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Low-latency inference for machine learning models is increasingly becoming a
necessary requirement, as these models are used in mission-critical applications
such as autonomous driving, military defense (e.g., target recognition), and
network traffic analysis. A widely studied and used technique to overcome this
challenge is to offload some or all parts of the inference tasks onto specialized
hardware such as graphic processing units. More recently, offloading machine
learning inference onto programmable network devices, such as programmable
network interface cards or a programmable switch, is gaining interest from
both industry and academia, especially due to the latency reduction and
computational benefits of performing inference directly on the data plane where
the network packets are processed. Yet, current approaches are relatively limited
in scope, and there is a need to develop more general approaches for mapping
offloading machine learning models onto programmable network devices. To
fulfill such a need, this work introduces a novel framework, called ML-NIC,
for deploying trained machine learning models onto programmable network
devices' data planes. ML-NIC deploys models directly into the computational
cores of the devices to efficiently leverage the inherent parallelism capabilities
of network devices, thus providing huge latency and throughput gains. Our
experiments show that ML-NIC reduced inference latency by at least 6x on
average and in the 99th percentile and increased throughput by at least 16x with
little to no degradation in model effectiveness compared to the existing CPU
solutions. In addition, ML-NIC can provide tighter guaranteed latency bounds
in the presence of other network traffic with shorter tail latencies. Furthermore,
ML-NIC reduces CPU and host server RAM utilization by 6.65% and 320.80 MB.
Finally, ML-NIC can handle machine learning models that are 2.25x larger than
the current state-of-the-art network device offloading approaches.
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1 Introduction

Machine learning (ML) permeates a vast amount of everyday life, from personalized
recommendations to stock market analysis and novel drug synthesis. While the machine
learning models created to solve problems in these various fields are proven to be highly
effective, these models often need large amount of time to make predictions (also referred
to as model inference) on data instances. Often times, such limitation becomes a huge
limiting factor for deploying ML models for latency critical applications. For example,
applications such as high-frequency trading, military target recognition, pilots traveling
at aircraft speeds (i.e., at least 621 mph) need to perform ML inference with the tight
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latency budget of at most 50 ms. Making things worse, it is often not
computationally and physically feasible to host large, effective ML
models on directly on the devices like military aircraft. Thus, the
ML model computations are often offloaded onto ground stations
or edge devices, where data transmission can significantly add to
the latency to execute model inference.

While many different types of machine learning accelerators
have been developed, such as Graphical Processing Units
(GPU) (Choquette et al., 2018), Field Programmable Gate Arrays
(FPGA) (Fowers et al., 2018; He et al., 2018; Tong et al., 2017), and
specialized application-specific integrated circuits (ASIC) (Chen
et al., 2014; Jouppi et al.,, 2017), their efficiency is lowered by the
data transfer time over the PCIe bus from the host system’s network
interface card (NIC). To overcome this challenge, we investigated
methods to perform ML inference at the edge of the network
to reduce the need and the overhead of transferring data from
the edge to these accelerators. To achieve this, we note that the
emergence of programmable data planes makes network devices
(i.e., programmable switches and NICs) potential candidates for
accelerating ML inference, especially given that programmable
network devices have already been shown to be significantly power
efficient while also providing high throughput and low latency in
a variety of in-network computing tasks such as caching (Jin et al.,
2017), consensus (Dang et al., 2020), and network monitoring (Kim
et al., 2015). However, leveraging programmable data planes for
machine learning inference still is an ongoing area of research with
room for improvement.

Much of the prior works in this area has shown that network
devices with programmable data planes, primarily programmable
switches, demonstrate superior latency performance with minor
degradation in model effectiveness (Zhang et al., 2023). While the
line rate performance of programmable switches is beneficial for
model inference, their limitation to match+action logic, memory
size, cost, and the placement in the network restrict the feasibility
and accuracy of models that can be mapped onto them. For
example, since many modern machine learning algorithms rely
on operations such as multiplication during inference, finite-sized
match+action tables cannot support every possible combination of
multiplied values. Even though prior methods have found ways
around this, it was not without loss in model effectiveness. And
as machine learning models continue to grow, additional losses in
model effectiveness seem likely. In addition, prior methods focused
on general models that may not be used in the real-world for
low-latency applications.

To compensate for this limitation, we propose the Smart
Network Interface Cards (SmartNICs) as a viable alternative.
SmartNICs possess additional computational resources and
several packet processing accelerators that can be adapted to
mimic essential machine learning inference operations, such
as multiplication and logarithm functions, more accurately.
Furthermore, SmartNICs are much more cost and power efficient,
are more easier to deploy and test.

Therefore, in this paper, we present ML-NIC, a framework
for compiling and deploying trained machine learning models
onto SmartNICs by providing intelligent model mapping methods.
This current work mainly focuses on mapping tree-based models
onto SmartNICs due to it's wide usage of low-latency applications,
but we have proposals for future work with proposed methods
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to support inference for other types machine learning models as
well. Compared to many prior works that implement machine
learning algorithms onto programmable network devices, ML-
NIC implementation uses more device parallelism in the inference
process. Finally, our Python implementation of ML-NIC is made
publicly available upon publication of the manuscript.

Our contributions include:

1. We present an algorithm to extract logic learned by a generic
decision tree to facilitate parallelized feature analysis during
inference.

2. We present a method to map and compile trained decision
trees onto a SmartNIC in a manner that leverages its parallelism
capabilities.

3. We demonstrate our frameworKk’s potential for accelerating the
inference of decision trees for different tasks compared to
conventional CPU and current state-of-the-art SmartNIC model
deployment strategies.

4. We created an open-source project that contains all of ML-NIC’s
implementation and experimentation.

The rest of this paper is organized as follows. Section 2
presents some background information on SmartNICs relevant
to our work. Section 3 explains our approach toward deploying
machine learning models onto a SmartNIC. Sections 4, 5, and 6
describe our experimental setup and discuss our results. Section 7
presents an overview of recent work that utilizes programmable
data planes to accelerate the inference time for various machine
learning algorithms on different problems. Section 8 points out
future directions, and Section 9 ends with concluding remarks.

2 Background

In this section, we provide the background for ML-NIC and
some underlying motivations.

2.1 SmartNIC

Smart Network Interface Cards (SmartNICs) possess additional
computational resources and memory storage compared to
traditional network interface cards. These resources enable
SmartNICs to perform deep packet inspection, network function
virtualization, and zero-trust security (Netronome Systems, 2024).
As aresult, offloading such operations to the SmartNIC frees a host
system’s CPU from conducting them. Compared to programmable
switches, SmartNICs have more computational resources that
can be leveraged. This motivates our choice to use SmartNICs
for machine learning inference, since this process can be quite
computationally intensive. For the rest of the section, we will
focus on one particular type of SmartNIC: ASIC-Based Netronome

SmartNICs supporting the NFP4000 architecture.

1 The project can be found on https://github.com/The-Cloud-Lab/ML-
NIC.
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FIGURE 1

In this figure, we present a high-level overview of the NFP4000 architecture, focusing on the components most pertinent to ML-NIC.

2.1.1 ASIC-based Netronome SmartNIC

ASIC-based SmartNIC represents a type of SmartNIC where
the ASIC is custom built to support programmability using a
set of custom languages. One notable example of an ASIC-
based SmartNIC
programmed using langauged called P4 and Micro-C. This

is a Netromome SmartNIC that can be

project utilizes a specific subset of the Netromome SmartNICs,
which support the NFP4000 architecture. To elaborate further,
Netronome SmartNICs support the NFP4000 architecture feature
48 packet processing cores and 60 programmable flow processing
cores (Corigine, 2020). In much of the literature and technical
documentation, the flow-processing cores are referred to as
microengines (ME), which we denote as purple squares in Figure 1.
Each microengine acts as an independent 32-bit processor with
its own code store and local memory to run different programs
in parallel with the other microengines. The microengines can be
programmed using a low-level language like Micro-C, an extended
subset of C89, or a high-level language like P4. A key difference
between Micro-C and P4 is that Micro-C provides the flexibility
to program each microengine differently, whereas P4 defaults to
loading the same program onto all microengines. However, both
languages lack floating-point number support. We provide a high-
level illustration of the NFP4000 architecture in Figure 1.

Each microengine supports 8 threads, where each thread runs
the same program and has its own block of memory/registers. The
following memory in a microengine is evenly partitioned among
the 8 threads in a microengine:

e 256, 32-bit General-Purpose Registers—used for general per-
packet computations.

e 256, 32-bit Transfer Registers—used for transferring data
between memory regions.
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e 128,  32-bit  Next-Neighbor
communicating between neighboring microengines in

Registers—used  for

the same island.

e 4kB of Local Memory—used for additional data storage as
needed.

e 120 Signal Registers—used to notify threads that a certain
hardware event has occurred.

The partitioning of memory among the 8 threads facilitates
fast context switching between them, so they can process different
packets efficiently (Siracusano et al., 2022).

The microengines are organized into islands. While these
islands can vary in number of microengines and specialized
functionality, standard islands, shown in Figure 1, contain 12
microengines with two regions of memory shared between all
the microengines in the island: Cluster Local Scratch (CLS) and
Cluster Target Memory (CTM). CLS, denoted in green in Figure 1,
commonly stores small forwarding tables shared between the
microengines (Wray, 2014). CTM, denoted in cyan in Figure 1,
holds packet headers and coordinates between the microengines
and other subsystems on the card (Wray, 2014). As CTM is larger
than CLS, more clock cycles are required to read/write to CTM.

Outside of the islands, the Netronome SmartNICs have
three additional memory units, as shown in Figure 1, shared
with all microengines: one Internal Memory Unit (IMEM) and
two External Memory Units (EMEM) (Langlet, 2019). IMEM is
used for storing packet payloads and medium-sized match-action
tables (Wray, 2014). EMEM is used to store larger match-action
tables and other flow statistics (Wray, 2014). As these three memory
units are the largest of those mentioned prior, with EMEM being
larger than IMEM, they require a greater number of clock cycles
to read/write to them. Microengines can access data in all these
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FIGURE 2
This figure shows the big picture of the ML-NIC architecture.
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memory regions using the Command Push Pull (CPP) bus, denoted
in turquoise in Figure 1.

Based on our knowledge of data access times for the different
memory regions, hardware signals, and transfer registers, we design
ML-NIC to efficiently leverage these resources to ensure a high
degree of performance from a SmartNIC.

3 ML-NIC architecture

ML-NIC comprises three components: machine learning model
training, model mapping, and model deployment, as shown in
Figure 2. We explain the details of each component below.

3.1 Model training

In the machine learning model training component, we
consider a labeled dataset (X, y), where X € R™" represents
our data matrix (m data points, n features) and y € {1...g}"
represents our class labels (q possible classes). We make no
assumptions on whether X consists of only continuous features,
only categorical features, or a mix. We assume the continuous
features are normalized within the range [0, 1]. We do so to simplify
the range of numerical representation that the first iteration of
ML-NIC needs to account for. We find that this assumption is
reasonable, since data normalization is a common technique in
machine learning to prevent certain features from dominating over
other features due to differences in scaling. For the categorical
features, we assume that they are one-hot encoded (Liu, 2017) (i.e.,
a feature with three categories is expanded to three features with
values 0 or 1). This dataset is used to learn the parameters of a
particular machine learning model.

In this first iteration of ML-NIC, we choose to focus on decision
trees for three reasons. First, we cite the relative computational
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simplicity of tree traversal compared to floating-point operations
in hardware without a Floating-Point Unit (FPU) like a SmartNIC
that was designed for fast computations at network line rates.
Second, in comparison to other classical supervised machine
learning models, such as Naive Bayes, k-nearest neighbor, and
support vector machine, we find that the decision tree is the more
suitable choice for offloading. With Naive Bayes, it is known that
the algorithm perform poorly when the features used for training
are not conditionally independent. However, in practice, decision
trees can perform well even if the features are correlated. For
k-nearest neighbor, we find that the required storage of every
training instance to be an obstacle for offloading onto network
devices, especially given the size of modern datasets. Even if only
a selection of the training set was used to make offloading feasible,
this could result in more significant performance degradation
in certain machine learning problems. With respect to support
vector machines for multiclass classification, the model may not be
optimal for offloading with a large number of features and number
of classes. For this explanation, we temporarily denote m to be the
number of features, g as the number of classes (greater than 2 for
multiclass classification), and z as the number of support vectors.
First, assume the support vectors for the support vector machine
can be stored and there exists suitable means of multiplication
and a kernel on an off-the-shelf programmable network device
that are at least as expensive as a comparison operation. Since off-
the-shelf programmable network device are optimized for match
+ action, we expect the device architecture to have an efficient
compare operation. Then, we see that the support vector machine
requires at least m x z x g multiplications, whereas a decision tree
would require at most m compare operations for a single inference.
Therefore, based on instruction count, the decision tree model
has a better chance of yielding inference latency reduction when
offloaded onto an off-the-shelf programmable network device.
Third, we note that tree-like machine learning models, such as
XGBoost (Chen and Guestrin, 2016), are commonly used to learn
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Require: S is a valid subset of the training dataset
D, R is a set of stopping criteria for the
algorithm, M is a valid impurity metric to locally
optimize, split_node is a valid function for a
splitting S at a node

1: function train_tree(S, R, split_node)

2: c=majority_label(S)

3: tree_node = Node(label =c)

4: if not_satisfied(R) then

5: ms =1ist()

6: splits =split_node(S)

7: for each split e splits do

8: ms .append(M(split))

9: end for

10: best_split =splits[arg_optimal(ms, M)]

11: for each s ebest_split do

12 tree_node.insert_branch(train_tree(s, R,

split_node))

13: end for

14: end if

15: return tree_node

16: end function

Algorithm 1. Decision tree training algorithm.

tasks from structured tabular data over neural networks given faster
training time, potential performance gain, and model transparency.
We use the decision tree model to show that our framework
can be used in real-world applications and offloading a machine
learning model onto a SmartNIC can reduce model inference
latency significantly. While our focus is currently on decision tree
inference, we provide a discussion on how our framework can be
augmented to account for additional machine learning models in
Section 6.

To train a decision tree, we consider the high-level algorithm
outlined in Algorithm 1. Since finding the globally-optimal tree
structure for a learning task is computationally challenging, locally-
optimal heuristic algorithms are used such as ID3 (Quinlan, 1986),
C4.5 (Quinlan, 1986), and CART (Breiman et al., 1984). In practice,
metric M is commonly Information Gain in the case of ID3 and
C4.5 or Gini Impurity for CART. Formulations for these metrics are
provided in Equations 1, 2. In Equations 1, 2, we further define C as
the number of classes, P as the number of splits, S¢ as the number
of examples in the training dataset subset with class label ¢, and Sp
as the number of examples in the pth split of the training dataset
subset with class label c.

C
o N I8 (IS
Gini(S) = ; S (1 § ) v
c P
Info(S) = ;( 19| log, < IS| )) ; 151

C

Spe <|sp,c|>)
— 1 2
;( IR @
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3.2 Model mapping

Before discussing the technical details of decision tree mapping
onto a SmartNIC, we discuss our mapping approach at a high-level.
To run inference, we find the disjunctive normal form (Roth, 2016)
of a decision tree. In the disjunctive normal form, the logic for
assigning a class label to a data instance is expressed as a disjunction
of conjunctions [i.e., (condition 1 and condition 2 and ...) or
(condition 3 and condition 1 and ...) or ...]. Each conjunction in
the disjunction (i.e., condition 1 and condition 2 and ...) represents
a path from the root node to a leaf node in a decision tree. We
prefer the disjunctive norm form over the typical tree structure of a
decision tree for inference, since it makes executing inference in a
parallelized manner more convenient. To parallelize the inference
process from the disjunctive normal form, we take the conditions
from all the conjunctions that correspond to a particular feature,
noting which path in the decision tree the condition corresponds
to. To run inference on a data instance then, the conditions for each
feature can be evaluated in parallel, where the result of each feature
evaluation yields a set of paths in the decision tree that are possible
for the data instance to take. Then, by aggregating the all possible
paths and taking the intersection among them, a single path can be
found. By matching the path to its corresponding class label, the
decision tree inference process is complete.

To map a decision tree onto a SmartNIC, we take the output
of the machine learning model training process (i.e., a pickle file)
and proceed to generate an implementation of the SmartNIC data
plane. Currently, we support SmartNICs that are programmable
in Micro-C, primarily SoC-based Netronome SmartNICs. In the
current iteration of our framework, we consider a trained decision
tree classifier C with [ leaf nodes, where [ is at most 256. We make no
additional assumptions on the number of splits per non-leaf node
or the training algorithm used. Based on the number of leaf nodes
in model C and number of features # in X, there are three possible
scenarios for mapping C onto the SmartNIC:

e The model can fit on one island of the SmartNIC. Each island
is then programmed with its own set of feature computation,
result aggregation, and packet collection microengines (i.e.,
inference for model C is run on all the islands).

e The model can fit on the entire SmartNIC with one feature
assigned per feature microengine and one packet collection
microengine.

e The model can fit on the entire SmartNIC with multiple
features assigned per feature microengine and one packet
collection microengine.

After selecting one of the three above mapping schemes, the
next step is to extract the logic (i.e., find disjunctive normal form
and extract the conditions that match to a particular feature)
learned by model C. To do so, we iterate through all the » features
in X and perform a depth-first search through the decision tree.
We record the operation for those nodes that run a comparison
operation on our feature of interest and continue the depth-first
search until all the leaf nodes have been reached. Formally,
Algorithm 2 illustrates our logic extraction approach.
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Require: node points to valid node in decision tree,
ftre 1is feature seen by decision tree during
training, cIt has enough space to store decision

tree logic for ftre

1: function get_logic(node, ftre, clt)

2: if is_leaf(node) then

3: clt.insert(node.prediction)

4: else

5: if node.ftre = ftre then

6: clt.insert(node.logic)

7: end if

8: for each child € node.children do
9: clt.insert(get_logic(child, ftre, clt))
10: end for

11: end if

12: return cIt

13: end function

Algorithm 2. Decision tree logic extraction algorithm.

We also assign the each of microengines on the SmartNIC
as one of three types: packet collection, feature computation,
and result aggregation. The packet collection microengine(s) are
programmed to signal the CTM packet engine that they are ready
to receive packets. Once a packet is received, the packet collection
microengine(s) will verify that packet is a model input packet,
extract the features from the packet payload, and asynchronously
signal all the feature computation microengines of the inference
request and transmit the corresponding feature to each via
transfer registers.

The feature computation microengines are responsible for
evaluating the conditions on a feature for a given data instance
and determine which paths in the decision tree are possible. Since
each feature computation microengine is responsible for different
features and run simulatenously, all the features can be evaluated
and all the possible paths in the decision tree can be determined in
parallel. To implement the conditions and determine the possible
paths per feature on the SmartNIC, we use Micro-C if-statements
to evaluate the conditions and update an array of integers to reflect
which paths are possible. For the update, we treat the array of
integers as a single bit string, where most significant bit in the
integer at the last index in the array corresponds to path 1. We
assign paths based on the order in which the nodes are encountered
by Algorithm 2. Since the values for comparison in the conditions
for evaluating each feature in the decision tree and the features
themselves can be floating-point, and the SmartNIC does have an
FPU, we consider an alternative floating-point representation. We
represent floating-point numbers on the SmartNIC using a fixed-
point representation that consists of 16 bits, where the last 13 bits
represent the non-integer portion of a floating-point number. As
each feature computation microengine completes its evaluation
of its correponding feature, they notify the result aggregation
microengine(s) of the decision tree paths that are possible based
on the feature they each evaluation.

Once all the feature computation microengines finish their
evaluation, the result aggregation microengine(s) finds the
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intersecting path the decision tree between all the possible paths,
matches the path to the corresponding class label, and sends
an asynchronous signal to the packet collection microengine(s)
along with the class label via transfer register(s). Once the packet
collection microengine(s) receives the signal from the result
aggregation microengine(s), it edits the original packet payload
with the class label for the data instance and notified the CTM
packet engine that the packet needs to be transmitted. Also note
that during the time the feature computation and result aggregation
microengines are completing their tasks, the packet collection
microengine(s) are editing the model input packet’s header in
preparation for transmission as a model output packet.

To program all the packet collection, feature computation, and
result aggregation microengines, separate Micro-C code is written
to program each microengine to complete their specific task for
model inference, whereas prior methods often program all the
microengines with one piece of P4 code to perform the same
tasks for the model inference and do not fully leverage the parallel
operating capacity of the SmartNIC. Example Micro-C code for
packet collection, feature computation, and result aggregation can
be found in Appendix Listings 1-3.

3.3 Model deployment

Once all the Micro-C code files are created, they are all
compiled and linked to generate the device firmware to run on
the data plane in the model deployment component. Then, the
firmware file output is loaded onto the SmartNIC. An example of
the full process is shown in Appendix Listing 4. Each microengine
assumes a specified behavior based on one of the three microengine
assignments specified above. The SmartNIC can now ingress
packets with features in the packet payload, run machine learning
inference in a parallelized manner, and egress packets with the
classification result as the packet payload.

4 Experimental setup
4.1 Testbed

Our testbed consists of two Dell PowerEdge Rack Servers.
Server 1 hosts an NVIDIA Mellanox Bluefield-2 DPU 25 GbE
SmartNIC for packet transmission and data collection. Server 2
hosts a Netronome AgilioCX 2 x 25 GbE SmartNIC, on which
our decision tree models are deployed. Both systems are directly
connected via gqsfp cable between the Mellanox and Netronome
SmartNICs. We illustrate our setup in Figure 3.

4.2 Datasets and models

QOur evaluation considers four tasks: land mine detection,
satellite image pixel classification, gas sensor drift compensation,
and network traffic classification. The main characteristics of
the datasets used for each task can be found in Table 1. We
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FIGURE 3

Bluefield-2 DPU 25 GbE.

Model Input Packets

 —— :
Model Output Packets

The testbed setup used for evaluation. The left server hosts the Netronome AgilioCX 2 x 25 GbE. The right server hosts the NVIDIA Mellanox

TABLE 1 Summary of datasets used (refer to dataset subsections for class
label abbreviations).

Attribute Mine  Landsat Gas CICIDS
# of features 3 36 128 7

# of data instances 338 6,435 13,910 22,887,218
# of classes 5 6 6 7

# of training data 270 4,435 11,128 500,000
# of test data 68 2,000 2,782 6,957,375

TABLE 2 Summary of decision tree models created.

Parameter Mine Landsat Gas  CICIDS
# of leaves 114 256 256 89
Depth 17 15 24 15

# of nodes 227 511 511 177
Min samples leaf 1 1 1 2
Min samples split 2 2 2 2
Min impurity decrease 0 0 0 0.00001
Max leaf nodes None 256 256 None

train a decision tree model for each task using the scikit-
learn library (Pedregosa et al, 2011). We summarize the
hyperparameters used for each tree in Table 2.

For hyperparameters not explicitly mentioned in the table that
can be tuned for the decision tree models (i.e., criterion, splitter,
max features, etc.), we resort to the default values provided by
scikit-learn.

4.2.1 Dataset preprocessing

As mentioned in Section 3, we assume the continuous features
are in the range [0, 1] and categorical features are one-hot-encoded.
To achieve this, we apply min-max normalization to scale the
continuous features of each dataset to range between 0 and 1 using
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the training set. Test features that lie outside the range [0, 1] after
min-max normalization has been applied are clipped to the closest
endpoint. We also one-hot-encode the categorical features for each
dataset based on the values observed from the training set. If the
categorical features in the test set take on values not observed in
the training set, the one-hot-encoded feature is represented as a bit
string of zeros.

4.2.2 Land mine detection

We use the Land Mines dataset (Yilmaz et al., 2018) for the land
mine detection task. The authors propose three features to classify
a mine into five types, Null, Anti-Tank, Anti-Personnel, Booby-
Trapped Anti-Personnel, and M14 Anti-Personnel, with 65 — 71
samples per class. Our motivation for choosing this dataset is based
on the number of features (8 after data preprocessing), where we
can evaluate the first SmartNIC mapping scenario (fitting on one
island) as described in Section 3. In later sections, we will refer to
this dataset as Mine.

4.2.3 Satellite image pixel classification

We use the Statlog (Landsat Satellite) dataset (Srinivasan, 1993)
for the satellite image pixel classification task. The goal of this task
is to examine multispectral values from a 3 x 3 neighborhood
of a satellite image and classify the central pixel as one of five
classes: Red Soil, Cotton Crop, Gray Soil, Damp Gray Soil, Soil
with Vegetation Stubble, Mixture, or Very Damp Gray Soil. There
are 626 — 1,533 samples per class. Our motivation for choosing
this dataset is based on the number of features (36), where we can
evaluate the second mapping scenario (fitting on whole SmartNIC,
one feature per microengine) as described in Section 3. In later
sections, we will refer to this dataset as Landsat.

4.2.4 Gas sensor drift compensation

We use the Gas Sensor Array Drift dataset (Rodriguez-Lujan
etal., 2014) for the gas sensor drift compensation tasks. This dataset
consists of measurements from 16 chemical sensors to identify six
gases, Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol, and
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Toluene, with 1,508 — 3,009 samples per class. Our motivation
for choosing this dataset is based on the number of features (128),
where we can evaluate the third mapping scenario (fitting on
whole SmartNIC, multiple features per microengine) as described
in Section 3. In later sections, we will refer to this dataset as Gas.

4.2.5 Network traffic classification

We use the CICIDS2017 dataset (Sharafaldin et al., 2018) for the
network traffic classification use case. This use case’s purpose is to
identify network flows as benign or malicious (brute force attack,
heartbleed attack, botnet, DoS attack, DDoS attack, web attack,
infiltration attack). However, we follow the approach used by
Xavier et al. (2021) to generate the dataset for classifying individual
network packets rather than network flows and the training and
tests sets based on the network flows instead of the conventional
stratified 80/20 split used for the above datasets above. In the
dataset, the packets were labeled as benign, DoS GoldenEye, DoS
Hulk, DoS Slowhttptest, DoS Slowloris, Web Brute Force, or Port
Scan. Each class has 30,059 — 20,121,944 samples. Our motivation
for choosing this dataset is based on its use in the work by Xavier
et al. (2021), which is similar to our approach. Our evaluation on
this dataset clearly compares our approach and Xavier et al. (2021)’s
approach. In later sections, we will refer to this dataset as CICIDS.

4.3 Baselines

We compare our approach against the following two baselines.
First, we implement a traditional CPU baseline, which uses socket
programming to receive incoming packets, extract the payload,
run inference with the trained scikit-learn decision tree, and build
and send a model output packet with the model prediction in the
packet payload.

Second, we implement the approach developed by Xavier et al.
(2021) using P4-16. Like our approach, Xavier et al. (2021)%
approach traverses through the scikit-learn decision tree structure,
extracts the model’s logic, and rebuilds the tree in P4 using Python.
Note that the original implementation was solely created for the
CICIDS dataset, and the authors did not provide a method to
handle floating-point features. In evaluating this method on the
other datasets, we modified it slightly to use our fixed-point
representation of floating-point numbers. Also, due to limitations
with Xavier et al. (2021)’s approach, we could not evaluate it on
larger decision trees, such as those generated with the Landsat and
Gas Datasets.

4.4 Evaluation metrics

In our experiments, we measure the effectiveness, (average
and tail) latency, throughput, and hardware utilization of ML-NIC
against the baselines.

For effectiveness, we measured the accuracy, F1 score, recall,
and precision metrics on each dataset’s test set. Given that our
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datasets are for multiclass classification tasks, we take the macro-
average (i.e., unweighted mean) of the per-class scores for the F1
score, recall, and precision measurements.

For latency, we collected the time between model input packet
transmission and model output packet reception on server 1
in microseconds for 1,000 packets. In addition to our vanilla
latency experiments (i.e., no CPU load or network link utilization),
we conduct latency experiments with background traffic on the
network link and CPU load. We generate random network traffic
at different speeds using Tcpreplay for latency experiments with
background traffic to achieve 25%, 50%, and 99% network link
utilization. We use stress-ng for latency experiments with CPU
load and generate CPU loads of 25%, 50%, and 99%. To ensure
an apples-to-apples comparison with the CPU baseline, we append
zero padding to the model input packets for our approach and the
P4 baseline. Hence, they are the same size as the CPU model input
packets. Note that, when collecting the data for the CPU baseline,
we remove the time taken to decode the data features and encode
the model’s prediction.

For throughput, we use Tcpreplay to loop through the PCAP
files containing the test set packets for each dataset at top speed.
Simultaneously, we also run Tshark to filter and collect the model
prediction packets for 60 seconds.

Lastly, for hardware utilization, we run Tcpreplay for 60
seconds like we did for the throughput experiment and measure
CPU, server host RAM, and SmartNIC memory utilization. We also
measure CPU, server host RAM, and SmartNIC memory utilization
30 seconds before and after running Tcpreplay for reference. We
do not explicitly measure SmartNIC microengine utilization in
this experiment. Instead, we use the results from our network
link utilization and CPU load latency experiments as a proxy for
SmartNIC microengine utilization.

5 Results
From our experimental results, we demonstrate the
following:

1. Our approach achieves effectiveness scores similar to those of
the CPU baseline and identical to the P4 baseline.

2. Our approach has better a latency guarantee than the CPU and
P4 baselines in various network link utilization and CPU load
scenarios.

3. The throughput of our approach is significantly greater
compared to the CPU baseline and on par with the P4 baseline.

4. Our approach uses fewer server host resources (i.e., CPU and
server RAM) compared to the CPU and P4 baselines.

5.1 Effectiveness scores

As shown in Table 3, the effectiveness scores between our
approach and the CPU baselines are similar with minor
degradation. For conciseness, we only show the plots of accuracy
and FI1 score of the models, since the precision and recall results
follow a similar pattern.

frontiersin.org


https://doi.org/10.3389/fcomp.2024.1493399
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Kapoor et al.

TABLE 3 Effectiveness measurements on all datasets.

Dataset Measure CPU

Mine Accuracy (%) 58.82 57.35 57.35
F1 score (%) 58.22 56.92 56.92

Landsat Accuracy 85.65 N/A 85.55
F1 score (%) 83.93 N/A 83.76

Gas Accuracy (%) 97.41 N/A 95.15
F1 score (%) 97.26 N/A 94.78

CICIDS Accuracy (%) 95.12 95.12 95.12
F1 score (%) 47.04 47.04 47.04

Bold values indicates best values found for given metric during experiments.

For the Mine dataset, we note differences of 1.47%, 1.30%,
1.35%, and 1.54% across the accuracy, F1 score, precision, and recall
metrics. For the Landsat dataset, we note differences of 0.100%,
0.17%, 0.14%, and 0.20% across the accuracy, F1 score, precision,
and recall metrics. For the Gas dataset, we note differences of 2.26%,
2.49%, 2.00%, and 2.66% across the accuracy, F1 score, precision,
and recall metrics. For the CICIDS dataset, our approach and the
CPU baseline do not differ in accuracy, F1 score, precision, or recall.
This is because all the features used to train the scikit-learn decision
tree are integers, so no quantized representation of features is
needed as with the previous three datasets. Our approach achieves
identical effectiveness scores as the P4 baseline on the Mine and
CICIDS datasets.

5.2 Latency

From the latency data we collected, we provide zoomed-
in empirical cumulative distribution functions (eCDF) for each
dataset, network link utilization, and CPU load in Figure 4. We
also provide more concrete numbers on the 50th, 99th, and 99.9th
percentiles across each dataset, link utilization, and CPU load
in Tables 4, 5. From our experiments, we make the following
observations. We generally see a significant gap in the latency
measurements between ML-NIC and the CPU baseline and a very
small gap between ML-NIC and Xavier et al. (2021)’s approach.
Specifically, we found that ML-NIC’s latency can be at least 132.62
s faster than the CPU baseline and 1.35 us faster than Xavier
et al. (2021)’s approach in the 50th percentile. However, there is
a significant difference in the tails between ML-NIC and Xavier
et al. (2021)’s approach, suggesting that ML-NIC has a stronger
latency guarantee. Based on the 99.9th percentiles, we see that the
tail latency of Xavier et al. (2021)’s approach can be at least 1.53x
larger than ML-NIC's tail.

Looking at impact of high network link utilization and CPU
load, we observe very minimal fluctuation in the eCDFs of the
ML-NIC and Xavier et al. (2021)’s approach. This suggests that
both approaches are robust against high network link utilization
and CPU load on these datasets. But, there is a more noticeable
impact of high network link utilization and CPU load on the CPU
baseline. As the network link utilization increases, we tend to see
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more probability mass shift toward the higher latency in the eCDF.
With respect to the 99.9th latency percentile, we see an increase
of at least 1.82x from 0% link utilization to 99% link utilization.
Concerning the increases in CPU load, there is a more significant
shift in the eCDF curves toward higher latencies. Referring to the
99.9th percentile, there is a latency increase of at least 20.27 x from
0% CPU load to 99% CPU load.

5.3 Throughput

As seen in Figure 5, there is a significant improvement in
throughput with our approach compared to the CPU baseline. In
our approach, we note 24.80x, 19.30x, 16.95%, and 20.11x more
packets per minute compared to the CPU baseline across the Mine,
Landsat, Gas, and CICIDS datasets. Furthermore, our approach
yields moderately higher throughput than the P4 baseline in the
Mine and CICIDS dataset. In our approach, we observe 1.26x and
1.11 x more packets per minute compared to the P4 baseline for the
Mine and CICIDS datasets.

5.4 Hardware utilization

From our hardware utilization experiment, we report the
minimum, maximum, and average CPU and server host RAM
utilization in Table 6. We also report the SmartNIC memory
utilization as a constant, since dynamic memory allocation is not
available on the AgilioCX 2 x 25 GbE SmartNIC. Since we are
not able to directly measure the SmartNIC RAM used for the
CPU baselines, we approximate it. Our approximation takes an
unweighted average of the ratio of size of SmartNIC firmware for
the CPU baselines over the size of the SmartNIC firmware for the
P4 baselines and our approach multiplied by the SmartNIC RAM
used by those models for each of the datasets.

From Table 6, we see that ML-NIC consistently uses lower
resources for average and maximum host system’s CPU, host
system’s RAM, and SmartNIC’s RAM usage compared to the CPU
baseline and Xavier et al. (2021)s method. In the case where
there the CPU baseline has slightly lower minimum CPU usage
than the ML-NIC on the CICIDS dataset, this measurement likely
corresponds to some degree of randomness in the measurement,
since ML-NIC also achieved the same minimum CPU usage on
the Gas dataset. In addition to the CPU baseline having a higher
maximum CPU usage than ML-NIC by at least 7.91x, we also
observe that Xavier et al. (2021)’s method can achieve similar
or higher levels of maximum CPU usage. We attribute this to
the runtime environment (RTE) server that is running on our
host system, which is needed to run P4 code. We believe this
also accounts for slightly higher host system RAM usage. For
the SmartNIC’s RAM usage, we observe our proxy for the CPU
baseline to be lower than Xavier et al. (2021)’s method. Since the
firmware running on the SmartNIC for the CPU baseline runs as a
regular NIC, the SmartNIC would not require additional memory
beyond storing extracting packet headers into local memory or
general purpose registers. Furthermore, the larger SmartNIC RAM
usage from Xavier et al. (2021)’s method likely occurs because their
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FIGURE 4
(A, C, E, G) Depict the eCDFs for the latency experiments conducted using Tcpreplay to saturate the network link on all the datasets. (B, D, F, H)
Depict the eCDFs for the latency experiments conducted using stress-ng to generate a CPU load on all the datasets. (A) Mine Tcpreplay. (B) Mine

stress-ng. (C) Landsat Tcpreplay. (D) Landsat stress-ng. (E) Gas Tcpreplay. (F) Gas stress-ng. (G) CICIDS Tcpreplay. (H) CICIDS stress-ng.
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TABLE 4 Latency measurements using tcpreplay (us). TABLE 4 (Continued)

Dataset Linkutil Percentile CPU Dataset Linkutil Percentile

(%) (%)
Mine 0 50 184.77 21.55 18.00 99.9 277.53 55.06 29.29
99 197.39 2541 23.60 50 50 155.85 18.94 17.55
99.9 202.94 71.26 35.54 99 225.52 23.11 20.68
25 50 156.93 21.30 17.73 99.9 442.80 55.48 3341
99 243.95 27.35 23.63 99 50 154.81 2191 15.99
99.9 285.89 65.31 36.11 99 226.99 2821 20.39
50 50 156.96 20.41 18.15 99.9 483.02 51.85 33.80
99 267.83 27.33 21.53 Bold values indicates best values found for given metric during experiments.
99.9 364.59 60.37 31.05
99 50 152.32 21.55 17.24 approach involves running packet collect, feature computation,
99 230.96 31.10 24.45 and result aggregation on every microengine. Since ML-NIC
distributes these operations across multiple microengines, the
99.9 454.20 70.65 36.48 )
resulting SmartNIC RAM usage would be lower by at least 46.05x.
Landsat 0 50 185.61 N/A 19.99
99 200.27 N/A 24.88 . .
6 Discussion
99.9 260.64 N/A 39.63
25 50 162.39 N/A 18.27 6.1 Generalization
99 247.78 N/A 22.70
The work focuses on converting trained scikit-learn decision
99.9 365.45 N/A 36.65 . .
trees into Micro-C for deployment onto a SmartNIC. We focused
50 50 191.58 N/A 19.82 on the Netronome AgilioCX 2 x 25 GbE. Deployment across
99 258.51 N/A 23.87 different SmartNICs (assuming Micro-C support) may require
significant code changes to accommodate the resources available on
99.9 458.64 N/A 42.08 i
the card compared to the baselines.
99 50 209.91 N/A 20.63
99 247.88 N/A 24.96
99.9 503.92 N/A 37.40 6.2 Benefits
Gas 0 50 185.99 N/A 18.91 . . . ,
Despite their resource constraints compared to a host system’s
99 198.86 N/A 26.57 CPU, SmartNICs show potential as alternative hardware for
99.9 287.77 N/A 48.31 deploying appropriately sized decision tree models. Deploying the
ision tree model onto the SmartNIC, which brings it closer
55 . 15322 N/A 20.60 decision tree model onto the S a.tN C, whic b gs it close
to the network edge, saves latency time by removing the need to
9 25551 N/A 27.00 transfer data over the PCle bus from the NIC to the CPU without
99.9 367.69 N/A 41.65 additional hardware. Furthermore, the lower-level programming
50 50 159.18 N/A 20.13 used in our approach compared to the P4 baseline allows us to
leverage device parallelism to deploy larger decision trees.
99 251.86 N/A 2891
99.9 410.64 N/A 45.20
99 50 161.33 N/A 22.11 6.3 Scope
99 244.74 N/A 25.35
Our work only considers deploying decision tree models
99.9 523.63 N/A 43.98 . . .
! trained for various tasks onto a SmartNIC. Improvements in any
CICIDS 0 50 179.30 19.58 17.21 specific use case are beyond the scope of our work.
99 189.71 23.86 21.66
99.9 198.83 54.91 31.70 T
6.4 Limitations
25 50 154.72 20.00 15.97
99 224.22 26.66 19.76 Our method’s limitations depend on the SmartNIC’s memory,

(Continued) ~ computational, asynchronous I/O, and data rate constraints.
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TABLE 5 Latency measurements using stress-ng (us).

Dataset CPU Percentile CPU
load
(%)

Mine 25 50 186.16 20.16 16.45
99 221.97 31.82 20.43
99.9 343.53 74.56 32.35
50 50 200.85 20.12 17.69
99 222.64 31.16 20.96
99.9 535.06 67.87 34.50
99 50 213.40 22.12 18.84
99 33246 27.96 22.66
99.9 7,979.24 76.50 36.86
Landsat 25 50 192.30 N/A 20.69
99 295.65 N/A 24.48
99.9 405.26 N/A 41.19
50 50 202.55 N/A 20.23
99 21520 N/A 24.12
99.9 7,582.86 N/A 38.09
99 50 214.34 N/A 21.54
99 260.63 N/A 25.80
99.9 9,008.55 N/A 40.27
Gas 25 50 183.90 N/A 19.17
99 201.89 N/A 27.42
99.9 469.44 N/A 45.69
50 50 203.31 N/A 23.01
99 238.13 N/A 26.94
99.9 8,852.89 N/A 46.95
99 50 218.32 N/A 19.40
99 251.67 N/A 25.54
99.9 1618294  N/A 46.74
CICIDS 25 50 155.58 20.13 18.17
99 201.23 23.99 21.31
99.9 357.74 51.48 31.69
50 50 167.66 19.88 18.18
99 184.74 24.39 22.68
99.9 481.76 50.01 30.33
99 50 175.56 20.15 17.16
99 198.38 24.00 21.83
99.9 4,030.55 59.39 32.74

Bold values indicates best values found for given metric during experiments.

Within the Netronome AgilioCX 2 x 25 GbE, the primary limits
are the number of microengines (60), data rate (25 GbE), and
number of hardware signals (15 per thread). While the constraint
on microengines can be mitigated by assigning multiple features to
a microengine, the memory (i.e., number of transfer registers) and
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FIGURE 5
This figure provides a bar graph of the throughputs observed with
our approach and two baselines.

asynchronous I/O (i.e., number of hardware signals) constraints
limit the depth of the trained decision tree to 480 leaf nodes.
Our current implementation is limited to decision trees with 256
leaf nodes, since more complex firmware is required to assign a
hardware signal to a greater number of transfer registers.

6.5 Offloading more models

6.5.1 Decision tree

In addition to the decision tree models we have deployed
in this work, we provide some more insights on other decision
trees that our current work can offload onto a SmartNIC via an
ablation study. In our ablation study, we use the CICIDS datasets
to construct 10 decision trees with a constraint on the maximum
number of leaf nodes between 16 and 256, based on the leaf node
limit we mentioned in Section 3. For each decision tree, we look
at the depth, number of nodes, number of leaf nodes, size of the
pickle file, size of the firmware file, and SmartNIC RAM usage. We
present our findings in Figure 6. Note that we scaled some of the
measurements by a factor of 10, so the trends in the some of the
decision tree parameters would be more clear.

From Figure 6, we observe the following. First, we note the
slow inclination, followed by a brief declination, then continued
inclination in the usage of SmartNIC RAM. We also observe a
similar pattern of inclination, declination, then inclination again in
the trend for the model firmware size. We attribute this to how we
compiled two instances of the model 1 and 2 per island to maximize
our usage of the computation resources on the SmartNIC. For the
remaining models, we only compiled one instance per island. Since
models 1 and 2 have two instances compiled per island, more RAM
and instruction memory would be needed to store the labels for the
leaf nodes and decision tree logic. Based on the rate of inclination
between firmware size and SmartNIC RAM usage, we see that a
primary concern for offloading larger models is the amount of
instruction memory available per microengine. After model 2, we
see that the (scaled) trend for firmware size grows slower than that
of the size of model pickle file and number of nodes by 1.64 and
1.53 and grows faster than the trend for decision tree depth by 4.07
and number of leaf nodes by 1.30.
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TABLE 6 Hardware utilization measurements.

Measure

Dataset

Mine Min CPU (%) 0.25 0.25 0.25
Avg CPU (%) 3.82 0.77 0.52
Max CPU (%) 7.56 7.75 0.94
Min Host RAM (MB) 2,226.76 2,147.76 1,908.97
Avg Host RAM (MB) 2,228.43 2,150.75 1,910.71
Max Host RAM (MB) 2,230.56 2,153.44 1,911.81
SmartNIC RAM 96.15 973.00 21.13
(MB)

Landsat Min CPU (%) 0.25 N/A 0.25
Avg CPU (%) 3.81 N/A 0.51
Max CPU (%) 7.53 N/A 0.88
Min Host RAM (MB) 2,226.50 N/A 1,909.86
Avg Host RAM (MB) 2,229.00 N/A 1,910.69
Max Host RAM (MB) 2,231.77 N/A 1,911.70
SmartNIC RAM 96.15 N/A 21.12
(MB)

Gas Min CPU (%) 0.25 N/A 0.19
Avg CPU (%) 3.78 N/A 0.51
Max CPU (%) 7.46 N/A 0.88
Min Host RAM (MB) 2,223.59 N/A 1,908.86
Avg Host RAM (MB) 2,226.08 N/A 1,909.83
Max Host RAM (MB) 2,228.07 N/A 1,910.98
SmartNIC RAM 96.15 N/A 21.122
(MB)

CICIDS Min CPU (%) 0.19 0.25 0.25
Avg CPU (%) 3.68 0.80 0.52
Max CPU (%) 7.20 9.09 0.81
Min Host RAM (MB) 2,225.02 2,077.43 1,907.22
Avg Host RAM (MB) 2,227.38 2,078.88 1,908.36
Max Host RAM (MB) 2,230.01 2,080.04 1,909.21
SmartNIC RAM 96.15 973.00 21.12
(MB)

Bold values indicates best values found for given metric during experiments.

6.5.2 Other machine learning models

Besides decision trees, we also consider approaches for
executing inference with other machine learning models. Since
inference for many popular machine learning models relies heavily
on the matrix-vector multiplication operation, we look into
techniques for efficient and effective matrix-vector multiplication
that can be performed by a SmartNIC. In addition to conducting
inference on models such as neural network and support vector
machines for supervised tasks, we find an implementing a suitable
matrix-vector multiplication method necessary for unsupervised
learning, such as with implementing k-means using cosine
similarity as the similarity measure instead of Euclidean distance.
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First, a naive approach that we consider is creating a lookup table
per weight to match a feature value with the multiplication of
that feature with the specific weight. In this approach, the feature
computation microengines would be responsible for doing the
multiplication lookup based on the weight and feature value, and
the result aggregation microengines would sum up the multiplied
weight-feature values to obtain the final result. However, this
approach may not be feasible for problems that require a large
number of weights due to memory constraints on the SmartNIC.

An alternative approach would be to consider using natural
logarithm and the exponent function (i.e., €*). Instead of storing
a lookup table per feature, two lookup tables can be stored to
approximately compute the natural logarithm and exponent of the
feature values based on their fixed range (i.e., we assume each
feature is in the range [0,1] in Section 3). Then, each feature
computation microengine would be operate on a specific feature by
conducting a lookup for the natural logarithm of the feature, taking
the sum of the natural logarithms of the weights and the feature
value, and conduct a lookup of the exponent of the sum of the
natural logarithm values. While this approach may resolve issues
with the memory constraint, a large number of features requires
multiple lookups to the memory region holding the tables (i.e.,
CLS or IMEM) that can congest the CPP bus. So, to avoid this
issue, the lookup tables could be replaced with first-order taylor
approximations of the natural logarithm and exponent functions
for a specific number of reference points in the range [0, 1], where
the taylor approximations can be represented using additions and
bit shifts. At the same time though, the use of first-order taylor
approximations can result in more erroneous model predictions.

More recently though, work by Blalock and Guttag (2021)
proposed a novel technique for matrix-matrix multiplication that
used locality-sensitive hashing to determine suitable functions
[denote as g(A)] that can be executed efficiently using balanced
binary regression trees. Based on their findings and our current
implementation for decision tree inference, we believe their
approach to be a more promising direction for executing matrix-
vector multiplication on a SmartNIC.

6.6 Productionization and scaling

When deploying decision tree models in the real world, we
consider factors such as model updates and scaling. Concerning
model updates (i.e., models retrained on larger datasets), we still
limit the number of leaf nodes to 256, which may or may not
be helpful as a regularization technique to prevent decision tree
overfitting. In order to deploy a new decision tree, the original
decision tree (i.e., the model firmware file) needs to be unloaded
from the SmartNIC, and then the firmware for the new decision
tree can be loaded onto the SmartNIC. This means that SmartNIC
would be inactive while unloading the old decision tree and loading
the new decision tree. So, inference requests can not be handled by
a SmartNIC during that time.

For scaling, we primarily focus on the first model deployment
scenario (model fits on an island). We do not believe much scaling
of SmartNIC resources can be done as the entire card is required
for one instantiation of the model. In the first deployment scenario,
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though, based on the amount of network traffic, firmware can be
developed to set aside some islands for the decision tree model and
others for other tasks. However, like the model update case, old
firmware would need to be unloaded and new firmware loaded.
So, inference requests can not be handled by a SmartNIC while
unloading old and loading new firmware.

6.7 Hardware improvements

Considering SmartNICs with Micro-C support that possess
additional hardware capabilities, we first note SmartNICs with
additional
SmartNIC can include more programmable microengines in

programmable flow-processing microengines. A
two ways: additional islands or microengines per island. With
additional microengines per island, we expect a further reduction
in latency for all three model deployment scenarios. This would
happen because more models would be able to fit on an island,
which would remove the need for communication between the
microengines on different islands. Communication between
microengines on different islands is more expensive than between
microengines on the same island. With additional islands, we
expect a further increase in throughput for model deployment
scenario one (the model can fit on one island). More islands
mean more instances of the model that can be instantiated on the
SmartNIC, which would allow it to meet more inference requests.
In either scenario, we expect larger trees (with respect to the
number of features) to be more easily deployed, given that each
microengine would be responsible for analyzing fewer features.

Next, we consider a SmartNIC with additional transfer
registers per microengine. More transfer registers means that fewer
microengines would be needed to perform result aggregation based
on the feature analysis conducted by the feature computation
microengines. With greater availability of microengines, we could
likely deploy larger trees on the SmartNIC.
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Lastly, another hardware improvement we consider is the
addition of one or more FPUs. Adding FPUs resolves the issue with
minor effectiveness degradation that we observe with the current
iteration of our work while likely maintaining similar latency and
throughput performance that we've observed in this work.

7 Related work

Recently, several works have leveraged programmable data
planes to make aspects of machine learning more efficient.
These works can be split into two categories: model training
and model inference. We focus on the latter. Within model
inference, research efforts are focused on leveraging how entire
or portions of the machine learning model inference process can
be offloaded onto programmable data planes while maintaining
adequate model performance. These implementations are most
commonly conducted on programmable switches and SmartNICs.

7.1 Programmable switch

For works that map machine learning models onto
programmable switches, we generally observe a focus on
specific models used to address certain tasks. We first note
Net2Net (Siracusano and Bifulco, 2018) that proposed quantizing
neural networks into binary neural networks, since they require
operations that are readily available on modern switching chips.
Rather than quantizing a trained neural network into a binary
neural network, Qin et al. (2020) directly trained binary neural
networks and mapped them onto the data planes of programmable
switches using P4 to handle the network intrusion detection use
case. As an alternative to binary neural network quantization,
Dao et al. (2021) used neuron pruning to map neural networks
onto programmable switches for the network intrusion use case.
While the above neural network works solely considered a single
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programmable switch for deployment, Saquetti et al. (2021)
implemented a neural network neuron distribution method across
multiple programmable switches and coordinated inference of the
model between the switches to optimize resource usage. Similarly,
JointNIDS (Dao and Lee, 2022) also employed a distributed neural
network inference approach. But, the neural network intrusion
detection models were split into two sequential sub-models with
overlapping hidden units and mapped the sub-models onto two
programmable switches. The authors assigned one programmable
switch to detect major network attacks, while the second handled
the more subtle aspects of network traffic classification. Rather
than staying within the constraints of off-the-shelf programmable
network devices, Taurus (Swamy et al, 2022) extended the
PISA architecture of programmable switches by adding custom
hardware to support parallelism and additional operations (i.e.,
multiplication, nonlinear operations) needed to run neural
network inference without any quantization.

Regarding tree-based models, pForest (Busse-Grawitz et al.,
2019) developed a optimization technique to map a random
forest classifier to a programmable switch in P4 for network
flow classification. Furthermore, this approach adaptively switches
out the current classifier with others based on the network
flows observed. In addition to mapping a random forest
classifier, Planter (Zheng and Zilberman, 2021) mapped a
xgboost and isolation forest classifier to programmable switches
using overlapping trees to overcome some of the inefficiencies
observed in pForest (Busse-Grawitz et al, 2019). Similar to
pForest (Busse-Grawitz et al., 2019) and SMASH (Kamath and
Sivalingam, 2021) also focused on the network flow classification
task and used an improved hash-and-store algorithm with a
decision tree model for early flow classification. Also working
with decision trees, pHeavy (Zhang et al, 2021) implemented
trained decision trees on the data plane to reduce the overhead
involved with communicating to the control plane in Software-
Defined Networking (SDN) when classifying highly-congested
network flows. In contrast to the other tree-based model
offloading approaches that focus on network-related use cases,
NetPixel (Siddique et al., 2021) implemented decision trees on P4
programmable switches to handle image classification. To address
some of the issues with deployment of decision trees and other
machine learning algorithms onto programmable data planes,
Mousika (Xie et al., 2022) introduced a teacher-student knowledge
distillation approach to translate machine learning models to
binary decision trees, which are more suitable for mapping onto
the data plane.

On top of supervised machine learning, the deployment of
unsupervised learning algorithms onto programmable switches has
also been explored. Clustreams (Friedman et al., 2021) used a
combination of the quadtree data structure and a match+action
table stored in Ternary Content Addressable Memory (TCAM) to
cluster network traffic efficiently. In addition, ACC-Turbo (Alcoz
et al., 2022) redesigned the original Aggregate-based Congestion
Control (ACC) approach using online clustering and a scheduling
algorithm to mitigate pulse-wave DDoS attacks.

Unlike the works above that focus on a specific machine
learning algorithm type (i.e., neural networks, tree-based models,
clustering, etc.), IIsy (Xiong and Zilberman, 2019) introduced
mapping schemes for several machine learning algorithms, such as
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decision trees, k-means, naive bayes, and support vector machines,
to the data plane using the match-action pipeline in programmable
switches. Also, Hong et al. (2024) developed a feature engineering
and model deployment strategy for tree-based models (i.e., decision
trees, random forests, xgboost), k-nearest neighbor, and k-means to
handle the high-frequency stock market trading task.

7.2 SmartNIC

Similar to the works that address deployment of machine
learning model inference onto programmable switches, we see
works about model inference onto SmartNICs that also consider
neural networks and decision trees used for particular applications.
Using the approach proposed by Net2Net (Siracusano and
Bifulco, 2018), BaNaNa split (Sanvito et al., 2018) accelerated the
inference of neural networks by splitting a neural network at its
fully-connected layers, sending all prior layers to the host system’s
CPU for inference, and quantizing the fully-connected layers
to run portion of the inference on the host system’s SmartNIC.
Different from the other works that primarily look into P4
implementations, N3IC (Siracusano et al., 2022) used Micro-C
and P4 to map binary neural networks onto a greater variety of
targets (i.e., SmartNICs) for traffic analysis use cases. Regarding
tree-based models, Xavier et al. (2021) presented a framework
for deploying decision tree models onto SmartNICs in P4. The
authors demonstrated that their framework can achieve high
accuracy (above 95%) in a network intrusion detection use case.
While similar to our work, we note that ML-NIC works on a
greater variety of use cases outside of network traffic analysis.
Furthermore, ML-NIC’s Micro-C implementations can parallelize
the model inference process, which is not possible with P4. While
the works on machine learning inference offloading for SmartNICs
do not cover unsupervised learning to our knowledge, they do
address traditional reinforcement learning. Opal (Simpson
2022)
learning onto a SmartNIC data plane, relying on classical

and Pezaros, implemented online reinforcement
reinforcement algorithms such as Sarsa (Sutton, 2018) and avoiding

neural networks.

8 Future directions

8.1 Implementing additional models

As mentioned in Section 6, our next step is to expand our
framework to other machine learning algorithms, such as support
vector machines and neural networks. We find that implementing
the approximate matrix-matrix multiplication approach developed
by Blalock and Guttag (2021) to be means of achieving this
goal. In addition to matrix-matrix multiplication, there are
floating point operations that are often performed for various
models such as neural networks. Thus, in order to implement
such models, future work may involve, either adding hardware
support for these operations or using quantized operations as
a default. We discuss the potential future work in this area
in Section 8.2.
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8.2 Improving the floating-point
representation

While our current approach leverages fixed-point 16-bit
features and produces comparable model effectiveness scores to
the baselines, it is possible that the proposed float-representation
scheme can be improved without adding more hardware. One
potential future direction to be explored is to look into the
posit representation (Gustafson and Yonemoto, 2017) as a
potential alternative, since it resolves the issue of NaN quantities
observed in the standard floating-point representation. Also,
while implementing the standard floating-point representation
on the SmartNIC may seem like a viable solutions, we believe
that the float-pointing representation standard would introduce
additional latency due to the additional computation spent
managing mantissa bits, exponent bits, and NaN quantities.
In addition, adding any additional hardware support may
cause added cost and energy consumption of SmartNIC,
which defeats the purpose of using the SmartNIC in the first
Thus,
performing floating point operations will be a great direction for

place. a software/algorithmic based approaches for

future work.

8.3 Automating the model deployment

Furthermore, despite automating the process of decision tree
logic extraction, the process of building the model mapping
still mostly requires the developer to manually allocate cores
as one of packet collection, feature computation, or result
aggregation. We think the model mapping component can be
made more efficient with additional code that considers the
computation constraints of the SmartNIC and presents a mapping
scheme to remove some of the tedious work in deploying
a model onto the SmartNIC. Thus, a direction for future
work may involve building a more sophisticated system that
can perform model compilation, optimization and deployment
automatically to the SmartNIC. This work can be further
strengthened by adding a notion of distributed deployment
and model inference across multiple SmartNICs located on
multiple server.

8.4 Utilizing different types of SmartNICs

While this work primarily utilizes ASIC-based SmartNIC,
it is possible to implement similar work on other ASIC-
based and other types of SmartNICs, such as FPGA-based
SmartNICs. While the optimizations we performed in this
paper is specific to Netronome SmartNIC, the overall idea
of mapping memory into different SmartNIC region is
quite generic. Thus, a potential valuable future work is to
perform similar optimization strategies across different types of
hardware implementations to understand the similarities and
differences in the effectiveness of the proposed optimization and
compilation strategies.
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9 Conclusion

Low-latency model inference is a necessity for many time-
sensitive machine learning applications. This paper demonstrates
that ML-NIC is a suitable framework for performing machine
learning model inference. Our evaluation of the first iteration of
ML-NIC shows that it can deploy larger models than the state-
of-the-art SmartNIC approach, can produce predictions at faster
speeds with a minor loss in model effectiveness compared to
the CPU solution, and is robust to high network utilization and
CPU loads.
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