? frontiers ‘ Frontiers in Computer Science

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Hui Dou,
Anhui University, China

REVIEWED BY

Shitharth Selvarajan,

Leeds Beckett University, United Kingdom
Qin Jiang,

Nanjing University of Science and Technology,

China

*CORRESPONDENCE
Sean Choi
sean.choi@scu.edu

RECEIVED 16 July 2024
ACCEPTED 27 September 2024
PUBLISHED 21 October 2024

CITATION

Choi S, Patel D, Zad Tootaghaj D, Cao L,
Ahmed F and Sharma P (2024) FedNIC:
enhancing privacy-preserving federated
learning via homomorphic encryption offload
on SmartNIC. Front. Comput. Sci. 6:1465352.
doi: 10.3389/fcomp.2024.1465352

COPYRIGHT

© 2024 Choi, Patel, Zad Tootaghaj, Cao,
Ahmed and Sharma. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiersin Computer Science

TYPE Original Research
PUBLISHED 21 October 2024
pol 10.3389/fcomp.2024.1465352

FedNIC: enhancing
privacy-preserving federated
learning via homomorphic
encryption offload on SmartNIC

Sean Choi'*, Disha Patel', Diman Zad Tootaghaj?, Lianjie Cao?,
Faraz Ahmed? and Puneet Sharma?

!Cloud Laboratory, Department of Computer Science and Engineering, Santa Clara University, Santa
Clara, CA, United States, 2Networking and Distributed Systems Lab, Hewlett Packard Labs, Hewlett
Packard Enterprises, San Jose, CA, United States

Federated learning (FL) has emerged as a promising paradigm for secure
distributed machine learning model training across multiple clients or devices,
enabling model training without having to share data across the clients. However,
recent studies revealed that FL could be vulnerable to data leakage and
reconstruction attacks even if the data itself are never shared with another
client. Thus, to resolve such vulnerability and improve the privacy of all clients,
a class of techniques, called privacy-preserving FL, incorporates encryption
techniques, such as homomorphic encryption (HE), to encrypt and fully protect
model information from being exposed to other parties. A downside to this
approach is that encryption schemes like HE are very compute-intensive, often
causing inefficient and excessive use of client CPU resources that can be used
for other uses. To alleviate this issue, this study introduces a novel approach
by leveraging smart network interface cards (SmartNICs) to offload compute-
intensive HE operations of privacy-preserving FL. By employing SmartNICs as
hardware accelerators, we enable efficient computation of HE while saving CPU
cycles and other server resources for more critical tasks. In addition, by offloading
encryption from the host to another device, the details of encryption remain
secure even if the host is compromised, ultimately improving the security of the
entire FL system. Given such benefits, this paper presents an FL system named
FedNIC thatimplements the above approach, with an in-depth description of the
architecture, implementation, and performance evaluations. Our experimental
results demonstrate a more secure FL system with no loss in model accuracy
and up to 25% in reduced host CPU cycle, but with a roughly 46% increase in
total training time, showing the feasibility and tradeoffs of utilizing SmartNICs
as an encryption offload device in federated learning scenarios. Finally, we
illustrate promising future study and potential optimizations for a more secure
and privacy-preserving federated learning system.

KEYWORDS

privacy-preserving machine learning, federated learning, homomorphic encryption,
SmartNIC, network offload

1 Introduction

Federated learning (FL) has emerged as a distributed machine learning model training
technique that is aimed at preserving the privacy of each client, including privacy in data
and model weights, by having decentralized clients train a model on each of their own
private data and sending the localized weight to a centralized aggregator for aggregated

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1465352
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1465352&domain=pdf&date_stamp=2024-10-21
mailto:sean.choi@scu.edu
https://doi.org/10.3389/fcomp.2024.1465352
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1465352/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

model weights. However, recent study has shown that despite
its initial understanding of the benefits, privacy concerns persist
due to potential attacks that malicious parties can perform.
Traditional FL can still be vulnerable to various threats that are
specially designed for ML models, i.e., inference attacks and data
leakage/reconstruction (Geiping et al., 2020; Wang et al., 2018;
Zhu et al., 2019; Bhowmick et al., 2019; Hatamizadeh et al., 2022),
severely compromising the usefulness of FL in preventing privacy
leakage. For example, Zhu et al. (2019) shows how to obtain the
private training data from gradients during training, and Geiping
et al. (2020) analyze the possibility of reconstructing inputs by
inverting gradients in FL systems.

To overcome such issues, researchers have introduced a notion
of privacy preservation to ensure that data and model weights
are not fully disclosed to another party. To do so, multiple
methods have been proposed as follows: multi-party computation
(MPC) (Bonawitz et al., 2017; So et al., 2022), which utilizes
specialized multi-party protocols to compute a function across
multiple private inputs or differential privacy that adds a small
amount of statistically insignificant noise to the data (Truex et al.,
2019; Choudhury et al.,, 2019). While the proposed methods are
promising in theory, they incur high overheads to the client,
often making them infeasible to use in practice. In addition, these
methods are designed to work with specific types of adversaries
and threat models and may not be generic enough. Furthermore,
offloading complex and highly specialized protocols and algorithms
like MPC to hardware and custom chips is not well supported,
further jeopardizing their uses in production at a large scale.

Unlike the above complex solutions for privacy preservation,
there is a classic set of methods that are already widely used for
data privacy, which is encryption using cryptography. Encryption
is already widely used in modern computing systems at large
scale to ensure privacy, especially in communication and storage.
For example, most network packets already are encrypted to
stop eavesdroppers from capturing and reading network traffic
and storage of sensitive data requires encryption of the data
to stop the data from being read by unauthorized parties.
Due to such high demand for encryption, there is already a
sizeable amount of software and hardware support in using
highly optimized encryption algorithms, meaning that using
encryption for FL is one of the most feasible methods to bring FL
to production.

One of the popular methods of encryption used for encryption-
based FL is homomorphic encryption (HE), which, at a high
level, enables operations on the encrypted data without having
to decrypt the data first. The basic assumption behind using this
encryption method is that the aggregator can be compromised,
thus leaking information regarding the model weights from
each client, which, in turn, can be used for model and data
reconstruction. By using HE, the aggregator can only see
the encrypted weights and perform operations directly on the
encrypted weights without decryption, eliminating the need to
worry about the raw model information being compromised.
However, the major issue with HE is that it is very CPU, disk,
and network intensive. Some of the popular HE algorithms
increase the size of data to the order of 1,000x (Jin et al,
2023). Therefore, this makes the entire FL with HE process very
resource-intensive, making it infeasible for the FL clients, which

Frontiersin Computer Science

10.3389/fcomp.2024.1465352

often are CPU and energy-limited machines, in the real-world
FL settings.

To address this problem, this study introduces a system called
FedNIC that offloads the resource-intensive portion of FL with HE
onto a device called smart network interface cards (SmartNICs).
The approach that FedNIC takes does not require clients to
provision additional compute resources, but rather the extraneous
work that is required by FL with HE, which essentially is the
encryption, decryption, and transfer of larger ciphertext, to be
performed by separate hardware. One obvious benefit of this
approach is saving host compute resources, as HE algorithms are
very compute heavy and are known to spend up to 25% CPU
cycles and 250 MB of RAM (Reddy et al., 2022). Freeing host
resources allows the host to focus on more important tasks that
cannot be performed by the NIC, such as ML model updates.
Furthermore, by having SmartNICs be the point of all encryption
and decryption, we can have a more secure location to store the
method and required keys for encryption. This means that even
if the host is compromised, the method of encryption and the
encryption key are not exposed to the adversary. In addition,
SmartNICs can easily change the method of encryption and/or the
encryption keys without the host knowing, making it harder to
decode the encrypted text. Finally, SmartNICs often are equipped
with specialized chips that are optimized for fast cryptography
operations, which shows better performance and efficiency of HE
vs. when running the same operations on CPUs. To address the
challenges of applying homomorphic encryption with FL systems,
we propose offloading homomorphic encryption to SmartNICs to
reduce clients’ hardware and resource requirements for the FL
training process while maintaining robust data privacy. This main
focus of FedNIC is aimed at enhancing the security and feasibility
of FL with HE in real-world settings, by greatly reducing client
resource requirements. Given this, the following summarizes the
set of key contributions of this study.

Key contributions

e A high-level system design that is the first-ever to utilize
SmartNICs for storing and distributing encryption keys and
encrypting model weights using Homomorphic Encryption in a
federated learning setting.

e An implementation of the proposed system, called FedNIC,
which is a privacy-preserving FL framework that utilizes
homomorphic encryption offload onto SmartNICs. FedNIC
guarantees higher levels of privacy due to limited attack
surface and separate security domain, while also reducing
client resource requirements than other FL frameworks that
utilize HE.

e Experimental evaluation results of FedNIC that show
significant resource overhead reduction with no loss in
accuracy or no significant increase in training time, while
ensuring privacy against state-of-the-art ML privacy attacks.

Given the high-level introduction, the structure of this paper
is as follows: We begin the paper by providing the background
(Section 2) of the current state of privacy-preserving federated
learning and usage of SmartNICs within cloud data centers. Then,
we discuss the overview (Section 3) of the system framework
followed by an evaluation (Section 4) of FedNIC performance.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

Finally, we discuss some related studies that motivate FedNIC
(Section 5) and establish the scope for potential future extension
of this study (Section 6).

2 Background

We first delve into the fundamentals of Federated Learning,
Homomorphic Encryption in Federated Learning and SmartNICs,
which are the topics that are crucial tenets of FedNIC.

2.1 Federated learning

Federated learning is a learning task that is solved by a loose
federation of participating devices (also referred to as clients) that
are coordinated by a central coordinator (also referred to as the
aggregator) (McMahan et al.,, 2017). More specifically, federated
learning assumes that each client has a local training data set,
which is assumed to be private and is not shared with any other
party including the aggregator, that each client uses to train a set
of local model weights. Once the local training is completed, it is
shared with the central aggregator. Once receiving the set of model
weights from multiple clients, the aggregator updates the global
model weights by aggregating all of the weights it has received, and
then, the aggregator passes back the updated global weight to the
clients for the clients to perform the next iteration.

There are two main advantages of FL that arise from not having
to share the training data. First is that the communication and
energy overhead is reduced due to not having to transfer data from
the clients to a centralized model training framework, which allows
the clients to be small and energy-efficient devices. Second and the
most important aspect is that the privacy of data is preserved as it
never leaves the client.

There are many popular frameworks that implement federated
learning:

o FedML (He et al, 2020): FedML is a framework that aims
to be an open research library and benchmark to facilitate
FL algorithm development and fair performance comparison.
It offers a machine learning toolkit featuring APIs that
facilitate federated learning and distributed training across
varying scales. The toolkit supports cross-silo and cross-device
federated learning, along with simulated federated learning.
It incorporates diverse communication backends, including
MPI, gRPC, and PyTorch RPC, for efficient distributed
computing.

e IBM Federated Learning (Ludwig et al., 2020): IBM Federated
Learning is a Python framework that aims to provide
infrastructure and coordination for federated learning. It
is particularly well-suited for enterprise and hybrid-Cloud
settings. It has broad machine-learning model support
including but not limited to neural networks, decision tree,
linear regression, etc.

o TensorFlow Federated (Inc., 2020): Tensorflow Federated is
an open-source framework based on Tensorflow, a popular
machine learning library, for performing machine learning,
simulations and other computations on decentralized data.

Frontiersin Computer Science

10.3389/fcomp.2024.1465352

The framework of choice for FedNIC is FedML due to its open-
source nature, allowing flexibility in modifying the underlying code
as needed, and also due to its benchmarks widely available in the
research community. Yet, even with these frameworks, the main
issue with traditional FL settings is that it is possible to breach
the privacy of data via the attacks mentioned in Section 1, such as
inference attacks and data leakage/reconstruction.

To avoid such issues, multiple techniques have been used
to improve privacy preservation in FL settings. Table 1 lists the
potential techniques for privacy preservation. Out of multiple
techniques, many researchers are focused on utilizing encryption-
based methods, mainly due to the simplicity of implementation
along with a multitude of hardware support for encryption.
However, as mentioned in Table 1, encryption-based methods
require a secure key exchange or have to cope with high
computational and network overheads, making it infeasible for
compute and energy-limited devices often used for FL. Therefore,
FedNIC is a work that complements such efforts to further increase
their efficiencies.

2.2 Homomorphic encryption

Homomorphic encryption (HE) is a form of encryption that
allows mathematical operations to be performed on the encrypted
data without needing to decrypt it first, leaving the outcome of
the operation in encrypted format. A highly desirable property of
HE is that the resulting output between performing the operations
on encrypted data is identical to the output had the operations
been performed on the unencrypted data. Thus, HE has become
popular in systems where privacy-preserving properties must be
ensured for in aggregation operations across multiple entities,
such as aggregating model weight across multiple clients on a
centralized server.

Most HE algorithms generally consist of four functions:

e KeyGen(r) — (pk,sk): Given a security parameter A, this
function generates a pair of public and secret key (pk, sk).

e Encrypt(pk,m;) — ¢;: This function takes the public key
and a message m, and encrypts the message to generate the
encrypted ciphertext c,.

o Evaluate(ci,cj,f) — cg’j = Encrypt(pk, f(m;, m;)): The
evaluate function takes two ciphertext and applies a target
function f. f is generally either addition or multiplication. To
ensure that the homomorphic properties are preserved, the
output of Evaluate on two encrypted ciphertext c;, ¢; generated
from two messages m;, m; are guaranteed to be the same as the
result of Encrypt applied on the result of f on m;, m;.

e Decrypt(sk, ¢;) — m;: Finally, the decrypt function allows the
parties with the secret key to decrypt the ciphertext back to the
original message.

Out of these functions, FedNIC focuses on utilizing SmartNICs
to participate mainly in encryption and decryption of the data.

There are four classes of HE algorithms: partially HE, somewhat
HE and fully HE. Partially HE algorithms support evaluation
with one type of operation, either addition or multiplication,

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

TABLE 1 Overview of privacy-preserving techniques for FL.

Technique type Method

Encryption
to disable any parties from compromising the
weights

Cryptographic method that encrypt model weights

Advantage

Able to offload to hardware. Strong
privacy, even when aggregator is
compromised

10.3389/fcomp.2024.1465352

Disadvantages

High compute overhead, especially
for homomorphic encryption.
Secure key exchange often needed

Multi-party computation (MPC)
joint computation when viewing any data

Protocol to require two or more clients to perform

Single party has no control

High network overhead. Prone to
client dropouts. Hard to offload

Differential privacy (DP) Adding small noise to data

Privacy is achieved without
background knowledge

Unwanted noise can jeopardize the
DP and/or model quality

where as somewhat HE algorithms support both addition and
multiplication, but for a limited number of equations, finally fully
HE algorithms allow for an infinite number of evaluations for
both types of operations. Each class of HE algorithm has benefits
and disadvantages, which we compare in this study. Particularly,
FedNIC focuses on the following set of HE algorithms:

e Paillier (Paillier, 1999): Paillier is the partially homomorphic
encryption scheme in which encrypted numbers demonstrate
the ability to undergo multiplication with non-encrypted
scalars, addition among themselves, and addition with non-
encrypted scalars.

e TenSEAL 2021): TenSEAL, a fully
homomorphic open-source encryption library based on
Microsoft SEAL, is specifically designed for conducting
homomorphic encryption operations on tensors. This library

(Benaissa et al.,

delves into vector encryption/decryption methodologies
utilizing both the BFV (Brakerski, 2012) and CKKS (Cheon
et al., 2017) schemes. The spectrum of operations includes
element-wise addition, subtraction,
for both

vectors, incorporating functionalities like dot product

and multiplication

encrypted-encrypted and encrypted-plain
and vector-matrix multiplication.

e Palisade (Badawi et al, 2022): Palisade, currently part
of OpenFHE, is a cryptography library proficient in
implementing fully homomorphic encryption and multi-
party extensions of fully homomorphic encryption. It
offers support for a diverse range of schemes such as BFYV,
BGV (Brakerski et al., 2012), CKKS and FHEW (Ducas
and Micciancio, 2015). This library also facilitates seamless
integration into hardware accelerators.

e Pyfhel (Ibarrondo and Viand, 2021): Pyfhel, an acronym
for Python for Homomorphic Encryption Libraries, serves
as a framework supporting SEAL and Palisade as backends,
accommodating BFV, BGV, and CKKS schemes for various
operations including addition, subtraction, multiplication,
and scalar product.

FedNIC provides some insights into the performance of the
algorithms by comparing Paillier and TenSEAL in Section 4.

There are few FL frameworks that attempt to incorporate HE
into FL. Some notable studies include:

e Python-Paillier (Lao et al., 2021): This library is a python3
implementation of the paillier homomorphic encryption
library. It also provides a federated learning simulation
framework that utilizes the paillier algorithm.

Frontiersin Computer Science

TABLE 2 A comparison of various types of SmartNICs.

FPGA-based ASIC- SoC-based
based
Programmability Hard Limited Easy
of cores 10+ cores 200+ cores 50+ cores
Accelerator support | Varies Low High
Secure key storage Varies Hard Easy
Hardware cost High Low Medium

e FedML-HE (Jin et al., 2023): FedML-HE is a research effort
to extend FedMLs privacy-preserving capabilities by adding
methods for homomorphic encryption on clients.

FedNIC compares the performance of both of these
frameworks to provide deeper insights into the benefits that
FedNIC can provide.

2.3 SmartNICs

SmartNICs are a new class of network interface cards (NIC)
that are built to run tasks that the CPU normally handles (e.g.,
checksum computation, TCP offload, and more) in addition to
handling basic networking tasks. At the core of the SmartNICs
are the main processing units that are tasked with processing
the ingress packets and emitting them out on the egress. These
processing units are often programmable to execute custom
programs directly on the data plane, which ensures fast execution
of the custom programs at the packet level. In addition to
the processing unit, most SmartNICs are equipped with various
accelerators that can be leveraged to further expedite widely
used computing operations, such as encryption operations. For
example, NVIDIAs popular BlueField (NVIDIA, 2024) SmartNIC
incorporates accelerators for hardware root-of-trust for Secure
boot, True random number generator (TRNG), compression and
decompression acceleration, and more. They also allow for features
like RDMA access to GPUs, showing huge potential for future uses
in applications over multiple domains.

SmartNICs can be categorized into three different types based
on the architecture of the processing unit and its processing
capabilities: FPGA-, ASIC-, and SoC-based (Firestone et al., 2018).
Table 2 highlights the difference between the types of SmartNICs.
The first choice of SmartNIC for FedNIC is SoC-based SmartNICs,
as shaded by gray in Table 2, mainly due to ease of programming

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

and extensive support for cryptographic operations. In addition,
given that SoC-based SmartNICs are built to run a complete
operating system, it is able to perform secure boot, enabling
capabilities to distribute and store encryption keys securely.
Some examples of SoC-based SmartNICs are NVIDIA Bluefield
series (NVIDIA, 2024) and AMD 400-G (Dastidar et al., 2023). This
feature allows FedNIC’s computation, such as the HE calculation,
and the threat model to easily be incorporated as a system; thus,
this study mainly utilizes SoC-based SmartNIC for evaluation. Yet,
the design of FedNIC is not limited just to SoC-based SmartNIC, as
other types of SmartNICs can be built to support the minimum set
of functionalities that are needed for FedNIC.

3 FedNIC overview

In this section, we discuss a high-level overview of the
components that make up FedNIC and the threat model that it
assumes and the workflow.

3.1 FedNIC design overview

3.1.1 Adversary definition with threat model

We currently define the set of clients and roles required in
FedNIC, the assumptions FedNIC makes about the threat model.
Figure 1 illustrates the clients, interactions between clients, and the
overall threat model of our proposed solution.

First, the main assumption is that both the clients, who are
responsible for running the FL agent to train the local model
with local private data, and the aggregator, who is responsible for
collecting all local model weights and aggregating them, can be
compromised. FedNIC assumes a semi-honest adversary A, where
semi-honest means that the adversary cannot deviate from the
protocol, that can corrupt the aggregation server or any subset of
local clients with local data. To elaborate, when A corrupts a client,
the private information in local models and data are compromised
by A, but when A corrupts the aggregation server, A can try to,
but cannot compromise private information from local models nor
global models due to encryption. In other words, we assume a threat
model where the participating clients are honest but curious (HBC),
whereas the model aggregator can be compromised and dishonest.

Second, each client communicates with either a local or remote
encryption engine to transfer the model weights, which then are
encrypted by the encryption engine. The communication between
the clients and the encryption engine is assumed to be encrypted.
While there can be attacks like man-in-the-middle to compromise
the local weight between the client and the encryption engine, the
assumption is that it has the same effect as having a compromised
client. The threat model assumes that the encryption engine is in
a set of devices that are in a different security domain, booted
securely, and thus can be trusted. The main difference of FedNIC
is that it utilizes SmartNICs as the encryption engine, thereby
enabling this assumption to hold due to their hardware capabilities.

Along with the clients, SmartNICs, and the aggregator, FedNIC
assumes the existence of a trusted authenticator that cannot be
compromised. The authenticator is an independent party that is
trusted by participating devices and the aggregator. The main

Frontiersin Computer Science

10.3389/fcomp.2024.1465352

role of the authenticator is to generate and propagate a set of
secure encryption keys for the encryption engine to use. We
assume that communication channels between devices and the
aggregator may be compromised; hence, attacks like man-in-the-
middle and snooping can happen. However, the key provisioning
and key distribution procedures, as well as the connections between
the authenticator and the SmartNICs of the authenticator are
considered secure.

3.1.2 Client placement

The participating client devices are assumed to be located at
edge locations and can be any device that can run an FL agent on the
host CPU. The SmartNICs can be local to clients or can be installed
on edge servers that directly talk to the clients. The aggregator can
either be situated at a specific edge location or deployed within
the cloud infrastructure. Finally, the authenticator is situated at a
predetermined secure server that can be deployed in a private or
public cloud setting.

3.1.3 Workflow

Devices may join and leave the system at any given time.
Upon joining, the HE Engine on a device needs to authenticate
with the authenticator first before receiving the current key for
homomorphic encryption and decryption. The FL agent that runs
on the host CPU/GPU is a lightweight wrapper that works with
a set of existing machine learning or deep learning frameworks
[e.g., Scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi
et al, 2015), and PyTorch (Paszke et al, 2019)], and no
additional modifications are required to the existing model training
code. Once the FL Agent completes one training iteration, the
updated model parameters are sent to the encryption engine for
encryption. Once encrypted, the encrypted model parameters are
then sent to the aggregator. After receiving the encrypted model
parameters from all participating devices, the model aggregator
merges all updated parameters without decrypting them. Under
this assumption, we require that the encryption be performed
using one of the homomorphic encryption methods and to
clarify the aggregator doesn’t own the key for homomorphic
encryption/decryption as it can also be compromised. For this
study, the workflow does not consider the straggling clients and
the client dropout problems in this abstract as there are several
proposals in the existing literature to handle this issue (Park et al.,
2021; Chai et al., 2020). After the model parameters are merged, the
aggregated model parameters are returned to the encryption engine
for decryption and then sent back to the FL agent on each client
for the next set of training iterations. Finally, to further improve
the security of FedNIC, the authenticator periodically examines
the identity of each device and issues a new encryption key for
homomorphic encryption/decryption. The overall algorithm for
the workflow can be found in Algorithm 1.

4 Evaluation

In this section, we thoroughly evaluate performance of FedNIC
in terms of communication time, encryption/decryption time, and

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

10.3389/fcomp.2024.1465352

=
i e o e
! SmartNICs} l
I Encryption Encryption vee wee | Encryption :
: Engine Engine Engine I
| A 7'} :
=
v A A
XX [Authenticator (=

Aggregator
<«— Model Weights
Key

FIGURE 1
Clients and threat model of FedNIC.

—
gCompromised Trusted

aggregation latency with respect to the non-homomorphic solution
(Raw), and without utilizing the SmartNIC (FedML-HE). We
start by discussing the experimental methodology, implementation
details, the testbed setup, and the results of the evaluation.

4.1 Evaluation methodology

4.1.1 Choice of federated learning framework
Different federated learning frameworks like Python-Paillier
and IBM-FL were considered before going ahead with FedML-
HE. Python-Paillier was unsatisfactorily slow, as the underlying
FE algorithm, Paillier, is implemented in Python without extensive
optimization for speed. The purpose of Python-Paillier is more
focused on the simulation and testing of the Paillier algorithm,
rather than having a production-ready FL system, thus Python-
Paillier was not chosen as the base framework for FedNIC Another
framework in consideration was the FL framework by IBM
called IBMFL. This framework, even though it supported fully
homomorphic encryption algorithms, it supported only x86 and
IBM Z architecture. This was a blocker for FedNIC, since Bluefields
that are used in our experiments are equipped with ARM cores,
thus runs the aarch64 version of Linux (NVIDIA, 2024). A future
study can be done to utilize IBM FL with SmartNICs or networking
devices that are x86 or IBM Z based. The final framework that
was evaluated was the FedML and the FedML-HE framework,
which is a research study to enable HE on FedML. This framework

Frontiersin Computer Science 06

integrates nicely with Palisade and TenSEAL HE algorithms and
is built for scale to multiple clients. It also provided numerous
communication protocols like gRPC, MPI, and MQTT that give
FedNIC more flexibility on which protocols to use. Finally, FedML
is open-sourced and written in Python, which makes it quite easy
to add and modify modules of interest. Therefore, given the broad
sets of benefits, we chose FedML framework as the base framework
for FedNIC.

4.1.2 Choice of HE libraries
In the
algorithms/libraries, we considered a diverse set of tools to

selection ~ of homomorphic encryption
ensure a comprehensive evaluation of cryptographic techniques.
The set of candidates, namely, Paillier, TenSEAL, Pyfhel, and
Palisade, were chosen and evaluated to address the requirements
of our FedNIC objectives. Each algorithm had its advantages
and disadvantages, but the final choice of algorithm was Palisade
due to the following reasons. While Paillier encryption is
known for its additive homomorphic properties, particularly
suited for scenarios requiring aggregated computations, the
encryption performance was very low, often resulting in large
weights and 40x slower encryption/decryption times. Pyfhel
is recognized for its user-friendly interface and robust support
for arithmetic operations in homomorphic encryption, but
the encryption/decryption performance was 3x slower than
Palisade. TenSEAL is designed to support polynomial-based
encryption schemes, offering a flexible framework for polynomial

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

e S: Aggregator
C;: Client

e Ey: Encryption engine paired with G
N: Number of clients

e M: Number of encryption agent
D;: Local private data for Client G
W;: Unencrypted model weights

Y
e [W;]: Encrypted model weights

// Authenticator Generates Key
(pk, sk) < HE.KeyGen()
for eachje [M] do

Send (pk,sk) to E;

end

// Local FL Training on the Client

for t=12,.,T doin parallel

for each Clienti € [N] do

if +=1 then

| Wi < mit(w)

end

if +> 1 then
Receive Wy, from Ey
Wi < Weigp

end

Wi < Train(Wi, D;)

Send W; to Ey

end

end

// SmartNIC Operation

for each SmartNIC i € [M] do in parallel
// Encryption Operation

if W; received from C; then

[Wi] <= HE.Enc(pk, W;)

Send [W;] to S

end

// Decryption Operation
if [Wgpp] received from S then
Wi <= HE.Dec(sk, [Wgiop1)
Send W; to G

end

end

// Aggregation on S
[ngob] <~ Z?:l[wi]
Send Wy, to all E; where jeM

Algorithm 1. HE-based federated machine learning.

evaluation and manipulation, but the encryption/decryption
performance was 2x slower than Palisade. Palisade is known for
its scalability and comprehensive support for lattice-based
showed the best

homomorphic encryption schemes and

Frontiersin Computer Science

10.3389/fcomp.2024.1465352

encryption/decryption performance in our evaluation. Given
all the choices, the final choice of algorithm is Palisade due to its
superior performance. The results of this evaluation can be found
in Section 4.4.1

4.1.3 Dataset and model

The dataset used for the evaluation is the FEMNIST
dataset (Caldas et al., 2019). It is a variation of the popular
MNIST dataset, a widely used dataset for image recognition
tasks, which is built by partitioning the MNIST data based on
the writer of the digit/character. The FEMNIST dataset consists
of 805,263 samples of images of size 28 by 28 pixels, obtained
from 3,550 users. The images are categorized into one of 62
classes (10 numbers, 26 lowercase, and 26 uppercase letters);
thus, it is widely used to train image classification models that
classify the handwritten image to one of the 62 classes. For
easier comparison between clients, the training dataset has been
sampled to 1,600 images for each client, and for each FL round,
each client trains on 32 images before sending the weights
for encryption.

The machine learning model that was built as part of the
evaluation is convolutional neural network (CNN) with two
layers (Krizhevsky et al., 2012) and dropout. CNN is also a widely
used model for many classification task and is often coupled with
the MNIST dataset to compare model training performance on
different model and dataset configurations (Reddi et al., 2021). This
model has 1,206,590 parameters trained in total, and each client
trains the same number of parameters but on each of its local train
dataset. For the evaluation, the client trains the given model for 100
epochs per FL training round, and the evaluation is run across 50 FL
rounds. Given that the hyperparameters of the models and the type
of HE algorithm stayed constant across different privacy-preserving
FL systems (FedML vs. FedNIC), the model performance stayed
constant across these systems. Table 3 provides an overview of the
set of evaluations.

4.2 Implementation

The implementation of FedNIC is as follows. FedNIC
is implemented as an extension to FedML-HE, where the
homomorphic encryption part of the implementation has been
replaced with FedNIC’s encryption and decryption library. The
FedNIC’s encryption and decryption library works as follows.
The encryption and decryption are performed via the Palisade
homomorphic encryption library written in C++. The library
uses gRPC as the communication mechanism between the client,
SmartNICs, and the aggregation server to pass the encrypted
weights. The CNN training logic that runs on each of the clients
is written in Python using the PyTorch library. In summary,
the process inside the SmartNIC, which is responsible for the
encryption and decryption of model weights, utilizes gRPC to
retrieve model weights from the clients and the aggregation server
and calls the C++ Palisade library to perform the necessary
crypto operations. The clients receive decrypted weights from
the SmartNIC to continue on to the next iteration of the
FL training.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

TABLE 3 Overview of experimental methodology.

10.3389/fcomp.2024.1465352

Encry. alg. Num params. Weights (B) Encry. weights (B) FL rounds
Raw N/A 1,206,590 28,958,160 N/A 50 100
FedML Palisade 1,206,590 28,958,160 78,764,304 50 100
FedNIC Palisade 1,206,590 28,958,160 78,764,304 50 100

4.3 Testbed setup

The evaluation testbed setup shown in Figure 2 consists of
two clients and one aggregator server. Both the clients and the
aggregator are deployed on 3x HPE ProLiant DL385 servers with
dual AMD EYPC 7F52 16-core, 32 threads CPUs running at 3.5
GHz. One of the clients is equipped with NVIDIA BlueField-
2 (NVIDIA, 2024), which consists of 8x ARMv8 A72 running
at 2.5 GHz, and 16 GB of RAM and the other is equipped with
BlueField-3 (NVIDIA, 2024) SmartNIC, which consists of 16x
ARMv8.2 A78 CPU running at 3.3GHz and 16 GB of RAM. The
authenticator is running alongside the aggregator. Both the clients
and the aggregator are configured with the Ubuntu 22.04 operating
system and all Bluefields were configured with Ubuntu 22.04 Linux
operating system.

4.4 Evaluation results

4.4.1 Comparison of different HE libraries

To understand the performance of homomorphic operations,
we compared the averaged encryption and decryption time on two
SoC-based SmartNICs, BlueField-2 (NVIDIA, 2024) and Bluefield-
3 (NVIDIA, 2024), and AMD EPYC 7F52 CPU (AMD, 2024) using
the four most popular homomorphic libraries: Paillier, TenSEAL,
Pythel, and Palisade. Figure 3 shows our experimental results. First
of all, regardless of the algorithm, homomorphic encryption is very
time-consuming; thus, the majority of the end-to-end processing
time on FedNIC is spent on this specific operation. It is reasonable
to predict that this overhead will be much larger when training
bigger language or computer vision models. This further highlights
our motivation for offloading the homomorphic operations from
the CPU to SmartNICs is to save the CPU for other critical business
operations. Second, Paillier shows a much higher overhead than
TenSEAL in all scenarios, demonstrating that the implementation
of TenSEAL is more efficient. TenSEAL can be further fine-
tuned by tweaking the values of several parameters including
poly_modulus_degree, coeff_mod_bit_sizes, and
global_scale. With fine-tuning, the results show that the
decryption and encryption time of TenSEAL on BlueField-3
slightly outperforms the AMD EYPC 7F52 CPUs, indicating
a very promising potential. Third, although in most cases the
performance of SmartNICs yields a longer execution time of
homomorphic operations, the improvement of BlueField-3
over BlueField-2 is significant. Lastly, Palisade encryption and
decryption on Bluefield-3 provides huge improvements over AMD
CPU. This result is exciting as this result does not take crypto
accelerators into consideration and we expect the gap between
SmartNICs and CPU to be wider when crypto accelerators are
in place.

Frontiersin Computer Science

4.4.2 Communication time latency

In this set of experiments shown in Figure 4, we compared
the communication time of the two clients and Bluefield-2 (if
using FedNIC) on each client host when using non-homomorphic
encryption (Raw), running homomorphic encryption on the
clients (FedML-HE), and running homomorphic encryption on
the Bluefield2 nodes (FedNIC). The communication time is
obtained by summing all of the time spent on the network
between the clients, SmartNICs (if exists), and the aggregator,
across all FL rounds. Given that FedNIC adds an additional
layer of communication between the client and the SmartNIC,
whereas traditional FL with HE implementations do not need
such communication, Figure 4 shows the impact of the overhead
of adding such a layer. The total communication time added on
FedNIC is about 54% higher vs. FedML-HE, due to the large
overhead caused by increased ciphertext size. Further optimizations
need to be done to improve this time, such as a better networking
stack for each participant, using different transfer protocols,
selective parameter encryption, and more.

4.4.3 Training time

Figure 5 shows the total training time taken in seconds
on the clients using non-homomorphic encryption, running
homomorphic encryption on clients and when running
homomorphic encryption on the SmartNIC, averaged across
50 different experiment runs. Our experiments show a negligible
increase in the total training time when running the FedNIC,
when compared to no encryption solution or encryption directly
on the clients. This is expected as FedNIC is designed to make
near-minimal changes to the training algorithm on the clients.

4.4.4 Aggregation time

In the set of evaluations shown in Figure 6, we evaluate the
aggregation time taken on the aggregation server using non-
homomorphic encryption, running homomorphic encryption on
the clients, and when running homomorphic encryption on the
SmartNIC. Notice that the aggregation time increases greatly on
both systems using homomorphic encryption due to the increased
size of the ciphertext and the complexity of adding larger sets of
model weights. In addition, given that the effect of an increase in
ciphertext is seen on each client and is aggregated across every
client, so as more clients are added to the total workflow, we expect
the difference to increase. However, FedNIC does not exhibit any
increase in aggregation time when comparing between running
homomorphic encryption on the client or on the SmartNIC. This
result is as expected as FedNIC is designed to make minimal
changes to the aggregation server as well.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

10.3389/fcomp.2024.1465352

Aggregator Server

Overall experimental platform architecture.

> Receives init msg [—
v
£ Sis mie s S i & Shares the global model |- = = |- == == === === 1
1
1 T :
! 1
1
1 Aggregates the model :
1
! !
1
- :
¥ Starts & Sends the >
Starts& | |Sendsthe Decrypts Encrypts " . Decrypts Encrypts
sendsinit | | init msg model model sendsinit | | init msg model model
msg to server msg to server
X SMARTNIC SMARTNIC
A 4 .
L,|Sends|] Update | Train L, Sends | Update 4| Train
ACK model model ACK model model
Client 1 Client 2
FIGURE 2

=
o
i

Logscale Latency (s)
=
Q

FIGURE 3

paf//fer\g,‘?é’” S *?gf eelﬁﬁﬁea/-?e’?e’ ‘:r%/cfhe’%aeﬁcsad 2lsa

Encryption and decryption time of model weights on BlueField-2, BlueField-3, and AMD CPU using Paillier, TenSEAL, Pyfhel, and Palisade.

I Bluefield2
B Bluefield3
BN AMD EOYC 7F52

€-enc de‘d@c

4.45 Total workflow time

We then compare the total time taken on each client,
Bluefield-2 and
homomorphic, running homomorphic on clients, and running

aggregation server when running non-
homomorphic encryption on the Bluefild-2, averaged across 50

different experiment runs. Figure 7 shows that the total time

Frontiersin Computer Science

using the FedNIC-HE approach is 46% higher than the FedML-
HE and 76% higher than the case where we do not use any
encryption at all. The main reason for performance degradation
is due to the added latency in sending the ciphertext to the
SmartNIC, which adds a communication overhead between the
host and the SmartNIC. Although, this added latency may not

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

10.3389/fcomp.2024.1465352

100

80

T

60

20

Communication Time (s)

Client 1 m=m Client 2
BF2 on Client 1 1 BF2 on Client 2 7 |

0 o
Raw

FIGURE 4

Communication time on the clients and BlueField-2, using non-homomorphic (Raw), running homomorphic encryption on clients (FedML-HE), and

running homomorphic encryption on the Bluefield-2 (FedNIC).

FedML-HE FedNIC-HE

Client 2

100 _
@ Client 1 ===
g 80|
S
(]
£ 60 |
=
&
g
= 20|
5
=
0

Raw

FIGURE 5

Total training time taken on the clients, using non-homomorphic, running homomorphic encryption on clients, and running homomorphic

encryption on the Bluefield-2.

FedML-HE FedNIC-HE

be desirable, we argue that such added latency allows a more
secure federated machine learning framework to be achieved.
As mentioned earlier, we believe that the optimizations on the
networking stack and the aggregation methods can bring this gap
even smaller. Furthermore, if the crypto accelerator is used, it is
possible to offset the added communication latency with faster
encryption/decryption operations.

5 Related studies

We review related research that explores privacy-enhancing
techniques in FL and the utilization of hardware accelerators
like SmartNICs.

5.1 Privacy-preserving methods
Existing privacy-preserving solutions for FL are mainly multi-

party computation (MPC) secure aggregation protocols (Bonawitz
et al, 2017; So et al., 2022), noise-based differential privacy

Frontiersin Computer Science

(DP) solutions (Truex et al., 2019; Choudhury et al., 2019), and
federated averaging with local randomization (McMahan et al,
2017). MPC protocols require extra steps to mask private inputs,
and it does not work well with client dropouts. DP solutions
add privacy noise to original inputs to prevent the reconstruction
of individual data points. This may cause model performance
degradation or convergence problems. In Federated Averaging
with a local randomization approach, participants add random
noise to their local model updates before sharing them with
the central server. The noise addition introduces an element
of privacy without relying on homomorphic encryption. The
introduction of local randomization by adding noise to local
model updates can adversely affect the convergence and accuracy
of the federated learning model. The random perturbations may
hinder the learning process, leading to slower convergence or
reduced model performance, especially when the noise added is
significant. There are works that employ a mixture of two or
more of these methods. For example, FedML-HE (Jin et al., 2023)
employ DP on top of HE that add noise to the encrypted weights
for additional privacy. FedNIC can also implement such methods
as encryption/decryption and model weight modification happens

10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

10.3389/fcomp.2024.1465352

35
Aggregation Server HEE

—~ 30
g 25
E 20
s 15 f
&
g 10 |
< -

0

Raw

FIGURE 6

Aggregation time taken on the aggregation server, using non-homomorphic, running homomorphic encryption on clients, and running

homomorphic encryption on the Bluefield-2.

FedML-HE

FedNIC-HE

entirely on the SmartNIC. The benefit of performing these privacy-
preserving operation is that the entire operation can be completely
hidden from the client, increasing the total security of the system.

Finally, there are more recent studies that are relevant to
privacy preservation that can show the feasibility of FedNIC being
deployed to real-world scenarios. First of all, Shitharth et al. (2023)
utilize blockchain to enhance security for federated learning, which
increases privacy for IoT use cases. A small change in FedNIC’s
architecture can easily support Shitharth et al. (2023) to offload
the blockchain operations onto SmartNIC, which can be seen in
studies by Patel and Choi (2023) and Kapoor et al. (2023). Another
notable work is Yoosuf et al. (2022), which utilizes HE for data
deduplication in cloud workloads. Yoosuf et al. (2022) shows that
HE can be used in a real-world manner that supports the feasibility
of FedNIC.

5.2 Homomorphic-based FL solutions

Existing homomorphic-based solutions adopt existing
homomorphic libraries directly on the host leading to significant
resource utilization overhead and may become the performance
bottleneck of the FL system (Fang and Qian, 2021; Jiang et al., 2021;
Zhang et al., 2020; Jin et al., 2023). BatchCrypt (Zhang et al., 2020)
discusses the significant computation and communication costs
incurred by homomorphic encryption and proposes a solution
using batch encryption, for cross-silo federated learning to reduce
the encryption and communication overhead of homomorphic
encryption. FedNIC complements these efforts by providing a
method to offload the HE operations that are currently run on

the clients.

5.3 ML acceleration with programmable
network devices

SmartNICs have been adopted to assist the FL system in
aggregating ML model updates and mitigating communication

Frontiersin Computer Science

overheads. A DPDK-based, lightweight communication protocol is
introduced for the FL aggregation server in Shibahara et al. (2023)
to accelerate model aggregation by leveraging the multi-core ARM
processor on BlueField-2. Similarly, a new aggregation solution
is proposed by Zang et al. (2022), achieving better performance
and privacy of FL systems by offloading the key functions to
FPGA-based SmartNICs.

More generally, recent studies have endorsed the utilization
of in-network aggregation as a strategy to enhance the efficiency
of distributed machine learning training (Sapio et al, 2021;
Lao et al., 2021; Gebara et al, 2021). ATP delves into the
concept of distributing aggregation functionality between a
switch for enhanced performance and a server for increased
capacity, aiming to seamlessly accommodate multi-job scenarios
(Lao et al, 2021). However, the practical feasibility of these
approaches is constrained by the absence of effective aggregation
hardware, making them impractical for shared federated learning
environments. To the best of our knowledge, none of the
prior studies leverage SmartNICs/DPUs to offload and accelerate
homomorphic operations to fortify the privacy-preserving aspect
of federated learning systems.

5.4 Methods for efficiency improvement

A similar line of related studies is to enhance the efficiency of
security-enhancing methods. A notable example is Gajarla et al.
(2021), which enhances encryption efficiency by creating a sanitizer
that is used to sanitize the block that contains the sensitive
information of the file, instead of having to encrypt the entire file.
This technique can be considered to be part of FedNIC to increase
the efficiency of HE, since we can reduce the amount of data to
be encrypted. Another example is the study by Karthikeyan et al.
(2023) where it aims to improve the energy efficiency of cloud data
center workloads by providing intelligent placement of workers.
This is quite relevant to FedNIC, as it would allow FedNIC to
reduce energy usage by placing the aggregation servers where it can
provide the most energy efficiency.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

10.3389/fcomp.2024.1465352

Client 1]

BF2onClient2 0

FedML-HE

Total time taken on the clients, BlueField-2, and the aggregation server using non-homomorphic (Raw), running homomorphic encryption on clients

700 F
600 | BF2 on Client 1 23
O Client 2
g 500 A o
regation Server [
T 40 | L
|
Z 300 |
g 200 |
e
100 +
0
Raw
FIGURE 7
(FedML-HE), and running homomorphic encryption on the Bluefield-2 (FedNIC).

FedNIC-HE

6 Discussion and future studies

6.1 Future studies

6.1.1 Utilizing hardware crypto accelerators

The surge in SmartNIC adoption within large-scale data
centers has led to the integration of various hardware acceleration
engines. Notable examples include the utilization of hardware
crypto engines in NVIDIA BlueField (NVIDIA, 2024) devices
and dedicated compression/decompression engines. However, the
current DOCA (NVIDIA, 2023) acceleration engine has limited
support for a handful number of cryptographic algorithms such
as RSA, DH, DSA, ECDSA, and ECDH; thus, it does not
currently fully support homomorphic encryption. Thus, the once-
homomorphic encryption is integrated into the DOCA framework,
FedNIC can easily be enhanced by the hardware accelerator
support, providing a significant potential for enhancing the overall
efficiency, cost, and security. In addition, there is a series of
Bluefield cards called Bluefield X that houses both a GPU and
an NPU. While these cards are very limited in supply and hard
to obtain, their architecture is very promising for accelerating
FedNIC, since there is already active research around utilizing GPU
to accelerate HE algorithms (Morshed et al., 2020; Ozcan et al,,
2023). Thus, FedNIC can easily utilize these methods to accelerate
HE on SmartNIC.

The other possible future study direction is to leverage the
existing compression/decompression engine on SmartNICs [e.g.,
BlueField-2 (NVIDIA, 2024)] to accelerate certain parts of the
federated machine learning process. For example, previous study,
by Bitar (Liu et al., 2022), shows promising results by leveraging
the compression engine on NVIDIA BlueField-2 to accelerate the
partitioning process of the datasets. Utilizing hardware acceleration
offload method, Bitar is able to achieve 4.6 — 8.6x higher
throughput than software-based solutions for serialization. Given
such success, a future study planned is to explore the possibility
of leveraging the compression/decompression engine to accelerate
corresponding steps of HE operations.

Frontiersin Computer Science

6.1.2 Data plane-assisted federated machine
learning

Aside from processing the encryption and decryption using an
SoC-based SmartNIC like Bluefield, there is potential to simply
offload the entire operation onto a programmable data plane
device like FPGA or ASIC-based SmartNICs or switches. Given
that FPGA-based SmartNICs can be programmed to perform
HE (Agrawal et al., 2023), a research area of interest is to build an
FPGA or ASIC-based SmartNICs that already have HE acceleration
features built into the data plane. With such features, it is possible to
easily encrypt weights that are sent to the aggregation server, which
can improve the performance of FedNIC greatly.

6.1.3 Selective encryption

One of the major issues with HE is the significant increase in
the size of ciphertext. In order to reduce this impact, there are
studies that employ selective encryption, which encrypts a subset
of the model weights (Jin et al., 2023) to reduce the computational
overhead in encryption. Employing this technique will allow the
discrepancy between the total time taken for FedNIC vs raw to
reduce significantly, further increasing the feasibility of FedNIC
in production.

6.2 Discussion

6.2.1 Industry standards and shortcomings

Current industry standards in attacks and defenses for
federated ML system is well discussed in Han et al. (2024). There
are multiple types of attacks that are present, such as data/model
poisoning attacks, backdoor attacks, and Byzantine attacks, and it
is an active ongoing research to provide defenses for each type of
attack. While algorithms such as Krum (Blanchard et al., 2017)
can provide a way for trusted aggregation servers to perform
trusted model updates in the presences of compromised clients,
these algorithms are not effective when the aggregation server

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

is compromised. FedNIC is an orthogonal method that allows
for a compromised network and aggregation server to have zero
information about what is sent by the client. In addition, FedNIC
addresses short-comings when a client is compromised, as the
SmartNIC is in a different security domain. The design of FedNIC
prevents the client from knowing what happens to their data after
it is sent. Thus, FedNIC can easily verify the validity of the data, as
well as the current state of the client by investigating the data before
encrypting it and sending it to the aggregation server. In summary,
FedNIC enables a trusted authenticator that can improve the
security of the entire system, while easily allowing the integration
of algorithmic techniques as defined by Han et al. (2024).

6.2.2 Cost analysis

While it is difficult to perform a detailed cost analysis to
understand what it costs to offset HE using SmartNICs, we provide
arough cost analysis based on the amount of CPU used vs. the cost
of SmartNICs. Given that HE operations alone can use up to 25%
of the CPU, this implies that adding HE to an existing federated ML
system requires provisioning of 33% more CPUs. The AMD EPYC
CPU that we have utilized for the evaluation testbed costs ~$3,000
each, which means that adding HE capabilities alone would cost
roughly ~$1,000. A Bluefield-3 SmartNIC cost highly depends on
the configuration and the speed of the port, but on average it is
~$2,500 for a 100G version. A typical data center 100G NIC can
cost roughly $1,000; thus, the added cost for adding a Bluefield
would be $1,500 per server. We can see that adding a Bluefield costs
~$500 more than just increasing the CPU, but with this is when
ignoring added benefits by installing the Bluefield over a typical
NIC. For example, Bluefields come with more RAM than a typical
NIC and can improve the security of the system as mentioned by
FedNIC. In addition, HE operations utilize ~50% of the Bluefield’s
CPU; thus, there is processing power left for other operations.
Therefore, we can see that the cost between adding more CPU to
support HE operations vs. adding a Bluefield SmartNIC instead of
a typical NIC is comparable.

7 Conclusion

In this paper, we present FedNIC, a privacy-preserving FL
framework that offloads HE to SmartNICs to improve the security
and feasibility of privacy-preserving FL via HE. Acknowledging
the compute-intensive nature of HE and its potential impact
on client CPU resources, leveraging the SmartNICs as hardware
accelerators, to effectively offload HE operations, significantly
improving computational efficiency and frees up valuable host
resources. In addition, the FedNIC system design allows for a more
secure exchange of keys and encryption, stopping adversaries from
obtaining any information about the encryption process.

Experimental results show no model accuracy with a small
increase in total training time, while conserving valuable host CPU
cycles used for encryption and decryption. This research shows
the feasibility and advantages of employing SmartNICs for HE
in federated learning scenarios, contributing to the realization
of more secure and privacy-preserving AI models. Furthermore,
future studies show potential in improving the performance further
by utilizing newer hardware that can perform HE computation

Frontiersin Computer Science

13

10.3389/fcomp.2024.1465352

far more efficiently with dedicated ASICs. As mentioned, FedNIC
design is not only limited to HE but also can be applied to other,
more efficient and well-supported, types of encryption algorithms.
Thus, as the field of privacy-preserving FL continues to evolve,
FedNIC emerges as a promising solution to address computational
challenges and foster the widespread adoption of secure machine
learning practices.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SC: Writing - review & editing, Writing - original draft,
Visualization, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Funding acquisition,
Formal analysis, Data curation, Conceptualization. DP: Writing —
review & editing, Writing - original draft, Visualization, Software,
Data curation. DZ: Writing - review & editing, Writing -
original draft, Visualization, Resources, Project administration,
Investigation, Data curation, Conceptualization. LC: Writing
- review & editing, Writing - original draft, Supervision,
Resources, Methodology, Investigation, Conceptualization. FA:
Writing - review & editing, Writing - original draft, Resources,
Conceptualization. PS: Writing - review & editing, Writing —
original draft, Supervision, Resources, Project administration,
Methodology, Funding acquisition, Conceptualization.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This project
has been funded with the support Hewlett-Packard Enterprises
and NSF CRII 2245352. The funder was not involved in the study
design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication.

Conflict of interest

DZ, LC, FA, and PS were employed at Hewlett Packard
Enterprises.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z,, Citro, C,, et al. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Available at:
tensorflow.org (accessed January 13, 2023).

Agrawal, R, de Castro, L., Yang, G., Juvekar, C., Yazicigil, R., Chandrakasan, V.,
et al. (2023). “Fab: an fpga-based accelerator for bootstrappable fully homomorphic
encryption,” in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA) (Los Alamitos, CA: IEEE Computer Society), 882-895.
doi: 10.1109/HPCA56546.2023.10070953

AMD (2024). Server Processor Specifications. Available at: https://www.amd.com/en/
products/specifications/server- processor.html (accessed January 13, 2023).

Badawi, A. A., Bates, J., Bergamaschi, F., Cousins, D. B,, Erabelli, S., Genise, N.,
et al. (2022). Openfhe: Open-source fully homomorphic encryption library. Cryptology
ePrint Archive, Paper 2022/915. Available at: https://eprint.iacr.org/2022/915 (accessed
January 13, 2023).

Benaissa, A., Retiat, B., Cebere, B., and Belfedhal, A. E. (2021). Tenseal: a library
for encrypted tensor operations using homomorphic encryption. arXiv [Preprint].
arXiv:2104.0315. doi: 10.48550/arXiv.2104.0315

Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., and Rogers, R. (2019). Protection
against reconstruction and its applications in private federated learning. ArXiv.

Blanchard, P., El Mhamdji, E. M., Guerraoui, R., and Stainer, J. (2017). “Machine
learning with adversaries: byzantine tolerant gradient descent,” in Advances in Neural
Information Processing Systems, Vol. 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, et al. (Red Hook, NY: Curran Associates, Inc).

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S.,
etal. (2017). “Practical secure aggregation for privacy-preserving machine learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY: ACM), 1175-1191. doi: 10.1145/3133956.3133982

Brakerski, Z. (2012). “Fully homomorphic encryption without modulus switching
from classical gapsvp,” in Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology - CRYPTO 2012 - Vol. 7417 (Berlin, Heidelberg: Springer-
Verlag), 868-886. doi: 10.1007/978-3-642-32009-5_50

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012). “(leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12 (New York, NY: Association for
Computing Machinery), 309-325. doi: 10.1145/2090236.2090262

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konecny, J., McMahan, H. B., et al. (2019).
Leaf: A benchmark for federated settings. ArXiv.

Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Baracaldo, N., et al. (2020).
“Tifl: a tier-based federated learning system,” in Proceedings of the 29th international
symposium on high-performance parallel and distributed computing (New York, NY:
ACM), 125-136. doi: 10.1145/3369583.3392686

Cheon, J. H,, Kim, A., Kim, M., and Song, Y. (2017). “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology-ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23
(Cham: Springer), 409-437. doi: 10.1007/978-3-319-70694-8_15

Choudhury, O., Gkoulalas-Divanis, A., Salonidis, T., Sylla, I, Park, Y., Hsu, G., et al.
(2019). Differential privacy-enabled federated learning for sensitive health data. arXiv
[Preprint]. arXiv:1910.02578. doi: 10.48550/arXiv.1910.02578

Dastidar, J., Riddoch, D., Moore, J., Pope, S., and Wesselkamper, J. (2023). The amd
400-g adaptive smartnic system on chip: a technology preview. IEEE Micro 43, 40-49.
doi: 10.1109/MM.2023.3260186

Ducas, L., and Micciancio, D. (2015). “Fhew: bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology-EUROCRYPT 2015, eds.
E. Oswald, and M. Fischlin (Berlin, Heidelberg: Springer Berlin Heidelberg), 617-640.
doi: 10.1007/978-3-662-46800-5_24

Fang, H., and Qian, Q. (2021). Privacy preserving machine learning with
homomorphic encryption and federated learning. Future Internet 13:94.
doi: 10.3390/f113040094

Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha,
M., et al. (2018). “Azure accelerated networking: smartnics in the public
cloud,” in Proceedings of the 15th USENIX Conference on Networked Systems
Design and Implementation, NSDI'18 (Berkeley, CA: USENIX Association),
51-64.

Gajarla, B., Rebba, A., Kakathota, K., Kummari, M., and Shitharth, S. (2021).
“Handling tactful data in cloud using pkg encryption technique;” in 4th Smart Cities
Symposium (SCS 2021), Vol. 2021 (Bahrain), 338-343. doi: 10.1049/icp.2022.0366

Gebara, N., Ghobadi, M., and Costa, P. (2021). In-network aggregation for shared
machine learning clusters. Proc. Mach. Learn. Syst. 3, 829-844.

Geiping, J., Bauermeister, H., Droge, H., and Moeller, M. (2020). “Inverting
gradients - how easy is it to break privacy in federated learning?” in Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS20 (Red
Hook, NY: Curran Associates Inc), 16937-16947.

Frontiersin Computer Science

10.3389/fcomp.2024.1465352

Han, S., Buyukates, B., Hu, Z., Jin, H,, Jin, W., Sun, L, et al. (2024). Fedsecurity:
Benchmarking attacks and defenses in federated learning and federated llms. ArXiv.
doi: 10.1145/3637528.3671545

Hatamizadeh, A., Yin, H., Roth, H., Li, W., Kautz, J., Xu, D., et al. (2022).
“Gradvit: gradient inversion of vision transformersm,” in 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA, IEEE),
10011-10020. doi: 10.1109/CVPR52688.2022.00978

He, C,, L1, S., So, J., Zeng, X., Zhang, M., Wang, H., et al. (2020). Fedml: A research
library and benchmark for federated machine learning. ArXiv.

Ibarrondo, A., and Viand, A. (2021). “Pyfhel: python for homomorphic encryption
libraries,” in Proceedings of the 9th on Workshop on Encrypted Computing Applied
Homomorphic Cryptography, WAHC 21 (New York, NY: Association for Computing
Machinery), 11-16. doi: 10.1145/3474366.3486923

Inc.,, G. (2020). Tensorflow federated. Available at: https://www.tensorflow.org/
federated (accessed January 13, 2023).

Jiang, Z., Wang, W, and Liu, Y. (2021). Flashe: additively symmetric homomorphic
encryption for cross-silo federated learning. arXiv [Preprint]. arXiv:2109.00675.
doi: 10.48550/arXiv.2109.00675

Jin, W., Yao, Y., Han, S., Joe-Wong, C., Ravi, S., Avestimehr, S., et al. (2023). Fedml-
he: An efficient homomorphic-encryption-based privacy-preserving federated learning
system. ArXiv.

Kapoor, E., Jampani, G., and Choi, S. (2023). “Blocknic: smartnic assisted
blockchain,” in 2023 Silicon Valley Cybersecurity Conference (SVCC) (San Jose, CA:
IEEE), 1-8. doi: 10.1109/SVCC56964.2023.10165427

Karthikeyan, R., Sundaravadivazhagan, B., Cyriac, R., Balachandran, P. K., and
Shitharth, S. (2023). Preserving resource handiness and exigency-based migration
algorithm (PRH-EM) for energy efficient federated cloud management systems. Mob.
Inf. Syst. 2023:7754765. doi: 10.1155/2023/7754765

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems, Vol. 25, eds. F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Red Hook,
NY: Curran Associates, Inc), 1097-1105.

Lao, C,, Le, Y., Mahajan, K., Chen, Y., Wu, W., Akella, A,, et al. (2021). “SATPS$:
in-network aggregation for multi-tenant learning,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21) (USENIX Association),
741-761.

Liu, J., Maltzahn, C., Curry, M. L., and Ulmer, C. (2022). “Processing particle
data flows with smartnics,” in 2022 IEEE High Performance Extreme Computing
Conference (HPEC) (Waltham, MA: IEEE), 1-8. doi: 10.1109/HPEC55821.2022.99
26325

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A., Rajamoni, S., et al.
(2020). Ibm federated learning: an enterprise framework white paper v0.1. ArXiv.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. (2017).
“Communication-efficient learning of deep networks from decentralized data,” in
Artificial intelligence and statistics (Proceedings of Machine Learning Research
(PMLR)), 1273-1282.

Morshed, T., Aziz, M. M. A., and Mohammed, N. (2020). “CPU and GPU
accelerated fully homomorphic encryption,” in 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST) (San Jose, CA: IEEE), 142-153.
doi: 10.1109/HOST45689.2020.9300288

NVIDIA (2023). Nvidia doca software framework. Available at: https://developer.
nvidia.com/networking/doca (accessed January 13, 2023).

NVIDIA (2024). NVDIA Bluefield Networking Platform. Available at: https://www.
nvidia.com/en-us/networking/products/data- processing-unit/ (accessed January 13,
2023).

Ozcan, A. A., Ayduman, C., Tiirkoglu, E. R., and Savas, E. (2023). Homomorphic
encryption on gpu. IEEE Access 11, 84168-84186. doi: 10.1109/ACCESS.2023.326
5583

Paillier, P. (1999). “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology - EUROCRYPT ’99, ed. J. Stern (Berlin, Heidelberg:
Springer Berlin Heidelberg), 223-238. doi: 10.1007/3-540-48910-X_16

Park, J., Han, D.-]., Choi, M., and Moon, J. (2021). Sageflow: robust federated
learning against both stragglers and adversaries. Adv. Neural Inf. Process. Syst. 34,
840-851. doi: 10.5555/3540261.3540326

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G,, et al. (2019).
Pytorch: An imperative style, high-performance deep learning library. ArXiv.

Patel, D., and Choi, S. (2023). “Smartnic-powered multi-threaded proof of
work) in 2023 Fifth International Conference on Blockchain Computing and
Applications (BCCA) (Kuwait: IEEE), 200-207. doi: 10.1109/BCCA58897.2023.103
38942

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://tensorflow.org
https://doi.org/10.1109/HPCA56546.2023.10070953
https://www.amd.com/en/products/specifications/server-processor.html
https://www.amd.com/en/products/specifications/server-processor.html
https://eprint.iacr.org/2022/915
https://doi.org/10.48550/arXiv.2104.0315
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.48550/arXiv.1910.02578
https://doi.org/10.1109/MM.2023.3260186
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.3390/fi13040094
https://doi.org/10.1049/icp.2022.0366
https://doi.org/10.1145/3637528.3671545
https://doi.org/10.1109/CVPR52688.2022.00978
https://doi.org/10.1145/3474366.3486923
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://doi.org/10.48550/arXiv.2109.00675
https://doi.org/10.1109/SVCC56964.2023.10165427
https://doi.org/10.1155/2023/7754765
https://doi.org/10.1109/HPEC55821.2022.9926325
https://doi.org/10.1109/HOST45689.2020.9300288
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://doi.org/10.1109/ACCESS.2023.3265583
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.5555/3540261.3540326
https://doi.org/10.1109/BCCA58897.2023.10338942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Kone¢ny, J., et al. (2021).
Adaptive federated optimization. ArXiv.

Reddy, H. M., Sajimon, P. C., and Sankaran, S. (2022). “On the feasibility
of homomorphic encryption for internet of things” in 2022 IEEE 8th
World Forum on Internet of Things (WF-IoT) (Yokohama: IEEE), 1-6.
doi: 10.1109/WF-10T54382.2022.10152214

Sapio, A., Canini, M., Ho, C.-Y., Nelson, J., Kalnis, P., Kim, C., et al. (2021).
“Scaling distributed machine learning with {In-Network} aggregation,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21) (USENIX
Association), 785-808.

Shibahara, N., Koibuchi, M., and Matsutani, H.
improvement of federated learning server using
doi: 10.1109/CANDARW60564.2023.00035

Shitharth, S., Manoharan, H., Shankar, A., Alsowail, R. A., Pandiaraj, S.,
Edalatpanah, S. A., et al. (2023). Federated learning optimization: a computational
blockchain process with offloading analysis to enhance security. Egypt. Inf.]. 24:100406.
doi: 10.1016/j.€ij.2023.100406

So, J., He, C, Yang, C.-S., Li, S., Yu, Q., Ali, E,, et al. (2022). Lightsecagg: a
lightweight and versatile design for secure aggregation in federated learning. Proc.
Mach. Learn. Syst. 4, 694-720. doi: 10.48550/arXiv.2109.14236

Performance
NIC. ArXiv.

(2023).
smart

Frontiersin Computer Science

15

10.3389/fcomp.2024.1465352

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R, et al. (2019).
“A hybrid approach to privacy-preserving federated learning,” in Proceedings of the
12th ACM workshop on artificial intelligence and security (New York, NY: ACM), 1-11.
doi: 10.1145/3338501.3357370

Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H,, et al. (2018). Beyond
inferring class representatives: user-level privacy leakage from federated learning. arXiv
[Preprint]. arXiv:1812.00535. doi: 10.48550/arXiv.1812.00535

Yoosuf, M. S., Muralidharan, C,, Shitharth, S., Alghamdi, M., Maray, M., and Rabie,
O. B. J. (2022). Fogdedupe: a fog-centric deduplication approach using multi-key
homomorphic encryption technique. J. Sens. 2022, 1-16. doi: 10.1155/2022/6759875

Zang, S., Fei, J., Ren, X., Wang, Y., Cao, Z., Wu, |, et al. (2022). “A smartnic-based
secure aggregation scheme for federated learning,” in The 3rd International Conference
on Computer Engineering and Intelligent Control (CEUR-WS), 81-89.

Zhang, C., Li, S., Xia, J., Wang, W,, Yan, F,, Liu, Y., et al. (2020). “{BatchCrypt}:
efficient homomorphic encryption for {Cross-Silo} federated learning, in 2020
USENIX annual technical conference (USENIX ATC 20) (IEEE), 493-506.

Zhu, L., Liu, Z., and Han, S. (2019). “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems, Vol. 32, eds. H. Wallach, H. Larochelle, A.
Beygelzimer, F. & Alché-Bug, E. Fox, and R. Garnett (Berkely, CA: Curran Associates,
Inc), 14774-14784.

frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://doi.org/10.1109/WF-IoT54382.2022.10152214
https://doi.org/10.1109/CANDARW60564.2023.00035
https://doi.org/10.1016/j.eij.2023.100406
https://doi.org/10.48550/arXiv.2109.14236
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.48550/arXiv.1812.00535
https://doi.org/10.1155/2022/6759875
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	FedNIC: enhancing privacy-preserving federated learning via homomorphic encryption offload on SmartNIC
	1 Introduction
	2 Background
	2.1 Federated learning
	2.2 Homomorphic encryption
	2.3 SmartNICs

	3 FedNIC overview
	3.1 FedNIC design overview
	3.1.1 Adversary definition with threat model
	3.1.2 Client placement
	3.1.3 Workflow

	4 Evaluation
	4.1 Evaluation methodology
	4.1.1 Choice of federated learning framework
	4.1.2 Choice of HE libraries
	4.1.3 Dataset and model

	4.2 Implementation
	4.3 Testbed setup
	4.4 Evaluation results
	4.4.1 Comparison of different HE libraries
	4.4.2 Communication time latency
	4.4.3 Training time
	4.4.4 Aggregation time
	4.4.5 Total workflow time

	5 Related studies
	5.1 Privacy-preserving methods
	5.2 Homomorphic-based FL solutions
	5.3 ML acceleration with programmable network devices
	5.4 Methods for efficiency improvement

	6 Discussion and future studies
	6.1 Future studies
	6.1.1 Utilizing hardware crypto accelerators
	6.1.2 Data plane-assisted federated machine learning
	6.1.3 Selective encryption

	6.2 Discussion
	6.2.1 Industry standards and shortcomings
	6.2.2 Cost analysis

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

