
A Hierarchical Deep Learning Approach for
Predicting Job Queue Times in HPC Systems

Austin Lovell*
Department of Computer Science

Purdue University

Indiana, USA
lovella@purdue.edu

Philip Wisniewski*
Department of Computer Science

Purdue University

Indiana, USA
pwisnie@purdue.edu

Sarah Rodenbeck
Rosen Center for Advanced Computing

Purdue University

Indiana, USA
srodenb@purdue.edu

Ashish
Rosen Center for Advanced Computing

Purdue University

Indiana, USA
ashish@purdue.edu

Abstract—Accurate wait-time prediction for HPC jobs con-
tributes to a positive user experience but has historically been a
challenging task. Previous models lack the accuracy needed for
confident predictions, and many were developed before the rise
of deep learning.

In this work, we investigate and develop TROUT, a neural
network-based model to accurately predict wait times for jobs
submitted to the Anvil HPC cluster. Data was taken from
the Slurm Workload Manager on the cluster and transformed
before performing additional feature engineering from jobs’
priorities, partitions, and states. We developed a hierarchical
model that classifies job queue times into bins before applying
regression, outperforming traditional methods. The model was
then integrated into a CLI tool for queue time prediction.
This study explores which queue time prediction methods are
most applicable for modern HPC systems and shows that deep
learning-based prediction models are viable solutions.

Index Terms—High-performance computing, machine learn-
ing, operations research, neural networks, queue management,
performance optimization, computational efficiency, resource al-
location

I. INTRODUCTION

Accurate prediction of SLURM job start times in high-
performance computing (HPC) clusters enables users to op-
timize submissions and leads to a less frustrating user experi-
ence. Queue time can be an opaque issue to users, as queue
time can vary significantly between jobs, even when surface-
level job characteristics are similar. This issue is amplified
by the exponentially decreasing distribution of queue times,
where a substantial majority of jobs on the HPC systems we
investigated have a near-zero queue time, but some have days-
long queue times. In turn, this makes the relatively rare jobs
with notable queue times, which are the jobs where obtaining
an accurate queue time prediction would be most important,
difficult to isolate and model. We define queue time as the
delay in minutes between when a job is eligible to run and
when it starts running. We expect accurately predicting queue

*Both authors contributed equally to this research.

times will be of continued importance in HPC, especially as
demand for such systems increases, both regarding the number
of users accessing HPC systems and the scale of requested
jobs. This is especially important in domains involving ma-
chine learning and the training of deep neural networks, which
require heavy computing power. The increased demand and
usage will further complicate batch scheduler algorithms and
start time predictions, making accurate prediction a growing
problem.

Our study focuses on the NSF-funded HPC system Anvil,
which uses the SLURM scheduler configured with a fair share
policy for job management [1]. This adds an additional layer
of complexity compared to systems that do not employ a fair
share policy, as this makes it necessary to integrate features
relating to users and their history in some way. Anvil is
a primarily CPU-focused system with GPU capabilities. Its
resources are shared and divided among 11 separate partitions,
each with slightly different and often overlapping resources.
However, only seven partitions were used in the dataset for this
model, as the other four partitions are generally only used for
administrative testing. While the CPU partitions share nodes
with each other, the single GPU partition is isolated. The vast
majority of jobs are submitted to the shared partition, which
was the target of 68.95% of all jobs in the dataset.

We propose a queue prediction tool (TROUT) using hierar-
chical neural network models: a binary classifier for quick-start
predictions and a regression model for longer jobs. Quick-
starting jobs are defined as jobs that will spend less than ten
minutes in the queue, whereas longer jobs are anything else.
The dual model approach was selected to combat the issue
of skewed data. For inference, users can use a command-line
tool to submit their job’s ID, and TROUT will output a queue
time prediction.

The main contributions of this work are threefold. First,
we introduce a novel hierarchical deep learning approach
that addresses the challenge of highly skewed queue time
distributions in HPC environments. Second, we demonstrate

621979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00086

SC
24

-W
: W

or
ks

ho
ps

 o
f t

he
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
fo

r H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 N
et

w
or

ki
ng

, S
to

ra
ge

 a
nd

 A
na

ly
si

s |
 9

79
-8

-3
50

3-
55

54
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

SC
W

63
24

0.
20

24
.0

00
86

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

the power of extensive feature engineering, including the
use of interval trees, for efficient computation of overlap-
ping job resources. Finally, we comprehensively compare
our method against traditional approaches, offering valuable
insights into the factors driving performance improvements
in HPC queue time prediction. Despite the complexity of
SLURM job scheduling, which has limited the success of
previous queue prediction efforts, our study rigorously tests
past feature engineering practices on modern HPC workloads
and evaluates whether deep learning can deliver significant
accuracy improvements.

II. RELATED WORKS

While queue time prediction is a common problem in HPC
centers, few well-established best practices exist. Classical
methods, such as time-series modeling [2], [3], k-nearest
neighbors [4], and support vector machines [4], [5] were
some of the first methods tried and are still being used in
many projects. Machine learning methods, such as random
forest modeling [6], decision trees [7], and XGBoost-based
regression and classification models [8], have also been fre-
quently used for this task. However, while resource-efficient,
classical methods struggle to capture complex job and queue
interactions, and the low accuracy limits practical utility.

Past work suggests deep neural networks [5], [9] show
promise in tasks relating to job predictions. Though these
methods are more capable of identifying the complex patterns
needed for accurate queue or run-time predictions, over-fitting
and generalizability to unseen data can be a problem for such
models. In particular, these models lack transferability: they
do not include features relating to the size of the cluster or
resources remaining, and they also include users themselves
as features, meaning they are not fully robust to changes over
time.

Some previous studies have also included a separate model
for predicting the runtime of existing jobs, and they have
used the output of this model as a feature for the final
wait time prediction model. This is a useful feature for the
model to have, and it is one that most earlier works did
not include. [10]. Due to the amount of variance in terms
of requested time compared to actual used time for jobs
submitted to HPC clusters, it is important to have additional
information regarding when running jobs will finish. Knowing
approximately when nodes will be free is an essential facet of
wait time prediction, and this factored into our decision to
use a separate runtime prediction model for this study. The
runtime model used for this study is basic, and incorporating
a more robust and accurate runtime prediction model into a
queue time prediction tool is an interesting task that could be
explored further.

Feature selection and data splitting greatly influence model
efficacy. We adopt time-based splitting [10] to calculate the
queue at any given time and explore numerical and categorical
features to improve prediction accuracy. Time-based splitting
is a commonly used approach, as predicting the queue time
of jobs that are further ahead temporally when training and

Variable Max Mean Median Std Dev Count
Requested Time
(hr)

432 12.552 4 22.4 3,880,043

Runtime (hr) 330.3 1.9 0.03 7.7 3,880,043
Wasted Time (hr) 432 10.7 3.6 20.4 3,880,043
Jobs Submitted
By User

516914 839.1 43 11318.3 4,624

TABLE I
ANVIL HISTORIC JOBS STATISTICS

testing the model will more closely resemble the deployed
use case of predicting newly queued jobs.

To build our deep learning model, we refined ideas from ex-
isting research on feature selection and engineering, incorpo-
rating a hierarchical structure that addresses both classification
and regression, thus reducing overfitting. Our model integrates
dynamic features reflecting the system’s current state and
recent history with innovative feature engineering that adapts
to changes in system configuration and user behavior.

III. METHODOLOGY

The data for this study were gathered using SLURM’s
historical job accounting data on Anvil. Data were taken from
September 2021 through May 2024 and included 3.8 million
jobs with features relating to jobs, the partitions they were
submitted to, the cluster itself, and user history.

These features were selected primarily to find which fea-
tures would be available for real-time jobs in the queue which
would not have access to other information, such as average
CPU usage. Additionally, the SLURM documentation writes
that “jobs are selected to be evaluated by the scheduler in
the following order: Jobs that can preempt, Jobs with an
advanced reservation, Partition PriorityTier, Job priority, Job
submit time, Job ID” [11]. Preemption, the most important
evaluation metric, depends on the resources requested and
available in the cluster. As part of the feature engineering
and experimentation process, we looked at additional features,
such as DateTime and measuring resources in CPU minutes.
These other features were then eliminated based on decreased
performance in conjunction with looking at SHAP values.
SHAP values are a method of assigning importance to each
feature of a model [12]. Features with a SHAP value closer
to 0 are less impactful on the model’s prediction and can be
removed. Some other features, such as day, month, and year,
were removed due to author discretion and concern over the
model not learning actual patterns of the SLURM scheduler
and instead overfitting to arbitrary patterns that may not apply
to jobs when deployed for real-world use. The most impactful
features included in the final model were the amount of CPUs
being used in running jobs by partition, the memory requested
of jobs in that partition’s queue at the time of submission, the
time limit of the requested job, and the priority of the requested
job upon submission to the queue.

Next, this raw data was used to create additional features
regarding the resources requested by other running jobs and

622

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

jobs in the queue at the time of eligibility. We engineered
features such as the amount of resources currently being used
by running jobs and the amount of resources requested by
jobs in the queue, as seen in Table 2. Eligibility was used
instead of submit time as some jobs are not considered to start
until other criteria are met, such as when a user schedules
a job to begin at a specific time. These engineered features
included measurements of total resources used by pending
jobs, running jobs, and pending jobs with a higher priority
than the selected job within a given partition. User features
such as the amount of resources requested in the past day
were also calculated. Features were combined based on the
overlap between their eligibility and start time, calculated
using interval trees. Trees were separated into groupings of
100,000 jobs with an overlap of 10,000 jobs between trees
to reduce computation time. These trees were then merged
back together after finishing. To manage the highly skewed
nature of the data and reduce the input scale, a natural log
transformation was applied to all features. This transformation
helps normalize the data distribution, making the model’s
training process more efficient. A summary of the final features
used can be found in Table 2. Other combinations of features
were tested and compared against the model’s performance
but were found to detract from the model’s capabilities.

Scaling methods, such as min-max scaling or box-cox scal-
ing, were tested but found not to provide noticeable benefits in
performance. This data was then used in modeling to predict
the queue time of jobs. We conducted our data preprocessing
and collection using Bash scripting and Python programs,
utilizing a persistent PostgreSQL database hosted on the Anvil
composable subsystem of the cluster to store the data. Cluster
specifications, such as the number of CPUs, memory size,
and CPUs per node were also included as features. The
addition of these features makes TROUT specific to a specific
HPC system in some aspects; however, these statistics can be
easily modified without changing the overall architecture, and
retraining can be performed to make the models generalize to
other HPC systems.

Two densely connected feed-forward neural networks were
used to estimate job start time using these features. The first is
a fully connected binary classification model with two hidden
layers. This model predicts whether jobs will start in ten
minutes or less, while the second model is a regression model
that predicts the queue time in minutes for jobs predicted to
take more than ten minutes by the classification model, as seen
in Fig. 1 and Algorithm 1. The process was split into these
two models to allow for a greater focus on identifying long
queue times, as long queue times are more consequential to
users and thus more important to predict but represent a small
minority of data; in the raw data, 87% of jobs had a queue time
less than 10 minutes. First, identifying that the job will have
a significant (>10 minutes) queue time allows the regression
model to create more accurate predictions about the specific
queue time. The distribution of queue times can be seen in
Fig. 2 and job statistics can be seen in Table 1. Additionally,
Ten minutes was determined to be a reasonable threshold for

Feature Description
Priority SLURM Priority
Timelimit Raw Requested time limit (m)
Req CPUs Requested CPUs
Req Mem Requested memory (GB)
Req Nodes Requested number of nodes
Par Jobs Ahead Number of jobs in partition at time of eligibility

with higher priority
Par CPUs Ahead Sum of CPUs requested for jobs in partition at

time of eligibility with higher priority
Par Mem Ahead Sum of requested memory (GB) for jobs in

partition at time of eligibility with higher priority
Par Nodes Ahead Total nodes requested of all jobs in partition at

time of eligibility with higher priority
Par Timelimit Ahead Sum of requested wallclock for jobs in partition

at time of eligibility with higher priority
Par Jobs Queue Jobs in partition at time of eligibility
Par CPUs Queue Sum of CPUs requested for jobs in partition at

time of eligibility
Par Mem Queue Sum of requested memory (GB) for jobs in

partition at time of eligibility
Par Nodes Queue Total nodes requested of all jobs in partition at

time of eligibility
Par Timelimit Queue Sum of requested wallclock for jobs in partition

at time of eligibility
Par Jobs Running Number of jobs currently running in partition at

time of eligibility
Par CPUs Running Sum of requested CPUs being used by running

in partition at time of eligibility
Par Mem Running Sum of requested memory (GB) of jobs cur-

rently running in partition at time of eligibility
Par Nodes Running Number of nodes being used by jobs currently

running in partition at time of eligibility
Par Timelimit Run-
ning

Sum of requested walltime for jobs currently
running in partition at time of eligibility

User Jobs Past Day Number of submitted jobs by user within past
day

User CPUs Past Day Number of CPUs requested by user within past
day

User Mem Past Day Sum of memory (GB) requested by user within
past day

User Nodes Past Day Total nodes requested by user within past day
User Timelimit Past
Day

Sum of requested wallclock by user within past
day

Par Total Nodes Total nodes belonging to the partition
Par Total CPU Total CPU cores belonging to the partition
Par CPU per Node Number of CPU cores per node in partition
Par Mem per Node Size of storage (GB) per node in partition
Par Total GPU Total GPU units belonging to partition
Pred Runtime Predicted runtime of job from random forest
Par Queue Pred Time-
limit

Predicted runtime of all jobs currently pending
in partition

Par Running Pred
Timelimit

Predicted runtime of all jobs currently running
in partition

TABLE II
FEATURE TABLE

splitting the queue times based on whether the wait time would
significantly impact the user experience. Based on the analysis
of the predicted queue times by the model, it is likely that the
classification accuracy would be similar if a different cutoff
value of slightly more or less than 10 minutes were chosen.

Upon later testing, the model was evaluated at split times
of 5 and 30 minutes. Splitting the data at the 5-minute mark
resulted in decreased performance for the regression model,
with over twice the mean absolute percentage error as opposed

623

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Model training and implementation overview

Algorithm 1 Predict Queue Time Based on Input Job
Input: jobData - data for a specific job
Output: A string message predicting time
Let over10min be a boolean
over10min → BINARYCLASSIFIERMODEL(jobData)
if over10min then

Let regPrediction be an integer
regPrediction → REGRESSIONMODEL(jobData)
return ”Predicted to start in ” regPrediction ”

minutes”
else

return ”Predicted to take less than 10 minutes”
end if

to the 10-minute cutoff. As for the 30-minute cutoff, the model
trained on that had one fold, which outperformed the 10-
minute cutoff model with a mean absolute percentage error
half that of the 10-minute one, but the final fold of that
model resulted in roughly the same mean absolute percentage
error. Since the performance increases were only marginal for
the 30-minute cutoff, we felt this threshold would negatively
impact the user experience, and due to concerns over having
sufficient data for the classification model to train on, we
elected to go with a final cutoff of 10 minutes.

To mitigate data skew, Synthetic Minority Over-sampling
Technique (SMOTE) [13] algorithms were used for under-
sampling the majority class (short queue time jobs) and
oversampling the minority class through artificial data creation
to create balanced classes. The most recent 20% of jobs from
the dataset were used as validation and test data to simulate
deployment use cases where the model will predict future

Fig. 2. Queue Time Density Graph

jobs. The model was trained using a basic pure percentage
accuracy loss function, a valid training loss function due to
the two classes’ artificial balancing. Both models made use of
the Adam optimizer [14].

The regression model’s architecture contains 33 input fea-
tures and three hidden layers. The exponential linear unit
(ELU) activation function [15] was used for all layers except
the output layer, as it achieved marginally better results than
other standard activation functions, such as ReLU.

The Optuna hyperparameter framework was used to de-
termine the best combination of hyperparameters within the
model [16]. The hyperparameters investigated include the
learning rate, the number of epochs to train for, the number
of hidden layers for the model, the size of each layer, the size

624

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example Time Series Split with 3 Splits

of the dropout layers to use, which features to use, and which
activation function to use.

Batch normalization [17] was tested on the regression
model; however, it was not selected for use. Not only did
batch normalization layers not result in notably improved
performance, but they also led to concerns over use in post-
production. As the dataset was so large, and the range of values
within each feature also varied greatly, batch normalization
would have been challenging to implement and account for
properly. Furthermore, as the regression model was intended
to predict an exact time in minutes rather than predicting a
range or bin of times, the model needed to be able to predict
extremely high and extremely low values simultaneously. This
was less feasible when using batch normalization, especially
given the size of the hidden layers.

The model utilized the smooth L1 loss function [18], a
combination of mean absolute error and mean squared error.
This function is suitable for this task, as it can account for
large misses due to long queue time jobs with outlier wait
times and help prevent the effects of the exploding gradient
problem.

The regression model used a time series cross-validation
method for training, splitting the input data into five folds with
a testing size of one-sixth of the dataset. This is visualized with
an example time series split with three splits in Fig. 3. This
splitting method was chosen for better modeling deployment
use cases and due to concerns about overrepresenting the
training data in the testing data when modeling, which would
have given misleading results.

One limitation of the dataset of jobs submitted to the system
is that many tens or hundreds of jobs would often be submitted
back-to-back by the same user with the same amount of
resources requested. These jobs had similar queue times, and
failing to keep these jobs together during training resulted in
the test set being artificially similar to the training set. This
phenomenon was observed during early testing when doing
a simple train-test split with shuffling, which doubled the
performance of the model when compared to not shuffling
the dataset due to data leakage. The solution was to use time
series cross-validation to avoid this issue as well as to adhere

to the principle of not training on any data from the future, as
it is likely that jobs and job characteristics on the cluster will
drift over time as demand for HPC resources increases.

The model was evaluated primarily based on mean absolute
percentage error and compared against other selected models.
These other models were chosen based on popularity and
success across other studies [10]. Absolute percentage error
was selected as the comparison metric due to wanting to
measure the relative accuracy of predictions in relation to the
scale of the output. To elaborate, predicting a low value when
the actual result is large would be much worse to users than
predicting a fairly large value for a large value, even if the
difference in predictions vs actual values would be larger for
the high prediction [e.g., predicting one minute when the true
value is 10 minutes (900% off, MSE of 81) versus predicting
10 minutes when the true value is 30 minutes (200% off, MSE
of 400).

IV. RESULTS

The classification model had a binary accuracy of 90.48%
with similar accuracy on both classes on a test set of the most
recent 80,000 jobs. In contrast, the regression model had an av-
erage mean absolute percentage error of 97.567% over the last
three test splits from the time series split (with individual mean
absolute percentage errors of 69.99%, 90.87%, and 131.18%).
Furthermore, analysis of the model’s predicted results with the
actual results showed a correlation of Pearson’s r = 0.7532 for
the final split (Fig. 5), as well as a visibly linear trend in
the previous split (Fig. 4). This highlights TROUT’s ability
to perform well across the entire range of data, maintaining
a fairly strong positive correlation. It is important to take
the range of data into context when interpreting the overall
mean percentage error: both a one-minute prediction for a
delay of two minutes and a one-day prediction for a delay
of two days will both yield 100% error, which highlights the
ability to maintain proportionate predictive capabilities across
periods (which our model did when investigating performance
on different bins of time).

The regression-based neural network was compared against
other model types, including an XGBoost regression model,
a random forest regression model, and a k nearest neighbors

625

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Scatter plot, fold 4

Fig. 5. Scatter plot, fold 5

regression model. These additional models were selected to
serve as benchmarks based on previous work. Brown et al. [19]
utilized XGBoost and kNN models to predict queue wait times.
In a separate internal study performed at Purdue University,
Woo et al. [20] utilized decision trees to predict job wait times
and queue times. A random forest was used as a benchmark
instead to reduce overfitting and have less variance in testing.
All models were trained on the same data and split with the
same features. Our neural network model outperformed the
other types of models across all splits (Fig. 6 and Fig. 7). This
supports the notion suggested in prior studies that deep neural
networks are a strong choice for this task [10]. The metric
used to compare the models was the average percent error.
We also observed that the relative performance increase of
neural networks compared to other models remained roughly
the same across folds. However, there did not appear to be
a significant trend between which of the other three models
performed best; instead, it varied by split.

We also measured the percentage of jobs whose predicted
times had less than 100% percent error (Fig. 8 and Fig. 9).
We concluded the same results from this data, as the neural

Fig. 6. Average percent error by model, fold 4

Fig. 7. Scatter plot for fold 5

network consistently predicted a higher proportion of jobs to
be within this threshold. However, we note that the variance
between results for this metric was less than the variance
of average percent error between the models. One possible
reason for this is that the other models predict lower times
more frequently, resulting in an increased performance due to
the distribution of observed times having more instances at
lower values. Furthermore, the second metric is less sensitive
to strong outliers, meaning the results will tend to overestimate
a model’s performance.

V. DISCUSSION AND FUTURE WORK

In this paper, we have developed a tool to predict job
wait times on the Anvil cluster. Our results show improved
performance over previous methods of estimating queue time,
supporting the idea that machine learning-based models and
deep neural networks, particularly with robust feature engi-
neering, can pick up on important features relating to job
scheduling and runtime. This increased ability to predict start
times can enable researchers to be more efficient and have a
more positive user experience. Overall, our model marks a step
forward in improving user experience users and administrators

626

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Percent of predictions within 100% error, fold 4

Fig. 9. Percent of predictions within 100% error, fold 5

of HPC systems, and we believe that the model is adaptable
enough to generalize well to use on other clusters.

Our work highlights an innovative approach to performing
feature engineering with interval trees. Many problems in
artificial intelligence and HPC require large amounts of data,
and performing operations and feature engineering on this
data can be resource-intensive and time-consuming. This is
especially true when working with time-series data or data
with heavy overlap between instances. Using interval trees
offers an improved solution to this problem, resulting in faster
compute times for engineering features relating to overlapping
jobs.

We have integrated our model into a command-line tool
that takes a real, existing job in a queue on the cluster and
outputs a prediction to the user based on this job. Running on
a single AMD Epyc Milan CPU on Anvil, the tool takes only
a few seconds to run the input through the hierarchical model
and print an answer. In the future, we intend to integrate this
into a user dashboard tool for increased accessibility. However,
we also note that future work on integrating online learning
capabilities is needed to ensure predictions stay current with
the cluster changes. Code for this project can be accessed in

the Github repository linked below. Using this project’s code,
the hierarchical model can be easily specialized for any other
HPC system that utilizes SLURM through retraining with the
respective historical data from that HPC system. Though the
model training process is designed to be generalizable and
easily retrainable, it has yet to be tested on HPC systems
aside from Anvil, and we can only hypothesize that prediction
accuracy will be similar on different systems. Similarly, the
model design and architecture could also be extended for use
with clusters that utilize a job scheduler other than SLURM,
but this new dimension makes it difficult to predict how well
the model would perform.

The work in this study could easily be extended to support
hypothetical job queuing. This would involve a user supplying
TROUT with the parameters requested for a job they wish
to submit. Then, using this data and the current state of the
running nodes and the queue, TROUT would return a queue
time prediction for this hypothetical job, allowing users to
get an estimate without actually submitting a job. This could
allow users to optimize their job submissions until they achieve
parameters that will result in their job running within a desired
time frame.

While our hierarchical model saw superior performance
compared to existing methods, some limitations remain. A
significant driver of diminished model performance is the
discrepancy between the resources jobs request and the re-
sources jobs use. Users often overestimate the resources and
time their job will require, adding noise to the dataset. In
particular, overestimation was found to be a consistent problem
for the jobs submitted to Anvil, as the average job in our
data used only 15% of requested wall time, with some power
users using less than 5% of requested wall time on average.
This necessitates additional work to more accurately predict
how long jobs in the queue will take, reducing our model’s
accuracy and presenting a potential opportunity for focused
discussions and user training. We plan to investigate using
an additional model to predict job run-times for jobs in the
queue and developing additional features from there. Another
area for improvement we ran into was the imbalance between
partitions. Specifically, out of the roughly 3.8 million historical
jobs, over 2.7 million were in the ”shared” partition. This stark
contrast may obfuscate unique attributes relating to prediction
on these smaller queues.

Another area we hope to continue to refine is our model’s
support for different kinds of HPC fairshare policies. This
would involve using features similar to the partition statistic
features, where the model takes in details relating to specific
configurations and resources available. An example of such a
feature would be the duration over which jobs impact fair share
in terms of time and adjusting the current feature of user jobs
ran in past day for example into user jobs ran in past slurm-
period. However, as of now, the model has only been trained
on data from ANVIL, limiting the usefulness and feasibility
of these potential features as of the moment.

Finally, as with many regression prediction models, the
model struggled to predict massive outliers, like jobs that

627

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

spent days in the queue, as there was not enough data (even
after synthetic data generation) to predict these extreme values
correctly. Due to the closed-box nature of deep learning-
based models, it is difficult to diagnose what causes widely
inaccurate guesses to occur. There are some rare cases where
the queue time of seemingly easy-to-predict jobs is massively
over or underestimated, and ascertaining what causes this is
challenging given the large number of features and weights
the model uses.

Using a novel hierarchical deep-learning approach, our
study explored methods for predicting job queues in high-
performance computing (HPC). Our model not only performed
better than existing methods but also demonstrated the poten-
tial to enhance the efficiency of HPC systems significantly.
While effective in the HPC context, our techniques have
broader applicability in other areas involving complex schedul-
ing and resource management. For example, these methods
could be adapted to predict waiting times in healthcare
settings, improve efficiency in manufacturing operations, or
optimize resource allocation in cloud computing environments.
This promising result instills optimism and allows users to
conduct their research more efficiently. Future studies should
consider testing the applicability of our model to these dif-
ferent contexts, expanding its potential impact across various
industries.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2005632. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] SchedMD, “Slurm workload manager overview,” 2021. Retrieved Sep
15, 2024 from https://slurm.schedmd.com/overview.html.

[2] O. Sonmez, N. Yigitbasi, A. Iosup, and D. Epema, “Trace-based
evaluation of job runtime and queue wait time predictions in grids,”
in Proceedings of the 18th ACM International Symposium on High

Performance Distributed Computing, HPDC ’09, (New York, NY, USA),
p. 111–120, Association for Computing Machinery, 2009.

[3] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-
generated predictions rather than user runtime estimates,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 18, no. 6, pp. 789–803,
2007.

[4] A. Matsunaga and J. A. Fortes, “On the use of machine learning to
predict the time and resources consumed by applications,” in 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, pp. 495–504, 2010.
[5] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and

M. Taufer, “Prionn: Predicting runtime and io using neural networks,”
in Proceedings of the 47th International Conference on Parallel Pro-

cessing, ICPP ’18, (New York, NY, USA), Association for Computing
Machinery, 2018.

[6] Y. Fan, P. Rich, W. E. Allcock, M. E. Papka, and Z. Lan, “Trade-off
between prediction accuracy and underestimation rate in job runtime es-
timates,” in 2017 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 530–540, 2017.
[7] R. McKenna, S. Herbein, A. Moody, T. Gamblin, and M. Taufer,

“Machine learning predictions of runtime and io traffic on high-end
clusters,” in 2016 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 255–258, 2016.

[8] K. Menear, K. Konate, K. Potter, and D. Duplyakin, “Tandem predic-
tions for hpc jobs,” in Practice and Experience in Advanced Research

Computing 2024: Human Powered Computing, PEARC ’24, (New York,
NY, USA), Association for Computing Machinery, 2024.

[9] Z. Hou, S. Zhao, C. Yin, Y. Wang, J. Gu, and X. Zhou, “Machine
learning based performance analysis and prediction of jobs on a hpc
cluster,” in 2019 20th International Conference on Parallel and Dis-

tributed Computing, Applications and Technologies (PDCAT), pp. 247–
252, 2019.

[10] K. Menear, A. Nag, J. Perr-Sauer, M. Lunacek, K. Potter, and D. Du-
plyakin, “Mastering hpc runtime prediction: From observing patterns to
a methodological approach,” in Practice and Experience in Advanced

Research Computing 2023: Computing for the Common Good, PEARC
’23, (New York, NY, USA), p. 75–85, Association for Computing
Machinery, 2023.

[11] SchedMD, “Slurm multifactor priority plugin,” 2023. Retrieved Sep 15,
2024 from https://slurm.schedmd.com/priority multifactor.html.

[12] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, (Red Hook, NY,
USA), p. 4768–4777, Curran Associates Inc., 2017.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial Intel-

ligence Research, vol. 16, p. 321–357, June 2002.
[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2017. https://doi.org/10.48550/arXiv.1412.6980.
[15] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-

rate deep network learning by exponential linear units (elus),” 2016.
https://doi.org/10.48550/arXiv.1511.07289.

[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2019.
[17] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-

work training by reducing internal covariate shift,” in Proceedings of the

32nd International Conference on International Conference on Machine

Learning - Volume 37, ICML’15, p. 448–456, JMLR.org, 2015.
[18] R. Girshick, “Fast r-cnn,” in 2015 IEEE International

Conference on Computer Vision (ICCV), pp. 1440–1448, 2015.
https://doi.org/10.48550/arXiv.1504.08083.

[19] N. Brown, G. Gibb, E. Belikov, and R. Nash, “Predicting batch queue
job wait times for informed scheduling of urgent hpc workloads,” 2022.
https://doi.org/10.48550/arXiv.2204.13543.

[20] J. Woo, S. Smallen, and J.-P. Navarro, “Karnak 2.0 wait time prediction.”
unpublished.

628

Authorized licensed use limited to: Purdue University. Downloaded on September 23,2025 at 14:18:45 UTC from IEEE Xplore. Restrictions apply.

