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Abstract

Efficient visual trackers overfit to their training distri-
butions and lack generalization abilities, resulting in them
performing well on their respective in-distribution (ID)
test sets and not as well on out-of-distribution (OOD) se-
quences, imposing limitations to their deployment in-the-
wild under constrained resources. We introduce Siam-
ABC, a highly efficient Siamese tracker that significantly
improves tracking performance, even on OOD sequences.
SiamABC takes advantage of new architectural designs in
the way it bridges the dynamic variability of the target,
and of new losses for training. Also, it directly addresses
O0OD tracking generalization by including a fast backward-
free dynamic test-time adaptation method that continuously
adapts the model according to the dynamic visual changes
of the target. Our extensive experiments suggest that Siam-
ABC shows remarkable performance gains in OOD sets
while maintaining accurate performance on the ID bench-
marks. SiamABC outperforms MixFormerV2-S by 7.6%
on the OOD AVisT benchmark while being 3x faster (100
FPS) on a CPU. Our code and models are available at
https://wvuvl.github.io/SiamABC/.

1. Introduction

Tracking a single object, given the location at the first
frame, has been an ongoing challenge in the vision commu-
nity for decades. Most recent approaches provide reason-
ably good performance [8, 16, 18,54, 60], especially when
benchmarked on in-distribution (ID) datasets, i.e., on the
testing portion of the same datasets used for training. How-
ever, they incur high computational costs and hardware con-
straints, making their deployment “in-the-wild” in mobile,
autonomous, and IoT applications still challenging.

The best-performing Transformer-based trackers operate
between 0.4 to 4 frames per second (FPS) on a CPU [8,57],
which is considered “slower than real-time” in many ap-
plications. Siamese tracking approaches provide the high-
est speed. FEAR-XS [5] can operate at 100 FPS on a
CPU, whereas an efficient Transformer-based approach,
MixFormerV2-S [11], operates at 37 FPS on a CPU. De-
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Figure 1. Comparison of our trackers with others on the
AVisT [44] dataset on a CPU. We show the success score (AUC)
(vertical axis), speed (horizontal axis), and relative number of
FLOPs (circles) of the trackers. Our trackers outperform other
efficient trackers in terms of both speed and accuracy.

spite the significant progress on efficient trackers, they still
need to catch up when tested on out-of-distribution (OOD)
datasets, i.e., those that were not used during training.

A recently proposed benchmark, AVisT [44], involves
tracking objects under extreme visibility conditions that are
common in-the-wild but not in most current training sets.
High-performing tracking approaches tend to struggle when
tested on AVisT, showing very significant performance de-
terioration. For instance, MixFormerV2-S exhibits remark-
able performance with AUC of 58.7% on an in-distribution
benchmark like GOT-10k [21]; however, it struggles on the
OOD benchmark AVisT, with an AUC of 39.6%. There-
fore, the trade-off between the need of computational re-
sources and OOD generalization abilities of visual trackers
is still unsatisfactory for their deployment in-the-wild under
resource constraints.

In this work we aim at significantly improving the trade-
off mentioned above. We design a new Siamese tacker that
preserves the high speed, reduced memory and computing
requirements of the Siamese family while improving OOD
generalization to near SOTA-level performance. From the
architectural point of view, we make two key contributions.
First, we better facilitate the visuo-temporal bridge between
the static image template representing the target, and the
search region image at current time. While [5] popular-
ized the use of a dual-template, which we also adopt, we
introduce the use of a dual-search-region. This will al-



low the tracker to stay anchored to the initial target rep-
resentation while better latching onto its dynamic appear-
ance variations. Second, we design a new learnable layer,
the Fast Mixed Filtration, that acts as an efficient filtration
method for enhancing the relevant components of the com-
bination of the representations forming the dual-template,
as well as the dual-search-region. This is important be-
cause, given also the reduced representational capacity of
smaller backbones used by efficient trackers, directly fusing
the representations of the dual-template does not necessar-
ily improve performance [5].

From the learning point of view we make two additional
contributions. First, we introduce a new transitive relation
loss to help bridge the visuo-temporal similarities of the
filtered representations of the dual-template and the dual-
search-region, so that the relevant relational differences be-
tween them can be effectively leveraged for tracking pur-
poses. Second, we more directly address the OOD gener-
alization issue by tackling the dynamic distribution shifts
while doing inference. As shown in many test-time adapta-
tion (TTA) approaches for classification [32,40,43,45,48,

], shifts in Batch-Normalization (BN) statistics are ma-
jorly responsible for performance degradation under OOD
testing. We introduce a dynamic TTA (DTTA) approach
specifically tailored to tracking. It is backward-free, thus
lightweight computationally, and aims at dynamically up-
dating the BN statistics while keeping them anchored to the
source statistics. To the best of our knowledge this is the
first work that uses TTA for single object visual tracking.

Combining the contributions above lead even our small-
est and most efficient tracker, S-Tiny, to surpass relevant
SOTA approaches on numerous benchmarks. Most no-
tably, on the AVisT benchmark, S-Tiny achieves the AUC
of 47.2% while running at 100 FPS on a CPU, outperform-
ing MixFormerV2-S by 7.6% while being almost 3x faster.
See Figure 1. An extensive set of experiments with multiple
datasets and other approaches shows additional compelling
results in support of our method.

2. Related Works

Efficient Tracking. Practical applications require ob-
ject trackers to be efficient as well as accurate. Siamese-
based [26,39] trackers [2,10,20,28,29,53,59,62,64,606] are
efficient as they use a separate two stream feature-extraction
framework. LightTrack [61] and FEAR [5] introduced
lightweight siamese-based trackers, however, lack accurate
performance. Transformer-based approaches [8, 16, 54, 60]
show reasonable accuracy, however, they lack efficiency
as they utilize computationally heavy attention layers. To
alleviate that, E.T.Track [4] incorporates an efficient Ex-
emplar Transformer block on the prediction heads. While
HCAT [7] uses multiple hierarchical cross-attention blocks
with feature sparsification, HiT [23], instead, leverages a

lightweight hierarchical transformer backbone to achieve
improved accuracy and speed. MixformerV2 [11] uses dis-
tillation to reduce the number of FLOPs, whereas SMAT
[17] uses separable mixed attention to maintain the accu-
racy on their one-stream transformer networks. Since these
are smaller networks, they have limited representational ca-
pacity and do not generalize well to OOD sets, making them
less reliable for tracking “in-the-wild”, which we tackle in
the proposed framework.

Efficient Attention. [38] proposed separable trans-
former blocks with convolutional layers to increase effi-
ciency while maintaining accuracy. MobileViTv3 [50] fur-
ther replaced heavy transformer blocks with their CNN-
ViT-based separable attention blocks, and showed con-
siderable performance gain. Originally, CBAM [55],
DANet [15], and Polarized Self-Attention [36] explored at-
tention in convolution by computing channel and spatial at-
tentions separately. CBAM [55] and PSA [36] further incor-
porate a squeeze-and-excite framework [22] to excite rele-
vant features across the channels. The latter is a more pow-
erful and efficient variant of CBAM. This suggests that sep-
arability is inevitable for efficient attention blocks; there-
fore, in this work we propose a simplified fast convolution-
based separable attention framework.

Efficient Adaptation. To tackle the dynamic distribu-
tion shifts during inference, we focus on Test-Time Adapta-
tion (TTA). A recent popular approach, CoTTA [52] uses
data augmentation at test time to generate pseudo-labels
and performs distillation for the image classification task.
TENT [51] and EATA [43] use model’s test-time entropy
to update only the BN learnable parameters. DUA [40],
Momentum [48], IN [45], and AdaBN [32] use backward-
free BN-statistics updates to perform adaptation with max-
imal efficiency while showing considerably good accuracy.
Most TTA approaches experience performance deteriora-
tion when used under real-world online applications, ex-
cept BN-adaptation approaches as they are efficient and re-
liable [1]. Therefore, we propose an efficient instance-level
BN update strategy that continuously adapts the model to
follow the dynamic visual changes of the target.

3. Methods

Overview. We introduce a tracker that maintains four
data sources. There is the static image template I that rep-
resents an object. The dynamic image template 1p instead,
represents the object at a time t — At, where ¢ is the current
time. There is a search region image I, where the object is
presumed to be located at current time ¢. Unlike previous
trackers, we also maintain a dynamic search region image
I, which is the image of the search region at time ¢ — At
re-centered at the object position, i.e., it contains Ip in the
center. So, besides the dual-template, (I1,Ip), our tracker
incorporates temporal information also via the dual-search-
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Figure 2. Overall Architecture. The Feature Extraction Block uses a readily available backbone to process the frames. The Relation-
Aware Block exploits representational relations among the dual-template and dual-search-region through our losses, Lrr and Lreg,
where dual-template and dual-search-region representations are obtained via our learnable FMF layer. The Heads Block learns lightweight
convolution layers to infer the bounding box and the classification score through standard tracking losses, L7, and Lry, respectively.
During inference, the tracker adapts to every instance through our Dynamic Test-Time Adaptation framework.

region, (Is, I}). Specifically, the static template anchors the
tracker at the object representation at time ¢ = 0 (A), the
dynamic template and the dynamic search region represent
time ¢t — At (B), and the search region represents time ¢ (C).
The dual-template will lead to a boosted object representa-
tion that bridges the time gap ¢t — At (from A to B), while
the dual-search-region will lead to a boosted search region
representation that bridges the time gap At (from B to C).
Since we use a siamese architecture and leverage the rela-
tions between points in time A and B, and between points B
and C, then blend them, we name our approach SiamABC.

SiamABC utilizes a feature extraction backbone, a new
Fast Mixed Filtration (FMT) module, a Pixel-wise Cross-
Correlation module, and heads for classification scores and
bounding box regressions. All the inputs, I, Ip, Ig,
and I;, go through the backbone F(-), giving us Fr, Fp,
Fg, and F; respectively. Next, the pair (Fr, Fp), and
the pair (F, F}) go through the FMT module, producing
Q(Fr, Fp) and Q(Fs, F}), respectively. Then, the Pixel-
wise Cross-Correlation module, CC'(-, -), computes the cor-
relation between Q(Fr, Fp) and Q(Fs, Fy), boosting their
representational relations. The output of CC'(-, -) is further
processed by the classification head, C H (-), and the bound-
ing box regression head, BH (-), to produce the final track-
ing output. To learn representations that enable tracking by
bridging from A to C, we introduce a new transitive relation
loss. Finally, to further adapt to dynamic shifts of the input
distribution, which are typical when tracking is deployed
“in-the-wild”, on out-of-distribution data, we endow track-
ing, for the first time, with a dynamic backward-free test-
time adaptation approach. See Figure 2.

3.1. Architecture

Feature Extraction Block. For efficiency, we chose the
first four layers of FBNetV2 [56] as our Tiny backbone, and
the first three layers of ResNet-50 [19] as our Small back-

bone, all pre-trained on ImageNet [13]. Since the channel
and spatial resolution of the backbones can differ, we use an
additional convolutional filter (without activation) to match
the channel resolution. The backbone takes in the input
x € R3*HXW where H = W = 128 for I and Ip, and
H =W = 256 for I; and Ig. The backbone processes the
inputs in parallel, and the weights are shared. This functions
in a siamese fashion as described in [2].

Relation-Aware Block. The representations of the dual-
template and the dual-search-region are first enhanced by
the new Fast Mixed Filtration layer, and then correlated by
the Pixel-wise Cross-Correlation module to support track-
ing.

Fast Mixed Filtration. The dual-template features and
the dual-search-region features used by the correlation mod-
ule CC(-,-) could each be the naive concatenation of the
respective backbone features in each pair. However, we can
potentially improve their combination by processing them
with an efficient learnable layer that filters out less useful
components while enhancing those important for the task
at hand. This should hopefully lead to improved perfor-
mance. In Figure 4(top), we have shown just that. Espe-
cially when tracking in the OOD case, naive feature con-
catenation severely underperforms the filtered combination.

We consider filtration mechanisms such as self-
attention [49], only tailored to convolutional models since
they tend to be more efficient on CPU. Polarized Self-
Attention (PSA) [36] stands out as it functions as a filter
and is a more powerful variant than CBAM [55], with time
complexity of O(CW H), where C, W, H, are channel,
width, and height of the tensor respectively. Another no-
table option is the CNN-ViT-based attention block Mobile-
ViTv3 [50], based on separable attention [38]. As shown in
Table 1, we observed limited performance gain of Mobile-
ViTv3 over PSA, with relatively high FLOPs, parameters,
and latency. We also noticed that PSA performs several
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Figure 3. Fast Mixed Filtration. This block serves as a
lightweight and effective attention mechanism. The input x is fil-
tered to produce the compressed representations X. The broadcast
and element-wise operations make this block efficient on CPU.

matrix multiplications causing the latency on CPU to still
be considerably high. This motivated the development of
our Fast Mixed Filtration (FMF), a new and more efficient
mixed filtration method. It is defined as follows

Ach - U ch Z WV *¢ Wgz( )))) )
ey
=0 Z (WG ()« WY (2))
X = (AChGaAsp)@x,
where the notation means the following: o := sigmoid,

¢ := softmax, W := convl x 1, x := broadcasted element-
wise multiplication, @ := broadcasted element-wise sum,
©® := element-wise multiplication, ) := element-wise
sum, Ay, := channel filter, A, := spatial filter, V := val-
ues, @ := queries, x := input and x := output. Figure 3
depicts the schematic computation of the FMF layer.
Differently than PSA, the improved efficiency of FMF
stems from reducing the computation overhead in Equa-
tion (1) by limiting the matrix operations to be broadcasted
element-wise multiplications and element-wise summations
across the vectors, and by setting WV =Wl =WV for
both A, and A, which further reduces the number of pa-
rameters. Similar to CBAM and PSA, we utilize a squeeze-

and-excite framework [22] to excite the relevant features
within this block. As shown in Table 1, the latency of FMF
is 0.4ms on a CPU, which has decreased from the 0.8ms of
PSA, while not experiencing any performance loss.

We use FMF with a squeeze rate S = 2 (see Figure 3). In
this way, if « is the concatenated representation of the dual-
template (i.e., zp = Fp U Fr) or of the dual-search-region
(i.e., zy = F; U Fg), then x is the filtered representation
with channel dimension 2C, to which we apply a channel
dimension reduction from 2C' to C, giving us X (i.e., X or
)v(t).

Pixel-wise Cross-Correlation. We combine the filtered
dual representations X7 and X; with the block CC|(+), which
is a pixel-wise cross-correlation. The output is then con-
catenated with F} and fed to a one-layer convolution to re-
duce the number of channels processed by the heads block.

Heads Block. Similar to [5,65], tracking output is given
by a classification head C' H (-), and a bounding box regres-
sion head BH(-). We use 2 lightweight convolution lay-
ers for CH(-) and 4 for BH(-). The last layer of CH(-)
has only 1 channel and predicts the foreground/background
confidence score for the object, whereas the last layer of
BH(-) has 4 channels, each responsible for predicting sep-
arate values (Tiin> Ymins Tmaz> a0d Yma for the object
bounding box in the frame at time t), which is why we
choose a higher number of convolution blocks for BH (-).
Following [5], we keep the spatial resolution of these maps
to 16 x 16.

3.2. Training Losses

Transitive Relation Loss (TRL). We help focussing the
filtered representations of the dual-template and the dual-
search-region on providing relational information that will
aid the downstream tasks. To this end, we recognize that
Q(Fp, Fr) and Q(F;, Fs) should be “similar”, since all the
inputs contain information about the object. We introduce
a loss L1g to encourage that. At the same time, given the
high built in similarity between Fp and Fg (since Ip C
Ig), to avoid learning representations that ignore the static
template (Fr) and search region (F}) information, we also
add a regularization loss L. that pulls the representations
close to Fy. Lge, is applied between Q(Fp, Fr) and Fj.
L1 and L., are defined as

Lrr = D(Q(FD7FT)vQ(Ft7FS)) P
ACReg = D(Q(FD7FT)7F75) )

1
D(z1,22) = 5(D(h1(21), ha(z2)) + D(hi(22), ha(21))),
Z1 z2
D(z1,22) =1— e
S P R AW
(@3]
where || - |2 is the ¢2-norm, h; and hy are MLP projection

heads used only during training, and D(-,-) calculates the
cosine distance. Moreover, D(-,-) is computed as in [6],



Table 1. Comparison of FLOPs, number of parameters, and latency when using MobileViTv3 [50], Polarized Self-Attention [
Mixed Filtration, with their performances on AVisT [44] and LaSOT [

] and Fast
1.

. Latency (ms)(]) AVisT LaSOT
Attention FLOPs (G)(1) | Params M) | cpy GpU  Nano | AUCKH)  OPSO(T) | AUCH)  Prec.(1)
MobileViTv3 [30] 0.220 0.862 13 65 | 0435 0490 | 0568  0.588
PSA [36] 0.051 0.526 025 43 | 0457 0529 | 0567 0588
FMF (ours) 0.034 0.395 02 35 | 0458 0529 | 0572 059

where we implement the stop-gradient operation to avoid
degenerated solutions. We refer to the pair L7r and Lgegq
as the transitive relation loss (TRL) since it is meant to
bridge the similarities between template and search region
images with the aid of the dynamic components so that
the relevant relational differences can be highlighted by the
downstream blocks for task purposes. The TRL loss im-
proves tracking performance, especially when both compo-
nents are used. See Figure 4(middle). Notably, in the OOD
case, the AVisT [44] AUC improves from 43.7% to 45.8%.

Total Tracking Loss. We use standard losses for the re-
gression and classification heads. We use the ToU loss [47],
L1,u, for the bounding box regression, BH (+), and the fo-
cal loss [34], LF,, for the classification head, CH(-). We
refer to [34,47] for their definition. The offline training of
the tracker is therefore based on the fotal tracking loss

L="Lrou +ArLLrL + ATRLTR + ARegLReg,  (3)

where we set Apr, Arg, and Areg to 1, 1/3, and 1/3, re-
spectively.

Dynamic Update. Different strategies can be imple-
mented for when to update the dynamic image template and
dynamic search region image. Table 6 reports our case-
study focussing on parameter-free strategies, which sug-
gests that different strategies are specific to their approaches
and are not generally applicable. A simple yet effective
strategy that gave us reliable performance is based on main-
taining a running average of the classification scores p,

=1 =Ap)pi—1 + Appt “4)

where, p; is the score at time ¢, and \p is a momentum pa-
rameter, which we set to 0.25. We also start a counter, C,
that when it reaches, let us say N = 60 frames (= 2 sec-
onds), we compare the current classification score with the
running average, and if p, > p,_;, then we update the dy-
namic image components and reset the counter, otherwise
we repeat the test at the next iteration. This strategy is ef-
fective, parameterless, and uses limited computational re-
sources.

3.3. Dynamic Test-Time Adaptation

To increase tracking performance, especially at OOD
test-time, we introduce a dynamic test-time adaptation pro-
cedure based on a batch normalization (BN) correction tai-
lored specifically to tracking. We applied this strategy to the
classification and bounding box regression heads. First, BN
layers are generally computed by the following equations:

BN(x):'yLE(I)Jrﬂ, oy = (1= o),y + o,

Var(z) o; = (1 — Q)71 + aoy,
(%) (6)
where x is the input feature, E(z) and Var(z) are the
expected value and variance of x. v and 3 are learnable pa-
rameters for scaling and shifting. The BN layers keep track
of the running mean and variance through Equation (6),
where p; and o, are current expected value and variance
respectively, and i, and 7; are used for E(x) and Var(x),
respectively. « is the momentum parameter. Estimating
learnable parameters v and [ during testing would require
a backward pass, with great detriment to the speed. There-
fore, we propose a method that dynamically updates the
BN statistics E(x) and Var(x) during testing, which has

negligible computational overhead for maintaining speed.
Prior works have explored BN adaptation for classifica-
tion purposes, with some using a backward pass for adapta-
tion [43, 51], while others introduced backward-free adap-
tation [32, 40, 45, 48]. However, none are directly appli-
cable for tracking. As we show in Table 5, applying a new
Instance-Norm (IN) layer [45] is expensive, and slows down
the speed twofold without noticeable improvement. Ad-
ditionally, the batch size for tracking remains 1, which is
too small to make any significant improvement with [48]
that applies weighted momentum based on the target batch-
size. Given the scale of our architecture and limited number
of parameters, by replacing batch statistics with instance
statistics, AdaBN [32] does not improve the performance
either. DUA [40] uses source statistics as a prior for the in-
coming task but does not stay anchored to the source statis-
tics, resulting in target statistics drifting away from the orig-
inal distribution, causing performance drop. Therefore, we
propose that BN statistics should be updated with weighted
instance statistics while remaining anchored to the source

statistics. This results in the following strategy

firy = (1= AgN)E+ ABNpr

E%t = (1 — )\BN)E2 -l—)\BNU%’t R

@)
where 77 and 2 are the final running mean and variance of
the model trained on the source data, respectively, and fi7 ¢,
and 07, are mean and variance calculated from the instance
at time ¢, respectively. 7i;, and E%t are updated based on
the current instance and used for feature normalization at
time t. Apy is set to 0.1. This backward-free dynamic test-
time adaptation (DTTA) strategy is efficient with negligible
difference in latency as shown in Table 5.



Table 2. Comparative study on VOT2020 Benchmark [
whereas bold suggests the best CPU non-real-time tracker.

]. Red, blue, and green colors describe the best three CPU real-time trackers

CPU non-real-time Methods CPU real-time Methods
Trackers STARK-ST50 [60]  STARK-S50 [60] DiMP [3] | HCAT [7] E.T.Track [4] LightTrack [6]] ATOM [12] MixFormerV2-S[I11] S-Tiny
EAO 0.308 0.280 0274 0.276 0267 0242 0271 0258 0.291
Accuracy 0.478 0477 0457 0.455 0432 0422 0.462 - 0.491
Robustness 0.799 0.728 0.740 0.747 0.741 0.689 0.734 - 0.741
FPS (CPU) 6 7 14 60 35 67 30 37 100
FPS (GPU) 66 66 127 300 108 170 240 420 425
FPS (Nano) 10 12 10 24 10 17 13 40 40
Table 3. Comparative Study with other SOTA approaches on various benchmarks including AVisT [44], NFS30 [24], UAV123 [41],

TrackingNet [42], GOT-10k [21], and LaSOT [
bold suggests the best CPU non-real-time tracker.

]. Red, blue, and green colors describe the best three CPU real-time trackers whereas

Out-of-Distribution (OOD) test sets In-Distribution (ID) test sets
Methods AVisT [44] ‘ NFS30 [24] | UAVI123 [41] TrackingNet [42] GOT-10k [21] | LaSOT [14] FPS (1)
AUC OP50 OP75 | AUC Prec. | AUC Prec. | AUC P, Prec. | AO  SRgp59 | AUC Prec. | CPU GPU Nano
CPU non-real-time Methods
STARK-ST50 [60] | 0.511 0.592 0.391 | 0.652 - 0.691 - 0.813 0.861 - 0.680 0.777 | 0.666 - 7 66 10
Ocean [65] 0.389 0.436 0.205 | 0.573 0.706 | 0.574 - - - 0.611 0.634 | 0505 0.517| 2 70 18
SiamRPN++ [28] 0.390 0.435 0.212 | 0.596 0.720 | 0.593 0.733  0.800 - - - 0.503 0496 | 1.4 145 10
SiamMask [53] 0.358 0.401 0.185 - - - - - - - - - - - 4 308 20
SiamBAN [10] 0.376 0.432 0.217 | 0.594 0.631 0.833 - - - - - 0514 0598 | 4 300 24
SeqTrack-L384 [8] - - - 0.662 0.685 - 0.855 0.895 0.858|0.748 0.819 | 0.725 0.793 | 0.4 15 -
MixFormerV2-B [11] - - - - 0.699 0.921 | 0.834 0.881 0.816 | 0.739 - 0.706 0.808 | 7 130 15
DropMAE [57] - - - - - - 0.841 0.889 - 0.759 0.868 | 0.718 0.780 | 4 98 10
TransT [9] 0.490 0.564 0.372 | 0.657 0.691 0.814 0.867 0.803|0.723 0.824 | 0.649 0.690 | 7 85 8
OSTrack-256 [63] - - - 0.647 0.683 0.831 0.878 0.820|0.710 0.804 | 0.691 0.752 | 4 98 18
ToMP-50 [37] 0.516 0.595 0.389 | 0.669 0.690 - 0.786 0.862 0.812 - - 0.676 0.722 | 7 83 6
CPU real-time Methods

HiT-Small [23] - - - 0.618 - 0.633 - 0.777 0.819 0.731|0.626 0.712 | 0.605 0.615 - - -
SMAT [17] 0.447 0.507 0.313 | 0.620 0.746 | 0.643 0.839 | 0.786 0.842 0.756 | 0.645 0.747 | 0.617 0.646 | 34 158 20
E.T.Track [4] 0.390 0.412 0.227 | 0.570 0.694 | 0.623 0.806 | 0.745 0.798 0.698 | 0.566 0.646 | 0.589 0.603 | 35 108 10
MixFormerV2-S [11] | 0.396 0.425 0.227 | 0.610 0.722 | 0.634 0.837 | 0.758 0.811 0.704 | 0.587 0.672 | 0.606 0.604 | 37 420 40
HCAT [7] 0.418 0.481 0.263 | 0.619 0.741 | 0.636 0.805 | 0.766 0.826 0.729 | 0.634 0.743 | 0.590 0.605 | 60 300 24
LightTrack [61] 0.404 0.437 0.242 | 0.565 0.692 | 0.617 0.799 | 0.729 0.793 0.699 | 0.582 0.660 | 0.522 0.517 | 67 170 17
FEAR-XS [5] 0.387 0.421 0.220 | 0.486 0.563 | 0.610 0.816 | 0.715 0.805 0.699 | 0.573 0.681 | 0.535 0.545| 100 450 40
S-Tiny 0.472 0.543 0.353 0.620 0.747 0.662 0.856 | 0.741 0.819 0.720 | 0.614 0.728 0.590 0.607 | 100 425 40
S-Small 0.479 0.557 0.372 0.624 0.744 0.681 0.858 | 0.784 0.835 0.746 | 0.646 0.751 0.607 0.622 | 45 400 30

4. Experiments

Model Details. With the Tiny backbone, SiamABC con-
sists of 2.03M parameters and uses 0.628 GigaFLOPs. We
refer to this tracker as SiamABC-Tiny or S-Tiny. With the
Small backbone, SiamABC consists of 9.82M parameters
and uses 6.81 GigaFLOPs. We refer to it as SiamABC-
Small or S-Small. S-Tiny runs at 100 FPS on a CPU, 425
FPS on a GPU, and 40 FPS on our edge device Jetson
Orin Nano, while S-Small runs at 45 FPS (CPU), 400 FPS
(GPU), and 30 FPS (Nano).

Training. All the code is written in PyTorch [46]. Both
models were trained on a single Nvidia RTX A6000 GPU
for 20 epochs. We use a batch size of 32 and ADAM
optimizer [25] with a learning rate of 10~%. We allow
close to 10% samples every epoch by randomly sampling se-
quences and then images from GOT-10k [21], LaSOT [14],
COCO02017 [35], and TrackingNet [42]. We randomly sam-
ple a template from a sampled sequence. Further, we ran-
domly choose a search sample from the same sequence with
an offset of A. The dynamic frames are sampled from the
interval between the template and the search samples. We
set A = 150 arbitrarily to facilitate dynamic updates at
longer intervals during testing. The input size of the tem-
plate is 128 x 128, and 256 x 256 for the search frames.
For standard augmentations, we crop a template with a size

increase offset of 0.2 and a search region with an offset of
2.0. We also apply to the search region crops a random scale
and shift factor by uniformly drawing samples from (0.65,
1.35) and (0.92,1.08), respectively. We also apply the color
augmentation and use the same post-processing as in [2].

Inference. We evaluate all the trackers on two hardware
platforms. One is based on an Nvidia RTX 3090 GPU and
12th Gen Intel 19-12900F CPU. The other is an entry-level
GPU-based edge device, Nvidia Jetson Orin Nano, which
here we abbreviate to ‘Nano’. All the FPS numbers were
reproduced using these two platforms.

4.1. Comparison with other Trackers

We evaluate our SiamABC trackers on 11 challenging
benchmarks: AVisT [44], VOT2020 [27], LaSOT [14],
TrackingNet [42], GOT-10k [21], OTB-2015 [58], TC128
[33], UAV123 [41], NFS30 [24], ITB [31], and DTB70
[30].

VOT2020 [27] contains 60 challenging videos and em-
ploys EAO (expected average overlap) as its metric along-
side the accuracy and robustness. In Table 2, our tracker, S-
Tiny, shows remarkable resilience against difficult scenarios
in this benchmark, outperforming HCAT [7] (best real-time
method) and STARK-S50 [60] by 1.05% and 1.04% EAO
respectively while being more than 14x faster than STARK-



Table 4. Comparative study on ITB [31], OTB [58], TC128 [

], and DTB70 [

] benchmarks in terms of their AUC score. Red, blue, and

green colors describe the best three CPU real-time trackers whereas bold suggests the best CPU non-real-time tracker.

CPU non-real-time Methods CPU real-time Methods
DropMAE [57] TransT [9] STARK [60] DiMP [3] SiamRPN++ [28] Ocean [65] | E.T.Track [4] LightTrack [6]] ATOM [12] S-Tiny S-Small

ITB [31] 0.650 0.547 0.576 0.537 0.441 0.477 - - 0.472 0.548 0.555

OTB [58] 0.696 0.695 0.681 0.684 0.687 0.684 0.678 0.662 0.669 0.709 0.713
TC128 [33] - 0.596 0.626 0.612 0.577 0.557 - 0.550 0.599 0.617 0.630
DTB70 [30] - 0.667 0.638 - 0.569 0.455 - 0.491 0.656 0.662
FPS (CPU) 4 8 7 14 1.4 2 35 67 30 100 45
FPS (GPU) 85 66 66 127 145 70 108 170 240 425 400
FPS (Nano) 10 8 12 10 10 18 10 17 13 40 30

Table 5. Comparative study on test-time adaptation (TTA) approaches on AVisT [

real-world corruptions and ITB [

] as it involves various extreme distribution shifts with

] as the next most challenging benchmark. The best results are in bold.

Methods AVisT [44] ITB [31] Latency (ms) |
i AUC OP50 OP75 Prec. | AUC OP50 OP75 Prec. | CPU GPU Nano
No TTA 0458 0520 0340 0413 | 0539 0659 0483 0631 | 3.6 0.6 98
Backward-Based Methods
TENT [51] | 0460 0518 0356 0417 | 0530 0635 0472 0610 ] 99 29 304
ETA [43] 0459 0516 0360 0416 | 0525 0.630 0470 0606 | 99 28 356
Backward-Free Methods
Momentum [15] | 0452 0513 0341 0411 | 0540 0.656 0484 0632 | 3.7 07  I5.1
DUA [40] 0427 0484 0307 0394 | 0516 0628 0467 0591 | 37 07 151
IN [45] 0454 0515 0342 0417 | 0519 0.628 0455 0604 | 66 1.9 231
AdaBN [32] | 0456 0517 0345 0414 | 0522 0632 0461 0608 | 37 07 15.1
DTTA (ours) | 0472 0.543 0353 0440 | 0.548 0.667 0494 0.634 | 37 07 151
S50 on a CPU. proaches are trained on the large training sets of LaSOT,
AVisT [44] consists of 120 extremely challenging real- TrackingNet, and GOT-10k; thus, the test distributions of

world sequences in adverse visibility. In addition to simple
occlusion and fast motion, it involves objects under heavy
rain, heavy snow, dense fog, sandstorms, hurricanes, etc.
In Table 3, we note that this out-of-distribution benchmark
highlights a significant performance degradation of SOTA
trackers compared to the widely used in-distribution test
sets. On the other hand, our trackers, S-Tiny and S-Small,
are outperforming HCAT by 5.4% and 6.1% respectively
and MixFormerV2-S [11] by 7.6% and 8.3% respectively,
showing our approach’s improved ability to track in se-
quences with adverse conditions. Additionally, S-Tiny out-
performs SMAT [17] by 2.5% while being almost 3x faster
on a CPU.

UAV123 [41] is a benchmark for tracking from an aerial
viewpoint involving 123 long video sequences. We outper-
form HCAT by 2.6% and 4.5% respectively, and SMAT by
1.9% and 3.8% respectively, confirming the OOD general-
ization ability of our approach. NFS30 [24] is a benchmark
collected with extremely high frame rate of 240 FPS for
fast tracking. Similar to other approaches, we use the 30
FPS version of the benchmark for evaluation. Our track-
ers outperform others also in this OOD test. Please refer to
Table 3.

The LaSOT [14] benchmark involves 280 long test se-
quences with 2500 frames per sequence on average. Track-
ingNet [42] is a large benchmark consisting of real-life
videos collected from YouTube. There are 511 test videos
averging in about 441 frames per sequence. One has to
submit the raw data to their evaluation server to obtain the
results for a fair evaluation. Similarly, GOT-10k [21] is
a challenging short term benchmark consisting of 180 test
sequences which are evaluated on their server. Most ap-

such benchmarks remain quite similar. Nevertheless, S-
Small outperforms most SOTA CPU real-time trackers in
these benchmarks while remaining efficient as shown in Ta-
ble 3. Our approach slightly underperforms SMAT in two
ID sets, LaSOT and TrackingNet; however, we note that
the trade-off with speed is significant as SMAT runs at 34
FPS (CPU), 158 FPS (GPU), and 20 FPS (Nano), while
S-tiny runs at 100 FPS (CPU), 425 FPS (GPU), and 40
FPS (Nano), and S-Small runs at 45 FPS (CPU), 400 FPS
(GPU), and 30 FPS (Nano).

As shown in Table 4, we outperform other CPU-
based trackers on the OTB-2015 [58] benchmark with
100 sequences, even surpassing the CPU non-real-time ap-
proaches. Another similar benchmark is TC128 [33] with
128 challenging color sequences, where we outperform
other SOTA approaches as well. DTB70 [30] is another
small-scale UAV benchmark involving 70 long sequences.
We consistently show improvement here as well. ITB [31]
is a benchmark with 180 various challenging sequences
from many other benchmarks giving an informative eval-
uation of trackers. ITB is second to AVisT in terms of chal-
lenging sequences, and Table 4 confirms a remarkable gen-
eralization ability of our approach. We note that DropMAE
[57] was pre-tained on additional diverse training data.

4.2. Comparision with Adaptation Approaches

In our S-Tiny model we incorporate TENT [51] and ETA
[43] as our TTA baselines with backward-passes, where we
use our classification output as self-entropy. Additionally,
we also evaluated Momentum [48], DUA [40], IN [45], and
AdaBN [32] as our backward-free TTA baselines. We set
the batch size to 1. The comparison is shown in Table 5



Table 6. Case study on parameter-free dynamic updates.

Dynamic Updates AVisT LaSOT FPS(1)
(No DTTA) AUC OP50 | AUC Prec. | CPU GPU Nano
No Updates 0448 0.511 | 0.556 0572 | 102 430 40
Fixed interval (N = 60) | 0.445 0.514 | 0.519 0.533 | 100 425 40
FEAR-based [5] 0454 0.517 | 0.524 0.234 96 405 38
TATrack-based [ 18] 0.361 0.377 | 0.414 0430 | 60 250 22
Ours 0458 0.529 | 0.572 0.592 | 100 425 40

with two of the most challenging benchmarks, AVisT as it
involves multiple adverse scenarios with natural corruptions
and ITB as the next most challenging benchmark. TENT
and ETA have almost 3x the latency because of the back-
ward passes, and do improve with AVisT. However, we do
not observe the same with ITB. Momentum shows negli-
gible improvement, whereas IN, AdaBN, and DUA show
performance degradation in both scenarios. When DTTA,
our efficient adaptation strategy, is turned on, we notice sig-
nificant improvement with both benchmarks while having
minimal latency.

4.3. Ablation Study

We perform ablation studies on each of the components
of S-Tiny used on AVisT as an OOD benchmark and on La-
SOT as an ID benchmark. In Figure 4(top), the baseline is
obtained by removing the FMF block and the TRL losses,
Lrr and Lpey. Next, we add the intermediate dynamic
frames to obtain the mix configuration, without FMF, and
lastly, we add our FMF block. We clearly observe the im-
pact of the FMF block, especially on the OOD benchmark,
where the AUC increases from 41.8% to 43.7%. Next, Fig-
ure 4(middle) shows the ablation on the TRL losses, L1r
and Lg.q. The addition of either of them improves perfor-
mance; however, the improvement is more significant when
used together. Further, in Table 1 we test the impact of FMF
on accuracy compared to PSA [36], observing no notice-
able fluctuations in performance. We further evaluate the
squeeze rate of our FMF block in Figure 4(bottom). There
we notice performance degradation on the OOD benchmark
when we do not squeeze the FMF module, but not as much
in the ID benchmark, suggesting that squeeze is more im-
portant for accurate filtration of OOD sequences. In Ta-
ble 6, we show a case-study on parameter-free dynamic up-
date strategies, where ours consistently improves over the
others.

5. Conclusions

We introduce SiamABC, a new Siamese visual tracker
that improves the trade-off between the computational re-
quirements and the OOD generalization ability, thus ex-
panding the horizon of applicability of visual trackers in-
the-wild under resource constraints. We have shown that it
can be as fast as FEAR-XS, while being significantly more
accurate with an evaluation over 11 benchmarks. We have
also shown the superior ability of SiamABC in OOD gen-
eralization by reaching near-SOTA accuracies on the chal-
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Figure 4. Ablation study on the components of SiamABC-Tiny.
Top-row: Ablation on the FMF block. Middle-row: Ablation on
TRL losses. Bottom-row: Ablation on squeeze rate.

lenging OOD benchmark AVisT, with a significant improve-
ment over the efficient Transformer-based SOTA methods.
We credit this achievement to the four major technical con-
tributions of the approach that include the use of a dual-
search-region, the fast filtration layer FMT, the TRL loss,
and the introduction, for the first time, of the dynamic TTA
during tracking. Promising future extensions of this work
may include further development of TTA for tracking, and
the adoption of tracking inertia.
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