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Abstract

Despite recent significant progress, Multi-
Object Tracking (MOT) faces limitations such
as reliance on prior knowledge and predefined
categories and struggles with unseen objects.
To address these issues, Generic Multiple Ob-
ject Tracking (GMOT) has emerged as an alter-
native approach, requiring less prior informa-
tion. However, current GMOT methods often
rely on initial bounding boxes and struggle to
handle variations in factors such as viewpoint,
lighting, occlusion, and scale, among others.
Our contributions commence with the introduc-
tion of the Referring GMOT dataset a collec-
tion of videos, each accompanied by detailed
textual descriptions of their attributes. Subse-
quently, we propose Z→ GMOT, a cutting-edge
tracking solution capable of tracking objects
from never-seen categories without the need of
initial bounding boxes or predefined categories.
Within our Z→ GMOT framework, we introduce
two novel components: (i) iGLIP, an improved
Grounded language-image pretraining, for ac-
curately detecting unseen objects with spe-
cific characteristics. (ii) MA→ SORT, a novel
object association approach that adeptly inte-
grates motion and appearance-based matching
strategies to tackle the complex task of track-
ing objects with high similarity. Our contribu-
tions are benchmarked through extensive ex-
periments conducted on the Referring GMOT
dataset for GMOT task. Additionally, to assess
the generalizability of the proposed Z→ GMOT,
we conduct ablation studies on the Dance-
Track and MOT20 datasets for the MOT task.
Our dataset, code, and models are released at:
https://fsoft-aic.github.io/Z-GMOT.

1 Introduction

Multiple Object Tracking (MOT) (Bewley et al.,
2016; Leal-Taixé et al., 2016; Wojke et al., 2017;
Brasó and Leal-Taixé, 2020; Wu et al., 2021; Cao
et al., 2023; Maggiolino et al., 2023; Zhang et al.,
2022c; Yan et al., 2022; Meinhardt et al., 2022a;
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Figure 1: High-level comparison between our Z→ GMOT

with conventional MOT and one-shot Generic MOT
(OS-GMOT) for the task of tracking athletes in red uni-
forms on a running track. 1st row: MOT, being a fully-
supervised method, using YOLOX (trained on COCO)
and OC-SORT (trained on DanceTrack) attempts to de-
tect and track all people in the scene with high False
Positive (FPs). 2nd row: OS-GMOT is based on an
initial bounding box and utilizes an MOT tracker (e.g.
OS-SORT in this case). While reducing the number of
FPs, OS-GMOT heavily relies on the initial bounding
box, leading to variations in results with different bound-
ing boxes and a high number of False Negatives (FNs).
3rd row: our Z→ GMOT including: (i) iGLIP effectively
detects objects without the need for prior training or
initial bounding boxes, and (ii) MA→ SORT efficiently
associates objects with high visual similarity.

Zeng et al., 2022; Cai et al., 2022a) aims to rec-
ognize, localize and track dynamic objects in a
scene. It has become a cornerstone of dynamic
scene analysis and is essential for many important
real-world applications such as surveillance, secu-
rity, autonomous driving, robotics, and biology.

However, current MOT methods suffer from
several limitations: they heavily depend on prior
knowledge of tracking targets, requiring large la-
beled datasets; they struggle with tracking objects
of unseen or specific categories; they are limited
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in handling objects with indistinguishable appear-
ances. In contrast to MOT, Generic Multiple Object
Tracking (GMOT) (Luo and Kim, 2013; Luo et al.,
2014) seeks to alleviate these challenges with re-
duced prior information. GMOT is tailored to track
multiple objects of a shared or similar generic type,
offering applicability in diverse domains like anno-
tation, video editing, and animal behavior monitor-
ing. Conventional GMOT methods (Luo and Kim,
2013; Luo et al., 2014; Bai et al., 2021) adhere to a
one-shot paradigm (Huang et al., 2020) and employ
the initial bounding box of a single target object
in the first frame to track all objects belonging to
the same class. The conventional one-shot GMOT,
which is based on one-shot object detection (OS-
OD), is known as OS-GMOT. However, this ap-
proach heavily relies on the starting bounding box
and has limitations in accommodating variations in
object characteristics, including pose, illumination,
occlusion, scale, texture, etc.

To overcome the aforementioned limitations of
both MOT and OS-GMOT, particularly in the con-
text of tracking multiple unseen objects without
the requirement for training examples, we intro-
duce a novel tracking paradigm called Zero-shot
Generic Multiple Object Tracking (Z→ GMOT,
which leverages recent advancements in Vision-
Language (VL) models. Our Z→ GMOT follows the
tracking-by-detection paradigm and introduces two
significant contributions aimed at enhancing both
the object detection stage and object association
stage.

In the first stage, which involves object detec-
tion, we introduce an enhanced version of GLIP
called iGLIP. While GLIP has shown promise
in detecting objects based on textual description
queries, it faces limitations when tasked with de-
tecting multiple objects with subtle distinguishing
features. Specifically, our observations and empiri-
cal experiments have confirmed that it is sensitive
to threshold settings, leading to high False Positives
(FPs) at slightly lower thresholds and high False
Negatives (FNs) at slightly higher thresholds. For
instance, when asked to identify a “red ball” among
multiple balls of various colors, GLIP may erro-
neously detect balls of different colors at a slightly
lower threshold and miss the red ball when the
threshold is increased only slightly. To address it,
our proposed enhancement, iGLIP, incorporates
two distinct pathways. One pathway is tailored to
handle general object categories like “ball”, while

the other pathway is dedicated to capturing spe-
cific object characteristics, such as the color “red”.
By integrating these dual pathways, iGLIP aims to
deliver a more accurate and precise object detec-
tion process, especially when dealing with multiple
generic objects.

In the second stage, which involves object associ-
ation, we propose MA→ SORT (Motion-Appearance
SORT), an innovative tracking algorithm that seam-
lessly fuses visual appearance with motion-based
matching. MA→ SORT adeptly measures appear-
ance uniformity and dynamically balances the in-
fluence of motion and appearance during the asso-
ciation process.

Figure 1 provides a visual comparison between
our Z→ GMOT with conventional MOT and OS-
GMOT approaches with the task of tracking ath-
letes in red uniforms on a running track as an exam-
ple. In this comparison, MOT is a fully-supervised
learning method that employs YOLOX object de-
tection (Ge et al., 2021) trained on COCO dataset
(Chen et al., 2015) and OC-SORT object associ-
ation (Cao et al., 2023) trained on DanceTrack
dataset (Sun et al., 2022). Being a fully-supervised
method, MOT attempts to detect and track all peo-
ple in the scene instead of only athletes in red uni-
forms as requested. As a result, MOT generates a
high number of FPs. In contrast, OS-GMOT relies
on an initial bounding box to detect all requested
objects. It also utilizes the robust OC-SORT tracker
(Cao et al., 2023) for object association. While
reducing the number of FPs, OS-GMOT heavily
relies on the initial bounding box, leading to varia-
tions in results with different bounding boxes and
a high number of False Negatives (FNs). Differ-
ent from MOT and OS-GMOT, our Z→ GMOT takes
the tracking request in the form of a natural lan-
guage description as its input to effectively detect
and track objects without prior training or initial
bounding boxes. Our contributions are as follows:
• We introduce a novel tracking paradigm
Z→ GMOT, capable of tracking object categories
that have never been seen before, all without the
need for any training examples.
• We present Referring GMOT dataset consist-
ing of Refer-GMOT40 and Refer-Animal datasets.
These datasets are built upon the foundations of the
original GMOT-40 dataset (Bai et al., 2021) and
the AnimalTrack dataset (Zhang et al., 2022b) with
the inclusion of natural language descriptions.
• We propose iGLIP to effectively identifies un-
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seen objects with specific characteristics.
• We propose MA→ SORT, adeptly balancing be-
tween object motion and appearance to effectively
track objects with highly similar appearances and
complex motion patterns.
• We conduct comprehensive experiments and ab-

lation studies on our newly introduced Referring
GMOT dataset for GMOT task. We extend our
experimentation to DanceTrack (Sun et al., 2022),
MOT-20 (Dendorfer et al., 2020) datasets for MOT
tasks, to illustrate the effectiveness and generaliz-
ability of the proposed Z→ GMOT framework.

2 Related Works

2.1 Pre-trained Vision-Language (VL) Models

Recent advancements in computer vision tasks
have leveraged VL supervision, demonstrating re-
markable transferability in enhancing model versa-
tility and open-set recognition. A pioneering work
in this domain is CLIP (Radford et al., 2021), which
effectively learns visual representations from vast
amounts of raw image-text pairs. Since its release,
CLIP has garnered significant attention (Yamazaki
et al., 2022, 2023; Nguyen et al., 2023; Joo et al.,
2023; Yamazaki et al., 2024; Phan et al., 2024;
Le et al., 2024; Zhang et al., 2024), and several
other VL models, such as ALIGN (Jia et al., 2021),
ViLD (Gu et al., 2022), RegionCLIP (Zhong et al.,
2022), GLIP (Li et al., 2022b; Zhang et al., 2022a),
Grounding DINO (Liu et al., 2023), UniCL (Yang
et al., 2022), X-DETR (Cai et al., 2022b), OWL-
ViT (Minderer et al., 2022), LSeg (Li et al., 2022a),
DenseCLIP (Rao et al., 2022), OpenSeg (Ghiasi
et al., 2022), and MaskCLIP (Ding et al., 2022),
have followed suit to signify a profound paradigm
shift across various vision-related tasks. We can
categorize VL pre-training models into three main
groups: (i) Image classification: Models in this cat-
egory, such as CLIP, ALIGN, and UniCL, are pri-
marily focused on matching images with language
descriptions through bidirectional supervised con-
trastive learning or one-to-one mappings. (ii) Ob-
ject detection: This category encompasses models
like ViLD, RegionCLIP, GLIPv2, X-DETR, and
OWL-ViT, Grounding DINO, which tackle two
sub-tasks: localization and recognition of objects
within images. (iii) Image segmentation: The third
group deals with pixel-level image classification by
adapting pre-trained VL models, including models
like LSeg, OpenSeg, and DenseSeg. In this work,

we enhance GLIP and propose iGLIP to effectively

capture object with specific characteristics.

2.2 Multiple Object Tracking (MOT)

Recent MOT approaches can be broadly cate-
gorized into two types based on whether object
detection and association are performed by a sin-
gle model or separate models, known respectively
as joint detection and tracking and tracking-by-
detection. In the first category (Chan et al., 2022;
Zhou et al., 2020; Pang et al., 2021; Wu et al., 2021;
Yan et al., 2022; Meinhardt et al., 2022a; Zeng et al.,
2022; Cai et al., 2022a), both objects detection and
objects association are simultaneously produced
in a single network. In this category, object detec-
tion can be modeled within a single network with
re-ID feature extraction or motion features. In the
second category (Bewley et al., 2016; Leal-Taixé
et al., 2016; Wojke et al., 2017; Brasó and Leal-
Taixé, 2020; Cao et al., 2023; Zhang et al., 2022c;
Nguyen et al., 2022; Aharon et al., 2022; Du et al.,
2023; Maggiolino et al., 2023; Cetintas et al., 2023),
an object detection algorithm performs detecting
objects in a frame, then those objects are associated
with previous frame tracklets to assign identities. It
is important to note that the state-of-the-art (SOTA)
in MOT has been dominated by the later paradigm.
Our Z→ GMOT approach falls under this paradigm.
Particularly, we propose iGLIP for zero-shot ob-
jects detector and introduce MA→ SORT for objects
association generic objects with uniform appear-
ances.

2.3 Generic Multiple Object Tracking (GMOT)

In recent years, MOT has advanced significantly,
but it remains tied to supervised learning prior
knowledge and predefined categories, complicat-
ing the tracking of unfamiliar objects. Different
from MOT, GMOT (Luo and Kim, 2013; Luo et al.,
2014; Bai et al., 2021) aims to alleviate MOT’s
limitations by reducing the dependency on prior in-
formation. GMOT is designed to track multiple ob-
jects of a common or similar generic type, making
it suitable for a wide array of applications, ranging
from annotation and video editing to monitoring
animal behavior. Thus, GMOT often deals with
scenarios where objects appear in groups (such as
a herd of cows, a school of fish, or a swarm of
ants). Consequently, GMOT faces various chal-
lenges, including dense object scenarios, small ob-
jects, objects with occlusions, among other com-
plexities. Notwithstanding, conventional GMOT
methodologies (Luo and Kim, 2013; Luo et al.,
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2014; Bai et al., 2021) are predominantly anchored
in a one-shot paradigm, i.e. OS-GMOT, leveraging
the initial bounding box of a single target object
in the first frame to track all objects of the same
class. While OS-GMOT shows promise by requir-
ing less prior information, it heavily relies on initial
bounding boxes and struggles with viewpoint, light-
ing, occlusion, and scale variations. Different from
MOT (fully-supervised) and OS-GMOT (using ini-
tial bounding box), we introduce a novel zero-

shot tracking paradigm known as Z→ GMOT. Our

Z→ GMOT enables users to track multiple generic

objects in videos using natural language descrip-

tors, without the need for prior training data or

predefined categories.

3 Referring GMOT dataset

Table 1: Comparison of existing datasets of SOT, MOT,
GSOT, GMOT. “#" represents the quantity of the respec-
tive items. Cat., Vid. denote Categories and Videos.
NLP indicates textual natural language descriptions.

Datasets NLP #Cat. #Vid. #Frames #Tracks #Boxs

OTB2013 (Wu et al., 2013) ✁ 10 51 29K 51 29K
VOT2017 (Kristan et al., 2016) ✁ 24 60 21K 60 21K

SOT TrackingNet (Muller et al., 2018) ✁ 21 31K 14M 31K 14M
LaSOT (Fan et al., 2019) ✂ 70 1.4K 3.52M 1.4K 3.52M
TNL2K (Wang et al., 2021) ✂ - 2K 1.24M 2K 1.24M

MOT17 (Milan et al., 2016) ✁ 1 14 11.2K 1.3K 0.3M
MOT20 (Dendorfer et al., 2020) ✁ 1 8 13.41K 3.45K 1.65M
Omni-MOT (Sun et al., 2020b) ✁ 1 - 14M+ 250K 110M

MOT DanceTrack (Sun et al., 2022) ✁ 1 100 105K 990 -
TAO (Dave et al., 2020) ✁ 833 2.9K 2.6M 17.2K 333K
SportMOT (Cui et al., 2023) ✁ 1 240 150K 3.4K 1.62M
Refer-KITTI (Wu et al., 2023) ✂ 2 18 6.65K 637 28.72K

GSOT GOT-10 (Huang et al., 2019) ✁ 563 10K 1.5M 10K 1.5M
Fish (Kay et al., 2022) ✁ 1 1.6K 527.2K 8.25k 516K

AnimalTrack (Zhang et al., 2022b) ✁ 10 58 24.7K 1.92K 429K
GMOT GMOT-40 (Bai et al., 2021) ✁ 10 40 9K 2.02K 256K

Refer-Animal(Ours) ✂ 10 58 24.7K 1.92K 429K
Refer-GMOT40(Ours) ✂ 10 40 9K 2.02K 256K

Table 1 presents statistical information for ex-
isting tracking datasets including Single Object
Tracking (SOT), Generic Single Object Tracking
(GSOT), MOT, GMOT. With the recent advance-
ments and the capabilities of Large Language Mod-
els (LLMs), there’s a growing demand for includ-
ing textual descriptions in tracking datasets. While
natural language have already found their place in
SOT and MOT datasets, they have been conspicu-
ously absent from GMOT datasets until now. As a
result, our dataset is the pioneering effort to address
this demand, integrating textual descriptions into
the GMOT domain for the first time.

In this work, we propose to incorporate textual
descriptions into two pre-existing GMOT datasets,
namely GMOT-40 (Bai et al., 2021) and Ani-
malTrack (Zhang et al., 2022b), and designate

video: stock-3
label:[
  {
   object: "wolf"
   object_synonyms:["wild dog"]
   attributes:["gray fur"]
   other_attributes: ["four legs", "shape

teeth", "small ear", "strong jaw"]
   tracks: stock-3.text
   }  ]

video: ball-0
label:[
  {
   object: "ball"
   object_synonyms:["billard ball",

"sphere", "billard sphere"]
   attributes:["circle", "round", red"]
   other_attributes: ["small", "round"

"smooth", "numbering", "glossy"]
   tracks: ball_0.text
  }   ]

Figure 2: Examples of data annotation structure.

them as the “Refer-GMOT40” and “Refer-Animal”

datasets. Refer-GMOT40 consists of 40 videos fea-
turing 10 real-world object categories, each contain-
ing 4 sequences. Refer-Animal contains 26 video
sequences depicting 10 prevalent animal categories.
Each video undergoes annotation, comprising of an
object name, its corresponding attributes de-
scription, and its corresponding tracks. It’s worth
emphasizing that the attributes description pri-
marily focuses on discernible object characteristics,
while other_attributes aims to offer additional
details about the object’s traits. Importantly, some
of the attributes listed under other_attributes
may not always be visible throughout the entirety
of the video. To maintain the standardized format
for MOT challenges, as outlined in (Milan et al.,
2016; Dendorfer et al., 2020), each video comes
with its tracking ground truth, stored in a separate
text file within tracks annotation. This approach
ensures consistency with MOT problem conven-
tions. The annotation process follows the JSON
format, and Figure 2 offers illustrative examples of
the annotation structure. This data is conducted by
4 annotators and made publicly available.

4 Proposed Z→ GMOT

Our Z→ GMOT framework follows the tracking-by-
detection paradigm which includes the object detec-
tion stage and object association one. In the initial
stage, we analyze the limitations of GLIP detector
which is our motivation for proposing iGLIP for
detecting effectively generic objects. In the sub-
sequent stage, we introduce MA→ SORT to adeptly
balance between motion cues and visual appear-
ances to improve the association process.

4.1 Proposed iGLIP

We start by analyzing the limitations of GLIP and
then proposing iGLIP.
Limitations of GLIP. GLIP encounters difficul-
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Figure 3: Limitation 1 of GLIP: Sensitive to threshold
selection. With slightly different thresholds t = 0.6 v.s.
t = 0.66, GLIP produces different results with high FPs
(left) and high FNs (right). Note that GLIP uses prompt

“red car”) in both results.

Figure 4: Limitation 2 of GLIP: With the same t. (t =
0.64) and the same prompt “red car”, the results vary
when applied to two similar input images.

ties in handling specific object categories (OCSpe)
characterized by attributes. As shown in Fig. 3,
object detection performance displays sensitivity
to threshold selection; even slight threshold varia-
tions lead to significant outcome differences. This
leads to high TPs at slightly lower threshold and
high FNs at slightly higher threshold. Fig. 4 under-
scores GLIP’s drawbacks in effectively capturing
objects with specific attributes. Even when using
the same threshold selection and prompt, the out-
comes exhibit variations on similar images with
specific object category OCSpe.

Proposed iGLIP. As depicted in Figure 5, our
proposed iGLIP takes an input image I and two
kinds of prompt, namely, a specific prompt (Ts)
for OCSpe and a general prompt (Tg) for OCGen.
Both Ts and Tg are derived from the Refering
GMOT dataset. Herein, Tg is set as the object
(e.g.,“ball”), while Ts is defined as a combination
of attributes and object (e.g., “red ball”). Both
prompts Ts and Tg go through a text encoder, i.e.,
BERTModule (Devlin et al., 2018) to obtain contex-
tual word features P 0

s and P 0
g , respectively. Mean-

while, the image goes through a visual encoder, i.e.,
Swin (Liu et al., 2021) to obtain proposal features
O0. Then, L deep fusion layers (Li et al., 2022b)
are applied into contextual word features P 0

s , P 0
g

and O0. The ith layer of deep fusion is as follows:

Oi
s→t2i, P

i
s→i2t = X-MHA(Oi

s, P
i
s) (1a)

Oi
g→t2i, P

i
g→i2t = X-MHA(Oi

g, P
i
g), (1b)

, where specific proposal features are repre-
sented by Oi+1

s = DyHeadModule(Oi
s+Oi

s→t2i),
general proposal features are denoted by
Oi+1

g = DyHeadModule(Oi
g+Oi

g→t2i), and
specific contextual word features P i+1

s =
BERTModule(P i

s+P i
s→i2t), general contextual

word features P i+1
g = BERTModule(P i

g+P i
g→i2t).

Notably, where L is the number of DyHead-
Modules in DyHead (Dai et al., 2021) and
O0

s = O0
g = O0. X-MHA denotes a cross-

modality multi-head attention module. Finally,
the word-region alignment module is utilized to
compute the alignment score using dot product
between the fused features.

Salign
s = OsP

↑
s , and Salign

g = OgP
↑
g (2)

where Os = OL
s ↑ RN↓d, Og = OL

g ↑ RN↓d

are the visual features from the last visual encoder
layer and Ps = PL

s ↑ RM↓d, Pg = PL
g ↑ RM↓d

are the word features of OCSpe and OCGen from
the last language encoder layer. The result of this
operation are matrices Salign

s ↑ RN↓M , Salign
g ↑

RN↓M . The resulting bounding boxes undergo a
filtering process using two parameters: top-ω and
threshold T . The top-ω parameter is applied into
Salign
s to extract a set of queries Bq, which repre-

sents template patterns. In order to exclusively
detect TPs, we have set ω = 5. The threshold T
parameter is applied into Salign

g to extract a target
set Bt. To capture all object proposals, even those
potentially including FPs, we set T = 0.3. Query-
Guided Matching (QGM) module is then proposed
to eliminate FPs in Bt by using Bq as template pat-
terns. To perform QGM matching without adding
additional cost, we propose to utilize only visual
features O0 extracted from the backbone, without
the influence of text embeddings, to ensure the fea-
ture is enriched with visual properties. Let O0

t and
O0

q represent the visual features of object proposals
in Bt and Bq, the matching score is defined as the
cosine similarity:

Sqt=cos (O0
q ·O0

t
T
). (3)

The final detection results comprise the query ob-
jects and candidate objects with high similarity.
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Figure 5: Network architecture of iGLIP, which inputs an image I , a general prompt Tg (e.g. “ball”), and a specific
prompt Ts (e.g. “red ball”). iGLIP includes a QGM module to eliminate FPs generated from the general prompt.

Figure 6: Detection by iGLIP with general prompt Tg as
“car” and specific prompt Ts as “red car” across images.

Figure 6 illustrates the red car detection by our pro-
posed iGLIP with general prompt Tg as “car” and
specific prompt Ts as “red car” across all images.
All results in Figure 6 are generated with the same
default settings of T = 0.3 and ω = 5.

4.2 Proposed MA→ SORT

In this section, we introduce our proposed tracking
method - MA-SORT: Balance visual appearance

and motion cues: The standard similarity between
N existing track and M detected box embeddings
is defined using cosine distance, Ca ↑ RM↓N . In
a typical tracking approach that combines visual
appearance and motion cues, the cost matrix C is
computed as C = Mc + εCa, where Mc repre-
sents the motion cost, measured by the IoU cost
matrix. Leveraging DeepOC-SORT (Maggiolino
et al., 2023), which computes a virtual trajectory
over the occlusion period to rectify the error accu-
mulation of filter parameters during occlusions, the
matrix cost becomes:

C = IoU + ϑCv + εCa, (4)

where Cv represents the consistency between the
directions of i) linking two observations on an ex-
isting track, and ii) linking tracks’ historical obser-
vations and new observations. ϑ and ε are hyper-
parameters to determine the significance of motion
and visual appearance, respectively.

To strike a balance between visual appear-
ance and motion cues, we incorporate appearance
weight Wa and motion weight Wm into Eq.4. To ef-
fectively handle the high similarity between objects

of the same generic type in GMOT, we propose the
following hypothesis: when the visual appearances
of all detections are very similar, the tracker should
prioritize motion over appearance. The homogene-
ity of visual appearances across all detections can
be quantified as follows:

µ =
1

M

M∑

i=1

fi and µdet =
1

M

M∑

i=1

cos(fi, µ).

(5)
Where M is the number of detections in a frame,
fi is a feature vector of the i-th detection gained
from re-ID model (Wojke and Bewley, 2018).

Here, we consider ϖ as a vector distance thresh-
old to determine the similarity between two vec-
tors; if the angle between them is smaller than ϖ,
the vectors are considered more similar.

Wa =
(1→ µdet)

1→ cos(ϖ)
. (6)

We initialize Wm as 1, indicating that both motion
and appearance are equally important. As Wa de-
creases, we propose redistributing the remaining
weight to motion, Wm:

Wm = 1 + [1→Wa] = 2→ (1→ µdet)

1→ cos(ϖ)
. (7)

As a result, the final cost matrix C is:

C = Wm(IoU + ϑCv) +WaCa. (8)

5 Experimental Results

5.1 Datasets, Metrics and Experiment Details
We assess our Z→ GMOT framework on our Refer-
ring GMOT dataset for the GMOT task. To demon-
strate the generalizability of Z→ GMOT framework,
we extend our evaluation to include DanceTrack

(Sun et al., 2022) and MOT20 (Dendorfer et al.,
2020) for the MOT task. Refering GMOT dataset,
consisting of Refer-GMOT40 and Refer-Animal

dataset, is described in Section 3. DanceTrack is
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Table 2: Tracking comparison on Refer-GMOT40

dataset between our iGLIP with SOTA OS-OD (Bai
et al., 2021) on various trackers. For each tracker, the
best scores are highlighted in bold.
Trackers Detectors #-Shot HOTA↓ MOTA↓ IDF1↓
SORT OS-OD one-shot 30.05 20.83 33.90
(Bewley et al., 2016) iGLIP(Ours) zero-shot 54.21 62.90 64.34
DeepSORT OS-OD one-shot 27.82 17.96 30.37
(Wojke et al., 2017) iGLIP(Ours) zero-shot 50.45 58.99 57.55
ByteTrack OS-OD one-shot 29.89 20.30 34.70
(Zhang et al., 2022c) iGLIP(Ours) zero-shot 53.69 61.49 66.21
OC-SORT OS-OD one-shot 30.35 20.60 34.37
(Cao et al., 2023) iGLIP(Ours) zero-shot 56.51 62.76 67.40
Deep-OCSORT OS-OD one-shot 30.37 21.10 35.12
(Maggiolino et al., 2023) iGLIP(Ours) zero-shot 55.89 64.02 66.52
MOTRv2 OS-OD one-shot 23.75 13.87 25.17
(Zhang et al., 2023) iGLIP(Ours) zero-shot 31.32 18.54 31.28

Table 3: Tracking comparison on Refer-GMOT40

dataset between our MA→ SORT with other trackers. Our
proposed iGLIP is used as the object detection. The
best scores are highlighted in bold.
Trackers HOTA↓ MOTA↓ IDF1↓
SORT (Bewley et al., 2016) 54.21 62.90 64.34
DeepSORT (Wojke et al., 2017) 50.45 58.99 57.55
ByteTrack (Zhang et al., 2022c) 53.69 61.49 66.21
OC-SORT (Cao et al., 2023) 56.51 62.76 67.40
Deep-OCSORT (Maggiolino et al., 2023) 55.89 64.02 66.52
MOTRv2 (Zhang et al., 2023) 31.32 18.54 31.28
MA→ SORT(Ours) 56.75 64.62 68.17

a vast dataset designed for multi-human tracking
i.e., group dancing. It includes 40 train, 24 valida-
tion, and 35 test videos, totaling 105,855 frames
recorded at 20 FPS. MOT20 is an updated version
of MOT17 (Milan et al., 2016) including more
crowded scenes, object occlusion, and smaller ob-
ject size than MOT17.

We employ the following metrics: Higher Order
Tracking Accuracy (HOTA) (Luiten et al., 2020),
Multiple Object Tracking Accuracy (MOTA)
(Bernardin and Stiefelhagen, 2008), and IDF1
(Ristani et al., 2016). HOTA is measured based
on Detection Accuracy (DetA), Association Ac-
curacy (AssA), i.e. HOTA =

↔
DetA ·AssA,

thus, it effectively strikes a balance in assessing
both frame-level detection and temporal associa-
tion performance. All experiments and compar-
isons have been conducted by an NVIDIA A100-
SXM4-80GB GPU.

5.2 Performance Comparison

In Table 2, we benchmark the tracking performance
in two scenarios: one involving the use of one-shot
object detection (OS-OD) and the other utilizing
our proposed zero-shot iGLIP on our newly intro-

Table 4: Tracking comparison on Refer-Animal be-
tween our Z→ GMOT and existing fully-supervised MOT

methods. The best scores are highlighted in bold.
Tracker Detector Train HOTA↓ MOTA↓ IDF1↓
SORT FRCNN(Ren et al., 2015) ✂ 42.80 55.60 49.20
DeepSORT FRCNN(Ren et al., 2015) ✂ 32.80 41.40 35.20
ByteTrack YOLOX(Ge et al., 2021) ✂ 40.10 38.50 51.20
TransTrack YOLOX(Ge et al., 2021) ✂ 45.40 48.30 53.40
QDTrack YOLOX(Ge et al., 2021) ✂ 47.00 55.70 56.30
MA→ SORT(Ours) YOLOX(Ge et al., 2021) ✂ 57.86 68.32 63.01
MA→ SORT(Ours) iGLIP (Z→ GMOT)(Ours) ✁ 53.28 57.64 58.43

Table 5: Ablation study of generalizability of Z→ GMOT

on DanceTrack validation set with MOT task.
Trackers Detectors Train HOTA↓MOTA↓ IDF1↓
SORT (Bewley et al., 2016) YOLOX(Ge et al., 2021) ✂ 47.80 88.20 48.30
DeepSORT (Wojke et al., 2017) YOLOX(Ge et al., 2021) ✂ 45.80 87.10 46.80
MOTDT (Chen et al., 2018) YOLOX(Ge et al., 2021) ✂ 39.20 84.30 39.60
ByteTrack (Zhang et al., 2022c) YOLOX(Ge et al., 2021) ✂ 47.10 88.20 51.90
OC-SORT (Cao et al., 2023) YOLOX(Ge et al., 2021) ✂ 52.10 87.30 51.60

MA→ SORT(Ours) YOLOX(Ge et al., 2021) ✂ 53.44 87.31 53.78
MA→ SORT(Ours) iGLIP (Z→ GMOT)(Ours) ✁ 47.57 83.11 46.58

Table 6: Ablation study of effectivess of MA→ SORT on
MOT20 testset with MOT task. As ByteTrack, OC-
SORT (gray) uses different thresholds for test set se-
quences and offline interpolation procedure, we also
report scores by disabling these as ByteTrack†, OC-
SORT†. The best scores are highlighted in bold.
Trackers HOTA↓ MOTA↓ IDF1↓
MeMOT (Cai et al., 2022a) 54.1 63.7 66.1
FairMOT (Zhang et al., 2021) 54.6 61.8 67.3
TransTrack (Sun et al., 2020a) 48.9 65.0 59.4
TrackFormer (Meinhardt et al., 2022b) 54.7 68.6 65.7
ReMOT (Fan Yang and Nakamura, 2021) 61.2 77.4 73.1
GSDT (Wang et al., 2020) 53.6 67.1 67.5
CSTrack (Chao Liang and Zou, 2022) 54.0 66.6 68.6
TransMOT (Peng Chu and Liu, 2023) - 77.4 75.2
ByteTrack(Zhang et al., 2022c) 61.3 77.8 75.2
OC-SORT(Cao et al., 2023) 62.4 75.7 76.3
ByteTrack†(Zhang et al., 2022c) 60.4 74.2 74.5
OC-SORT†(Cao et al., 2023) 60.5 73.1 74.4
MA→ SORT(Ours) 61.4 77.6 75.5

duced Refer-GMOT40 dataset. It is important to
note that incorporating OS-OD with these trackers
is equivalent to achieving SOTA OS-GMOT (Bai
et al., 2021). Table 2 clearly shows that our zero-
shot iGLIP, without requiring any prior knowledge
or training, achieves significant performance advan-
tages across various metrics when compared to OS-
OD, which relies on initial bounding boxes and is
run five times. For instance, on OC-SORT tracker,
iGLIP shows improvements in HOTA, MOTA, and
IDF1 by 26.16, 42.16, and 33.03 points, respec-
tively. On average across all trackers, iGLIP out-
performs OS-OD by 21.64, 35.67, and 26.61 points
in HOTA, MOTA, and IDF1 metrics.

Table 3 shows the comparison between our pro-
posed MA→ SORT with various trackers using the
same object detection, i.e., the proposed iGLIP

on Refer-GMOT40 dataset. It is evident that
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Figure 7: Examples of tracking conducted by our proposed Z→ GMOT using input texture descriptions (left). The
texture description including both a general prompt Tg, and a specific prompt Ts are integrated into our proposed
Z→ GMOT framework including iGLIP and MA→ SORT.

MA→ SORT consistently outperforms other trackers.
For example, MA→ SORT outperforms DeepSORT
and Deep-OCSORT by 6.3, 5.63, 10.62 points and
0.86, 0.6, 1.65 points across all metrics, respec-
tively.

Table 4 presents a comparison between our pro-
posed Z→ GMOT and other existing fully-supervised
MOT methods on the Refer-Animal dataset. In or-
der to ensure a fair comparison, we have also imple-
mented a fully-supervised MA→ SORT method with
YOLOX object detection. While our MA→ SORT

with YOLOX object detector achieves the best per-
formance, it is worth noting that Z→ GMOT outper-
forms other fully-supervised MOT methods with-
out the need for any training data.

5.3 Ablation Study
Generalizability of Z→ GMOT framework. In addi-
tion to the GMOT task, we also evaluate its gen-
eralizability on the MOT task, as in Table 5 on
DanceTrack dataset. This table presents a compari-
son of Z→ GMOT with the existing fully-supervised
MOT methods. To ensure a fair comparison, we
have implemented a fully-supervised MA→ SORT

method with YOLOX object detection. While our
MA→ SORT with YOLOX achieves the best per-
formance, it is noteworthy that Z→ GMOT demon-
strates compatibility with SOTA fully-supervised
MOT methods, even surpassing SORT, DeepSORT,
and MOTDT, all without requiring any training
data. In this experiment, both general prompt and
specific prompt are set as “dancer”.
Effectiveness of proposed MA→ SORT. We assess
its performance by conducting a comparison on
the MOT20 dataset, as outlined in Table 6, focus-

ing on the MOT task. To ensure a fair compari-
son, we disable certain ad-hoc settings that employ
varying thresholds for individual sequences and an
offline interpolation procedure. In this experiment,
we employed the YOLOX object detector, which
demonstrates the effectiveness of MA→ SORT.
Effectiveness of proposed iGLIP. We evaluate our
iGLIP by comparing it to GLIP (Li et al., 2022b)
and OS-OD (Huang et al., 2020) for object detec-
tion on the Refer-GMOT40 dataset, as presented in
Table 7(a). iGLIP outperforms other detector meth-
ods, achieving the highest scores. It is worth high-
lighting that despite being an extension of GLIP,
iGLIP exhibits significant improvements, with a
0.7% increase in AP50, a 5.0% improvement in
AP75, and a 3.9% enhancement in mAP , demon-
strating its clear superiority over GLIP.

Table 7: Ablation studies on Refer-GMOT40.

(a) Object detection by iGLIP.
DetectorsAP50 AP75 mAP
OS-OD 31.5 13.4 15.8
GLIP 66.2 35.0 36.1
iGLIP 66.9 40.0 40.0

(b) Tracking performance with
varied ω.
ϖ HOTA↓MOTA↓ IDF1↓
22.5↔ 56.57 64.57 67.85
45↔ 56.58 64.59 67.89
67.5↔ 56.75 64.62 68.17
80↔ 56.74 64.62 68.15

Hyper-param ϖ. Table 7(b) shows ablation study of
vector distance threshold ϖ as defined in Eq.6. The
minor variations in tracking performance demon-
strate the robustness of our proposed MA→ SORT

when ϖ is varied within the range of [22.5↔, 80↔].
We select ϖ = 67.5 in the reported results.

5.4 Computational Complexity

To evaluate the computation cost, we report the
computational resource of each relevant component
and inference time as in Table 8. It is important
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Table 8: Properties and computational resources required by our proposed Z-GMOT. Inference time represents an
average of 4 videos comprising a total of 1,467 frames.

MA-SORT + iGLIP MA-SORT + YOLOX
Properties
Settings Open-set Close-set
Track Agnotic Objects ✂ ✁
Computational Cost

Text Encoder Vision Encoder DyHead & RPN Entire Model Vision Encoder Entire Model
Model Size (#Params) 108M 197M 122M 427M 99.1M 124.5M
Inference time
(seconds/frame) 0.008 0.019 0.17 0.197 0.064 0.069

FLOPs (G) 45.94 181.32 136.91 364.17 281.9 322
GPU memory (Gb) 1.27 2.84 2.09 6.2 8.6 10.2

Table 9: Comparison of tracking performance and computational complexity between RMOT (Wu et al., 2023)
and our MA-SORT with YOLO-X object detection. We report on 2 classes of human and car because RMOT was
trained on only those two classes.

Methods
Tracking Performance Computational Complexity

Human Car Model
size FLOPs GPUs

Usage
Inference

TimeHOTA MOTA IDF1 HOTA MOTA IDF1
RMOT (Wu et al., 2023) 1.075 -0.55 1.19 6.57 2.99 5.41 169M 212G 3 GB 0.118 s/f
MA-SORT + iGLIP 47.02 55.88 52.22 57.8 57.66 71.54 427M 364.17G 6.2 GB 0.197 s/f
MA-SORT + YOLOX 33.08 39.00 41.44 29.88 22.71 34.93 124.5M 322G 10.2 GB 0.069 s/f

to note that the reported inference time represents
an average, calculated over 4 videos comprising a
total of 1,467 frames. All the implementation and
comparison have been conducted on A100 40GB.

In Table 8, we report our computational complex-
ity in two scenarios: (i) open-set setting where the
proposed iGLIP is used to detect unseen categories.
(ii) close-set setting where YOLOX is used to de-
tect pre-defined class. In both scenarios, we use
our proposed MA-SORT as an object association.

To evaluate the effectiveness of our proposed
Z-GMOT, we suggest to compare with other state-
of-the-art methods in the field, focusing on both
computational complexity and performance, as de-
tailed in Table 9. Included in this comparison
is RMOT (Wu et al., 2023), a state-of-the-art
model in referring-MOT. It is important to note
that RMOT is based on fully-supervised learning
and operates within a close-set environment, specif-
ically targeting the tracking of persons and cars.
The analysis and comparisons presented in Tables
8 and 9 reveal that our Z-GMOT not only holds a
comparable computational complexity with state-
of-the-art referring tracking methods but also sur-
passes them with substantial margins.

6 CONCLUSION & DISCUSSION

In this study, we present Z→ GMOT, a novel track-
ing framework capable of tracking diverse objects
without relying on labeled data. Z→ GMOT adopts

a tracking-by-detection paradigm and offers two
key contributions: (i) zero-shot iGLIP for effective
object detection using natural language descrip-
tions and (ii) MA→ SORT for efficient tracking of
visually similar objects within a broader context
of generic objects. Beyond proposing Z→ GMOT,
we also introduce a new Refering GMOT dataset.
We have thoroughly assessed and demonstrated the
efficacy and adaptability of Z→ GMOT, not only in
the GMOT task but also in the MOT task.
Discussion. We utilize GLIP as our preferred VLM
for developing iGLIP. However, it is important
to recognize the rich diversity of VLMs available
in the field, which opens up exciting avenues for
deeper exploration. Moreover, in our current study,
we have implemented Z→ GMOT exclusively using
only textual description object and attributes.
Nevertheless, our Referring GMOT dataset offers
additional information, such as object_synonyms
and other_attributes, which hold great poten-
tial for further research, particularly in the context
of prompt tuning or prompt engineering. Exploring
these additional aspects of our Referring GMOT
dataset could lead to enhanced object tracking capa-
bilities as well as other fields such as surveillance,
robotics, and animal welfare. We expect our work
to inspire future research in the unexplored realm of
unseen MOT/GMOT paradigms, potentially lead-
ing to extensions in other tracking scenarios, e.g.,
open-vocabulary MOT/GMOT.
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man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih
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