
An Introductory Guide to Developing GenAI
Services for Higher Education

Sarah Rodenbeck
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

srodenb@purdue.edu

Erik Gough
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

goughes@purdue.edu

Ashish
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

ashish@purdue.edu

Sathvika Kotha
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

kotha8@purdue.edu

K. Meher Hasanth
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

kmeherha@purdue.edu

Durga Dash
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

dashd@purdue.edu

Abstract—This paper reports on the lessons learned from
developing and deploying campus-wide large language model
(LLM) services at Purdue University for generative AI (GenAI)
applications in education and research. We present a frame-
work for identifying an LLM solution suite and identify key
considerations related to developing custom solutions. While
the GenAI ecosystem continues to evolve, the framework is
intended to provide a tool- and organization-agnostic approach
to guide leaders in conversations and strategy for future work
and collaboration in this emerging field.

Index Terms—Large Language Model Deployment, GenAI,
Cloud Computing, Software Design, Requirements Analysis,
Information Retrieval, Language Models, Software Management

I. INTRODUCTION

The release of recent Large Language Models (LLMs)
such as ChatGPT, LLaMA, Claude, and Gemini has catalyzed
significant interest in Generative AI (GenAI) across various
fields, including education [1]. The University of Michigan
has been at the forefront in this area, notably creating and
deploying the U-M GPT and U-M Maizey tools, designed for
general use and fine-tuning, respectively [2].

Over the past six months, our team at Purdue University has
sought to assemble a suite of LLM services to satisfy a range
of use cases within the campus and ACCESS communities.
Through our exploration, we have realized that there is little
agreement over best practices and approaches to embarking on
similar projects as new tools are released so frequently [3], [4].
Additionally, contrary to traditional software projects, a key
element of GenAI projects is adapting to constant changes in
the landscape (both internal GenAI-related priorities/appetite
and external services available). Therefore, planning to pivot
is a top-level consideration. This paper shares our experiences
and learnings in evaluating, adapting, and deploying a suite of
LLM services to enable AI-powered research. We have sought
to leverage this into a general framework with guidance for
other groups embarking on similar projects.

II. METHODS

We present our approach in the context of a decision frame-
work, which includes requirement analysis, suite selection, and
custom service development considerations as top-level issues,
which are discussed in turn.

A. Requirement Analysis
One pitfall that early adopters may fall into is to assume

that finding a single approach that works for all the needs at a
university is the single high-priority first step. On the contrary,
a suite of services is the likely outcome of a substantially
developed GenAI initiative. To note, the outcome might still
converge to one or a few solutions depending on the mission or
size of an institution; however, by assuming a multi-pronged
approach from the start, the development effort will likely be
more adaptable as requirements change. Therefore, much of
the early effort is best spent on formalizing 1) overall project
constraints, 2) user profiles, and 3) intra-project prioritization
rather than searching for a single solution. While a general
requirement analysis approach is still valid, there is a subtle
difference in the benefits posed by conducting this type of
analysis within the GenAI space. Rather than only being used
for initial planning, such an analysis is used as a basis for
assessing field developments. For example, suppose a new
model or tool comes out. What is the relative benefit of
adding support for this into the original suite versus shifting
to support this instead of something in the original suite
versus doing nothing and keeping the original approach? This
assessment depends on fully understanding the vision and
resources behind the project and the prioritized user profiles
but allows more focused discussions.

B. Tool Selection
This part of the framework primarily concerns identifying

a solution suite that satisfies the prioritized use cases from
section 2A. It explores the balance between commercial and



custom services, addressing not just a simple build vs. buy
decision but the optimal mix for usage and guidance.

Control is an overarching theme in this analysis, focusing
on the control provided by various solutions as well as the
level of control required. For instance, freely available tools
such as the public version of ChatGPT pose a trade-off with
data security, with chat histories being used by default for
further fine-tuning and offering users very little control [5].
Our community’s regular interactions with proprietary data
and the need for privacy and IP considerations made such
solutions generally inappropriate for organizational GenAI use
in our case.

Commercial services like Azure AI Studio offer access
to proprietary models while offering additional data privacy
[6] but remain bound to the provider’s policies and pricing
structures. These services necessitate the use of commercial
cloud resources and do not allow for the extraction of fine-
tuned models. However, they support a broader range of
models and include low-code tools for creating personal-
ized ”Assistants” with custom data. These services’ features
have been converging, with most providing APIs, model
playgrounds, assistant-building tools, and user data support.
However, different services offer access to different proprietary
models (e.g., Gemini is only available through Google). Thus,
partner selection hinges on existing organizational partner-
ships, desired flexibility/model access, and cost considerations.
Cost estimations consider factors like deterministic seat-based
versus undefined usage-based fees, intended usage, and the
size and characteristics of the user base (e.g., API calls
vs interface) [7], [8]. To serve all researcher needs (e.g.,
if access to many different proprietary models is needed),
forming partnerships with multiple commercial services may
be necessary.

Custom services, built from open-source tools/models and
hosted with on-premises resources, require more resources to
deploy and maintain but offer greater control. This makes them
particularly appealing to power users or those with stringent
data protection needs. Despite the growth in available open-
source tools, most resources still lack complete functionality
out of the box. Additionally, for the goals of our project,
building a custom service was crucial to enabling lower-
cost or free access to Generative AI tools to users who may
not have the funding to pay for commercial services. Rather
than having usage-based costs, custom services will incur
significantly more development and infrastructure costs, which
are discussed in more depth in section 2C. Still, when such
resources are already available, this can essentially subsidize
the raw cost [9].

Mapping use cases to the necessary level of control, bal-
anced against costs and priorities, forms a strategic execution
roadmap. It is crucial to understand both the short-term and
long-term solution landscapes. Figure 1 illustrates a sample
mapping of user types to services and feature usage, high-
lighting the flexibility in these mappings. While enterprise
cloud services may require less startup time, the end state
of custom services can be comparable, mainly differing in

the models available (which may be a key consideration,
depending on the user base). Initially, a GenAI solution suite
might focus more on enterprise services, but users may be
guided toward custom services as new features are added.
Additionally, some scenarios may necessitate hybrid solutions
where custom features are developed on top of commercial
APIs.

Fig. 1. Mapping of users to services and feature usage.

C. Custom Service Development

Assuming that a custom service has been identified as part
of the solution suite, as we did, understanding what goes into
a custom service is also critical for planning. We conducted a
comprehensive investigation into the process of deploying an
on-prem LLM, specifically the LLaMA LLMs, onto the Anvil
composable subsystem—a Kubernetes-based private cloud for
deploying and managing persistent services [10].

1) Approach and Deployment: The massive size of LLMs,
such as LLaMA3 with 70 billion parameters [11] and GPT
3.5, the most recent OpenAI model for which details are
available, with 175 billion parameters [12], makes deployment
more complex than with smaller services. Initial issues in-
cluded errors related to insufficient CUDA memory–internal
testing showed that hosting the full LLaMA3 model required
4x 80GB GPUs. Employing quantization was paramount to
navigating this issue. Quantization involves some information
loss, in this case reducing the precision of numerical values,
but allows the model to fit into smaller hardware than the
cluster it was trained on [13]. Significant work has been
done on these topics, and tools like Ollama automatically
employ quantization methods, even enabling LLMs to run on
local machines [14]. However, running quantized models on
a cluster with GPU resources improves performance. Initially,
we used a more manual approach for quantization, but the
development ecosystem surrounding Ollama presented a very
attractive option.

However, the model must still be paired with sufficient
GPU memory and resources to work well, especially for a
large community of users. On average, model performance
correlates with model size, but smaller models may still be
sufficient for particular tasks [15]. Assuming that anticipated
users will want a choice of models, though, sizing the de-
ployment to account for the largest model size will result in
the best performance. While LLaMA 3 70B, for example,
does work on GPUs with smaller memory, response times



suffer. For satisfactory performance with multiple models, we
recommend the minimum resource request includes 16 CPUs,
32GB of RAM, and a GPU with 40GB of memory. 40 GB
of GPU memory allows for loading multiple small models
simultaneously as well as larger models like LLaMA 3 70B
with 4 bit quantization. Deploying the solution in an auto-
scaling platform like Kubernetes is also desired to handle the
highly variable GenAI resource demand. Ongoing computing
costs must be factored into budgetary discussions.

2) Performance Benchmarking: Beyond our basic assess-
ment of minimum resources, benchmarking performance was
an essential aspect of our work to validate the scalability and
limits of our approach. While the actual models and tools
continue to shift, we anticipate the benchmarking approach
to be more transferrable [16].

Our approach was based on LLMPerf [17], a library de-
signed to validate and benchmark the throughput and latency
performance of LLMs [18]. The library supports multiple
backend frameworks and provides customizable scenarios
to simulate real-world usage. Key features include scalable
testing, detailed performance metrics, and extensibility for
integration with existing testing infrastructures. LLMPerf’s
design also allows users to reproduce results reliably, ensuring
that performance assessments are accurate and repeatable.
We found it particularly valuable for optimizing LLMs for
specific applications, as it offers pre-configured and user-
defined benchmarking capabilities. Building on LLMPerf’s
framework and what we have found to be standard metrics
in this domain, we chose to assess performance based on the
following metrics.

• Inter-Token Latency: Displays variability in processing
time between tokens, assessing fluctuating token process-
ing speeds [19].

• End-to-End Latency: Total time from initiating to com-
pleting a request, pointing to variability in total response
times.

• Time to First Token (TTFT): Latency from starting a
request to generating the first token, where differences
can indicate potential variations due to system load or
complexity.

• Request Output Throughput: Measures tokens generated
per second, which helps understand the system’s effi-
ciency in producing output.

We used a containerized benchmarking environment to
ensure a stable and replicable platform [20]. Benchmark-
ing was performed on an Ollama v0.2.4 container instance
running in Kubernetes that was allocated 32 CPUs, 64GB
of RAM and one A100 80GB GPU. The instance was
configured to process up to 64 parallel requests using the
OLLAMA NUM PARALLEL configuration option.

While LLMPerf did not have native support for an Ollama
model backend, we were able to use LiteLLM, a library that
standardizes API interactions across various LLM providers,
to facilitate interaction [21]. Notably, LiteLLM’s design is
optimized for low-resource environments, making it particu-

larly beneficial for our containerized setup, where resource
efficiency is paramount.

We used a dedicated node on Purdue’s Negishi cluster with
128 cores and 256 GB RAM as our benchmarking client and
validated no client bottlenecks were present. LLMPerf load
tests were conducted from inside a conda virtual environment
for an increasing number of parallel requests.

While results will be highly dependent on the allocated
resources for an LLM deployment as well as parameters
like number of input and output tokens, a sample of our
results can be found in Figure 2. Unsurprisingly, latency
reliably increases with the number of concurrent requests.
The relationship between Inter-Token latency and End-to-End
latency is also easily visualized. Results for token throughput
show that throughput drops quickly as more parallel requests
are handled, eventually reaching a point where responses are
less than 10 tokens/s, a threshold that would be considered too
slow for users of the system. Using this benchmarking data,
we plan to do future work to determine an optimal auto-scaling
configuration for Ollama instances.

Fig. 2. Benchmarking Results

3) Additional Development Considerations: Beyond model
deployment, numerous features are required to make custom
services usable to a community. Pursuing a hybrid solution
for building custom features on top of commercial model
APIs may be possible but typically requires configuration as
well [25]. However, solutions like Ollama are approaching
the functionality offered by commercial solutions by
automatically handling features such as streaming responses,
not just providing a model backend [14]. Fortunately, many
front-end tools have been designed to work with an Ollama
backend, such as OpenWebUI and Chatbot Ollama [25],



[26]. However, no solution satisfied all our scaling needs,
so having front-end expertise on the team was crucial for
application modifications. Key features to consider include
support for non-local backends, the ability to integrate with
SSO, and the functionality to enable users to create custom
retrieval augmented generation (RAG) systems [27], which
also requires deploying a vector store like ChromaDB or
PGVector. Figure 3 shows a sample deployment architecture.
Finally, the pace of innovation means that while many
frameworks are being released, there is not yet a consensus
on the best approach to these tasks. Thus, building services
modularly when possible and accounting for recurring costs to
update the service to avoid technical debt as initial approaches
become outdated are important. Support for RAG tools and
agents for multi-hop reasoning has become very popular and
should be considered a requirement for custom services in
the long term.

Fig. 3. Architecture of custom on-prem LLM service

III. DISCUSSION

The ecosystem of GenAI tools evolves rapidly, and today’s
models and tools may differ significantly by the time Gate-
ways ’24 starts. Although our team at Purdue has thoroughly
evaluated options for deploying a campus LLM, our specific
results are less important than the broader insights gained.
We believe other universities and research centers building
similar gateways, and we hope our findings will guide their
efforts. In this ever-changing environment, quickly adapting
and assessing new developments is crucial for success.

IV. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2005632. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Y. Liu et al., ”Understanding LLMs: A Comprehensive Overview from
Training to Inference,” arXiv:2401.02038 [cs], Jan. 2024.

[2] T. Burns. ”ITS debuts custom artificial intelligence services across
U-M.” University of Michigan. https://record.umich.edu/articles/
its-debuts-customized-ai-services-to-u-m-community/ (accessed May
20, 2024).

[3] H. Crompton and D. Burke, ”Artificial intelligence in higher education:
The state of the field,” Int J Educ Technol High Educ, vol. 20, no. 1,
22, Apr. 2023, doi:10.1186/s41239-023-00392-8.

[4] WhyLabs, ”A Guide to Large Language Model Operations (LLMOps),”
WhyLabs. https://whylabs.ai/blog/posts/guide-to-llmops (accessed May
26, 2024).

[5] OpenAI. ”Data Controls FAQ.” OpenAI. https://help.openai.com/en/
articles/7730893-data-controls-faq (accessed May 20, 2024).

[6] OpenAI. ”Introducing ChatGPT Enterprise.” OpenAI. https://openai.
com/blog/introducing-chatgpt-enterprise#OpenAI (accessed May 20,
2024).

[7] S. Heshmatisafa and M. Seppänen, ”Exploring API-driven busi-
ness models: Lessons learned from Amadeus’s digital transfor-
mation.” Digital Business, vol. 3, no. 1, 100055, Jan. 2023,
doi:10.1016/j.digbus.2023.100055

[8] T. Hagendorff, ”The Ethics of AI Ethics: An Evaluation of Guide-
lines,” Minds and Machines, vol. 30, pp. 99-120, Feb. 2020,
doi:10.1007/s11023-020-09517-8

[9] F. Kumeno, ”Software engineering challenges for machine learning
applications: A literature review,” Intelligent Decision Technologies, vol.
13, no. 4, pp. 463-476, Feb 2020, doi:10.3233/IDT-190160

[10] X.C. Song et al. ”Anvil - System Architecture and Experiences from
Deployment and Early User Operations,” in Practice and Experience in
Advanced Research Computing (PEARC ’22), 1–9.

[11] H. Touvron et al. ”Llama 2: Open foundation and fine-tuned chat
models,” arXiv:2307.09288 [cs], July 2023.

[12] T. Brown et al., ”Language Models are Few-Shot Learners,”
arXiv:2005.14165 [cs], May 2020.

[13] B. Jacob, et al. (2017). ”Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference,” arXiv:1712.05877 [cs],
Dec 2017.

[14] J. Morgan. ”Ollama.” Ollama. https://ollama.com (accessed Apr. 16,
2024).

[15] T. Shnitzer et al., ”Large Language Model Routing with Benchmark
Datasets.” arXiv:2309.15789 [cs], Sept. 2023.

[16] J. Dodge, S. Gururangan, D. Card, R. Schwartz and N.A. Smith,
”Show Your Work: Improved Reporting of Experimental Results,”
arXiv:1909.03004 [cs], Sept. 2019.

[17] ”LLMPerf: Large Language Model Performance Benchmarking,”
GitHub repository, Ray Project. [Online]. Available: https://github.com/
ray-project/llmperf. (accessed Feb 4, 2024).

[18] J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, ”Scientific Machine
Learning Benchmarks.” Nature Reviews Physics, vol. 4, pp. 413-420,
2022, doi:10.1038/s42254-022-00441-7.

[19] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, ”SQuAD: 100,000+
Questions for Machine Comprehension of Text,” arXiv:1606.05250 [cs],
June 2016.

[20] X. Zhou et al, ”Benchmarking microservice systems for software
engineering research.” In ICSE ’18 Companion (pp. 323-324), doi:
10.1145/3183440.3194991.

[21] ”LiteLLM,” GitHub repository, Berri AI. [Online]. Available: https://
github.com/BerriAI/litellm (accessed Mar 5, 2024).

[22] K. Senjab, S. Abbas, N. Ahmed, A.u.R. Khan, ”A survey of Ku-
bernetes scheduling algorithms,” Journal of Cloud Computing: Ad-
vances, Systems and Applications, vol. 12, no. 1, 87, June 2023,
doi:10.1186/s13677-023-00471-1.

[23] Z. Sun, and A.V. Miceli-Barone, ”Scaling Behavior of Machine Trans-
lation with Large Language Models under Prompt Injection Attacks,” in
Proceedings of the First edition of the Workshop on the Scaling Behavior
of Large Language Models (SCALE-LLM 2024), pp. 9-23, Mar. 2024,
doi:https://doi.org/10.48550/arXiv.2403.09832.

[24] J. Dean and S. Ghemawat, ”MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-
113, Jan 2008, doi:10.1145/1327452.1327492.

[25] T.J. Baek. ”Open WebUI.” Open WebUI. https://docs.openwebui.com
(accessed Apr. 14, 2024).

[26] I. Fioravanti. ”ChatBot Ollama.” GitHub repository. https://github.com/
ivanfioravanti/chatbot-ollama. (accessed Feb. 23, 2024).

[27] P. Lewis, et al., ”Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” in Proceedings of Advances in Neural In-
formation Processing Systems: 33, pp. 9459-9474, Dec. 2020,
doi:10.5555/3495724.3496517.

https://record.umich.edu/articles/its-debuts-customized-ai-services-to-u-m-community/
https://record.umich.edu/articles/its-debuts-customized-ai-services-to-u-m-community/
https://whylabs.ai/blog/posts/guide-to-llmops
https://help.openai.com/en/articles/7730893-data-controls-faq
https://help.openai.com/en/articles/7730893-data-controls-faq
https://openai.com/blog/introducing-chatgpt-enterprise#OpenAI
https://openai.com/blog/introducing-chatgpt-enterprise#OpenAI
https://ollama.com
https://github.com/ray-project/llmperf.
https://github.com/ray-project/llmperf.
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://docs.openwebui.com
https://github.com/ivanfioravanti/chatbot-ollama.
https://github.com/ivanfioravanti/chatbot-ollama.

	Introduction
	Methods
	Requirement Analysis
	Tool Selection
	Custom Service Development
	Approach and Deployment
	Performance Benchmarking
	Additional Development Considerations


	Discussion
	Acknowledgments
	References

