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Abstract—Modern affective computing systems rely heavily on datasets with human-annotated emotion labels for both training and
evaluation. However, human annotations are expensive to obtain, sensitive to study design, and difficult to quality control, because of
the subjective nature of emotions. Meanwhile, Large Language Models (LLMs) have shown remarkable performance on many Natural
Language Understanding tasks, emerging as a promising tool for text annotation. In this work, we analyze the complexities of emotion
annotation in the context of LLMs, focusing on GPT-4 as a leading model. In our experiments, GPT-4 achieves high ratings in a human
evaluation study, painting a more positive picture than previous work, in which human labels served as the only ground truth. On the
other hand, we observe differences between human and GPT-4 emotion perception, underscoring the importance of human input in
annotation studies. To harness GPT-4’s strength while preserving human perspective, we explore two ways of integrating GPT-4 into
emotion annotation pipelines, showing its potential to flag low-quality labels, reduce the workload of human annotators, and improve
downstream model learning performance and efficiency. Together, our findings highlight opportunities for new emotion labeling
practices and suggest the use of LLMs as a promising tool to aid human annotation.

Index Terms—Emotion Recognition, LLMs, Annotation, Crowdsourcing
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1 INTRODUCTION

DEVELOPING systems that can recognize, interpret, and
respond to human emotions is playing a growing role

in human-centered AI systems [1], [2]. Human emotion un-
derstanding is beneficial in various fields, such as education
[3], healthcare [4], and many others [5]. In recent years, we
have seen significant performance advancements in emotion
recognition, especially with the popularity of deep learning
methods [6]. However, these models rely heavily on data
with human-annotated emotion labels, which are costly in
terms of time and resources and difficult to obtain due to
the inherent ambiguity of emotions. Currently, there is no
standard approach to annotation, as datasets often adopt
different protocols at each phase, such as label selection,
annotation formats, evaluation methods, etc. In the mean-
time, recent advances in LLMs have opened new avenues
for text-based annotation. In this work, we explore emotion
annotation choices within the context of LLMs, examining
how LLMs perform on emotion classification tasks and how
they might address existing challenges and provide new
perspectives on emotion annotation processes.

Emotions are inherently ambiguous and subjective [7],
[8], posing great challenges in the design of annotation stud-
ies. Low agreement is often observed among annotators [9].
Annotation outcomes are sensitive to even small changes in
study design, such as the label space offered, including the
size of the label space and type of emotions to be labeled (see
Section 2.1), as well as how the text and labels are presented
to a human annotator (see Section 2.2) [9]. These changes can
all lead to different annotation outcomes [10]–[13]. This lack
of consistency raises serious concerns about the reliability
of emotion labels [14], [15]. Additionally, emotion percep-
tion naturally differs from person to person, influenced by
individual experiences and demographic factors [16]–[19],
making it difficult to identify actual errors from legitimate

perceptual differences. As a result, it is also hard to apply
quality control methods post hoc. Many studies have sought
to improve annotation reliability by exploring factors such
as label space selection [11], study design choices [12],
[13], annotation interface improvement [20], and trade-offs
between annotators’ quality and quantity [21]. However,
establishing a general pipeline for consistent and reliable
emotion labeling remains an open challenge.

With the impressive advances in LLMs, there is a
growing interest in using LLMs for various tasks such as
generation, assessment, filtering, and annotation [22], [23].
Related work has also found that LLMs seem to possess
an emerging ability to understand and interpret emotions
(see Section 2.3). However, much of this research is based
on individual datasets, each with its own specific label
space [24]–[27], leaving questions about the generalizabil-
ity of findings across different label spaces. Further, cur-
rent evaluations tend to benchmark LLMs against human
emotion labels [25], [28], which themselves may contain
errors. In our previous work, we conducted a small-scale
in-house evaluation study. We found that human evaluators
often preferred GPT-4 annotations over traditional human
labels, particularly on larger label spaces [29]. While these
findings provide valuable insights, further verification with
larger samples, more annotators, and more comprehensive
analysis is needed for a deeper understanding. Lastly, be-
yond fully human-driven or fully automated GPT-4-based
annotation, a promising and under-explored direction is
to integrate GPT-4 as a supporting component within the
annotation pipeline.

In this work, we focus on two Research Questions. First,
we ask how well GPT-4 performs on emotion annotation.
To address this, we conduct a human evaluation study to
compare the zero-shot predictions of GPT-4 with human
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labels (Section 4). Interestingly, although automatic metrics
indicate that GPT-4 performs no better than small super-
vised models trained on human labels [28], [29], evalua-
tors consistently prefer GPT-4 labels over human labels,
showing a misalignment between automatic metrics and
human perspectives. A closer inspection reveals that larger
label spaces enable more precise descriptions of emotions,
and GPT-4 especially excels at managing a wide range of
options. This study expands on our previous work [29]
with a larger sample size and more evaluators within a
crowdsourcing environment, providing stronger support for
our findings and deeper insights into the reasons behind
human preferences.

Building on this understanding of LLMs’ emotion ca-
pabilities, we explore the second Research Question: Can
GPT-4 help humans annotate emotions? We examine two
strategies to incorporate GPT-4 into annotation pipelines
(Section 5). While previous work has explored automatic
pre-annotation as a process to narrow label choices for
human annotators, these works have focused on single-
label annotation and have relied on traditional text analysis
tools, such as lexicons [20], [30]. In our study, we propose
to leverage LLMs as a more advanced tool. We present
a novel investigation into the feasibility of (1) employing
GPT-4 as a pre-annotation filter to dynamically suggest
appropriate labels, and (2) using GPT-4 as a post-annotation
filter to flag samples with low-quality human labels. Our
experiments find some clear advantages, such as enhancing
model training outcomes and efficiency, reducing cognitive
load on annotators, and preserving the granularity benefits
of large emotion spaces. To the best of our knowledge, this
is the first study to propose and evaluate the pre-filtering
and post-filtering methods, showing encouraging results.
Together, this work makes the following contributions:

• We provide a systematic evaluation of GPT-4’s zero-
shot emotion annotation across datasets with varying
label complexity, showing that human evaluators
often prefer GPT-4’s annotations over human labels.

• We offer insights into how label space size affects
annotation quality, highlighting GPT-4’s strength in
handling fine-grained emotion categories.

• We propose and evaluate two novel strategies
for integrating GPT-4 into human annotation
pipelines—as a pre-annotation filter and a post-
annotation quality check—demonstrating their effec-
tiveness in enhancing annotation experience, agree-
ment and efficiency.

Throughout our analysis, we carefully consider the com-
plexities of emotion label spaces and the varying perspec-
tives captured by different evaluation methods, yielding
valuable insights for future emotion annotation practices.
These findings advocate for thoughtful consideration of an-
notation design choices, highlighting the potential of LLMs
as a powerful tool to leverage alongside human labelers to
elevate the annotation process in emotion recognition tasks.

2 RELATED WORK
2.1 Emotion Label Spaces
The complexity and ambiguity of emotion pose significant
challenges in quantifying and labeling emotions for building

emotion recognition systems. The most commonly used
frameworks for describing emotions fall into two categories:
categorical label spaces, where emotions are represented
as one or more pre-defined categories (e.g., joy, sadness)
[31], and dimensional label spaces, which conceptualizes
emotions along continuous axes, such as valence (positive
to negative) and activation (excited to calm) [32].

Within the emotion classification framework, selecting
an appropriate set of emotion labels must be carefully
considered. A common approach is to follow established
theories of basic emotions. For example, Emobank [33] and
DailyDialog [34] datasets adopt Ekman’s theory of six basic
emotions (i.e. Anger, Disgust, Fear, Happiness, Sadness, and
Surprise) [31]. Other works make small modifications based
on existing theories; for example, ISEAR [35] removed Sur-
prise while adding Shame and Guilt to their label set. An-
other common strategy is conducting pre-annotation studies
to determine the most appropriate set of emotion labels for
the target data. SemEval-2018 Task 1 ran pilot annotation
and included 11 emotion classes [36]. GoEmotions settled
on 27 classes after an iterative refinement process [37].

2.2 Challenges in Obtaining Human Annotations

Obtaining high-quality, reliable human emotion annotations
is a nontrivial task. It is common to see low agreement
among annotators (e.g., the unanimous agreement can eas-
ily be below 10% in some datasets [9]). One reason for
the low agreement lies in the inherent subjectivity of the
task [16]. Research has found that demographic factors,
such as gender [17], age [18] , and race [19], significantly
affect how emotions are perceived. As a result, a lack of
diversity among annotators may result in datasets failing to
capture the full spectrum of emotional perspectives, poten-
tially leading to biased data and models [38]. In addition,
many design choices can significantly affect the annotation
experience and outcomes. For example, the choice of label
spaces plays an important role [11]. Larger label spaces in-
clude more diverse and nuanced options, allowing for more
accurate descriptions of emotion. However, more options
reduce the agreement between annotators, possibly amplify-
ing perspective differences or causing annotation fatigue [9].
The availability of context is another key factor. Providing
context during annotation generally helps reduce repetition,
ease the task, and produce annotations more aligned with
speakers’ self-reported emotions [12], [13]. However, contex-
tual influence can introduce inconsistencies, as variations in
sample order affect annotators’ judgments [10]. Finally, the
effort and attention devoted to the task varies significantly
by individuals. A study evaluating annotation quality across
four crowdsourcing platforms revealed that roughly half
of the participants failed at least one attention check, with
failure rates reaching 72.9% on the least reliable platform
[39]. In summary, human annotations are subjective and
sensitive, and the quality is often far from perfect.

Evaluating the quality of obtained labels is also chal-
lenged by the ambiguous nature of emotion. Without
ground-truth labels, agreement metrics have been used as
a major quality indicator or as a criterion to remove po-
tentially low-quality samples/annotations [40]. However, a
higher level of agreement does not necessarily indicate more
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TABLE 1: Summary of the datasets we use. In emotion labels, we show classes that occur in all datasets in bold and unique
classes in one dataset with underline.

domain #classes multilabel #samples (k) emotion labels

ISEAR Self-reports 7 No 7.7 anger, disgust, fear, guilt, joy, sadness, shame

SemEval Tweets 11 Yes 6.8/0.8/3.3
anger, anticipation, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust

GoEmotions Reddits 28 Yes 43.4/5.4/5.4

admiration, amusement, anger, annoyance, approval, caring, confusion,
curiosity, desire, disappointment, disapproval, disgust, embarrassment,
excitement, fear, gratitude, grief, joy, love, nervousness, optimism,
pride, realization, relief, remorse, sadness, surprise, neutral

meaningful labels: it can result from reduced diversity in
annotations [9]. Another way to evaluate annotations is to
put them in use—to train models with those labels and
measure the performance on a test set [9], [21]. However,
this approach relies on the assumption that “golden” labels
of high quality and reliability are available in the test set —
an assumption many existing datasets fail to meet. Finally,
human annotations are expensive, requiring significant time
and effort, often involving recruitment, training, and exten-
sive post-analysis [7], [35]. In some cases, multiple iterations
are necessary for reliable results [37]. As models grow in
size, the cost of data collection increases further due to the
need for more data to adequately train them [41].

2.3 Emotional Capability of LLMs

Previous work has found that through conversational inter-
actions, LLMs show emerging emotional intelligence [42]:
they can recognize sentiment [28], analyze the cause of
emotions [43], [44], and engage in dialogues with empathy
[43], [45]. The natural question that follows is whether they
can be used to annotate emotions in a structured manner,
adhering to predefined labels and producing consistent
outputs. Existing work has examined the zero-shot emotion
recognition performance of various LLMs, from smaller
open-sourced models like RoBERTa [46] to larger commer-
cial models like GPT-4 and Gemini [47], [48], generally
finding reasonable performance. Instruction tuning has been
shown to further improve their emotion recognition perfor-
mance across a range of label spaces [49] and benefit other
emotion-related tasks [50]. However, different evaluation
criteria have led to different findings: many studies use
human annotations as ground-truth [25], [28], [51], and find
that LLMs remain inferior to human performance or fail
to outperform smaller supervised models, particularly on
complex tasks with numerous emotion labels. On the other
hand, preliminary studies incorporating human evaluators
in their assessment have shown more promising results
[47]. Our own work, which conducted a small-scale human
evaluation study comparing GPT-4 and human labels, also
reported more positive findings on LLM performance com-
pared to humans [29]. Further, some initial results suggest
that LLMs are worse at larger label spaces than small, well-
defined ones [46], [52]. Still, this effect is under-explored,
and it is not clear whether this is inherent in LLMs or can be
mitigated through proper prompting methods.

3 DATASETS

We use three existing English Emotion Classification
datasets. They are all commonly used datasets to evaluate
emotion models, covering diverse domains, topics, and
different levels of granularities of emotion classes. Table 1
shows a summary of the datasets and label spaces.

International Survey on Emotion Antecedents and Re-
actions (ISEAR) [35] was collected as part of a research
project that aimed to study emotional experiences across
cultures. The dataset contains more than 7000 self-reported
descriptions of emotional experiences in English from par-
ticipants in 27 countries, each describing emotional expe-
riences in one of seven categories (listed in Table 1). We
randomly split it into 60% train/20% dev/20% test sets.

SemEval 2018 Task 1 (SemEval) [36] is part of a mul-
tilingual affect analysis task released at the International
Workshop on Semantic Evaluation. We take the English
subset from the Emotion Classification subtask (E-c), where
each tweet is annotated with zero, one or more labels
from eleven emotion classes. The annotations were col-
lected by crowdsourcing. The dataset was released with
train/dev/test splits.

GoEmotions [37] is a large-scale multilabel emotion
classification dataset consisting of over 58,000 English Red-
dit comments annotated for 27 emotion categories (plus a
neutral category) through crowdsourcing. GoEmotions is
notable for its large data size and label granularity, offering
a rich resource for fine-grained emotion classification. We
use its released train/dev/test splits.

4 GPT-4’S EMOTION ANNOTATION CAPABILITY

In this section, we evaluate GPT-4’s emotion annotation
capabilities through a crowdsourcing-based human evalua-
tion study, assessing its alignment with human perceptions.
We provide a comprehensive analysis with a focus on the
disagreements between human and GPT-4 annotations.

4.1 GPT-4 Prompting
To evaluate the zero-shot emotion recognition capability of
GPT-4, we first query its predictions for all three datasets
using the Microsoft Azure API. We use the gpt-4-1106-
preview deployment, which was the latest stable version
available at the time of our experiments. We employ an
instruction-driven approach [53]: we prompt GPT-4 with a
system prompt, which describes the task and serves as an
instruction, and a user prompt, which includes solely the
input text content. The instructions ask GPT-4 to identify
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Dataset Text GPT-4
Output

GoEmotions Our father will protect
us <3

“love,
optimism”

ISEAR

I was selected to come
here (University, Col-
lege) when I was least
expecting it.

“joy”

SemEval No man read the traffic
properly!!!

“anger,
pessimism”

GoEmotions

Nobody likes you non-
human mimics and ev-
eryone knows what you
are.

rejected

TABLE 2: Example GPT-4 outputs for emotion annotation
across different datasets. The last sample was rejected by
GPT-4 due to its content policy, and thus it was excluded
from our analyses.

the appropriate label(s) from the provided list and ensure its
outputs follow a predefined format that can later be parsed
with rule-based post-processing. The instructions are de-
signed to mirror those given to human annotators, creating
a consistent and comparable task framework. Additionally,
we enhance the prompts by establishing a persona at the
start, which has been found beneficial in some work [54].

We used the following system prompt for multilabel
emotion classification [29] on the SemEval dataset:

GPT-4 prompt for emotion classification
“You are an emotionally-intelligent and empathetic agent.
You will be given a piece of text, and your task is to identify
all the emotions expressed by the writer of the text. You are
only allowed to make selections from the following emotions,
and don’t use any other words: anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, surprise, trust.
Only select those ones for which you are reasonably con-
fident that they are expressed in the text. If no emotion is
clearly expressed, reply with ‘neutral’. Reply with only the
list of emotions, separated by comma.”

For ISEAR and GoEmotions, we made minimal adjust-
ments to the prompt to reflect different emotion options and
task settings (i.e., whether multilabel is allowed). In rare
cases where the output did not follow the specified format
and could not be parsed, we retried with the same query.
GPT-4 also has content policies and may refuse potentially
harmful or sensitive content1. We excluded those samples
from our analysis (ISEAR 3.7%, Semeval 4.5%, GoEmotions
2.6%). We show a few text samples and GPT-4 responses in
Table 2.

4.2 Human Evaluation Study
Given the inherent ambiguity of emotion and the absence of
absolute “truth” labels, human judgment remains essential
for evaluation in this domain. We conduct a human evalua-
tion study, engaging a separate group of humans (we refer
to them as “evaluators”, to differentiate from “annotators”
who provided the label annotations in the datasets) to assess

1. https://openai.com/policies/usage-policies/

how accurately GPT-4 and human annotations reflect the
emotions in text. All human-subject studies reported in
this paper were approved by the University of Michigan
Institutional Review Board (IRB), protocol HUM00250339.

4.2.1 Sample Selection
We selected 500 samples from the test split of each dataset
for the human evaluation study, to be consistent with
our evaluation-only study design. Due to the imbalanced
label distributions in SemEval and GoEmotions, we ap-
plied weighted sampling with log inverse frequency as the
weights to encourage a more representative inclusion of
different emotions. We removed samples that were rejected
by GPT-4 due to its content policy (17 in ISEAR, 12 in
SemEval, 14 in GoEmotions). Since one of our main goals
is to investigate the differences between their annotations,
we dropped samples where the two sources gave the exact
same label(s). This left 990 samples (out of 1500) for human
evaluation: 124 from ISEAR, 438 from SemEval, and 438
from GoEmotions.

4.2.2 Crowdsourcing Experiments
We designed a human evaluation study with the goal of
comparing and understanding the disagreement between
human and GPT-4 annotations. We presented the evaluators
with text samples alongside labels from both GPT-4 and
human annotators, randomized and without revealing their
source. We asked them to provide feedback on three aspects:

Emotional Ambiguity. We ask “Do you feel confident
that you can describe the emotion expressed in the sen-
tence(s)?” with three options “Yes”, “No” and “Maybe”.

Perceived Accuracy. We then present annotations from
both sources (as Option A or Option B) and ask the evalua-
tors to rate “How accurately do you think that the descrip-
tion in Option A/B reflects the text writer’s emotion?” on a
7-point Likert scale (1-totally inaccurate, 7-totally accurate).

Preference. Finally, to make a direct comparison, we ask
“If you have to choose one, which emotion description do
you agree more with?”

We aimed to obtain three evaluations on each sample.
Each evaluator was assigned 50 samples, to keep session
time manageable. We implemented the annotation interface
with Potato [55], a web-based text annotation tool. We
hosted the annotation webpage on an AWS server and
recruited participants from Prolific. The selection criteria
included: being native speakers of American English, at
least 18 years old, and living in the United States. The
participants were informed that the goal of this study was
to understand how people interpret emotional expressions
in text, and they all provided their consent to participate.
We received 2948 evaluations from 59 participants (968
samples got three annotations on each, and 22 samples only
got two due to connection issues). The average completion
time was 20 minutes 42 seconds, resulting in an average
compensation of $11.60/hour.

4.3 Label Distributions and Agreement Analysis
We first analyze the label distributions and disagreements
between human and GPT annotations. We visualize the dis-
agreements with confusion matrices in Figure 1. For clarity
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(a) ISEAR (b) SemEval (c) GoEmotions

Fig. 1: Disagreements between Human and GPT-4 Annotations, visualized as confusion matrices.

and to compare across datasets, we only show results with
the five emotion classes that are shared in all three datasets:
anger, disgust, fear, joy and sadness. For multilabel datasets,
we define the confusion matrix based on the overlap and
differences between human and GPT-4 annotations: if an
emotion is present in both sets, we increase the count in
the diagonal of the matrix for that emotion. If an emotion
is present in the human labels but not in the GPT-4 anno-
tations, and another emotion is present in the GPT-4 anno-
tations but not in the human labels, we increase the count
in the off-diagonal cell corresponding to the two emotions
by one. For example, if the human labels on a sample are
{admiration, joy} and GPT-4 set is {joy, love, excitement}, we
record the agreement on the diagonal element of joy-joy,
and we record confusion of admiration-love and admiration-
excitement.

We see that most samples fall on the diagonal of the
confusion matrices, indicating that GPT-4 annotations gen-
erally align with human annotations. Besides, as is expected,
it is more common to see disagreements between similar
emotion labels: confusion between a positive emotion (e.g.,
joy) and a negative one (e.g., anger) is less common than
confusion between two negative emotions (e.g., anger and
disgust). Finally, we notice that the confusion matrices are
largely asymmetric. For example, in the ISEAR dataset, GPT-
4 more often takes human-perceived anger as sadness (260
samples) than the reverse (27 samples). Such differences,
however, do not generalize across datasets: the same anger-
sadness confusion is shown in SemEval, but in GoEmotions
the numbers are closer and the direction is reversed. These
findings suggest potential perspective differences between
GPT-4 and humans, specific to datasets, emotion categories,
and annotation processes. This observation aligns with pre-
vious research showing a significant performance variation
across emotions [25], which has been attributed to the sen-
sitivity of LLMs to word choice and usage. We leave more
in-depth explorations on this perspective difference, for ex-
ample identifying the factors contributing to the directions
of the difference, to future work.

Fig. 2: Proportion of human evaluators’ votes favoring hu-
man annotations versus GPT-4 annotations, across datasets.

4.4 Human Evaluation Results
4.4.1 Preference
We first look at the responses to the “preference” question.
Figure 2 shows the votes for human versus GPT-4 annota-
tions. GPT-4 annotations were significantly more preferred
than human annotations (overall 62%), and this trend held
across all three datasets (ISEAR 60.7%, SemEval 58.2%,
GoEmotions 66.4%). We also ran per-evaluator statistics to
test the between-person consistency. The vast majority (53
out of 59 evaluators, 89.8%) preferred GPT annotations on
more samples, while three (5.1%) preferred human anno-
tations more and three (5.1%) indicated equal preference.
Interestingly, in our previous work, we compared GPT-
4 predictions to those from smaller models finetuned on
human labels and found comparable performance when
human labels were used as the ground truth [29]. However,
the results of this human evaluation study present an even
more favorable picture for GPT-4. This conveys an impor-
tant message that the common method that evaluates LLMs
against human labels [25], [28] is prone to underestimate
their performance and may give misleading results.

Further, comparing the datasets, we find that the prefer-
ence discrepancy is larger in GoEmotions, where the label
space is larger compared to the other two datasets. We
hypothesize that as the label space gets larger and more
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Fig. 3: Perceived accuracy ratings on a scale of 1 (totally
inaccurate) to 7 (totally accurate).

complicated, humans may be more challenged and tend to
make more mistakes due to the increased cognitive load
[56], while GPT-4 is less affected, especially with proper
prompting methods. We discuss this hypothesis in more de-
tail in Section 4.4.3, and we run follow-up human annotation
studies to further explore the complexity of the label space
as a factor in human and GPT-4 performance (Section 5).

4.4.2 Perceived Accuracy Ratings
We then look at the individual perceived accuracy ratings
and compare those on GPT-4 versus human annotations, to
gain more insights into human preference results. We com-
pare the total number of samples that fall into each rating
category, as shown in Figure 3. The results reveal a clear
and consistent advantage for GPT-4 annotations: human
annotators generated a greater number of labels deemed
inaccurate (Rating → 3, Human 24.3% vs. GPT-4 15.1%),
suggesting a higher probability of errors. In contrast, GPT-4
demonstrates stronger performance in identifying emotions
deemed totally accurate by evaluators, indicating good com-
prehension of the complexity of emotion labels and subtlety
of emotion expressions. We further compare the accuracy
ratings on each dataset in Table 3. We see that the trend
also holds on each dataset, adding to the robustness of our
findings. What’s more, as the label space expands, both
human annotators and GPT-4 are more likely to produce
labels rated as fully accurate (see last row in Table 3, across
all datasets). This behavior is both reasonable and desirable,
as when the label space is limited, it lacks the necessary
granularity to capture subtle emotional distinctions, making
it impossible to provide perfectly accurate descriptions. In
contrast, a larger label space increases the likelihood of
encompassing the correct label(s), thus facilitating “totally
accurate” outcomes. In Section 5, we will further explore
the influence of label space complexities with a dataset-
controlled annotation study.

4.4.3 Confidence and Agreement
We assess the confidence and agreement among human
evaluators to understand the perceived ambiguity of this
task and perceptual differences across evaluators. When
asked if they could confidently describe the emotions ex-
pressed in the text, evaluators responded “Yes” for 74%
of the samples, “No” 18.2%, and “Maybe” 7.7%. Although

most samples were found to convey clear emotions, evalua-
tors disagreed a lot on their preference: among annotations
marked with confidence, only 59.2% of samples with two
annotations had agreement (i.e., both evaluators preferred
the same label source), and 40.5% of samples with three
annotations had agreement. This highlights significant vari-
ation and subjectivity in emotion perception: even when
selecting between two options, agreement remains relatively
low.

4.4.4 GPT-4 Weakness Analysis
We also analyze the samples to understand whether and
how certain text features affect GPT-4’s emotion classifi-
cation performance. We used Linguistic Inquiry and Word
Count (LIWC) [57], a tool used to analyze text for psycholog-
ical and linguistic content. It quantifies the occurrences of 73
word categories in a text, including words that convey emo-
tional and psychological states (e.g., positive emotion, fear),
as well as semantic information (e.g., adverb, conjunction)
[58]. We extracted LIWC features for each sample, and we
augmented the feature set with five additional semantic fea-
tures commonly used for Twitter data [59], [60]: text length,
word count, emoji count, hashtag count, and mention count
(tagging another user with “@”). These features allow us to
examine if certain types of emotional or semantic content
are more likely to mislead or challenge LLMs.

We ran a Logistic Regression (LR) model (N=990) using
the text features as input and the preference from the hu-
man evaluation study as the outcome variable (1 if GPT-4
labels were preferred over human labels by majority vote,
0 otherwise). We first ran independent t-tests on individual
features for feature selection [61] and kept the 10 features
with lowest p-values as the input to our model.

We found that higher frequencies of mentions, prepo-
sitions, future focus and interrogatives had a significant
(p < 0.05) negative effect on GPT-4 being the preferred
annotator, while the use of impersonal pronouns positively
predicted the preference for GPT-4. Prior research has high-
lighted challenges for LLMs in understanding temporal
constructs [62] and social cues beyond the text [63], which
may explain some of these patterns. However, given the
limited size of our data, further investigation is needed to
interpret these findings meaningfully.

5 FEASIBILITY OF GPT-4 AIDED EMOTION ANNO-
TATION

Our experiments in Section 4 revealed the potential of GPT-4
in emotion recognition. However, we also identified weak-
nesses. One notable concern is the instability and unpre-
dictability that often accompany LLMs. They are sensitive
to both training data and prompting methods, which can
greatly impact their performance [64]. Therefore, using GPT-
4 to perform annotations without human oversight can be
risky. Furthermore, as shown in Figure 1 and as discussed
in Section 4.3, there may be systematic differences between
GPT-4 and human perspectives. While it is crucial to mit-
igate human errors, we also require that annotations accu-
rately reflect human perspectives. Therefore, in this section,
we propose and evaluate two methods for incorporating
GPT-4 into emotion annotation pipelines, with the goal
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Label Human GPT ISEAR (7 classes) SemEval (11 classes) GoEmotions (27 classes)
Human GPT Human GPT Human GPT

1-Totally Inaccurate 217 (7.4%) 98 (3.3%) 9.3% 3.6% 6.1% 3.6% 8.1% 3.0%
2 245 (8.3%) 155 (5.3%) 6.0% 7.1% 9.0% 5.3% 8.1% 4.7%
3 255 (8.6%) 193 (6.5%) 8.5% 8.5% 9.9% 6.9% 9.0% 6.4%
4 491 (16.7%) 364 (12.2%) 19.1% 15.8% 16.9% 13.9% 15.7% 9.4%
5 577 (19.6%) 498 (16.6%) 22.1% 18.5% 19.4% 18.1% 18.5% 18.3%
6 704 (23.9%) 463 (15.4%) 17.8% 24.6% 21.0% 24.0% 20.2% 27.6%

7-Totally Accurate 566 (19.2%) 879 (29.8%) 16.4% 25.4% 18.2% 25.9% 21.1% 35.1%

TABLE 3: Percentage of rating scores Human and GPT-4 annotations receive, overall and within each dataset.

of harnessing the strength of both human and automated
labelers. In our first approach, we use GPT-4 as a pre-
annotation label filter to dynamically present a smaller set
of classes to human annotators. In our second approach,
we use GPT-4 as a sample filter to flag potentially low-
quality samples. Below we describe each method and our
evaluation experiments.

5.1 Pre-filtering, label-level
There is a trade-off between the benefit of larger label
spaces and increased cognitive load (Section 4.3 and 4.4.2,
also [11]). We hypothesize that we can reduce cognitive
load while preserving label diversity by using GPT-4 to
dynamically drop unlikely labels for each sample before
presenting them to human annotators. We prompt GPT-4 in
a zero-shot manner with text samples and a list of emotion
options. The goal of the filter step is to include all possible
classes; it is less important to avoid false positives as these
can later be identified by human annotators. Therefore,
instead of asking GPT-4 to make selections, we ask it to
go through the emotions one by one and indicate if each
is possibly expressed in the sample. We provide the list of
emotion options along with the text samples, rather than
in the system prompt. In a preliminary analysis of a small
exploration set, we found that this encouraged the inclusion
of more labels and significantly reduced false negatives.

GPT-4 prompt for emotion Pre-filtering
”You are an emotionally intelligent and empathetic agent.
You will be given a piece of text and a list of emotions.
Your task is to determine which emotions are present in
the text. Please go through the emotion list one by one and
think about if the emotion is possibly present in the text.
Please respond with each emotion plus “yes” to indicate
it’s possibly present, or “no” to indicate it’s definitely not
present. If you are not 100% sure, please select “yes”. Reply
with only the list of emotions words plus your response,
separated by newline.”

5.1.1 Evaluation Setup
To evaluate the feasibility of this approach, we conducted
human-annotation experiments on the same set of samples
but three different label space setups:

1) Small: We take the 11 emotion classes from SemEval
to represent a relatively small label space.

2) Large: We take the union of the emotion classes from
SemEval and GoEmotions (30 classes in total), to
represent an extensive set of emotion labels.

3) GPT-4 Pre-filtered: We take the large set in 2) and
reduce it with GPT-4, as described above.

We use a between-subject design: the label sets are fixed
for both the Small and Large sets, where participants may
gradually gain familiarity with the labels. If we mix those
setups in one annotation session, such familiarity is poten-
tially disrupted. Therefore, we assign each participant to one
of three groups, each having the same set of samples and
one of the three label sets. We ask the annotators to select all
applicable labels from the label list, plus an extra “None of
the above / Others” option. We also include a question of
whether they feel restricted by the options and would use
other words to describe the emotion(s).

We used text samples from the GoEmotions dataset
for the coverage of diverse emotions in its samples. We
took the set of 486 GoEmotions samples we used for the
evaluation study (Section 4.2.1). For samples where GPT-
4 did not output any candidates (N = 4), we defaulted
their labels to “neutral”. We recruited 29 annotators for each
group (i.e., Small, Large, and GPT-4 Pre-filtered) through
crowdsourcing. We used the same crowdsourcing platform
and setups as described in Section 4.2.2. Each participant
annotated 50 samples, and each sample got 3 annotations.

5.1.2 Results
For the evaluation of the pre-filtering setup, we focus on
three aspects: 1) cognitive load, indicated by subjective
reports and time to completion; 2) label reliability, indicated
by the agreement level among annotators; and 3) label
coverage, i.e., the pre-filtered set should reasonably cover
the labels human annotators selected from the Large set.

Cognitive Load and Annotators’ Experience. We mea-
sured the cognitive load of the annotators in two aspects:
perceived load [65], as a subjective measure, and time to
completion [66], as an objective measure. We used the
NASA Task Load Index [67] as our cognitive load scale. We
excluded the question on physical demand since it was not
directly relevant in our task, and we also removed the ques-
tion on temporal demand, which was measured by time to
completion. We asked the participants to rate their feelings
on four aspects on a 7-point scale at the end of their session:
Mental Demand, Confidence, Effort, and Frustration. We
found that a large label space significantly increased the
mental demand of the annotators compared to the small
set (see Figure 4a). However, a small label space did have
a drawback: annotators reported feeling more restricted
by the options (11.6% of samples on the Large set, 13.9%
on Pre-filter, 33.5% on Small). Consequently, significantly
lower confidence was reported on the Small set compared
to the other two (Small 5.72±1.25, Large 6.17±1.20, Pre-filter
6.31±0.76). No significant differences were found in Effort
and Frustration. We also compared the time the annotators
spent on each sample. We excluded samples that took more
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(a) Subjective ratings (b) Time per sample

Fig. 4: Comparison of the cognitive load on different label
sets. The bars show the mean of the ratings, and error
bars show the standard deviation. Significance tests are run
between Pre-Filter and Large/Small sets. Dependent t-test
is used in (a) because each annotator provided an overall
rating for the whole session, and annotators were assigned
different samples. Independent t-test is used in (b) because
we measured the avg. time spent on each sample, and the
sets share the same samples. *:p<0.1, **:p<0.05.

than 60 seconds, as they were outliers in the time distri-
bution and likely indicated a pause in the task. Annotators
spent an average of 17.41 ± 7.93 seconds on the Pre-filter
set and 18.02 ± 6.85 seconds on the Small set, while much
longer (25.04± 8.27 seconds) on the Large set (Figure 4b).

Agreement. We use the Jaccard Index (JI) [68] to measure
the agreement between two annotators on each sample. JI is
an agreement measure for multi-label classification tasks,
defined by the size of the intersection of two label sets
divided by their union. We calculated the average JI among
pairs of annotators on each sample and the average across
samples on each set. The Small set has the highest agreement
of 0.29±0.34, slightly higher but not significantly different
from the Pre-filter set (0.28±0.30, independent t-test p=0.36).
The Large set has the lowest JI of 0.20±0.24, significantly
lower than the Pre-filtered and Small sets (both p<0.05).

Label Coverage. Finally, we evaluate whether the fil-
tering step retains potentially correct labels, i.e., the labels
selected by humans in the Large set group. Following the
approach of GoEmotions [37], we obtain aggregated labels
from each set by using emotion classes that are selected by at
least two annotators out of three in our new annotations. If
no emotion class is selected for one sample, it is defaulted to
“neutral”. We first compare the chosen class labels with the
Pre-filtered candidates: an average of 90.19% of the labels
selected in the Large set were included in the Pre-filter set,
indicating a reasonably low false-negative rate. In addition,
the labels annotators chosen from the Pre-filter set have
an agreement of 0.30±0.32 JI with the Large set, which is
comparable to (even slightly higher than) the within-set
agreement levels, and is much higher than the agreement
between the Small and the Large sets (0.15±0.28, p<0.05).

Together, the results show that the Pre-filtered set can
match the advantages of both the Small and the Large sets: it
is less mentally demanding for annotators, takes less time to
complete, and yields higher agreement among annotators.

Model Test
Label Human Filter Random F

F1 UAR F1 UAR F1 UAR

BERT H 0.472 0.465 0.442 0.499 0.442 0.421
F 0.578 0.530 0.620 0.590 0.535 0.476

DBERT H 0.434 0.401 0.436 0.472 0.427 0.396
F 0.526 0.462 0.588 0.551 0.504 0.441

TABLE 4: BERT and DistilBERT model performance, fine-
tuned and tested with different label sets. Test Label: H:
Human, F: Filter. For training, the Human set has 42,287
samples and the Filter set has 16,592 samples. The “Ran-
dom F” training set is a set randomly downsampled from
the Human set to the size of the Filter set. Better perfor-
mances are shown in bold, respectively for F1 and UAR.

5.2 Post-filtering, sample-level
In Section 5.1.2, we show some benefits of using GPT-4
for pre-annotation to collect new labels. In this section, we
investigate a second approach: when a dataset with human-
annotated labels is available, we propose to use GPT-4 as
a quality checker to filter out potentially low-quality labels.
Specifically, we compare the labels from human and GPT-
4 annotation and drop the samples where the two sources
totally disagree: i.e., they selected different labels for single-
label classification datasets, or where they do not contain
any overlapping labels for multi-label classification datasets.
By applying this filtering step to GoEmotions, we obtained
a much smaller Filtered set of 16,592 samples (out of 42,287).

5.2.1 Evaluation Setup
Since the post-filtering step removes samples where GPT-4
and human annotations disagree, it is expected to remove
samples with mistakes in annotations, resulting in higher-
quality labels. While this generally benefits model training,
this filtering step also decreases the number of samples
and potentially the diversity or ambiguity in the samples.
Therefore, a key question is whether this trade-off eventu-
ally enhances or hurts model training outcomes. To evaluate
this, we train smaller models with either the entire labeled
GoEmotions training set, or the smaller Filtered set. We
measure the performance on its test set as an indicator of
the usefulness of the labels. We report performance on both
the whole test set and a filtered test set.

Base model selection. We choose two models from the
BERT family for our training experiments: BERT [69] and
DistilBERT [70]. BERT is one of the earliest transformer-
based LLMs that gained broad attention, and it has been
used as a baseline for many NLU tasks [71], including in
the GoEmotions paper [37]. With 110 million parameters,
BERT is significantly smaller than leading LLMs like GPT-
4, making it practical for use on most modern GPUs. Dis-
tilBERT is a distilled version of the BERT model with a
40% reduction in the number of parameters while deliv-
ering comparable performance in multiple NLU tasks. We
compare the models trained on the original human labeled
set versus the Filtered set where samples that GPT-4 totally
disagree with are dropped. We finetune the models for 30
epochs with a learning rate of 1e-5, and we select the best
model measured by performance on the validation set. We
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report the performance on the test split of the human and
Filtered set.

5.2.2 Results
Results are presented in Table 4. The filtered set, despite
comprising less than 40% of the samples in the full set,
consistently leads to better model performance across mod-
els (both BERT and DistilBERT) and test sets (both the full
and filtered test sets), with one exception of the F1 score
when tested in-domain on the human-labeled set. To isolate
the effect of training sample size reduction, we included a
training set that was randomly sampled from the Human
set and matched the size of the Filter set (16,592). As
expected, this smaller set led to a performance drop, with
all metrics lower compared to the Human and Filtered set.
This further highlights the effectiveness of our post-filtering
approach, which achieved better performance with much
fewer samples. Together, these results show the potential of
GPT-4 to flag possibly low-quality samples, thus improving
model performance as well as training efficiency.

6 DISCUSSION

Our work examines the design choices involved in emotion
annotation and investigates how LLMs, specifically GPT-
4, perform in this context and where they may offer new
opportunities. In the first part of our study (Section 4), we
evaluated GPT-4’s ability to classify emotions across three
datasets with varying domains and label space complex-
ity. We found that GPT-4 predictions generally align with
human-annotated labels. In addition, a human evaluation
study revealed preferences for GPT-4 labels over the orig-
inal human annotations, highlighting the value of human-
centered evaluations and raising questions about how LLMs
should be evaluated for emotion recognition tasks. We also
compared GPT-4 and human labels across different label
spaces. Results suggest that larger label spaces allow nu-
anced emotion descriptions, which are perceived as more
accurate by human evaluators, while smaller spaces are less
cognitively demanding and can potentially lead to fewer
human mistakes.

While our results demonstrate the potential of GPT-4
as an effective annotation assistant, fully replacing human
annotators with LLMs remains questionable and carries
risks. Our analysis (Section 4.3) revealed systematic differ-
ences between human and GPT-4 labels, suggesting that
LLMs may reflect distinct perspectives that risk narrowing
the diversity of emotional interpretations. Overdependence
on such models could lead to the loss of subtle, context-
sensitive judgments that humans naturally bring to the task.

Based on the continued importance of human perspec-
tives in emotion recognition, we further explored ways to
integrate GPT-4 into annotation processes, focusing on the
GoEmotions dataset. We found that GPT-4 can serve as a
pre-annotation label filter to dynamically exclude highly
unlikely labels before presenting them as options to hu-
man annotators. Our human annotation study showed that,
compared to traditional methods, GPT-4 could effectively
reduce more than 70% of options while preserving more
than 90% of human-selected labels. This approach leverages

the expressivity of larger label spaces and the reduced cog-
nitive load and higher annotator agreement associated with
smaller label spaces. What’s more, on annotated datasets,
GPT-4 can act as a post-annotation sample filter to flag
potentially low-quality labels. Models trained on the fil-
tered dataset, although much smaller in training data size,
achieved better performance than the original full set with
human annotations.

7 LIMITATIONS AND FUTURE WORK

Emotion is a rich research topic, involving subjective, cul-
tural, and contextual dimensions that make both recog-
nition and evaluation inherently challenging (see Section
2.2). While our study demonstrates GPT-4’s potential as an
annotation assistant, we did not systematically analyze its
failure cases beyond the confusion matrices in Section 4.3.
Understanding when and why GPT-4 diverges from human
annotations remains an important direction for future work,
especially for applications in sensitive domains.

We did not empirically examine issues of bias or fairness.
Prior work has shown that LLMs may reflect and amplify
societal biases (e.g., [72], [73]), posing risks in sensitive
domains like healthcare and mental health (e.g., [74]). These
concerns highlight the need for careful oversight and further
research before deploying LLM-based emotion annotation
in high-stakes contexts.

We limited our discussion to classification tasks. Our pre-
vious work conducted preliminary experiments on dimen-
sional emotion annotation using the Emobank dataset [29].
We found that GPT-4 labels had high Pearson Correlation
with human labels, but the Mean Absolute Error was also
high. This indicates that GPT-4 was able to compare the
relative activation or positivity levels of emotional expres-
sions but the scale or distribution of the output numbers
may need further calibration, raising different challenges
compared to classification tasks. Existing work has shown
that language anchors help LLMs to understand dimension
scales [75]. As dimensional label spaces gain more pop-
ularity [76], future research could explore ways to better
leverage LLMs in dimensional emotion annotation.

Additionally, our pre- and post-filtering methods (Sec-
tion 5) serve as preliminary demonstrations of the feasibility
and potential of GPT-4-assisted annotation rather than as
definitive solutions. Future work could incorporate more
refined approaches to further improve performance. While
our focus is not on comparing different perspectives or
methods in human annotation processes (e.g., self-reported
vs. third-person annotations, or crowdsourcing vs. in-house
annotations), previous studies have examined these aspects
[77]–[79]. Finally, prompting techniques are not the focus of
this paper, but we acknowledge the sensitivity of the models
and the importance of good prompts. We direct interested
readers to related studies [64], [80]–[82].

8 CONCLUSION

In this work, we conduct a comprehensive evaluation of
GPT-4’s emotion classification performance and its potential
to aid annotation processes. We present encouraging results
along with discussions on the complexities and challenges
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associated with various design choices in emotion anno-
tation studies. Our findings underscore the importance of
carefully rethinking these choices with LLMs’ capability in
mind. We highlight the need for evaluation metrics that bet-
ter align with human perspectives and the strong promise
of using LLMs as tools to aid annotation efforts.

We make our prompts and code publicly
available at https://github.com/chailab-umich/
GPT-4-Emotion-Annotation.
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