq S are
independent random variables, which should be true for very
small and very large k. Our theory predicts that the skewness is
primarily controlled by k and decreases as the skewness of

gamma distribution: skewness = 2/~/k, which was confirmed
by the data for the small- and large-k models. The number &, in
turn, is mostly defined by p; for DPD models, k & 3.95p. An
increase of b also slightly increases k, which decreases the
skewness (Figure 1c).

3.2. Phase Behavior of Models. Next, we studied how
the z(N)-distribution affected the behavior of systems at ODT.
We established the ODT point location (yN)opr(N) for all
studied models. We assumed the linear relation between y and
a (y = za/kyT). Following Morse and co-workers,”" the value
of z was calculated for each model as the N — oo limit of
(z(N)) measured at y = 0 using an analytical ROL-theoretic
expression (see SI section 2). Such an approach provides the
dominant linear term in the y(a) function, since the ROL
theory yields the dominant 1/N"? correction to the free
energy of mixing.”” To determine (yN)opr as (¥N)opr =
zNagpr/kgT, we established agpr as the average between the
lowest and highest values of a leading to ordering and
disordering, respectively (see SI section 3).

Our main results are presented in Figure 2. Figure 2a shows
the (yN)opr(N) dependency for all models having nearly
symmetric distribution of z(N). We included the field-
theoretic simulation (FTS) data in Figure 2a, since ref 43
demonstrated that the microscopic field distribution, propor-
tional to z(N), is symmetric in FTS at the studied values of N.
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Figure 2a shows that all (¥N)gpr values obtained at a similar
invariant chain length N overlapped within the error of
(¥N)opr determination. In other words, if one assumes the
simplest linear y o a relation, the phase transition point will
depend only on N for all models with nearly symmetric z(N)-
distributions. Furthermore, this conclusion holds at high
enough p even if the pressure is held constant for a given
model instead of p (see SI section 7) as done in molecular
dynamics simulations in ref 21. Moreover, fitting of the DPD
simulation data in Figure 2a by the expression (yN)opr =
10.495+A N7 yielded A = 46.4 + 2.3 and B = 0.340 + 0.008
(thin gray dashed curve). Therefore, the exponent B coincided
with the exponent predicted by the FH theory (eq 1) within
the error. The prefactor A differed by ~12% from the FH-
theoretic prefactor 41.0. As a result, the master curve exhibited
by the data resembled eq 1, demonstrating an interesting
qualitative agreement with the classical theory which, however,
is strictly valid for much greater values of N.”

Figure 2b shows the (yN)opr(N) dependencies for all
studied models. The DPD models having skewed z(N)-
distributions showed nonuniversal behavior in the y « «
approximation and did not follow eq 1 or 2. We investigated
how the z(N)-distribution skew affected the deviation from the
master curve exhibited by the models with nearly symmetric
z(N)-distributions by decreasing the model compressibility 4-
fold (the parameter a,, was increased from a,, = 25 to a,, =
100 for the Gaussian models with K = 1.135 and p = 1.5).
Figure 2b shows that less compressible models (open magenta
circles) had (yN)opr points lying closer to the master curve
compared to the more compressible models (open magenta
triangles); on the other hand, these less compressible models
had more symmetric z(N)-distributions (Figure S2a). There-
fore, a decrease of the z(N)-distribution skew can drive models
toward the regime in which their phase behavior depends
solely on N and N in the y o a approximation. In contrast, an
increase of the a,, parameter for a system with symmetric
z(N)-distribution (Gaussian model with K = 3.406, p = 3, N =
32, blue triangle in Figure 2a) did not influence (yN)opr
strongly. In other words, we observed that the master
(*N)opr(N) curve formed by the models with symmetric
z(N)-distributions in the y « @ approximation is invariant
under the change of their compressibility as opposed to the
models with skewed z(N)-distributions.

Next, we studied the previously published data for single-
and multiple-occupancy lattice models with the average
polymer density p = 0.4 and p = 2.4, respectively."*" Both
models used face-centered-cubic lattice. A monomer in the
single-occupancy model”" interacted with all 12 neighboring
lattice sites; however, the average number of other-chain
neighbors was closer to &8 due to the presence of the same-
chain neighbors and vacancies (20% of all sites). We do not
have access to the z(IN)-distribution for those models;
however, in the long chain limit (N > 90), the single-
occupancy lattice models followed the same master curve
formed by the DPD models with symmetric z(N)-distributions
for N> 400 (Figure 2b). The deviation from the master curve
occurred in the small- N limit similarly to ref 21 presumably
due to the short-chain effects and a possible z(N)-distribution
skew. The multiple-occupancy lattice models'* used a
Hamiltonian that considered only same-site interactions.
Therefore, and contrary to our intuition, the average number
of other-chain contacts per monomer was at most ~4. Thus,
the effect of the small number of neighbors on the z(N)-
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Figure 3. (a) The yN-dependencies of the first derivative of the excess free energy per chain for an FJC model (black dots) and for a Gaussian
model with K = 4 (red circles); both models had symmetric z(N)-distributions and a similar N~ 800. Both dependencies exhibited a discontinuity
at ODT: vertical dash-dotted lines represent the lowest possible yN values at which ordering occurred for the FJC model (black) and for the
Gaussian model (red). In both models, (¥N)opr values coincided within the error associated with the hysteresis of transition. (b) The
dependencies of the excess free energy per chain in the two models calculated by numerically integrating (a). The black dashed line shows the

mean-field dependency in the disordered phase (F = yN/4).

distribution skew might be significant in those models. These
multiple-occupancy lattice models adhered to the master curve
at high N but started to deviate from it at N < 10® (Figure 2b).
We conjecture that this deviation would disappear if the
Hamiltonian of those multiple-occupancy models additionally
included the interaction between the neighboring lattice sites,
which would include more neighbors in the z(N) calculation.
It is worth mentioning that other studies pointed out the
importance of the number of monomer neighbors in the on-
and off-grid multiple-occupancy models.***° For instance, ref
44 indicated that packing stops affecting the y parameter if a
bead interacts with over 10 neighbors. We did not include the
data from ref 44 to Figure 2b, since the authors of this study
did not calculate the z parameter according to the ROL theory
(as done for all models in Figure 2).

Finally, researchers studied models with a hard-core
Lennard-Jones interaction potential.”*” One of these models
having p = 0.7 exhibited strong nonuniversal behavior in the y
o @ approximation.”’ We expect this system to have a strongly
skewed z(IN)-distribution due to a very low density that yields
strong packing (structural) effects.* Thus, we do not expect
such low-density systems to ever have phase behavior
dependent only on N and yN in the y & a mapping except
for the models with very long chains; the modeling of such
systems, however, is computationally unfeasible due to long
relaxation times.

We also confirmed that the phase behavior of models with
symmetric z(N)-distributions depends solely on N and yN in
the y « a approximation from a different perspective. We
analyzed the yN-dependencies of the excess free energy per
chain and its first derivative (Figure 3). The derivative (Figure
3a) was estimated as d F/0 (yN) = u,p/zasksT (see ref 21).
Here, u,p(yN) is the average potential energy of A-B
nonbonded interaction per bead measured at a given yN;
a,p(yN) is the AB-repulsion energy coefficient determining y
(eq 3). The free energy (Figure 3b) was calculated by the
numerical integration of the first derivative. We calculated the
dependencies for two models having symmetric z(N)-
distributions and similar N. First, the excess free energy agreed
well with the mean-field disordered state dependency F = yN/
4 below the ODT point (to the left of the vertical lines in
Figure 3b), as expected. For higher yN, the systems became

8217

ordered, and the excess free energy deviated from the F = yN/
4 line, also according to the qualitative expectations. Second,
we found that the excess chain free energy and its first
derivative agreed well at similar N for all ¥N values up to and
above the ODT. These data confirmed that the models with
symmetric z(IN)-distribution have phase behavior (which is
determined by the free energy) dependent solely on N and yN
in the linear y o o approximation.

3.3. Invariant Structure Factor. Finally, we measured the
invariant structure factor S(q) /(pN), which characterizes
composition fluctuations in a copolymer melt. This quantity
should not depend on the definition of a “monomer” in a
polymer model. Therefore, for symmetric diblock copolymers,
S(q) /(pN) is predicted to depend only on yN, N, and the
normalized wavenumber qRe, where Ry is defined as Ry =
b(N/6)"2* The scattering intensity S(q) is defined as the
Fourier transform of the pair correlation function of
composition fluctuations™ (eq 6).

(@) = - [ dre (1) = py(e) + (1 = 200) (1, (0)

— pg(0) + (1 = 2f)p)) (6)

Here, p,(r) and py(r) are concentrations of beads of type A
and B at point r, respectively, and f is the composition of a
block copolymer (f = 0.5 in this work). eq 6 can be rewritten
in a more convenient discrete form, which we used for the
calculation of S(q) in our DPD simulations (eq 7, also see ref
48).

Npm >
S(q) = NL Z eiqrfbi
HNpart | 157 )

In eq 7, Ny, is the total number of beads in a simulation box;
b; equals to 1 or —1 if the i-th bead has type A or B,
respectively. The structure factor S(q) was obtained by
averaging S(q) over all vectors q having the same length Iql
= q and over 100 structures obtained after melt equilibration
every S X 10* DPD time steps.

We measured S(q) in the disordered state for two models
having symmetric z(N)-distributions and similar N. We
analyzed the two models characterized in the previous section
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obtained using the linear uncertainty propagation theory and using the following estimation for the g* uncertainty: o2 =052/ L)%, where L is the

simulation box side length.

in Figure 3: an FJC model with N = 20, p = §, and r, = 1.0, and
a Gaussian model with N = 38, K = 4.0, and p = S. Invariant
structure factors measured for the two models at different yN
are shown in Figure 4. We see that the S(q) /(pN)
dependencies agreed very well in the two models for all yN.
The best agreement was observed at sufficiently large length
scales (qRpy S 4) similar to the observations in ref 35;
therefore, the mesoscopic structure of the two models having
symmetric z(N)-distributions is almost identical at similar N
and yN (even if the y = za/kgT definition is assumed). At
smaller length scales, the structure factors started to deviate, as
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expected, due to the different microscopic structure of the two
models.

In addition, we can characterize the mesoscopic structure by
analyzing the peak wavenumber g*Ry, and the peak scattering
intensity S(q*)/(pN) (Figure Sab). Both of these quantitites
were obtained via fitting the S(q) /(pN) dependencies in the
qRy€E[1,3]range with a smooth function as described in ref 35.
q*Ry and S(q*)/(pN) were determined as the peak x- and y-
coordinates of the fitted function, respectively; fits were
performed for yN < 14, since the fitting was unreliable for
higher yN due to the proximity to ODT. Figure Sa shows that
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the g*Ry, values agreed well with the RPA prediction g*Ry &
1.95 at small yN and decreased at higher yN due to finite- N
effects in agreement with previous studies.*> Moreover,
q*Ry(¥N) dependencies agreed for both models almost
perfectly within the error of g* that stemmed from the finite
simulation box size. This fact confirmed the qualitative
observations in Figure 4: in the two models with symmetric
z(IN)-distributions, the characteristic composition fluctuation
scale depends only on yN for the same N if the y = za/kyT
formula is adopted.

Figure Sb shows that the pNS™'(g*)/2 values were slightly
smaller than the RPA prediction 10.5—yN at small yNj; at yN 2
9, the measured values exceeded the RPA prediction, in full
agreement with the previous simulation and theoretical
results.”"*> Most importantly, the pNS™'(g*)(yN) depend-
encies coincided perfectly for both models having symmetric
z(N)-distributions when the y = za/k;T expression was used.
Interestingly, both models had rather short chains: N = 20 and
N = 38 for FJC and Gaussian models, respectively. In turn, an
increase of N leads to a better agreement of the peak scattering
intensity in different models with the same N.'"®*' Therefore,
FJC models with p = §, r, = 1.0, and N > 20 are expected to
have the same peak scattering intensity as the Gaussian models
with K = 4.0, p = 5, and N > 38 (at the same yN and N). This
conclusion suggests that using the y = za/kgT expression is
enough to yield the agreement between the pNS™'(g*)(yN)
dependencies measured in the aforementioned FJC and
Gaussian models at various N in the characteristic range
N€&(10,10%) . Reaching the same agreement in a similar N-
range was the purpose of the nonlinear y(a) mapping
procedure developed in refs 5, 16, 21, and 3S. After adjusting
the y(a) function for each model to match the peak scattering
intensities to a universal function at various N > 10%, the
authors were able to obtain the universal phase behavior of
models. However, for the aforementioned models with
symmetric z(N)-distribution, the agreement between
pNS~'(g*)(yN) dependencies at a similar N and for different
N can be reached without the fitting procedure and by using
the simplest linear approximation for y (Figure Sb). We
suppose that this is the possible reason of why these two
models exhibited similar (¥N)opr values and yN-dependencies
of the excess free energy per chain (Figure 3). Based on these
observations, we also propose that the peak scattering
intensities could agree at the same N and yN for all models
with symmetric z(N)-distributions using the y = za/kgT
approximation, since the majority of the studied models
belonging to this class had higher N and/or p than the models
in Figures 4, 5 (Table S1). This could explain the existence of
the master (yN)opr(N) curve in Figure 2a. The rigorous
confirmation of this hypothesis requires readjustment of all
studied models with symmetric z(N)-distributions to obtain
clusters of models having almost the same N as done in refs S,
16, and 21 (N should coincide for all models in each cluster
better than exhibited by the clusters of models in Figure 2a).
After this, those models should be simulated at several yN
values in the range yN€[0, (yN)opr) and the pNS~'(g*) (yN)
dependencies should be measured, which is beyond the scope
of this paper and is an interesting direction for future research.

We summarize the parameters of the studied DPD models
having symmetric z(N)-distributions in Table 2. All these
models have phase behavior (ODT point, free energy
function) that depends only on the two parameters N and
N if the Flory—Huggins parameter y is calculated as y = za/
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Table 2. Simple Linear Calibration of the Flory—Huggins
Parameter y = za/kgT in the Studied DPD Models with
Symmetric z(N)-Distributions”

P K To Ax z Zliquid
3 100 1.0 25.0 0.2837 0.2938
S 100 1.0 15.0 0.6607 0.6957
S 100 1.18 15.0 0.7024 0.6957
S 100 1.26 15.0 0.7120 0.6957
8 100 1.0 9.375 1.2612 1.3263

10 100 1.0 7.5 1.6707 1.7546

10 100 0.76745 7.5 1.5089 1.7546

10 100 1.14873 7.5 1.7167 1.7546

10 100 1.31 7.5 1.7433 1.7546

15 100 1.0 5.0 2.7040 2.8244

20 100 1.0 3.75 3.7443 3.8048
3 4.0 0.0 25.0 0.2193 0.2938
N 4.0 0.0 15.0 0.5479 0.6957
8 4.0 0.0 9.375 1.1090 1.3263

10 4.0 0.0 7.5 1.5014 1.7546

15 4.0 0.0 5.0 2.5099 2.8244
3 3.406 0.0 25.0 0.2363 0.2938

“z and zjqyiq are the effective coordination numbers determined from
ROL theory and from the mean-field fitting to the Flory—Huggins
theory, respectively.

kgT, where z is determined using ROL theory as done in this
work and refs 5 and 21 (see SI section 2 for details). For
comparison, we have also calculated the effective coordination
number z following the broadly used mean-field approach
developed by Groot and Warren; ~ we denoted this number as
Zljquia- In this technique, one replaces a polymer melt with a
binary liquid of monomers having the same 4., and p and fits
the density profiles at different degrees of separation to the
predictions of the Flory—Huggins theory (Figure SS). Table 2
shows that most systems have the values of z that deviate
significantly from the mean-field z; ;4 parameter; z differs less
than 5% from zjq,;4 only in a few FJC models. The calculation
of 2jq,q does not take the correlation hole effect into account,
which leads to the discrepancy between z and thuid'zz We
suggest to use the ROL theory-derived parameter z for
construction of the block copolymer phase diagrams; the y =
za/kpT mapping will allow to compare the models with
symmetric z(N)-distributions to each other or to experiment.

4. DISCUSSION AND CONCLUSIONS

The distribution of z(N) characterizes the microscopic
fluctuations of the potential energy of a monomer in a melt.
The skewness of z(N)-distribution is mostly controlled by the
model density p; the z(N)-distribution becomes symmetric
when p exceeds a certain characteristic value, p > 3 for DPD
models with nonultrashort bonds. On the other hand, primarily
for low-p models, the z(N)-distribution becomes skewed and
leads to a poorly defined average value of z that no longer
coincides with the most probable z. Therefore, the y = za/kzT
approximation becomes most likely inapplicable to such
models and leads to nonuniversal behavior. A better measure
of a skewed distribution’s "average” is its median; by finding z
from the median values of z(N), we found that transition
points for all models agreed better with the master
(*N)opr(N) curve (Figure S3). Moreover, the data showed
agreement with the master curve within the uncertainty
associated with the difference between the mean, median, and
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the mode of the skewed z(N)-distributions. Any of those three
quantities can be a plausible measure of the "average” value of
z(N) used to calculate z; if the z(IN)-distribution is symmetric,
all of them coincide. Therefore, the models with symmetric
z(N)-distributions do not have the nonuniversal model-
dependent discrepancy between the average, the mode, and
the median of the z(N)-distribution; in such models, the
parameter z becomes “well-defined”, representing both the
average and the most frequent effective coordination numbers
in a system. This, in turn, makes those models structurally
similar to each other and to a hypothetical model with infinite
p, in which the z(N)-distribution skewness is predicted to be
also zero (SI section 6). For the latter model, in turn, the linear
¥ « «a formula is exact due to the vanishingly small a near
ODT as predicted by the lattice cluster theory'’>° and the
ROL theory”” (since a,, & 1/p at constant compressibility, see
SI section 1). As a result, the similarity of different models with
symmetric z(N)-distributions to each other and to the p — o
model has presumably led to the coincidence of the normalized
peak scattering intensity at the same N and yN for the models
belonging to this class in the y « a approximation (Figure Sb).
This, in turn, could lead to the existence of the (yN)qpr(N)
master curve in Figure 2a and to the free energy depending
only on yN and N for this class of models (Figure 3) when y
a is assumed. However, a complete theoretical explanation of
this effect is still lacking and is an interesting topic for future
research.

What is the significance of the z(N)-distribution skew? In
general, one expects the distribution of the coordination
number to be skewed if the local liquid structure is important.
For such models, this structure changes with a so significantly
that the universality of all models can be achieved apparently
only by adding nonlinear terms to the y(a) function. As a
result, as shown in Figure 2b, the linear y o a approximation is
not universally applicable for all models with 10* < N < 10%,
leading to the consistent behavior of only a class of models. At
such values of N, the nonlinear terms in the y(a) function are
permitted in principle.”~** These fitting-based nonlinear
terms can be calculated solely by fitting the mesoscale structure
of the melt (peak of the structure factor) at different values of
a as opposed to the microscopically determined characteristic z,
which defines the linear part of y() and is calculated in the
homopolymer melt state (ie., at @ = 0). The authors of refs §
and 21 did not assign a particular physical meaning to each of
the nonlinear terms; instead, they were introduced to reach the
agreement between the normalized peak scattering intensities
measured in different models at the same N and yN. As Figure
Sb suggests, these terms may be not necessary to reach this
agreement between the models having symmetric z(N)-
distributions, which could be the cause of the consistent
phase behavior of those models in the linear approximation
(Figure 2a, 3). How those nonlinear terms arise from skewed
z(N)-distributions, how they depend on its characteristics, and
what microscopic mechanism gives rise to the universal Morse
et al. curve (eq 2) after inclusion of those nonlinearities are still
unsolved questions and are promising topics for future
research. However, the nonlinear terms in the y(@) expression
help ROL theory to describe strong fluctuations at high a;'"”
this theory, in turn, contains the universal description of all
polymer models and, we believe, “accounts” for the z(N)-
distribution skew.

To conclude, we discovered that a broad class of symmetric
diblock copolymer melt models has phase behavior (phase
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transition points and free energies) depending only on N and
¥N in the linear y = za/kT approximation. This class includes
the models with symmetric distribution of the monomer
interaction potential energy z(N) (i.e., the models with a well-
defined value of z). The linear approximation for y has a clear
physical interpretation and does not use any phenomenological
fitting-based parameters, since the coefficient z is an analytically
defined characteristic of a homopolymer melt. The values of z
in the studied DPD models with symmetric z(N)-distributions
are summarized in Table 2. In addition, the models in which
z(N) is distributed symmetrically yielded the master
(¢N)opr(N) curve agreeing qualitatively with the FH scaling
(eq 1). This simple definition of y and the existence of the
master (yN)opr(N) curve in the experimentally relevant range
N > 10* will allow researchers to compare the results of
simulations to each other and to experiments without
performing the complex and resource-demanding nonlinear
Morse calibration for a broad class of models. In addition, we
expect that models of block copolymers having different
architecture will have consistent phase behavior in the y «
approximation if the z(IN)-distribution is symmetric; this is the
matter of our next study. As a final note, we would like to point
out that FJC models having symmetric z(N)-distributions are
particularly suitable for reverse mapping onto atomistic models
of real polymer systems, since one can map a Kuhn segment to
a bead of an FJC model, and the resulting model will have
typical densities high enough to yield a symmetric z(N)-
distribution. This might be quite beneficial for experimental
and computational polymer scientists interested in block
copolymer mesostructure design and polymer phase behavior.
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