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Abstract. Agents operating in the open-world sense data streams that
are non-stationary and temporally correlated, from which they need to
quickly learn new knowledge to adapt and be resilient to the changing
environment they explore. Current learning-based vision approaches are
not designed for agents operating in real-time in the open-world. They
are based on stochastic optimizations performed offline with data samples
independent and identically distributed according to a stationary prob-
ability distribution. Data streams processed by open-world agents have
temporal dependencies, and are typically processed with a single-pass. In
such conditions, vanilla SGD leads to slow convergence rates and biased
estimations, and current approaches make simplifying assumptions, like
having prior knowledge of the statistical properties of the stream. We
overcome these limitations by introducing an online stochastic optimiza-
tion approach that does not make any prior assumption and self-adapts
to the current time dependency properties of the stream. We demonstrate
the validity of the approach on synthetic data as well as on video datasets
where we show very promising results for learning self-supervised repre-
sentations and for classification downstream tasks.
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1 Introduction

Let us consider an agent operating in the open-world. This agent needs to learn
new knowledge as it becomes available through the stream of data it senses. It
should do so as quickly as possible in order to adapt to the environment and be
resilient against various distribution shifts [48|. Ideally, an agent should mimic
the functionalities of biological agents as they learn very effectively for their
entire existence based on processing the data streams of their sensory modal-
ities. Such data streams are generally non-stationary, and temporally highly
correlated. Notably, the work done in this setting is quite limited in the vision
community [11,/58,75], and the contribution of this work could benefit applica-
tions such as autonomous vehicles and robotics that work by processing data
streams, like video, lidar, or other sensor data streams.

* Denotes equal contribution.
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The aim of an open-world agent is to learn from and adapt to the incoming
data stream, by updating its internal representations. Self-supervised learning
(SSL) has proven effective in various vision applications [9,10}/33,59] as well as
other machine learning tasks [15]/38,/60]. When performing downstream tasks,
SSL representations either match or surpass fully supervised approaches [4}/12]
29,130,133]. On the other hand, the success of these methods cannot be directly
transferred to open-world agents because they heavily rely on the ability to learn
models based on minimizing an objective function, and this requires a stochastic
optimization [53], which is a challenge, as we describe below.

The traditional workhorse used for stochastic optimization is stochastic gra-
dient descent (SGD) [57]. SGD is a well studied tool, and it is known to perform
optimally when it processes data samples that are independent and identically
distributed (i.i.d.) according to a certain probability distribution [53]. Unfor-
tunately, open-world agents are pressed to learn from data streams that are
non-stationary and highly correlated, and need to do so quickly without repro-
cessing past data because they need to keep learning from future incoming data.
SGD operating under this non-i.i.d. conditions where it processes temporally
dependent data suffers from making updates based on biased gradients, which
lead to poor convergence rates of the learning by a magnitude |18].

Current approaches that handle temporally dependent data make simplify-
ing assumptions, including knowing in advance the nature of such dependency,
usually by providing the mizing time conditions of the data stream |2/42//52[52].
Intuitively, the mixing time refers to the time difference between two approxi-
mately independent samples. However, in practical applications this is not known
by an agent in the open-world, as it may also vary. A recent approach, [18], does
not make such assumptions; however, it makes a crucial simplification by assum-
ing that the data stream is generated by a Markov chain.

In this work we introduce a novel stochastic optimization approach for pro-
cessing temporally dependent data, which overcomes the limitations expressed
above. It makes no requirements in terms of the statistics of the input data
stream, so it requires neither prior knowledge of the mixing time of the stream
nor for it to be a Markov chain. The proposed approach, which we name adap-
tive stochastic optimization (ASO), makes no assumptions and is based on an
online meta-optimization that optimally breaks the time dependence, which is
self-adaptive to the current mixing conditions. In this way, the approach could
adapt, for instance, to the changing dynamics of a video. The structure of the
paper is as follows: in Section [3| we formulate the stochastic optimization prob-
lem with temporal dependent data and highlight the challenges. In Section [d] we
introduce ASO, the meta-optimization procedure for addressing the challenges.
In Section [5] we validate our framework on synthetically generated temporal
data as well as real-world video datasets for SSL and recognition downstream
tasks, where we provide very promising results.
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2 Related Work

Online Learning. Online learning is a vital challenge in the vision commu-
nity as it should enable a system to quickly adapt to the new data as it be-
comes available on the fly. Initially, it was driven by the increasing computa-
tional challenges posed by learning from vast and continuously expanding data
sources [24,[36]. [25/41,|64] further solidified online learning techniques against
their inherent concept and distribution shifts [31]. However, none could truly
tackle the issue of temporal dependence in continuous data streams. This be-
comes critical in various real-world applications such as for data streams coming
from surveillance cameras, autonomous vehicles, etc. [7/76] addressed these is-
sues as aimed at classification tasks, where they show improvement over baseline
methods. Additionally, [67] introduced a static method, namely, local drift de-
gree, that tackles concept drifts as well as temporal dependence in regression
tasks of the data streams. While many of these approaches explored various
data mining techniques, very few have looked at it from an optimization point
of view [54].

Online Optimization. Vanilla SGD assumes processing i.i.d. samples com-
ing from a distribution, thus, inducing the conditional unbiasedness of the gra-
dients during the stochastic optimization [17]. However, since temporally depen-
dent streams lead to processing non-i.i.d. data, the gradients are conditionally
dependent on (and biased upon) the updates up until the previous step. To
ensure quicker convergence, this biasedness needs to be minimized. In this set-
ting, [17] groups online optimizations in three categories: the first investigates
adjusting the learning rate of the gradient updates with respect to the mixing
time conditions of the temporally correlated data stream |20], the second one
drops the temporally correlated data altogether [52], and the third one encodes
the mixing conditions over time [2l{42]. The first two categories require the knowl-
edge of the mixing time conditions of the data stream, whereas the third one
does not, instead, it utilizes a memory buffer to keep track of the temporally
decorrelated samples, similar to the experience replay methods [4650].

One of the widely used online optimization strategies, AdaGrad [19], intro-
duced the accumulation of covariance matrices of gradient updates to scale the
learning rate at the current time step to account for various shifts in the mixing
time conditions. This results in the learning curve slowing down as the gradient
updates become smaller or vice-versa. MAG [18| makes further assumptions of
the data following a Markov Chain [44], and introduces a gradient estimation
method incorporating the AdaGrad [19] update rule. These approaches assume
that the temporally dependent data is sampled from a generative ergodic/mixing
stationary process that might not always be present in the real-world data; there-
fore, they are rather impractical in such scenarios. We approach this issue from
a meta-learning perspective, where our algorithm adaptively detects the opti-
mal mixing time conditions of the incoming data stream while not requiring any
assumption on its distribution.

Meta-Learning. Meta-learning was originally defined as any method that
would learn a “learning rule” [5,6,/65]. Thus said, meta-learning approaches nowa-
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days focus on learning in a few-shot manner, in which they see very limited data
during the training phase and adapt to the new task [22,/49,/61,/66,71]. Although
these approaches show considerable performance gain, they still work under the
assumption that the labeled data is available. |62| further suggests utilizing a
semi-supervised learning framework to make use of both labeled and unlabeled
data. Conversely, [35] employs unlabeled data to construct various meta-tasks to
train the few-shot learners while |26] performs unlabeled clustering with a limited
number of meta-parameters to induce meta-learning. More recently, works such
as |14L/23] incorporate the meta-learning framework in an online setting where
they perform adaptation under supervision on the current sequential tasks. Addi-
tionally, many meta-learning approaches [32,37,39,/63| have focused on continual
learning in an online sequential learning scenario by employing either memory
buffers or regularization techniques. These conditions work under three major
assumptions: supervision, storage for memory buffer, and availability of the pre-
trained representations. In our setting, we focus on online learning where none
of these conditions are met.

Self-Supervised Learning. Many approaches have focused on self-supervised
learning (SSL) for representation learning and showcased superior performance
in terms of compact representations learned. One advantage of such approaches
is that one does not need to assume the downstream task as the information
is unavailable. Initially, many SSL methods focused on reconstructing the data
after corrupting it with noise or even artificially masking them [43,/56/72,/74] to
restore the missing information. Further, [16,27] performed unsupervised train-
ing by either rotating the inputs or by shuffling the relative positions of the
objects. However, these methods could not learn the fine-grained details of the
objects. More recent approaches have shown significant performance gain in this
regard [3], in which the deep metric learning methods [12}21]| encourage similarity
learning between semantically transformed versions of an input. Conversely, the
self-distillation methods [10,{13}[30] map two augmented versions of the same im-
age onto the other, whereas the canonical correlation analysis methods |419} 73|
balance three objectives of representation obtained from two different views:
variance, invariance, and covariance. One key component of these algorithms is
that they assume the data distribution to be stationary and do not work well
if the data is from a time dependent non-stationary distribution. We show that
with our adaptive optimization, these approaches can function well even with
data that is temporally correlated.

3 Problem Formulation and Challenges

We assume that a data-generating process provides a time series {&;}, where &,
distributed according to 7, might be a video frame at time i. We are interested
in learning a model f from the data stream &7, &o, ..., which is parameterized by
0. Given a loss £(-), this is done by solving the following stochastic optimization
problem

min Be[((f(0), )] , (1)
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where @ is an optimization domain. Problem is typically solved iteratively
via stochastic gradient descent (SGD) according to the update rule

gttl — o0 — o, VLOY)), t=1,...,T, (2)

where a4 is a learning rate, ITg(-) is a projection operator, and £(0) is an estimate
of the expectation in . Such estimate is typically given by the empirical risk.
However, it can be replaced by the loss of a single data point, £(f(0),£), or, if
consecutive instances from the data stream &;, &;41, ..., &4n—1, are grouped
into a batch B! of size n, it can be the average of the losses on those instances.
In this more general case the iterative update processes a data stream S of
batches B, ..., B, ....

It is well known that SGD provides an effective solution to the stochastic
optimization problem if the update processes data samples that are in-
dependent and identically distributed (i.i.d.) according to w. In this case, the
parameter estimation 0% and the gradient VL£(6?) remain statistically indepen-
dent, ensuring that the gradients are conditionally unbiased, and SGD reaches
convergence with optimal rate [53}/57].

In this work, we aim to solve problem while ingesting a stream {&;} of
time dependent data. This means that the data stream is not i.i.d. Therefore, the
gradient estimates, whether computed over a sample or a batch, are no longer
unbiased in , and the convergence rate of SGD is suboptimal. A typical way
to characterize the time dependency of a data stream is via the mizing time 7.
Intuitively, 7,,, represents the minimal time difference between two approximately
independent samples. A more formal definition is reported in Section [5.1} Under
certain mixing conditions the effects of gradient bias on convergence have been
formally studied [1].

This motivates the need to look for a more efficient algorithm to solve (1)
under the non-i.i.d. assumption. This is important in the practical scenario where
an agent in the open-world would want to adapt to a changing environment with
the highest speed, since being subjected to a distribution shift [51]. This would
enable learning the best possible representation from instance & € B?, as soon
as possible, and only once, since there is the need to learn from new streaming
data in the future. Because of this single-pass setting, & will not be processed
again, and we need to make the best possible use of it. This is in contrast with
batch learning, where the same data is used in multiple passes or epochs.

4 Adaptive Stochastic Optimization for Dependent Data

A trivial and effective strategy to improve convergence is to simply run SGD
with only one every s samples. If the stream is made of datapoints sampled
from a Markov chain, and « is chosen as the mixing time of the process, SGD
with this data drop strategy (SGD-DD) achieves the same convergence rates as
vanilla SGD with i.i.d. data |[g].

Another effective strategy to improve convergence is to run SGD with mini-
batch sampling (SGD-MB), where &, &41,. . .,&n_1 form batch Bt. Theoreti-
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Fig. 1: Adaptive Stochastic Optimization. The dynamic window collects the data
with different drop rates and feeds it to a pool of models where a drop rate with the
least loss is considered to update the next dynamic window. Similarly, the model at
current time-step is updated with the parameters obtained though the least loss. This
cycle continues until the stream has concluded.

cal results under certain mixing conditions of the stream suggest that the con-
vergence of SGD-MB is even faster than SGD-DD , and that larger batches
are better, which is also intuitive. Similar results are also reported in 28], where
they underline how a time varying size of the minibatches counteracts the effects
of short and long range dependencies, including bias, variance, and convergence.
Inspired by that body of work, we propose a strategy that combines SGD-DD
and SGD-MB, where minibatches act as if they had a time-varying size, in a way
that is self-adaptive to the current dependency status of the stream. Unlike the
only other adaptive method in the literature , ours does not assume data to be
drawn from a Markov chain, it is generic and assumes no dependency restrictions.
The key idea is to compose the minibatch B?, by selecting one every x samples,
while leaving the size n fixed. Moreover, the minibatch is made time-varying,
by adaptively selecting the drop rate x, so that B'(k) = [&, &t - - - Eit (n—1)s)-
This is in contrast with prior approaches that assume prior knowledge of the drop
rate, or mixing time, and therefore have limited practical applicability .
The stochastic optimization will proceed by iteratively updating the param-
eters 0 of the model f, while minimizing the empirical risk £(6), which depends
on £(-). The optimal update would be based on the minibatch B*(k), where the
drop rate should be chosen to provide the highest decrease of the empirical risk.
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Algorithm 1 Adaptive Stochastic Optimization for Streaming Data

1: procedure ADAPTIVE STOCHASTIC OPTIMIZATION
2: Let S be a data stream and B a FIFO circular buffer

3: Initialize the dynamic window W* and the model parameters 6"

4: Initialize the populations of batches {B,} and models {6.}, x € W*
5: while S is available do

6: B+ £i11(S)

7 for all k € W' do

8: B, + ¢.(B)

9: O + 0" — Vg L(0%; By)
10: ke = argmin, eyt {L(0x; Be)}
11: 0t — 0.,
12: W? < update(W?, k)

This means that the update should be made according to the following rule

K¢ = arg mﬁin L(O" — aVeL(0; B (k)); BY(k)), 67 =60' —aVeL(0'; Bt (k) ,

(3)
where £(0; B'(k)) is the empirical risk associated with the minibatch B*(x). In
this way, the stochastic optimization over the stream of batches effectively be-
comes a meta-optimization |23] where the drop rate is optimally adapted over
time to continually maximize the learning from the latest batch of data. Algo-
rithm [I] summarizes the steps of the iteration.

We perform the meta-optimization by forming a population of models {6y},
where k € W, and W is a suitable set of drop rates. Then, at each update
the risk is evaluated for every drop rate, and the one that provides the highest
risk reduction is used to perform the model update. For efficiency reasons and
keeping the population size low, the set W is in fact a dynamic window (i.e.,
WH). Tt is initialized to {1,2,..., Kmas}, and at the end of iteration ¢, the drop
rates for the next iteration are shifted so that k; is in the center. The function
update(W? k;) does that in Algorithm [I} This strategy allows to contain the
size of the population of models, save computation, and allows for a large range
of drop rates.

In Algorithm [1] the function £i11(S) refills the FIFO circular buffer B with
the latest n samples from the stream S. The size of B is nkyax, where Ky, x defines
the largest drop rate that can be reached. Finally, the function ¢,(-) selects the
n most recent samples, by choosing one every k. Note however, that for k > 1,
¢ (+) will chose (k—1)n/k samples that were selected to form the previous batch.
To better leverage the use of data, rather than a deterministic sampling, we
make ¢, () implement a Bernoulli sampling, where each data sample is selected
with probability 1/x, until n are chosen. Figure 1| describes an overview of the
Algorithm [1) which we refer to as Adaptive Stochastic Optimization (ASO).
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Fig. 2: Synthetic Markovian Temporal Data. Comparison of the MSE losses of
a linear regression task during online learning from synthetic temporal data sampled
from a two-state Markov chain as described in Section MAG [18] shows quicker
learning rate at the very beginning, but plateaus quickly after, whereas ASO shows
quicker learning rate as well as convergence rate overall.

5 Experiments

In this section, we showcase the effectiveness of ASO for self-supervised learning
with streaming data with an extensive experimental validation. First, we evaluate
ASO with synthetic temporal data, where the stream has a non-i.i.d. distribution
that is Markovian with imposed mixing conditions. Second, we evaluate ASO on
real-world temporal data like video streams where the distribution is unknown
and is generally non-Markovian. We perform these experiments on high-end
workstations equipped with NVIDIA RTX A6000 GPUs.

5.1 Synthetic Temporally Dependent Data

In order to systematically evaluate the behavior of ASO with temporally depen-
dent data, we follow an approach similar to [18]. We generate synthetic data
that temporally evolves according to a Markov chain, which is a common way to
characterize temporal data dependencies [45]. We assume that s; € 2 = {1,2} is
a 2-state Markov chain. The chain has a symmetric state transition matrix, de-
fined by a probability of transition between states p € (0,1). The state s; selects
the model weights w,, € R%, randomly predefined. The weights are used to pro-
duce the output of a noisy regression model y; = X;ws, +€;, where X; € Rexd g
drawn from N(0,1), and ¢; is drawn from N(0,10731). In this way, we produce
a Markovian data stream yq, yo, - - -
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A typical way to characterize the time dependency of a data stream is via
the mixing time 7,,,. Intuitively, 7, represents the minimal time difference be-
tween two approximately independent samples. More formally, for an ergodic
time-homogeneous Markov chain s;, over a finite state space {2, the mixing time
is defined with respect to the total variation distance of the chain from its sta-
tionary distribution p. For two distributions P and ) over the same probability
space ({2, F), where F is the o-algebra of the events, the total variation distance
is defined as Dy (P, Q) = sup,cr |P(a) — Q(a)|. We then compute the distance
between p and the conditional distribution of s;41 given s1, P(s¢4+1]s1), and
when it goes below a threshold ¢ then s;y1|s; is sufficiently indistinguishable
from p and therefore s;y; is approximately independent from the initial state
s1. More precisely, the mizing time 7, [45], is given by

Tm(8) = inf{t : sup Dry(P(s¢11]81), 1) <0} . (4)
s1E€02
Given this definition of 7,,, it is also possible to characterize its order of growth [45].
For the case of the 2-state symmetric chain s; that we have used, it is easy to
show that such order of growth is completely defined by the probability of tran-
sition between states p. In particular, when p is small (i.e., 1 — 2p =~ 1), then
Tm = 7'm(1/4) = @(l/p)

With this framework we generate a synthetic Markovian temporal stream
(X1,91), (X2,y2), -+, from which we learn a regression model y = Xw, where
w is optimized by minimizing the mean square error (MSE). We set d = 100 and
¢ = 250. We also set p = 1074, which means that the mixing time is 7,, ~ 10%,
and we generate a stream of T = 10% samples.

We compare ASO against three methods. We use SGD as the baseline, Ada-
Grad [19] as the online optimization baseline, and MAG |[18], which is an ap-
proach that has been developed to work under the Markovian assumption with
performance guarantees. Just like ASO, MAG does not require to know what the
mixing time is. Under similar Markovian assumptions, there are other methods,
like SGD-DD |8] and Ergodic Mirror Decent (EMD) [20], that have theoretical
performance guarantees equivalent to MAG, but they are limited in that they
do require prior knowledge of the mixing time to operate.

In our experiments, SGD and ASO use a learning rate of 1/v/T [53], whereas
AdaGrad and MAG use an adaptive learning rate according to their respective
algorithms, which is (3_, [lgx]|?)~"/2, where gy is the gradient at the k-th
update. SGD, AdaGrad, and MAG perform an update at the same time, which
is driven by how MAG selects the size of the stream minibatch used to compute
the gradient estimation. Such size is 27 where J is drawn from a geometric
distribution limited to the interval [1,5]. Because of that, we set the size of the
ASO minibatch to the mean size of the MAG minibatch, which is n = 22 = 4.

In Figure|2| we plot the mean and standard deviation of the MSE loss against
time t, obtained from 5 runs. We can observe SGD performing with the low-
est convergence rate, with AdaGrad significantly improving over SGD. AdaGrad
also slightly underperforms MAG in terms of learning speed. Moreover, MAG
manages to learn quicker at the very beginning, but it plateaus also quickly
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Table 1: Varying Mixing Time Conditions. Comparative analysis on various
mixing times. The numbers represent the average MSE and standard deviation (lower
is better) at the last iteration. Bold suggests best, and underline suggests second best.

Mixing Time (7m =~ 1/p)
»=0.02 7= 0.002 7 = 0.0002 » = 0.00002
SGD 0.7569 + 0.1268 0.7363 + 0.1410 0.7733 £ 0.1428 0.7711 4+ 0.2239
AdaGrad [19] | 0.4916 £ 0.1418 0.5038 4 0.0874 0.5309 £ 0.1733 0.4610 & 0.3178
MAG |[18] 0.6277 £+ 0.1332 0.5879 + 0.1045 0.5546 4 0.1459 0.5025 4+ 0.1723
ASO 0.3054 £+ 0.1101 | 0.3279 + 0.0996 0.3752 + 0.1099 | 0.2915 + 0.1236

Method

immediately after. ASO on the other hand shows considerably quicker conver-
gence. We should note that both MAG and AdaGrad exhibit noisier learning
curves compared to ASO and SGD.

We also evaluate the behavior of SGD, AdaGrad, MAG, and ASO with re-
spect to different mixing time conditions. Specifically, we generate four additional
streams with p = 2 x 10® and b € {—2, -3, —4, -5}, and for each of them we
report the average and standard deviation of the MSE loss over 5 runs at the
end of the training. In Table |1} we show that MAG performs better under large
mixing time conditions, whereas AdaGrad shows better stability when the mix-
ing time conditions are smaller. SGD does not show significant changes in either
of those cases. On the other hand, ASO shows robustness against all the mix-
ing time conditions in terms of stability and convergence. Next, we will discuss
experiments where the Markovian assumption might not hold.

5.2 Real-World Temporally Dependent Data

General setup. We consider the problem of self-supervised learning (SSL) per-
formed online from a stream of real-world temporal data, such as video streams,
which are very common in computer vision applications. We set out to learn SSL
representations based on widely used techniques, such as SimCLR [12]. In this
setting, a backbone model will learn from the stream in a single-pass only, and
will not have the chance to reuse prior data, as usually done when training is
performed over multiple epochs. Once the stream has concluded, the backbone
is frozen and a linear probe [40] is attached to learn the downstream task. The
backbone used in the following experiments is ResNet18 [34]. The experiments
are based on SimCLR [12], and the downstream task is trained by attaching a
projection head of size 512. For all the experiments and all methods, we use a
batch size of n = 256 and a learning rate of 10~ with momentum set to 0.9. We
consider two metrics, one is the SSL loss throughout the single-pass training on
the video stream, and the downstream task accuracy. We compare ASO with the
approaches mentioned in Section Note that MAG and AdaGrad also adapt
the learning rate, while MAG selects batches of variable size 27, where we limit
J to the interval [1, 8] considering the memory limitations.

Datasets. We consider UCF101 |68] which is an action recognition dataset.
It contains about 13,000 videos belonging to 101 classes. Since these videos are
small in temporal scale, we concatenate them in a class-incremental fashion,



Online Stochastic Optimization for Data with Temporal Dependencies 11

UCF SAYCam
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w
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Fig. 3: Online Self-Supervised Learning. Comparison between the SimCLR losses
of different approaches as a single-pass online training is performed on the USF101 [68]
and SAYCam [70]| datasets. ASO shows considerably quicker convergence rate com-
pared to the other approaches.

resulting in one continuous video stream. We utilize the same train-test split
described in [40]. Once the single-pass SSL training is concluded, we perform the
action recognition downstream task. We follow the protocol in [40] and extract
the average output representations from 8 consecutive frames of the same label
before feeding it to the linear probe.

Even though UCF101 is a viable option for composing a video stream, it lacks
natural distribution shifts among different videos. For that reason, we also use
SAYCam [70] as our next large-scale video dataset. SAYCam contains videos
collected from cameras head-mounted on three children, S, A, and Y, from 6
to 32 months, recorded for about 1 to 2 hours per week. This results in videos
consisting of natural distribution shifts. Among these videos, S is the only video
that is heavily annotated, and therefore, we only use S in this study. We choose
image classification as our downstream task on this benchmark, where we utilize
the class annotations proposed in [55].

Comparative Analysis on Online Self-Supervised Learning. We con-
duct online self-supervised learning on above-mentioned real-world datasets and
compare against the following approaches: SGD (baseline), AdaGrad [19], and
MAG |18]. Here, we should note that training is done in a single-pass, meaning
that the models see an instance only once in these runs. For each experiment we
perform 5 runs and show means and standard deviations of the SSL losses. As il-
lustrated in Figure[3] ASO converges significantly faster compared to the others.
We observe SGD progressing towards convergence relatively slowly compared to
the others. Conversely, AdaGrad seems to outperform SGD and MAG although
the difference between MAG and AdaGrad is minimal as they both share similar
optimization strategies. While the others plateau very quickly, ASO continues
to show a decreasing error rate throughout the stream showcasing its ability to
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Fig. 4: Offline Downstream Accuracy. Offline downstream evaluation on UCF101
[68] and SAYCam |70] datasets at different time-steps during the single-pass online
self-supervised training. Downstream task performance of ASO consistently shows im-
provement over the others.

Table 2: Downstream Evaluation under Barlow Twins. Downstream evaluation
under Barlow Twins [73] online SSL training. The numbers on UCF101 [68] represent
the downstream evaluation on action recognition, whereas SAYCam [70] numbers rep-
resent the downstream performance on a classification task. Bold suggests best, and
underline suggests second best.

Methods (BT training)
SGD [AdaGrad [19]] MAG [18] | ASO
UCF101 [68] 19.904 22.918 23.447 28.099
SAYCam 70| 26.333 ‘ 29.332 ‘ 30.034 ‘ 31.733

Datasets

keep learning as more data becomes available. In general, ASO shows its ability
to learn from non-Markovian data as well, while others fall short in this regard.
A trend we notice is that UCF101 [68] experiments show generally slower
convergence compared to the experiments on SAYCam. One explanation for
such phenomena would be the varied distribution of UCF101 as it contains many
different action sequences from various domains, making it difficult to converge
in merely one pass. On the other hand, SAYCam [70] is a natural dataset that
is reminiscent of the spirit of curriculum learning [69], in which children explore
very limited items that might be revisited during the same stream, with more
complex future explorations, making it somewhat easier to converge.
Comparative Analysis on Offline Down-Stream Performance. We
perform a downstream offline evaluation on UCF101 and SAYCam to exploit
the learned representations of ASO, and compare against the others. We eval-
uate each approach at different stages as they learn by progressively ingesting
a continuous stream. Essentially, we perform downstream evaluation when the
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Fig. 5: Drop Rate Distribution. Drop rate distribution on UCF101 @ and SAY-
Cam [IE] datasets. The distribution of the drop rate x remains within the bounds of
[0,50] for both datasets.

approach has learned from 10% of the stream, then 20%, and so on, up until it
has seen the whole stream, and that is where we evaluate the final model. Each
downstream evaluation is performed offline and evaluates the self-supervised rep-
resentations learned by the model up to that point. Here, the backbone remains
frozen and only the linear probe is learned using a standard SGD optimization
strategy. We set the learning rate to 10~2, momentum to 0.9, and batch size to
256. We report the best accuracy after training the linear probe for 800 iterations
for UCF101, and 25 iterations for SAYCam.

Figure |4] describes the performances of ASO, SGD, AdaGrad, and MAG. On
the experiments on UCF101, we notice that SGD does not improve performance
as more temporally correlated samples become available. Although AdaGrad
and MAG show increase in performance over time, ASO shows a significantly
higher performance gain. Additionally, ASO appeared to continually get better at
downstream tasks, whereas others plateau after observing 50-60% of the samples.
We observe a similar trend in our experiments on SAYCam. We evaluate ASO
also with Barlow Twins (BT) to validate its applicability with other SSL
approaches. Table [2[ shows similar trends as observed in training with SimCLR
where ASO outperforms others in relvant downstream tasks. This confirms
the superiority and the adaptability of ASO in terms of online self-supervised
representation learning from video streams.

Ablation on Drop Rate. Since a core contribution of ASO is its adaptabil-
ity towards unknown and variable mixing times, which is a direct consequence
of detecting the optimal drop rates of the time dependent streams, we perform
an extensive analysis on various fixed drop rates and compare them with, what
we confirm to be, the upper-bound given by the ASO. First, we collect the best
drop rates at each time-step of ASO training to determine the number of times
those drop rates have been optimally used for training. Figure [5] shows the his-
tograms representing the drop rate (k) distributions on both UCF101 and
SAYCam [70] datasets. They show that for any given dataset sy ax has an
upper-bound of 49 while 45 was the most used drop rate. Therefore, in Fig-



14 S. Patel, R. Zaveri, S. Chambers et al.

UCF101 (SimCLR) SAYCam (SimCLR)

~40- 40-
9
o
338 38
2 0
3 ©
<%36— 536
S ASO Accuracy g
5 34 TTTTTTTTTTTTTTTTTTToTooooommmmmmmm e c 34-
g S
2 ©
§ 32" 232 ASQAccuracy
e a
c
530 £ /\’_\/\,/\o\
< £
£28 £ 28
£ o
©26 26
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Drop Rate k Drop Rate k

Fig. 6: Drop Rate Ablations. Drop rate ablations on UCF101 |68] and SAYCam |70]
datasets. The larger drop rates, x, show improved accuracies yet underperform ASO.

ure [6] we evaluate a range of fixed ’s in the interval [5,50]. We notice that as
the drop rate k increases, the downstream accuracies also increase. Additionally,
even though 45 appeared to be the best drop rate, the performance does not
necessarily improve significantly at that fixed drop rate, as a big portion of the
samples have many different optimal drop rates. This confirms the significance
of a framework like ASO, which adapts to the current mixing conditions, which
are unknown, and unforeseeable in real-world time dependent data streams.

6 Conclusions

We present Adaptive Stochastic Optimization (ASO), a framework for learning
from temporally dependent data streams. Differently from current approaches,
no assumptions are made on the prior knowledge and statistics of the stream.
This allows to blindly apply the approach to any data stream and maximize
the ability to learn from a single-pass. This is particularly useful for an agent
operating in the open-world processing time dependent and non-stationary data.
We demonstrated the use of ASO in controlled conditions with synthetic data,
where we achieve significant convergence improvement compared with the base-
line SGD algorithm, but also AdaGrad, and the adaptive MAG. Similarly, using
real-world video data, we have shown that ASO significantly improves upon the
compared approaches in two SSL tasks, and two downstream tasks. Although
ASO enables fast adaptability to the current conditions, it does not prevent
forgetting prior knowledge.
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