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The proliferation of Artificial Intelligence (AI) has revolutionized the healthcare domain with technological
advancements in conventional diagnosis and treatment methods. These advancements lead to faster disease
detection, and management and provide personalized healthcare solutions. However, most of the clinical Al

Keywords:
Ar{ivf?cial intelligence methods developed and deployed in hospitals have algorithmic and data-driven biases due to insufficient
Trustworthy Al representation of specific race, gender, and age group which leads to misdiagnosis, disparities, and unfair

Bias outcomes. Thus, it is crucial to thoroughly examine these biases and develop computational methods that can
mitigate biases effectively. This paper critically analyzes this problem by exploring different types of data and
algorithmic biases during both pre-processing and post-processing phases to uncover additional, previously
unexplored biases in a widely used real-world healthcare dataset of primary care patients. Additionally,
effective strategies are proposed to address gender, race, and age biases, ensuring that risk prediction outcomes
are equitable and impartial. Through experiments with various machine learning algorithms leveraging the
Fairlearn tool, we have identified biases in the dataset, compared the impact of these biases on the prediction
performance, and proposed effective strategies to mitigate these biases. Our results demonstrate clear evidence
of racial, gender-based, and age-related biases in the healthcare dataset used to guide resource allocation for
patients and have profound impact on the prediction performance which leads to unfair outcomes. Thus, it
is crucial to implement mechanisms to detect and address unintended biases to ensure a safe, reliable, and
trustworthy Al system in healthcare.

Fairness

1. Introduction

The widespread use of Artificial Intelligence (AI) technologies in
data-driven decision-making systems has become increasingly popular
because of their remarkable predictive capabilities. These systems have
made significant advancements across various sectors, specially in the
field of medicine. While these Al-based systems are effective in making
important life-changing decisions, it is of the utmost importance to
ensure that these decisions do not reflect discriminatory behavior to-
wards certain individuals or groups. Recent findings of Al applications
in medical field indicate that AI can lead to both biased, and erroneous
decisions with complete lack of transparency in sensitive safety-critical
scenarios, while potentially enhancing already existing biases against
marginalized groups and exacerbating inequities [1]. This has raised
concerns among clinicians, policymakers and patients, and hence re-
sulted in a decline in AD’s trustworthiness and commercialization of
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these systems despite it is predictive power [2]. Therefore, it has
become essential to make these systems safe, reliable, and trustworthy
in order to utilize the effectiveness of Al technologies in full capacity.
Recently, several requirements related to transparency, ethics and legal
issues, such as explainability, accountability, reliability, data privacy,
and fairness, have been proposed in this direction to make these sys-
tems trustworthy. In addition, researchers in the field have developed
a wide variety of fairness-enhanced classifiers and fairness matrices in
traditional machine learning and deep learning setting to address these
issues. Nevertheless very few such techniques have been translated into
the real-world practice of data-driven decisions [3].

Existing clinical AI methods are often biased to specific ethnic
groups or subpopulations in their predictions or mirror human biases in
decision making. These biases can be categorized into data-driven bias
and algorithmic bias. Data-driven biases [4] occur when the data do not

Received 6 October 2024; Received in revised form 13 February 2025; Accepted 14 February 2025

Available online 26 February 2025

2352-9148/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).



V. Gupta et al.

reflect the true distribution of population including enough samples for
a specific ethnicity/race [5], data quality considerations (e.g., data er-
rors and omissions in the original data entry process, non-standardized
data, lack of metadata, inaccurate data annotation), which affects data
training and biased predictions. However, algorithmic bias [6] occurs
when algorithms have unfair outcomes due to their training on the data
reflecting inherit bias that exist in the history of our world (i.e., societal
prejudices, power imbalances), class imbalance, non-inclusion of some
variables such as age, sex, socioeconomic status, social determinants of
health factors (SDOH) etc.

Although there are some works [7-13] done in identifying and mit-
igating bias in healthcare datasets, the thorough assessment of fairness
and biases in these data and models is still lacking. These biases can be
devastating for an Al-based system if gone unchecked. Therefore, it is
essential to thoroughly examine these issues and create computational
methods that can analyze and address biases effectively. Due to the
greater need to develop trustworthy Al systems and minimize harm
due to existing biases in the dataset and algorithms, it is crucial for
guaranteeing that the algorithms perform consistently and accurately
across different patient populations. Furthermore, understanding these
biases can help pinpoint their sources and develop strategies to address
them.

The objective of this paper is to explore different types of biases
in the dataset and algorithms, identify the potential features that are
the sources of bias in the outcomes, propose solutions to mitigate these
biases, and finally compare the effect of biased and unbiased data and
algorithms on the predictive performance. The comparison of biases
during pre-processing, in-processing, and post-processing is crucial to
get a complete picture of this problem in a complex healthcare domain.
Thus, we critically analyze this problem in this paper with detailed
description of the data and algorithmic biases and demonstrate that
using an open-source healthcare dataset [14] and applying a widely
used algorithmic fairness tool (Fairlearn) developed by Microsoft [15].
Our major contributions in this paper can be summarized as follows:

1. Revisiting a widely used real-world healthcare dataset of pri-
mary care patients and thoroughly examining various types of
data and algorithmic biases during both pre-processing and post-
processing phases to uncover additional, previously unexplored
biases.

2. Proposing effective strategies to mitigate gender, racial, and
age biases, ensuring that the risk-prediction results are fair and
unbiased.

3. Leveraging an open-source algorithmic fairness tool (Fairlearn)
to identify and mitigate biases in the dataset and evaluate the im-
pact of these biases on risk prediction through various evaluation
metrics.

4. Providing valuable practical insights that can benefit computer
scientists and healthcare professionals working in the area of Al
in healthcare.

The rest of the paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes the dataset followed by data description
and analysis models in Sections 4 and 5. Section 6 describes the results
and Section 7 concludes the paper.

2. Related work
2.1. Al fairness tools to mitigate bias

There are several Al fairness tools exist in the research community.
These tools are used to identify, measure, and mitigate bias in the
datasets. These tools also provide features to compare the impact of
these biases on the predictive outcomes. Below are some of the major
tools used in the industry and research community:
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IBM’s Al Fairness 360 Toolkit: It is a comprehensive Python
open source toolkit focusing on technical solutions through fair-
ness metrics and algorithms to mitigate bias in datasets at the
pre-processing and model training stages [16].

Aequitas is an open-source Python library, designed to enable
developers to test ML models for a list of bias and fairness metrics
in relation to multiple population sub-groups [17].

Google’s What-If Tool: This is an open-source application that let
users to explore a models’ performance on a dataset, including
examining several preset definitions of fairness constraints such
as, equality of opportunity. This tool is interesting as users can ex-
plore as well as visualize counterfactuals against different subsets
of the same input data [18].

Microsoft’s fairlean.py: This is Python package developed by
Microsoft that contains numerous algorithms to mitigate ‘“unfair-
ness” in supervised machine learning [15].

2.2. Bias identification and mitigation in healthcare

Recently, significant efforts have been made to identify and mitigate
bias in healthcare datasets [7-13]. There are many studies associated
with the classical Framingham risk score [19] which is developed
based on the data obtained from the Framingham Heart Study [7].
The Framingham risk score is a risk prediction algorithm developed to
estimate an individual’s 10-year cardiovascular risk, which was further
refined in 2008 by incorporating additional cardiovascular conditions.
Careful examination of the Framingham risk score revealed that it
is biased towards certain races and ethnicities [20]. Predicting the
risk of cardiovascular events in nonwhite populations using data from
the Framingham Heart Study [7] leads to biased results, causing both
overestimation and underestimation of associated risks [8]. This study
is similar to ours as it is associated with the bias examination of
risk-prediction algorithms.

Dermatology algorithms are found biased towards fair-skinned pa-
tients which leads to biased results as shown in [9]. Age and sex
differences are reported in chronic conditions such as diabetes, car-
diovascular disorders, neurological diseases [10], cancer [11], mental
health disorders [12], and autoimmunity [13] for algorithmic bias.

There are some works done in mitigating inherent biases in the
healthcare datasets [21-26]. Pre-processing mitigation approaches in-
cluding reweighing, resampling, and blinding are used in [21-24] to
mitigate racial, label, and systematic biases in the healthcare datasets.
In-processing and post-processing approaches such as dynamic reweigh-
ing and transformation are used in [25,26] to mitigate systematic and
racial biases.

Obermeyer’s study [14] is a classical study examining racial bias
in risk prediction algorithms. This study discovered disparities in an
automated screening algorithm implemented across multiple healthcare
centers and utilized in health insurance plans. The algorithm used to
predict risk underestimated the risk for Black patients compared to
White patients. Our work in this paper revisits the dataset used in [14]
however the goal differs from [14]. Authors in [14] focused on identi-
fying the label bias in the risk-prediction algorithm and demonstrated
it with their analysis results. However, we examine biases in the data
and algorithms through detailed exploratory and statistical analysis,
highlight disparities in the risk prediction model outcomes, and address
these biases using various techniques.

One of the major challenges in the modern application of artificial
intelligence (AI) in healthcare is the presence of bias in the datasets
used to train these models. These datasets often underrepresented
minority groups, including women[27], people of color [28], and in-
dividuals from lower socioeconomic backgrounds [29]. Such skewed
representations can result in Al models that produce inaccurate pre-
dictions and perpetuate disparities in healthcare outcomes for these
populations. Although it is widely acknowledged that Al models can



V. Gupta et al.

inherit biases from their source datasets, there remains a lack of ro-
bust methods for quantifying these biases. Our review revealed that
while many studies discuss the presence of bias, they frequently fail
to report tools or metrics used to measure it [30]. This absence of
quantitative evidence makes it more difficult to assess, address, and
ultimately mitigate these biases [31]. Moreover, both academic and
industry stakeholders often require demonstrable evidence to invest in
efforts to improve fairness in Al systems. The ability to quantify bias
not only substantiates its existence but also underscores the urgency
of implementing mitigation strategies. Several studies also emphasize
the need for consistent standards to evaluate the performance of Al
algorithms and the diversity of datasets.

In addition to the scarcity of quantitative methodologies, there is
limited exploration of how multiple forms of bias intersect within a
single Al model or dataset. Most studies tend to focus on isolated biases,
such as racial or gender bias, without addressing the co-occurrence
of multiple biases — such as race, age, and gender — within a single
dataset [27,30,31]. Addressing these intersectional biases is critical for
understanding their compounded effects on vulnerable populations. A
comprehensive approach to bias mitigation is necessary to ensure that
Al models used in healthcare applications do not exacerbate existing
inequities, but instead promote equitable and accurate outcomes for
all individuals.

3. Materials and methods

This section provides a comprehensive overview of the study design.
Initially, we will present the dataset used and the preprocessing pro-
cedures to prepare the data. Subsequently, the bias identification and
mitigation techniques will be briefly discussed, followed by the fairness
evaluation metrics used in the paper.

3.1. Dataset and preprocessing

This paper utilizes the dataset from Obermeyer paper [14], a well-
known study on the identification of racial bias in the risk-prediction
algorithms used to identify the primary care patients requiring special
care programs. Since the data used in the study [14] are protected
health information, the authors provided a synthetic version of dataset
with similar characteristics. The dataset consists of primary care pa-
tients enrolled in risk-based contracts from 2013 to 2015. This dataset
is of 48,784 patients with 160 variables. The key attributes included are
demographic variables, algorithm generated risk scores, cost variables,
medication variables, and various health metrics.

The variables were grouped into categories as shown below.

Variables at time 7: A vector of “outcome” for a given calendar
year (7): cost, health, program enrollment, and the commercial
risk score.

Demographic variables: This consists of race, age, and gender
of the patients.

Comorbidity variables at time ¢ — 1: A vector of indicators for
specific chronic comorbidities (illnesses) that were active in the
previous year, and their sum.

Cost variables at time ¢ — 1: Costs claimed from the patients’
insurance payer, rounded to the nearest $100 and broken down
by type of cost, over the previous year.

Biomarker/medication variables at time ¢ — 1: A set of indi-
cators capturing normal or abnormal values (or missingness) of
biomarkers or relevant medications, over the previous year.

There are a total of 9 demographic variables, 34 comorbidity vari-
ables, 13 cost variables, 94 biomarker/medication variables, and 10
variables at time z. We pre-processed the data after extraction which
includes data cleaning, column renaming, and sorting, of the original
dataset to streamline the analysis process. Each demographic analysis
involved preprocessing datasets to ensure data completeness, with
imputation for missing values.
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3.2. Types of biases in the machine learning workflow

We have employed various bias identification and mitigation tech-
niques in this paper to evaluate the effectiveness of identifying and
mitigating bias in the given dataset. The bias identification can be
categorized into pre-processing, in-processing, and post-processing bi-
ases inherent in the data and models during the data analysis. This
paper only focuses on the pre-processing and post-processing bias
identification and mitigation.

3.2.1. Pre-processing bias

This is a type of bias that arises usually earlier in the machine
learning process usually during the pre-processing stage. The pre-
processing bias typically stems from how the data is collected and its
intended usage. The lack of carefulness and attentiveness to details
when collecting data and going through pre-processing methods can
lead to devastating outcomes for protected attributes such as race,
age, and gender and have devastating outcomes for specific groups.
Identifying biases at the pre-processing stage requires detailed data
description and visualization of variables during the exploratory data
analysis to determine if any variable affects the machine learning model
outcome due to skewness or errors.

3.2.2. Post-processing bias

These are the type of biases that arises usually during post-
processing stages of the machine learning process. The post-processing
biases arise after model training is complete and act on the results.
The post-processing biases come under the category of algorithmic bias
which in a modern-day processes can be a challenging task as it requires
interpretability of models and a collaboration between the Al-designers
and end users. Identifying these biases requires a thorough check of
the models and their outcomes. If the pre-processing biases are not
mitigated, they propagate to the models which leads to algorithmic
bias.

3.3. Bias identification and mitigation techniques

We have employed several bias identification and mitigation tech-
niques to identify and mitigate the biases in the pre-processing and
post-processing stages of ML workflow. Some of the techniques are
described in detail below:

3.3.1. Overall baseline model

We aimed to develop an overall baseline model which assumes that
there is no bias in the data and models. To achieve this, we initially
trained the model on the complete training dataset regardless of race,
age, and gender and tested it to determine the effectiveness of the
model. This provides us a baseline model to compare and help in
identifying the inherent algorithmic bias.

3.3.2. Group-specific models

This approach considers training the individual models for each
protected group (i.e., race, age, gender) and testing it within the group
and on other groups to identify the fairness in the models.

3.3.3. Data balancing and adjustment factor

This approach is used to mitigate the inherent biases in the dataset.
The data balancing approach balance the number of instances of ma-
jority and minority protected groups to mitigate the bias and improve
the performance on the minority groups. Moreover, we also applied an
adjustment factor for the protected groups to reduce the biases in the
dataset.

In this paper, we have used FairLearn [15] framework, a Python
library designed for identifying and mitigating bias in machine learning
model building. This library provides us the tools to quantify potential
biases and apply strategies to mitigate them. The process involved
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several key stages of detection of bias, assessment of its impact, and the
implementation of bias mitigation strategies. When detecting bias with
FairLearn, we used the library’s Metric Frame function in our model’s
prediction.

3.4. Machine learning models

The paper collectively analyze disparities in predictive modeling
outcomes across gender, age, and race using machine learning algo-
rithms and tailored experimental setups to detect biases and evaluate
fairness. The primary algorithms implemented include Linear Regres-
sion for its simplicity and interpretability, Support Vector Regression
(SVR) for modeling non-linear relationships, and the Gradient Boosting
Regressor, which iteratively refines predictions by minimizing errors.
These algorithms were chosen for their robustness in handling struc-
tured data and their ability to highlight performance variations across
demographic groups, including gender, age, and race. The details of the
machine learning models used in the paper are as follows:

» Support Vector Regression (SVR): SVR predicts continuous val-
ues by fitting a hyperplane that minimizes error within a tol-
erance margin (epsilon). It balances complexity and accuracy
by penalizing points outside this margin. Using kernel tricks,
SVR can handle both linear and non-linear relationships. While
it performs well on small or complex datasets and is robust to
outliers, it can be computationally expensive and sensitive to
hyperparameter tuning.

Linear Regression: Linear regression models the relationship
between independent variables and a continuous dependent vari-
able by fitting a straight line. It minimizes the sum of squared
errors, making it simple, interpretable, and computationally effi-
cient. However, it assumes linearity, independence, and normal-
ity, which limits its performance with non-linear or noisy data. It
is widely used for straightforward predictive tasks like forecasting
or trend analysis.

Gradient Boosting Regression: Gradient Boosting Regression
builds an ensemble of decision trees sequentially, with each tree
correcting the errors of the previous one to minimize a loss
function. It handles linear and non-linear relationships, excels
at complex problems, and achieves high accuracy with proper
hyperparameter tuning. However, it is computationally intensive
and prone to overfitting without regularization, making it ideal
for tabular data and high-stakes predictions.

4. Experiments and results

This section provides the experimental results to evaluate the ef-
fectiveness of our approach in identifying and mitigating biases in the
dataset.

4.1. Experimental setup

We applied our approach to the healthcare dataset (i.e., details are
in dataset section). We have used Python Jupyter notebooks for our
analysis that would serve to house all of the processes that we use on
the dataset. We have done experiments in Fairlearn framework [15],
a Python library designed for understanding and mitigating bias in
machine learning model building, to evaluate the effectiveness of our
approach. We did our experiments in a system with Intel Core -i7-
8550U CPU 2 GHz processor, 16 GB RAM 8 cores and 1TB of Hard
disk with Windows 10 OS. We used Python 3.10, Anaconda Navigator
2.2.0., and Fairlearn version 0.10 for the experiments.

4.2. Bias identification in the pre-processing stage

This section describes the visualization approach to identify biases
in the given dataset with critical analysis and descriptive statistics.
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Fig. 1. Race and gender distribution.
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Fig. 2. Age distribution.

4.2.1. Race distribution

The distribution shown in Fig. 1 (a) reveals a notable disparity in the
dataset, with a significantly larger proportion of individuals identified
as white (43,202 or 88.6%) compared to those identified as black
(5,582 or 11.4%). This distribution highlights a significant overrepre-
sentation of white individuals compared to their black counterparts in
the dataset. Such imbalances in sample sizes across racial categories
could potentially influence the analysis and interpretation of outcomes
derived from the dataset.

4.2.2. Gender distribution

The distribution shown in Fig. 1 (b) indicates a higher representa-
tion of individuals identified as Female in the dataset compared to those
identified as Male. Specifically, there are 30,763 individuals identified
as Female, comprising 63.1% of the dataset, whereas there are 18,021
individuals identified as Male, constituting 36.9% of the dataset. This
shows a disparity in the population considered in the dataset for the
healthcare risk scores and costs.

4.2.3. Age distribution

Fig. 2 shows the age distribution of individuals in the dataset. We
have five different age groups in the dataset (i.e., 18-24, 25-34, 35-44,
45-54, 55-64, 65-74, and 75+). We have combined the age groups into
three categories i.e., 18-24, 25-54, 55+. Fig. 2 shows the percentage of
people in the age group of 18-24, 25-54, and 55+ as 3.7%, 54.9%, and
44.3% respectively. The distribution indicates that the dataset represent
a population that is predominantly composed of 25-54 age group and
55+ years adults, with a smaller representation of 18-54 years age
group adults.

This distribution could potentially impact any analysis or conclu-
sions drawn from the dataset, as it may not be representative of a
broader population with a more balanced age distribution.

4.2.4. Risk score and costs by race

The mean and median risk scores for individuals of the black race
(5.37 and 3.02, respectively) surpass those of the white race (4.27 and
2.87, respectively), suggesting that, on average, individuals from the
black community tend to achieve higher risk scores compared to their
white counterparts. Moreover, the standard deviation of the risk scores
among individuals of the black race (7.98) notably exceeds that among
individuals of the white race (5.10), indicating greater variability in
scores within the black community compared to the white community.
Similarly, the mean and median costs for individuals of the black race
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surpass those of the white race, implying that, on average, expenses
associated with individuals from the black community are higher than
those from the white community. Additionally, the standard deviation
of costs among individuals of the black race (25,068.99) notably ex-
ceeds that among individuals of the white race (16,849.42), signifying
greater variability in costs within the black community compared to
the white community.

In summary, individuals from the black race tend to exhibit higher
risk scores and incur higher costs on average compared to individuals
from the white race for healthcare expenses. Furthermore, there is
greater variability in both risk scores and costs among individuals from
the black race compared to those from the white race, as evidenced by
the higher standard deviations.

4.2.5. Risk score and cost by gender

The relatively high standard deviation for both genders suggests
a widespread or variability in scores around the mean, indicating
significant diversity within each gender group. Females exhibit a higher
mean cost compared to males, with females averaging approximately
$8,004, while males average $7,071. This disparity in mean cost may
reflect variations in utilization or expenditure patterns between genders
within the context under study.

Moreover, the high standard deviation for both genders in terms
of cost indicates considerable variability or dispersion in the costs
incurred within each gender group. Although there are differences
in mean scores and costs between genders, these variances are not
dramatic. However, the notable difference in mean costs may warrant
further investigation into potential contributing factors. Exploring fac-
tors influencing variations in costs between genders and investigating
outliers impacting the distribution of scores and costs could be potential
areas for further analysis.

4.2.6. Joint distribution of “race” and “gender” analysis

Among the dataset’s demographics, there are 3686 black females
and 1896 black males, while 27,077 white females and 16,125 white
males are accounted for. In the black racial category, females out-
number males, with 3686 females compared to 1896 males. Similarly,
within the white racial category, there is a notable female majority,
with 27,077 females and 16,125 males. These findings reveal a gender
imbalance within both racial categories. For instance, in the black
racial category, there are approximately two females for every male,
and in the white racial category, there are roughly 1.7 females for
every male. These gender imbalances within racial categories may
point to underlying socio-cultural or demographic influences affecting
healthcare utilization, program enrollment, or dataset participation. To
ensure equitable representation and access to resources and services,
further investigation into the factors driving these gender disparities,
such as healthcare accessibility, participation rates, or societal norms,
is needed.

4.2.7. Joint distribution of “race”, “age”, and “gender” analysis

A combined analysis of all the demographic or protected attributes
(i.e., race, age, gender) indicates that the most common combination in
the dataset consists of white females in the age group of 25-54 years.
The percentage of individuals matching this combination is around
30%. This suggests a potential bias in the dataset with respect to the
individual as well as the combined demographics. This also suggest a
potential sampling bias towards white females of 25-54 years age group
in the data collection process.

Overall, these pre-processing results suggest that there is a race,
age, and gender bias in the dataset which indicates that we need to
consider these biases at an early stage and might need methods to
mitigate these biases initially. Sampling/selection bias is a common
issue in most of the dataset due to under-representation of a particular
demographic subgroup. These biases lead to class imbalance problem
which will produce incorrect predictions. If identified early, there is a
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Table 1

Racial bias identification results.
Model type LR SVR GBR
Overall Baseline Model 11.7 18.0 9.5
Black (tested on Black) 11.7 18.0 9.5
White(tested on White) 10.8 15.8 8.9
Black (tested on White) 21.2 41.5 19.3
White(tested on Black) 12.3 15.7 9.8
Overall (tested on Black) 19.2 38.1 12.0
Overall(tested on White) 10.2 14.5 7.3

potential to improve the outcomes. To alleviate this problem resam-
pling methods [32], and data augmentation techniques [33,34] are
used. We can use data augmentation techniques such as ¢cGAN [35]
to generate synthetic data for the minority attribute, reduce bias and
develop trustworthy models that are generalizable.

4.3. Bias identification in the post-processing stage

Fairness assessment is conducted using Fairlearn. We have done
experiments to identify racial, gender, and age group biases in the
dataset. One of the key steps in detecting bias involve identifying the
sensitive attribute and target variable. The sensitive attributes are age,
race, and gender and the target variable is the risk score in the dataset.
Preprocessing tasks include handling missing values and categorical
variable encoding to optimize the set for modeling. Experimental sce-
narios for the bias identification include: 1) Overall baseline model; 2)
Group-specific models (i.e., training and testing on specific subgroups
of sensitive attributes). All of our experiments use a train-test split of
80-20 where 80% data is used for training and 20% for testing. The
goal of the predictive model in the experiments is to predict the risk
scores of primary care patients and compare the outcomes using various
evaluation metrics. The evaluation metric used in the paper is Mean
squared error (MSE) values. To ensure consistency in the results, the
dataset is shuffled for 5 times, and average MSE values are reported
for each experimental scenario.

4.3.1. Models results for racial bias identification

Table 1 summarizes the racial bias identification results. We built
three models including linear regression (LR), support vector regression
(SVR), and gradient boosting regression (GBR) for the experiments for
seven scenarios as shown in the Model Type column of Table 1. To
examine the racial bias of each model, we compare the model trained
on a mixed racial dataset (as shown in the overall baseline model)
with models trained exclusively on Black group data and tested with
Black testing data, as well as models trained on White group data and
tested with White testing data. Moreover, the models trained on black
and white groups are also tested on their counterparts interchangeably.
Finally, models trained on overall training data (unbiased) are also
tested on the individual subgroups of race.

As shown in Table 1, First of all, when the model is trained on
all the training data (unbiased) regardless of race, the average MSE
values are 11.7, 18.0, and 9.5. These values are comparable to those
obtained when the model is trained exclusively on Black group data
and tested on Black group data. However, when the model is trained
on the white-group data and tested on the white-group, the MSE values
decreased to 10.8, 15.8, and 8.9 respectively. When the model is
trained only on the black-group data and tested on white, there is a
significant variation in the MSE values and among the highest for all
the other scenarios, however, when the model is trained on white-
group and tested on black-group, it reduces significantly. We see the
similar pattern when the models are trained on overall unbiased data
and tested on the Black-group data with the higher MSE values of 19.2,
38.1, and 12.0 respectively. Through these results, we confirmed that
the model trained on the white-group and tested on white-group has
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Table 2 Table 3
Gender bias identification results. Age bias identification results.
Model type LR SVR GBR Model type LR SVR GBR
Overall Baseline Model 11.7 18.0 9.5 Overall Baseline Model 11.7 18.0 9.5
Female (tested on Female) 109 16.3 9.3 Lower (tested on Lower) 8.8 12.8 6.8
Male (tested on Male) 13.9 22.6 11.7 Upper (tested on Upper) 15.5 21.1 13.1
Female (tested on Male) 11.7 16.8 10.2 Lower (tested on Upper) 9.9 15.5 9.4
Male (tested on Female) 14.3 23.4 12.6 Upper (tested on Lower) 22.6 31.0 16.8
Overall (tested on Female) 10.1 14.8 7.3 Overall (tested on Lower) 8.5 12.3 5.8
Overall (tested on Male) 13.0 20.8 8.3 Overall (tested on Upper) 14.8 23.6 10.3
Table 4
the best performance among all the other cases. For individual models, Intersectional bias identification results.
all models perform best for white race and worse for the black race. Race Gender Age-group LR SVR GBR
Overall the analysis of these results revealed significant disparities Black Female Lower 21.6 37.3 16.2
in the error rates between racial groups, indicating that there is a Upper 20.2 32.0 13.8
ial bias in th del’ dicti Al dient b £ del Male Lower 15.9 20.0 16.0
potential bias in the model’s prediction. Also, gradient boosting mode Upper 273 50.9 24.9
Pe':rforms best in all the scenarios. Falrlez'in s facﬂltat{on of these dispar- White Female Lower s 6.8 52
ities offered a clear measure of model fairness and laid the groundwork Upper 14.4 22.0 12.6
for our mitigation efforts. However the results suggest that the overall Male Lower 7.8 9.5 6.7
unbiased model is not a good indicator to identify biases in the dataset. Upper 19.0 30.0 13.3

The results are consistent with the existing work [14].

4.3.2. Models results for gender bias identification

Table 2 summarizes the gender bias identification results. The mod-
els are similar to the racial bias identification results. To assess gender
bias in each model, we compare the model trained with data from both
genders (as shown in the overall baseline model) with models trained
exclusively on male-group data and tested on male testing data, as well
as models trained on female-group data and tested on female testing
data. Moreover, the models trained on male and female groups are also
tested on their counterparts interchangeably. Finally, models trained
on overall training data (unbiased) are also tested on the individual
subgroups of gender.

As shown in Table 2, First of all, when the model is trained on
all the training data (unbiased) regardless of gender, the average MSE
values are 11.7, 18.0, and 9.5 respectively. For the model trained
on the female-group data and tested on the female-group, the MSE
values decreased to 10.9, 16.3, and 9.3 respectively. However, when
the model is trained on male-group data and tested on the male-group,
the MSE values increased to 13.9, 22.6, and 11.7 respectively. When
the model is trained only on the female-group data and tested on male,
there is a significant decrease in the MSE values, however, when the
model is trained on male-group and tested on female-group, it increases
significantly. We see the similar pattern when the models are trained
on overall unbiased data and tested on the female-group with the lower
MSE values of 10.1, 14.8, and 7.3 respectively. Through these results,
we confirmed that the model trained on the overall data and tested on
the female-group has the best performance among all the other cases.
For individual models, all models perform best for females and worse
for the male.

Overall the analysis of these results revealed significant disparities
in the error rates between the gender groups, indicating that there is a
potential bias in the model’s prediction. Also, gradient boosting model
again outperforms in all the scenarios. However, the results suggest that
the overall unbiased model is not a good indicator to identify biases
in the dataset. This suggests another demographic bias in the dataset
based on gender.

4.3.3. Models results for age bias identification

For the age-related bias, we have five different age groups in
the dataset (i.e., 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, and
75+). We combined the groups to create a new variable with two
groups(i.e., lower and upper age groups). The lower comprises of
patients with age groups between 18-54 including 18 and 54 years
people, however, the upper group consists of all people with age greater

than or equal to 55 years. Table 3 summarizes the age bias identi-
fication results. The models are similar to the racial and gender bias
identification results. o examine age bias in each model, we compare
the model trained with data from both age groups (as shown in the
overall baseline model) with models trained exclusively on data from
the lower age group and tested on lower age group data, as well as
models trained on data from the upper age group and tested on upper
age group data. Moreover, the models trained on lower and upper
groups are also tested on their counterparts interchangeably. Finally,
models trained on overall training data (unbiased) are also tested on
the individual subgroups of age.

As shown in Table 3, First of all, when the model is trained on all the
training data (unbiased) regardless of age, the average MSE values are
11.7, 18.0, and 9.5 respectively. For the model trained on the lower-
group data and tested on the lower-group, the MSE values decreased
to 8.8, 12.8, and 6.8 respectively. However, when the model is trained
on upper-group data and tested on the upper-group, the MSE values
are increased to 15.5, 21.1, and 13.1 respectively. When the model
is trained only on the lower-group data and tested on upper group,
there is a significant decrease in the MSE values, however, when the
model is trained on upper-group and tested on lower-group, it increases
significantly. We see the similar pattern when the models are trained
on overall unbiased data and tested on the lower-group MSE values of
8.5, 12.3, and 5.8 respectively. Through these results, we confirm that
the model trained on the overall data and tested on lower-group has
the best performance among all the other cases. For individual models,
all models perform best for lower group and worse for the upper group.

Overall the analysis of these results revealed significant disparities
in the error rates between the age groups, indicating that there is a
potential bias in the model’s prediction. Also, gradient boosting model
again outperforms in all the scenarios. However, the results suggest that
the overall unbiased model is not a good indicator to identify biases
in the dataset. This suggests another demographic bias in the dataset
based on age. In summary, the bias identification results suggest that
there are significant racial, gender, and age bias in the dataset.

4.3.4. Models results for intersectional bias identification

We have also analyzed the intersectional bias in the dataset by
considering all the sensitive variables (i.e., race, gender, age) together.
Table 4 summarizes the results of the intersectional bias identification.
On comparing the black female with the White female at same age
groups, the error rate of black female of lower age group (18-54 years)
is much higher than their white counterpart. Black female of lower age
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Table 5

Oversampling bias mitigation results.
Model type Avg. MSE values for GBR

Updated MSE Initial MSE % diff

Black (tested on White) 18.5 19.3 4.1
White (tested on Black) 9.9 9.8 -1.0
Male (tested on Female) 11.2 12.6 11.1
Female (tested on Male) 9.7 10.2 4.9
Lower (tested on Upper) 9.1 9.4 2.9
Upper (tested on Lower) 15.6 16.8 7.1

Table 6

Undersampling bias mitigation results.
Model type Avg. MSE values for GBR

Updated MSE Initial MSE % diff

Black (tested on White) 20.3 19.3 -5.1
White (tested on Black) 9.9 9.8 -1.0
Male (tested on Female) 12.0 12.6 4.8
Female (tested on Male) 9.8 10.2 3.9
Lower (tested on Upper) 8.4 9.4 10.6
Upper (tested on Lower) 16.0 16.8 4.8

group are incorrectly predicted for their risk scores at the rate of almost
3.72 times that of white female of same age group. Similarly, black
women of upper age group (55+ years) also have higher error rate as
compared to black women. However, on comparing the black males
of both lower and upper age groups with their white counterparts, the
error rates are still higher. This signifies that black females are unfairly
treated by this model. On comparing the black females with white
males, a similar pattern of high error rate is observed. However, there
is a significantly higher error rates in the risk score prediction for black
males as compared to white females and males. This signifies that black
males are also unfairly treated by the model. For the individual models
results, all the models have similar patterns of higher error rates for
black males and females of lower and higher age groups as compared
to their white counterparts. Overall the results of intersectional bias
suggests that Black males and females are an intersectional group that
is being unfairly harmed.

4.4. Bias mitigation in pre-processing stage

We have used oversampling and undersampling techniques for bias
mitigation in pre-processing stage. The oversampling technique over-
samples the minority group data to balance it with the majority group
however the undersampling approach reduces the majority group to
balance it with the minority group. Table V summarizes the oversam-
pling bias mitigation results. We run the experiments with the same
setting as in the bias identification however we report the results only
for the GBR model as it is the best performing model. As shown in
Table 5, the MSE values after racial bias mitigation are 4.1% lower
compared to the values before mitigation when the model is trained
exclusively on Black group data and tested on White group data.
However, when the model is trained on White group data and tested on
the Black group, the error rates increases. Similarly, when the model
is trained exclusively on male group data and tested on female group
data, there is a notable change in the error values, with a decrease of
up to 11.1%. Finally, there is a slight improvement in the MSE values
when the model is trained on lower-group data and tested on upper-
group data. However it reduces significantly when the model is trained
on upper-group data and tested on lower-group data.

Table 6 summarizes the undersampling bias mitigation results. As
shown in Table VI, the error rates increase after the racial bias mit-
igation. Thus, undersampling does not work well in the racial bias
mitigation. However, it works for the gender and age bias mitigation.
When the model is trained exclusively on male group data and tested on
female group data, there is a slight reduction in the error values with
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4.8%. However the reduction is 3.9% when the model is trained on
female group data and tested on male group. Finally, there is a notable
reduction of 10.6% in the MSE values when the model is trained on
lower-group data and tested on upper-group data. However there is a
slight reduction when the model is trained on upper-group data and
tested on lower-group data.

Through these results, we confirm that the mitigation strategies
applied at the pre-processing stage help in building a fair model.

4.5. Bias mitigation in post-processing stage

Based on the above results, there is a significant racial, gender, age
and intersection bias in the dataset. We have used adjustment factor
technique for bias mitigation in the post-processing stage. Conceptual-
izing a post-processing mitigation strategy tailored towards regression
tasks and the detected bias, adjustments are made specifically for the
‘black’ group, in an effort to align its performance more closely with
that of the ‘white’ group. These adjustments aimed to mitigate the
observed bias and enhance the model’s fairness of prediction, regardless
of racial group.

We have developed an adjustment factor dictionary that includes
factors assigned to both racial groups. These factors are determined
to align the MSE values of the Black and White groups more closely
with the MSE value of the overall baseline model, thereby reducing
the performance disparity between the biased and unbiased models.
An adjustment factor of 1.5 is applied to the White group to increase
the MSE values, as they are lower than the overall MSE. This results
in MSE values of 12.74, 13.3, and 10.5 for the linear regression, SVR,
and gradient boosting models, respectively. An adjustment factor of
—0.33 is applied to the Black group to decrease the MSE value, as it
is higher than the overall MSE. This results in MSE values of 20.79,
21.5, and 19.5 for the linear regression, SVR, and gradient boosting
models, respectively. These results indicate that while we attempt to
address the racial bias, this mitigation strategy does not fully eliminate
it. Further analysis is needed to definitively identify the most effective
mitigation strategy for these biases, which will be a focus of our future
work in this paper.

5. Discussion and conclusions

This paper aimed to perform a detailed analysis of different types
of data and algorithmic biases and their impact on the outcomes using
a case study of a widely used real-world healthcare dataset. We have
identified pre-processing and post-processing bias in the dataset which
leads to data and algorithmic bias. Through the experimental results
and evaluation, we can conclude that the dataset has racial, gender,
age, and intersectional bias. These biases not only lead to unfair out-
comes from the model but also introduce harm to specific demographic
groups (including historically marginalized groups (e.g., based on gen-
der, race, age). Based on the experimental results, we can infer that
checking for bias is necessary at every stage of the Machine learning
workflow starting from the data collection to the model building and
evaluation phases. Finally, we can deduce that racial biases lead to
health disparity that affect certain group of people in receiving access to
healthcare facilities and treatment for various serious health conditions.
The gender and age bias affect certain groups disproportionately. Based
on intersectional bias results, black male and females in the age group
of 18-54 and 55+ years are unfairly harmed and have higher error rates
in the risk score prediction as compared to their white counterparts.
This signifies that black groups are categorized in the incorrect risk cat-
egory due to which they get deprived of special government healthcare
programs.

Our results demonstrate clear evidence of racial, gender-based, and
age-related biases in the healthcare dataset used to guide resource
allocation for patients. These biases have the potential to lead to
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higher rates of misclassification, disproportionately affecting marginal-
ized communities. Such classification errors risk perpetuating existing
healthcare inequities by allocating fewer resources to underrepresented
groups while reinforcing systemic disparities. To address the adverse
consequences of these biases, we underscore the need for continued re-
search into sophisticated mitigation techniques. While existing toolkits
such as Fairlearn and IBM’s Al Fairness 360 provide valuable technical
solutions, these tools alone are insufficient. A critical, often overlooked
component is the integration of interdisciplinary expertise in clinical
practice, data science, and ethics to oversee the development and
implementation of these tools. This integration ensures that mitigation
strategies are not only effective but also aligned with ethical principles
and real-world clinical contexts. Furthermore, there is a pressing need
for robust policies and regulatory frameworks to govern the use of
Al in healthcare. These policies should establish clear standards for
fairness, accountability, and transparency in Al systems. Such measures
are crucial to prevent the deployment of biased algorithms and ensure
that Al-powered decisions benefit all patients equitably, regardless of
their demographic background.

A potential limitation of this study is that the study is conducted
on one healthcare-related dataset. This limitation is due to the un-
availability of healthcare datasets with characteristics to demonstrate
various types of biases and privacy issues. With more access, we could
conduct this experiment across a wide range of datasets and see how
bias arises in multiple instances. One way to address this limitation
is by enabling private sector entities to test their datasets using these
or similar fairness metrics and evaluate the results they obtain. We
will explore additional metrics to detect biases in the dataset and
experiment with other mitigation techniques in the future extension of
this work. Further validation on different types of dataset will also be
a part of our future work. There is also potential to create more com-
prehensive mitigation strategies by developing and testing mitigation
techniques that are more sophisticated to address the detected biases.
This includes exploring more algorithmic adjustments or fairness-aware
model training approaches. Interdisciplinary collaboration can also be
integrated into the bias mitigation process to provide deeper insight
into the ethical implications of various bias mitigation methods. This
would ensure that adverse effects are directed towards the intended
consumers of these models during testing. Addressing these areas of
work can advance the understanding of bias mitigation in Al models
used in healthcare, contributing to more equitable healthcare practices.

In conclusion, it is imperative to develop Al systems that are safe,
reliable, and trustworthy, while also implementing mechanisms for
continuous monitoring and evaluation to detect and address unin-
tended biases. We advocate for collaboration across sectors, bringing
together researchers, policymakers, clinicians, and ethicists to design
and validate mitigation strategies. This collaborative effort will create
a robust system of checks and balances, ensuring that Al technologies
do not exacerbate existing disparities but rather contribute to a more
equitable healthcare landscape.
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