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Multi-Agent Clarity-Aware Dynamic Coverage with Gaussian Processes

Devansh R. Agrawal and Dimitra Panagou

Abstract— This paper presents two algorithms for multi-
agent dynamic coverage in spatiotemporal environments, where
the coverage algorithms are informed by the method of data
assimilation. In particular, we show that by explicitly modeling
the environment using a Gaussian Process (GP) model, and
considering the sensing capabilities and the dynamics of a
team of robots, we can design an estimation algorithm and
multi-agent coverage controller that explores and estimates the
state of the spatiotemporal environment. The uncertainty of
the estimate is quantified using clarity, an information-theoretic
metric, where higher clarity corresponds to lower uncertainty.
By exploiting the relationship between GPs and Stochastic Dif-
ferential Equations (SDEs) we quantify the increase in clarity
of the estimated state at any position due to a measurement
taken from any other position. We use this relationship to
design two new coverage controllers, both of which scale well
with the number of agents exploring the domain, assuming the
robots can share the map of the clarity over the spatial domain
via communication. We demonstrate the algorithms through a
realistic simulation of a team of robots collecting wind data
over a region in Austria.

Code and open-sourced Julia packages are available at [1].

I. INTRODUCTION

A standard robotic mission is the collection of information

that varies both in time and space over a domain of interest.

To collect such information optimally, a (team of) robot(s)

must reason about the currently available information, the

target level of confidence in the information sought, the

spatiotemporal evolution of the underlying information, and

the robot’s sensing capabilities, and (in the case of a team)

coordinate the actions of each robot.

The design of informative path planners and dynamic

coverage controllers has long been of interest [2]–[4], with

a variety of techniques proposed including Voronoi parti-

tioning [5], sampling approaches [6], [7], grid/graph based

approaches [8], [9] and ergodic search [10], [11].

In this paper, we define the informative path planning

or coverage control problem as follows: we have a team

of robots that, at a fixed sampling frequency, measure the

spatiotemporal environment at their respective positions.

Using these measurements, we update our estimate of the

state of the environment (referred to as information assimi-

lation), while simultaneously controlling the robots position

to determine the next location from which a measurement

should be taken (referred to as the coverage controller).
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As such, the goal is to design a controller and information

assimilation algorithm that efficiently reduce the uncertainty

of the estimate of the state of the environment.

We quantify the uncertainty of a stochastic variable using

an information-theoretic metric clarity, introduced in [12].

In particular, as the uncertainty of the stochastic variable

decreases, (i.e., its differential entropy approaches −∞), the

clarity of the random variable approaches 1. Similarly, as the

uncertainty increases, the clarity approaches zero.

We model the environment as a spatiotemporal field

f(t, p), i.e., a scalar function that varies in time and space;

as an example, if the goal is to estimate the windspeed

over a spatial and temporal domain, f(t, p) represents the

windspeed at any given time t and position p. The estimate

is a function f̂(t, p) for each t, p, with an associated clarity

q(t, p) at each t, p. Numerically the state of the environment

is a vector representing f̂(t, p) at a set of grid points. By

taking (noisy) measurements of f using the robots at their

respective locations, we can improve our estimate f̂ and

increase its clarity (i.e., reduce the uncertainty). At the same

time, due to the time-varying nature of f , the clarity of f̂
decreases for all points not being measured. This balance of

information gain and decay will be an important element in

designing the algorithms.

A key limitation of many of the methods listed above

is that simplified heuristics are used to motivate the cost

functions used in the informative path planners. For example,

the ergodic search approaches assume that a Target Spatial

Distribution (TSD) (defined as the desired percentage of

time that the robot should spend at any position in the

domain) is provided by the user. However, there has been

less work on how one can obtain such a target distribution

in a principled manner taking into account the sensing

capabilities of the robot or the temporal evolution of the

state of the environment.

The goal of this paper is to demonstrate how the cost

function in informative path planning can be designed in

a principled manner based on the assumed model of the

environment. In particular, when estimating a spatiotemporal

field, a common practice is to model it as a realization of

a GP [13], and use the robot’s measurements to update the

estimate of the state of environment.

Here, we use the connection between GPs and SDEs [14]–

[16] to analyze the information-gathering capabilities of the

robots: given the robot’s take measurements at their respec-

tive locations, how much does the uncertainty in our estimate

of state of the environment reduce? We answer this by

quantifying a robot’s sensing function and the environment’s

information decay function. For a point p in the domain,



the sensing function defines the rate of increase of clarity

at p due to measurements from a robot at position r. The

decay function quantifies the rate of decrease of clarity due

to the time-varying nature of f(t, p). We use these functions

to design coverage controllers that respect the rate of change

of clarity when designing trajectories.

This paper has three main contributions: (A) We use

clarity [12] to quantify the rate of change of uncertainty at a

position p due to measurements made by a robot at a (possi-

bly different) position r. Integrated over the mission domain,

this quantifies the value of the robot being at position r.

(B) We use this relation to propose two coverage controllers.

(C) Being feedback controllers, we show how they scale

naturally to the multi-agent setting. Finally, we demonstrate

the algorithms using a realistic simulation, where a team of

aerial robots explore a region of Austria, and estimate the

wind speed over this region.

The two coverage algorithms proposed bear resemblance

to the controllers in [4] and [17]. The first, referred to as

the direct controller, directly chooses a control input to

maximize the clarity of the state of the environment. The

second, referred to as the indirect controller, computes a

TSD based on the time required to increase the clarity to a

given target value.

II. PRELIMINARIES

Notation: Z is the set of integers, N = {0, 1, 2, ...} is the

set of naturals. R,R≥0,R>0 denote the sets of reals, nonneg-

ative reals, and positive reals. IN denotes the N -dimensional

identity matrix. Sn++ denotes the set of symmetric positive

definite matrices in R
n×n. For A ∈ S

n
++,

√
A ∈ S

n
++ is the

unique matrix such that
√
A
√
A = A. For v ∈ R

n, the i-th
entry is [v]i. Similarly, for M ∈ R

N×M , the (i, j)-th entry

is [M ](i,j). A⊗B denotes the Kronecker product of A,B.

We consider a problem with NR robots, exploring a d-

dimensional domain D ⊂ R
d. Each robot has a state in X ⊂

R
n, n ≥ d. The state of the environment will be represented

numerically at a set of NG grid points.

A. Clarity

The information metric clarity was introduced in [12] and

is based on differential entropy:

Definition 1. [18, Ch. 8] The differential entropy h[X] ∈
(−∞,∞) of a continuous random variable X with support

S and density ρ : S → R is

h[X] = −
∫

S

ρ(x) log ρ(x)dx. (1)

Notice that as the uncertainty in X decreases, the entropy

approaches h[X] → −∞. Clarity is defined in terms of

differential entropy.

Definition 2. Let X be a n-dimensional continuous random

variable with differential entropy h[X]. The clarity q[X] ∈
(0, 1) of X is defined as:

q[X] =

(

1 +
exp (2h[X])

(2πe)n

)−1

. (2)

In other words, the clarity q[X] about a random variable

X lies in (0, 1), where q → 0 corresponds to the case where

the uncertainty in X is infinite, and if X is perfectly known

in an idealized (noise-free) setting, q[X] = 1. For a scalar

Gaussian random variable X ∼ N (µ, σ2), the clarity is

q[X] = 1/(1 + σ2).
In an estimation context, we use clarity to quantify the

quality of our estimate: as the clarity increases towards 1,

the uncertainty of our estimate decreases towards 0. In [12]

it was shown that when X is estimated using a Kalman filter,

the clarity dynamics of the estimate of X can be obtained

in closed form.

B. Gaussian Processes

A GP [13, Ch. 2] is a (scalar) stochastic process that is

fully defined by the mean function m : D → R and a kernel

k : D ×D → R:

f(p) ∼ GP(m(p), k(p, p′)), (3)

where m and k are defined as

m(p) = E[f(p)], (4a)

k(p, p′) = E[(f(p)−m(p))(f(p′)−m(p′))]. (4b)

Given a set of N measurements {yk}Nk=1 taken at positions

{pk}Nk=1, we can update our posterior estimate of f , as

described in [13, Ch. 2].

For two set of points PA = {ai}Ni=1 and PB = {bi}Mi=1,

the kernel matrix KAB ∈ R
N×M is the matrix such that

[KAB ](i,j) = k(ai, bj).

C. Spatiotemporal Gaussian Processes

The goal is to estimate a spatiotemporal field, i.e., to esti-

mate a function f(t, p), f : R×D → R using measurements

obtained by robots.1 Here t ∈ R denotes time, and D ⊂ R
d

is spatial domain of interest. The measurements (defined

in (13)) are noisy measurements of f at a fixed sampling

period from each robot’s position at the sampling time.

While a standard GP can directly handle the spatiotempo-

ral case, we can achieve significant computational efficiency

by explicitly separating the spatial and temporal dimensions

and exploiting the equivalence between spatiotemporal GPs

and SDEs. Effectively, we can convert a Bayesian inference

problem into a Kalman Filtering problem, thereby reducing

memory and computational cost. We assume the following:

Assumption 1. Suppose the spatiotemporal field f : R ×
D → R is a realization of a zero-mean GP:

f(t, p) ∼ GP(0, k(t, p, t′, p′)), (5)

k(t, p, t′, p′) = kT(t, t
′)kS(p, p

′), (6)

where the kernel is separable in space and time, and the

temporal kernel is isotropic, i.e., kT(t, t
′) only depends on

|t′ − t|.
1For simplicity of exposition, we assume the spatiotemporal field has

scalar outputs. For multidimensional outputs, we repeat for each dimension
independently.



Under Assumption 1, it is known that realizations of a

GP are also realizations of a SDE [16]. This fact is derived

through the Wiener-Khinchin theorem [19, Ch. 12], and in

the interest of space, the readers are referred to [16] or [20,

Appendix] for full derivations.

The key idea is that if h(t) ∼ GP(0, kT(t, t
′)) is a

realization of a (temporal) GP, it is equal to the output of

a transfer function applied to a realization of a white noise

process. By expressing the transfer function in state-space

form, we arrive at a SDE such that a realization of the SDE

is equal to h.

In the spatiotemporal case, let PG = {pi}NG

i=1 ⊂ D be

a set of NG (possibly non-uniform) grid points over the

spatial domain. Let f(t) ∈ R
NG be a vector such that the

i-th entry is the value of the spatiotemporal field at the i-th
grid point, [f(t)]i = f(t, pi). Then, the SDE for the system

comprises of NG independent stochastic processes (7a), that

get spatially correlated based on the spatial kernel (7b).

Mathematically,






dsi(t) = Asi(t)dt+BdWi(t)

zi(t) = Csi(t)

si(0) ∼ N (0,Σ)

, (7a)

f(t) =
√

KGGz(t) =
√

KGG(ING
⊗ C)s, (7b)

Here si(t) ∈ R
nk is a state at each grid point.2 s =

[
sT1 · · · sTG

]T ∈ R
nkNG is a stacked vector repre-

senting the state of the entire environment; f(t) =
[
f(t, p1) · · · f(t, pG)

]T ∈ R
NG is a stacked vector

comprising the value of the field at each grid point; Wi is

a standard Wiener process, independent for each grid point.

The matrices A ∈ R
nk×nk , B ∈ R

nk×1, C ∈ R
nk×l are

constant matrices that only depend on the temporal kernel kT.

Σ ∈ S
nk

++ is the matrix that solves AΣ + ΣAT = −BBT .

KGG ∈ S
G
++ is the spatial kernel matrix, i.e., [KGG]ij =

kS(pi, pj).

Example 1. The Matern-1/2 temporal kernel is kT(t, t
′) =

σ2
t exp (−λt |t− t′|) for hyperparameters λt, σt > 0. The

state-space model has dimension nk = 1, and matrices

A =
[
−λt

]
, B =

[
1
]
, C =

[√
2λtσt

]
. Derivations and

expressions for Matern-3/2 and Matern-5/2 kernels can be

found in [20, Appendix].

D. Ergodic Control

Ergodic control [10], [11] is a technique to generate robot

trajectories that cover a domain D = [0, L1]×· · ·× [0, Ld] ⊂
R

d, such that the trajectories have a spatial (position) distri-

bution that closely matches a specified TSD, as explained

below.

The TSD is a function φ : D → R such that the φ(p)
denotes the desired time a robot should spend at position

p. Given a robot’s (position) trajectory ξ : [0, T ] → D the

trajectory’s spatial distribution is defined as cξ : D → R,

2
nk depends on the temporal kernel. For the Matern 1/2, 3/2, and 5/2

kernels, nk = 1, 2, 3 respectively.

where for any p ∈ D

cξ(p) =
1

T

∫ T

0

δ(p− ξ(τ)))dτ. (8)

Here δ : Rd → R is the Dirac delta function.

The ergodicity E > 0 of a trajectory ξ measures the

difference between the robot trajectory’s spatial distribution

and the target spatial distribution:

E = ‖cξ − φ‖2
H−s (9)

where ‖·‖H−s is the Sobolev space norm of order s = (d+
1)/2, defined in [10]:

‖cξ − φ‖2
H−s =

∑

l∈Nd

Λl(ĉl − φ̂l)
2 (10)

where Λl ∈ R is a weighting coefficient, and (̂·)l is the l-
th element of the Discrete Cosine Transform (DCT) of the

function (·), e.g.

φ̂l = 〈φl, bl〉 =
∫

p∈D

φl(p)bl(p)dp (11)

where bl : D → R is the l-th basis function. We refer the

reader to [10] for further details.

E is a function-space norm measuring the difference

between the TSD and the spatial distribution of the trajectory.

The key benefit of the Sobolev norm is that it prioritizes

matching the low spatial frequency differences between c and

φ before matching the high spatial frequencies. This means

that the controllers have a multiscale-spectral nature, where

they prioritize covering the domain globally, before returning

to the gaps and covering them [10].

In [10] a feedback controller is derived for single and

double-integrator robot models that minimizes the ergodicity.

Various extensions have been presented in, for example, [11],

[21] to address other robot models and other goals.

III. PROBLEM STATEMENT

Consider a team of NR > 0 robots, each with dynamics

ẋi = F (xi) +G(xi)ui, (12)

where xi ∈ X ⊂ R
n is the i-th robot’s state, and ui ∈

U ⊂ R
m is its control input. The position of each robot is

ri = Φ(xi) ∈ R
d, i.e., Φ : X → D extracts the position.

Each robot makes measurements of the spatiotemporal

field at a fixed sampling period ∆T > 0,

yk,i = f(tk,Φ(xi(tk))) + wk,i, (13a)

wk,i ∼ N (0, σ2
m), (13b)

that is, yk,i ∈ R is a scalar measurement output by the i-th
robot at the k-th timestep, tk = k∆T . Each measurement

is perturbed by zero-mean Gaussian noise with standard

deviation σm.

We assume each robot determines its control inputs, but

that the information from each robot is assimilated centrally.

We assume the robots can always communicate with the



central agent, sending the measurements and receiving a map

of the current clarity at each p ∈ D.

Problem 1. Consider a team of NR > 0 robots, each with

dynamics (12) and measurements (13), exploring a domain

D. Let f : R × D → R be a spatiotemporal field to

be estimated satisfying Assumption 1. Design a coverage

control algorithm for each robot, and an estimation algorithm

to fuse measurements yk into an estimate of f .

The mathematical form of the coverage objective is de-

layed until Section V. The estimator will be the optimal

estimator in a least-squares sense, discussed in Section IV.

In addressing Problem 1, we address two questions:

(A) how does the information assimilation algorithm inform

the value of taking measurements at a robot position x ∈ D
on the quality of information at a different position p ∈ D,

and (B) how should one design coverage controllers to

exploit that relationship? Since the mission is a multi-agent

coverage problem, we also need to ensure that the proposed

coverage algorithms are scalable with the number of robots.

We address these two questions in the following sections.

IV. INFORMATION ASSIMILATION

In this section, we discuss how the GP model (Assump-

tion 1) determines two functions: (A) the information decay

rate at each p ∈ D, and (B) the information gain rate at each

p ∈ D due to measurements taken from a robot’s position

ri = Φ(xi) ∈ D. We consider the hyperparameters of the

GP to be specified and constant, although some strategies

for estimating these are discussed in the simulation section.

A. Kalman Filter Model

First, we show that the Kalman Filter (KF) is the optimal

state estimator to estimate the spatiotemporal field f . As

shown in Section II-C, the process model for f sampled at

NG grid points is a linear stochastic differential equation

with state s ∈ R
nkNG . We now show that the measure-

ments (13) are a linear function of s.3

Consider NR robots at positions PR = {Φ(xi)}Nr

i=1 where

each robot makes a measurements yk,i as in (13). However,

the state s corresponds to the grid points PG, not necessarily

coinciding with the measurement locations PR. To account

for this, we use spatial correlation based on the Gaussian

Process model for f :
[
f(tk)
yk

]

∼ N
(

0,

[
KGG KGR

KRG KRR + σ2
mI

])

(14)

where KGG,KGR,KRG,KRR are the kernel matrices for the

sets of points PG, PR, and yk =
[
yk,1 · · · yk,NR

]T
.

Using (7b), yk conditioned on the state s(tk) is

yk|s(tk) ∼ N (Hs(tk), V ), (15a)

H = KRGK
−1
GG

√

KGG(ING
⊗ C) (15b)

V = σ2
mINR

+ KRR − KRGK
−1
GGKGR. (15c)

3In [16], the measurements must be taken at one of the grid points. Here
we extend the result to allow measurements at non-grid points.

Therefore, the environment’s state space model is a linear

(continuous time) process (recall (7a)) with linear (discrete-

time) measurements:

ds = (ING
⊗A)sdt+ (ING

⊗B)dW, (16a)

yk = Hs(tk) + vk (16b)

where W is a NG-dimensional standard Wiener process, and

vk ∼ N (0, V ). Notice that although each measurement has

noise variance σ2
mI , the noise model in (16b) has V ≥ σ2

mI
accounting for the fact that measurements can be taken at

non-grid points.

To summarize, we have a linear, time-invariance process

model (16a), with a linear (but time-varying due to the

changing measurement locations) measurement model (16b).

Together, they satisfy the assumptions of the KF, and there-

fore the KF is the optimal estimator for this system [22].

B. Quantifying Information Gain and Decay Rates

Next, we wish to characterize the clarity dynamics, i.e., the

rate of information gain and decay. In this section, we focus

on the clarity dynamics of a single point p ∈ D due to a

measurement taken by a robot with position r = Φ(x) ∈ D.

Since we use the KF to assimilate measurements, we use the

earlier derived dynamics to estimate the rate of information

gain. Reducing (16) for a single point p, the continuous time

KF model is

ṡ = As+Bw, w(t) ∼ N (0, I), (17a)

y = Ls+ v, v(t) ∼ N (0, V∆T ) (17b)

where s ∈ R
nk is the state of the spatiotemporal process at

p, r = Φ(x) is the robot’s position, and

L =
kS(r, p)

√

kS(p, p)
C, V = σ2

m + kS(r, r)−
kS(r, p)

2

kS(p, p)
.

Let the KF state consist of (ŝ,Σ), the mean and covari-

ance. Then, the covariance has dynamics

Σ̇ = AΣ+ ΣAT +BBT − ΣLT (V∆t)−1LΣ. (18)

Therefore, the estimate of f(t, p) is N (f̂ ,Π), where f̂ = Cŝ,

and Π = CΣCT . Since, the clarity of a scalar Gaussian

variable is q = 1/(1 + Π), the clarity dynamics are

q̇ =
dq

dΠ
Π̇ = −q2CΣ̇CT . (19)

Depending on the temporal kernel,4 this simplifies to

q̇ = S(x, p)(1− q)2
︸ ︷︷ ︸

clarity gain

− D(p, q)
︸ ︷︷ ︸

clarity decay

(20)

where the first term defines the rate of clarity gain at p due

to measurements taken at r = Φ(x), while the second term

defines the clarity decay rate.

Remark 1. Eq. (20) is one of our main results: the function

S : X × D → R is the sensing function that quantifies the

importance of a measurement taken from robot state x ∈ X
4In particular, this holds for Matern-1/2 kernels.



on the clarity of our estimate at a position p ∈ D. Similarly,

D : D × R → R defines the rate at which clarity about

f(t, p) decays due to the spatiotemporal nature of f . Notice

the decay rate is uncontrolled, i.e., does not depend on the

robot’s state x.

Example 2. For Matern-1/2 temporal kernels,

S(x, p) =
1

∆T

kS(r, p)
2

kS(p, p) (kS(r, r) + σ2
m)− kS(r, p)2

W (p, q) = 2λt

(
(σ2

t + 1)q2 − q
)
,

where r = Φ(x) is the position of a robot at state x. Since

for isotropic spatial kernels kS(p, p
′) = kS(‖p− p′‖),

S(d) ∝ kS(d)
2

kS(0)2 + σ2
mkS(0)− kS(d)2

where d = ‖Φ(x)− p‖ is the distance at which the mea-

surement is taken. When d 7→ kS(d) is nonincreasing, e.g.

in the Matern and Squared Exponential kernels, S(x, p) is

maximized at Φ(x) = p, implying that the rate of increase

in clarity about p is maximized when the robot is also at

position p. This is not, in general, true, since for example

in periodic or polynomial spatial kernels, S(x, p) may be

maximized for some Φ(x) 6= p. Furthermore notice that in

the limiting case of a spatiostatic environment, λt → 0, and

therefore the decay rate D(p, q) → 0.

To summarize, in this information-gathering problem the

spatiotemporal information to be collected is modeled using

a GP. To define a suitable coverage algorithm, we need to

quantify the value of taking a measurement at some robot

state x ∈ X on the clarity gain at any other position p ∈ D.

This is captured by the clarity dynamics (20). The key

functions are S, the sensing function, and W , the decay

function. Notice only S(x, p) is controllable since it is the

only term in (20) that depends on the robot’s state x.

V. COVERAGE CONTROLLERS

In this section, we use the sensitivity and decay functions

in (20) to derive two coverage controllers. The direct method

chooses a control input that maximizes the rate of increase in

the total clarity integrated over the domain D. The indirect

method determines the time that the robot should spend at

each position in the domain to achieve a target clarity and

then uses ergodic control to compute the control input.

A. Direct Method

The direct method minimizes the cost function

J(t) = ‖q(·)− q(t, ·)‖2H , (21)

a function-space norm over p ∈ D between the current clarity

distribution q(t, p) and the target clarity distribution q(p). We

use the Sobolev norm, defined in (10), and discussed below.

Notice that J(t) does not explicitly depend on the robot’s

state or control input. As such, we choose to minimize J
over a short horizon δ > 0 in the future:

J(t+ δ) ≈ J(t) + J̇(t, x)δ2 +
1

2
J̈(t, x, u)δ2 + · · · (22)

where the dependency on u first shows up in the J̈ term. This

high-relative degree behavior is a consequence of the fact that

the clarity dynamics (20) depend on x, not ẋ. Therefore the

second derivative of J must be taken for the control input

to appear in the expressions. This behavior is commonly

observed in the literature on coverage control, as in [4, Ch.

2] and in [10]. Then, given control inputs u ∈ U ⊂ R
m, the

controller will be of the form

π(t, x) = argmin
u∈U

J̈(t, x, u). (23)

We will derive a closed-form solution for this controller.

Before doing so, we justify our choices for the cost function

and the control strategy.

We use the Sobolev norm for the following reasons.

In [4], a differentiable sensing functional (an analog of S)

is used with the generalized transport theorem to compute

an analog of J̈(t, x, u). However, this approach often leads

to local minima, where J̈(t, x, u) becomes independent of

u. This happens when all of the local information has been

collected, and there is no preference for the controller to

move in one direction over the other. To address this, [4]

proposed combining the local search strategy with a global

strategy, where the controller would choose a new global

waypoint when the local controller reaches a local minimum.

In our work, we use the Sobolev space norm instead of

the `2 norm, and this allows the controllers to have a

multispectral property [10] - it prioritizes global coverage

before prioritizing local coverage.

Second, to evaluate J̈ , we use the clarity dynamics we

derived in Section IV-B. This is in contrast to earlier works

that used heuristic expressions to quantify coverage, and

coverage dynamics [4], [23]. As such, the derived controllers

depend explicitly on the spatiotemporal field’s kernel, and

the sensing capabilities (in particular the sampling period

∆T and measurement noise σm) of the robots.

Next, we derive the controller. The cost function is

J(t) = ‖q(·)− q(t, ·)‖2H =
∑

l∈Nd

Λl

(
q̂l − q̂l(t)

)2
, (24)

where q̂l = 〈q, bl〉, q̂l(t) = 〈ql(t, ·), bl〉 are the inner products

of q(·) and q(t, ·) with the l-th basis function of the DCT.

Recall the notation 〈a, bl〉, and Λl was defined in Section II-

D. After some algebraic calculations, one can show that the

first and second time-derivatives of J are:

J̇(t, x) =
∑

l∈Nd

−2Λl(q̂l − q̂l(t)) ˙̂ql(t, x)

J̈(t, x, u) =
∑

l∈Nd

2Λl

(

˙̂q2l (t, x)− (q̂l − q̂l(t))¨̂ql(t, x, u)
)

where ˙̂ql(t, x), ¨̂ql(t, x, u) are

˙̂ql =
d

dt
〈q(t, ·), bl〉

=

∫

p∈D

(
S(x, p)(1− q(t, p))2 −W (p, q(t, p))

)
bl(p)dp



where S is as defined in (20). Similarly,

¨̂ql =
d2

dt2

∫

p∈D

q(t, p)bl(p)dp = B̂l(t, x)ẋ+O,

where O collects terms independent of ẋ (and therefore u),

and B̂l(t, x) ∈ R
1×n is as defined as

B̂l(t, x) =

〈

(1− q(t, ·))2 ∂S
∂x

(x, ·), bl
〉

. (25)

Therefore, we have

J̈(t, x, u) =
∑

l∈Nd

−Λl(q̂l − q̂l(t))B̂l(t, x)ẋ+O

= −L(t, x)(F (x) +G(x)u) +O
where we define

L(t, x) =
∑

l∈Nd

Λl(q̂l − q̂l(t))B̂l(t, x).

Therefore, the choice of u that minimizes J(t+ δ) yields a

feedback controller πdir : R×D → U ,

πdir(t, x) = argmin
u∈U

− L(t, x)G(x)u

If U = {u ∈ R
m : ‖u‖ ≤ umax}, and L(t, x)G(x) 6= 0,

πdir(t, x) = umax

G(x)TLT (t, x)

‖L(t, x)G(x)‖ . (26)

Proving that L(t, x)G(x) 6= 0 for any t, x is non-trivial,

and will be studied in future work.

B. Indirect Method

The second approach is inspired by ergodic control. Er-

godic control uses a TSD to determine the feedback control

law, as discussed in Section II-D. Here we derive a principled

method to construct the TSD based on the information

assimilation algorithm discussed in Section IV.

The key idea is to set the TSD to be the time required for

the clarity of our estimate of f to increase from its current

value to a specified target clarity q(p), assuming the robot

was making measurements from x = p. To compute this, we

solve the differential equation (20) and determine T (q, q),
i.e., the time required to increase the clarity from q to q.

Then, given the target clarity distribution q : D → [0, 1],
and the current clarity distribution q(t, ·) : D → [0, 1], the

TSD can be specified as follows:

TSD(t, p) =

{

T (q(t, p), q(p)) if q(t, p) ≤ q(p)

0 else
. (27)

This equation has an analytic solution, see [20, Appendix].

Finally, we can use the ergodic control method described

in [10] to design a feedback controller for the system,

πind(t, x) = πergo(t, x,TSD) (28)

C. Extension to Multi-Robot Coverage Control

Our proposed coverage controllers have been presented for

the single-robot cases above. Here we discuss the extension

and implementation of these methods in the multi-agent

case, where multiple robots have to decide how to move

to collect information. We assume that they can synchronize

their information by sharing the clarity map, q(t, p) ∀p ∈ D,

over a centralized setting, i.e., that they are connected over a

complete graph so that each robot has access to a centrally

stored clarity map. The extensions to distributed settings are

left for future work.

Notice that both proposed controllers are feedback con-

trollers, depending on the robot’s position, and the clarity

map q(t, p). Therefore, the control input for each agent can

be computed as ui = π(t, xi, q), where xi denotes the

position of the i-th agent, and π ∈ {πdir, πind} can be either

control strategy. In the indirect approach, we must also share

the history of positions visited by the agents.

As the robots move using the coverage controllers, the

robots make measurements of the spatiotemporal field from

their respective positions. These measurements are assimi-

lated into a single estimate of the spatiotemporal field using

the KF model. The information assimilation is currently

performed centrally, although future work will look into

distributed methods of maintaining the estimate.

VI. SIMULATIONS

In this section, we report the simulation results of an

information-gathering mission. As a prototypical example,

we consider the collection of wind data using a team of ten

aerial robots. The robots perform a two-hour mission, and we

aim to maximize the clarity of the wind field over the domain

by the end of the mission. Our evaluation metric is both the

accuracy of the reconstruction, as well as the average clarity

over the mission domain.

The mission domain is a 12.7× 6.3 km2 region of south-

eastern Austria, located near 46.93◦ N, 15.90◦ E, chosen

because of a high-quality ground-truth data set available from

WegenerNet [24]. The dataset provides wind speeds over the

domain at a resolution of 100 m and 30 minutes. The mission

domain is particularly challenging due to its high weather

and climate variability [24]. Over the domain considered,

the maximum wind speed is 13 m/s.

Each robot is capable of measuring the local x- and y-wind

speed every 5 seconds. Each measurement is perturbed by

noise with σm = 0.5 m/s. The robots are modeled as single-

integrators with a maximum speed of 15 m/s. We use the KF

model with a spatial grid resolution of 320 and 160 m in the

x- and y-directions to model the state of the environment.

The spatial and temporal hyperparameters were estimated

using techniques from geostatistics [25], [26]. In particular,

we constructed a variogram of the dataset and used a least-

squares fit to both the Matern-1/2 and the Squared Exponen-

tial kernels. The Matern-1/2 kernel fits the data better and is

depicted in Figure 1b. The resulting kernel is of the form

k(t, p, t′, p′) = σ2 exp (− |t− t′| /lt) exp (−‖x− x′‖ /ls),
where σ = 2.11 m/s, lt = 183 min, ls = 1.61 km. Fitting

the kernel using the variogram was computationally much

faster and more reliable than the nonlinear minimization of
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Fig. 1. Wind data from WegenerNet [24]. (a) Wind speed and direction on
Jan 1, 2023, 00:00, (b) Variogram showing the spatiotemporal correlation
of the data. Surface shows the fitted kernel.

the log-likelihood method of [13]. See [20, Appendix] for

additional details.

Simulations were run using both the direct and the indirect

control strategies, and the results are summarized in Figure 2.

Fig. 2(a) shows the ground-truth data to be estimated.5

Fig. 2(b) shows the change in average clarity over time

as the robots explore the environment. Both the direct

and indirect methods result in an almost identical average

clarity at each timestep. Furthermore, after about an hour of

exploration, the average clarity reaches a steady state value.

This shows that due to the information decay rate, even as

the robots continually explore the environment, the average

clarity cannot be increased further.

Fig. 2(c,d,f,g) show the trajectories using both controllers.

Figs. 2(c, d) show the trajectories of the direct method after

8 and 60 mins, and Figs. 2(f, g) show the corresponding

trajectories of the indirect method. The trajectories generated

by the two methods are remarkably different - in the direct

method, the trajectories are jagged and tend to follow straight

lines. This is because of ∂S/∂x in (25), which places

5In the interest of space, only the x-component of the speed is shown.
Refer to [1] for additional figures.

significant benefit on local data collection. In contrast, the

indirect method creates smoother trajectories.

Fig. 2(e, h) show the estimated wind speed at t=60 min.

Comparing these to the ground truth in Fig. 2(a), is it clear

that both methods estimate the wind field accurately.

In Fig. 2(b), we also compare the behavior when using

three robots to that of using ten robots. As expected, when

there are ten agents the mean clarity is higher (and increases

faster) than when there are only three agents.

VII. CONCLUSIONS

In conclusion, this paper addresses the design of coop-

erative multi-agent coverage controllers, where the infor-

mation is shared centrally, but the control decisions are

made by each robot independently. We identified a gap

between information assimilation algorithms and coverage

controllers. Therefore we proposed a method to quantify the

value/impact that taking measurements in a domain has on

the clarity of our estimate of other parts of the domain.

To this end, we utilized Gaussian Processes to model the

environment, as well as our earlier work on the clarity

dynamics, which in effect quantifies the information gained

about the domain due to measurements. We saw that the

relative value of measurements is captured by a function

S. We used this function to propose two new coverage

controllers that, although qualitatively different, still cover

the domain and collect information accurately. The concepts

were demonstrated through a simulation study of collecting

information about a wind field.

A key limitation of this work is that we assumed the spatial

and temporal hyperparameters of the Gaussian Process were

fixed and known a priori. Although a method was described

to obtain these hyperparameters from data, in our future

work we will aim to develop an online method to estimate

the hyperparameters and choose trajectories that improve

the quality of the hyperparameters. Finally, it would also

be interesting to look into methods to ensure the safety

of the robots with a safety constraint that depends on

the information collected online. In such a scenario, the

objective of collecting information must be weighed against

the importance of not violating safety constraints.
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APPENDIX

A. Marginal and Conditional Distributions

Consider a random variable Z ∈ R
n+m, given by

Z =

[

X
Y

]

∼ N
([

µx

µy

]

,

[

Σxx Σxy

Σyx Σyy

])

Then the marginal distributions are given by

X ∼ N (µx,Σxx)

Y ∼ N (µy,Σyy)

and the conditional distributions are given by

(X|Y = y) ∼ N (µ,Σ),

µ = µx +ΣxyΣ
−1
yy (y − µy)

Σ = Σxx − ΣxyΣ
−1
yy Σyx

Now consider two random variables X,Y , related by

X ∼ N (µ, P )

(Y |X = x) ∼ N (Cx,R)

where X ∈ R
n, Y ∈ R

m, C ∈ R
m×n, P ∈ S

n
++, R ∈ S

m
++.

What this means is that we have an observation model

y = Cx+ w, w ∼ N (0, R)

B. Gaussian Processes

The kernel of a GP is defined by the following property

Definition 3. The kernel function of a Gaussian Process Z ∼
GP(m(x), k(x, x′)) with mean function m : Rd → R and

kernel function k : Rd × R
d → R is defined as

k(x, x′) = E [(Z(x)−m(x)) (Z(x′)−m(x′))] .

Example 3. The ν-th order Matern kernel is given by

kν(x1, x2) = σ2 2
1−ν

Γ(ν)

(√
2νλd

)ν

Kν

(√
2νλd

)

,

where Γ is the gamma function, Kν is the modified Bessel

function of the second kind, d = ‖x1 − x2‖, and σ, λ > 0
are parameters of the kernel. The half-integer Matern kernels

are given by

k1/2(x1, x2) = σ2 exp (−λd)

k3/2(x1, x2) = σ2
(

1 +
√
3λd

)

exp
(

−
√
3λd

)

k5/2(x1, x2) = σ2
(

1 +
√
5λd+ (5/3)λ2d2

)

exp
(

−
√
5λd

)

where d = ‖x1 − x2‖, and σ, λ > 0 are hyperparameters of

the kernel.

C. Variograms

This section establishes a method to determine the hyper-

parameters of a Gaussian Process using an Empirical Var-

iogram. This method is significantly more computationally

efficient and accurate than standard methods of minimizing

the marginal log-likelihood but is only suitable for isotropic

kernels.

Consider the data set D = {(xi, yi)}Ni=1, where xi ∈
R

d, yi ∈ R. The goal is to determine the parameters of an

isotropic kernel k : Rd × R
d → R that best fits the data.

Definition 4. [25, Eq 7.6] The theoretical variogram of a

stationary random field Z : Rd → R with zero mean is

γ(d) =
1

2
E

[

(Z(x′)− Z(x))
2
]

,

where ‖x′ − x‖ = d. The expectation is taken over x, x′ ∈
R

d.

The theoretical variogram is related to GP kernels as

follows:

Lemma 1. Suppose Z is a zero-mean and isotropic Gaussian

Process. Then the kernel k : R → R and the theoretical

variogram γ : R → R are related by

γ(d) = k(0)− k(d)

Proof. For brevity, let f1 = f(x1), f2 = f(x2). By the

definition of the kernel, for a zero-mean GP

k(x1, x2) = E[(f(x1)−m(x1))(f(x2)−m(x2))]

= E[f1f2]

Similarly, from the definition of the theoretical variogram,

γ(d) =
1

2
E[(f(x1)− f(x2))

2]

=
1

2
E[f2

1 ]− E[f1f2] +
1

2
E[f2

2 ]

=
1

2
(E[f2

1 ] + E[f2
2 ])− E[f1f2]

=
1

2
(k(x1, x1) + k(x2, x2))− k(x1, x2)

=
1

2
(2k(0))− k(d)

using d = x2 − x1. Therefore,

γ(d) = k(0)− k(d).

Corollary 2. In the spatiotemporal case, if the kernel is

k(t, x, t′, x′) = kt(t, t
′)ks(x, x

′) (29)

the theoretical variogram is

γ(dt, ds) = kt(0)ks(0)− kt(dt)ks(ds) (30)

We can use this Lemma to determine the parameters of

the kernel. In particular, consider the empirical variogram:

Definition 5. The empirical semi-variogram given data D
is γ : R → R,

γ(d) =
1

2|N(d)|
∑

N(d)

(yi − yj)
2

where N(d) ⊂ Z × Z is the set of pairs (i, j) such that

‖xi − xj‖ ∈ (d− ε, d+ ε) for some ε > 0.

Then, given data D, we construct the empirical variogram.



For a given kernel k with hyperparameters θ, we can com-

pute the corresponding theoretical variogram, and use least-

squares fitting to determine the set of hyperparameters θ that

best fit the data D.

D. Gaussian Processes to Stochastic Differential Equations

This section explains the equivalence between GP and

SDE for a class of kernel functions. In this section, we focus

on scalar GPs with zero mean,

f(t) ∼ GP(0, k(t, t′)),

where k : R×R → R is denoted with t to remind the reader

that we consider a single (i.e. temporal) dimension.

We use the following convention of a Fourier Transform6

of a function g : R → R:

Definition 6. The Fourier Transform of a function g : R →
R is the function G : R → R,

G(ω) = F [g](ω) =

∫ ∞

−∞
g(t)e−iωtdt

The Inverse Fourier Transform is

g(t) = F−1[G](t) =
1

2π

∫ ∞

−∞
G(ω)eiωtdω

This convention has the following properties:

F
[

dng

dtn

]

(ω) = (iω)nF [g](ω)

The Wiener-Khinchin theorem relates the kernel function

to the power spectrum of a stochastic process:

S(ω) = F [k](ω)

here, we write k(τ) = k(t, t′) for any |t− t′| = τ . When S
is a rational function of even order 2nk, we can decompose

S as

S(ω) = L(ω)L(−ω)

where

L(ω) =
bnk−1(iω)

nk−1 + bnk−2(iω)
nk−2 + · · ·+ b0

(iω)nk + ank−1(iω)nk−1 + · · ·+ a0

Given this decomposition, we know that the stochastic

process f is a realization of a white noise process W (t) that

has been colored using the transfer function L(ω). Therefore,

the state-space model of the system is

ds = Asdt+BdW

z = Cs

where s ∈ R
nk is the state, W (t) is the standard (1D) white

noise process. The output z(t) will have the correct kernel

function. Here, the constant matrices A ∈ R
nk×nk , B ∈

6In Mathematica, one must specify FourierParameters ->

{1, -1} to yield the correct convention.

R
nk×1, C ∈ R

1×nk are

A =















0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ank−1















, B =















0
0
...

0
1















C =
[

b0 b1 b2 · · · bnk−1

]

To create a realization of f that has the desired kernel

function, simulate the SDE starting from s0 ∼ N(0,Σ0),
where Σ0 ∈ R

nk×nk is the solution to the Lyapunov equation

AX +XAT +BBT = 0.

Finally, the discrete time version of this, with a sampling

period ∆t is

sk+1 = Φsk + wk, wk ∼ N (0,W )

zk = Csk

where

Φ = eA∆t

W =

∫ ∆t

0

eAτBBT eA
T τdτ

Some analytic expressions are derived below.

Example 4 (Matern 1/2). The 1D Matern-1/2 kernel is

k1/2(d) = σ2 exp (−λd)

It has a power-spectral density

S1/2(ω) =
2λσ2

λ2 + ω2

and rational decomposition

L1/2(ω) =
σ
√
2λ

(iω) + λ

Therefore, the state-space representation is
(

A B
C

)

=

( −λ 1

σ
√
2λ

)

Example 5 (Matern 3/2). The 1D Matern-3/2 kernel is

k3/2(x1, x2) = σ2
(

1 +
√
3λd

)

exp
(

−
√
3λd

)

It has a power-spectral density

S3/2(ω) =
12
√
3λ3σ2

(3λ2 + ω2)
2

and rational decomposition

L3/2(ω) =

√

12
√
3λ3/2σ

(iω)2 + 2
√
3λ(iω) + 3λ2

Therefore, the state-space representation is

(

A B
C

)

=





0 1 0

−3λ2 −2
√
3λ 1

√

12
√
3λ3/2σ 0







Example 6 (Matern 5/2). The 1D Matern-5/2 kernel is

k5/2(x1, x2) = σ2
(

1 +
√
5λd+ (5/3)λ2d2

)

exp
(

−
√
5λd

)

It has a power-spectral density

S5/2(ω) = σ2 400
√
5λ5

3 (5λ2 + ω2)
3

and rational decomposition

L5/2(ω) =

√

400
√
5

3 λ5/2σ

(iω)3 + 3
√
5λ(iω)2 + 5

√
5λ3

Therefore, the state-space representation is

(

A B
C

)

=











0 1 0 0
0 0 1 0

−5
√
5λ3 −15λ2 −3

√
5λ 1

√

400
√
5

3 λ5/2σ 0 0











E. Solutions to the Ricatti Equation

Lemma 3. Consider a differential equation

y′(t) = −αy(t)2 − βy(t)− γ (31a)

y(0) = y0 (31b)

where α, β, γ ∈ R, α 6= 0, and δ2 = β2 − 4αγ > 0. Then,

the solution is given by

y(t) =
1

2α

(

−β + δ +
2δρ0

(2δ + ρ0) eδt − ρ0

)

(32)

where ρ0 = β − δ + 2αy0.

Proof. This is a second-order nonlinear differential equation,

also known as the scalar Ricatti equation. As proposed in [27,

Ch. 2.15], consider the substitution

y(t) =
u′(t)

αu(t)
(33)

Then, it is equivalent to the following differential equation

u′′(t) = −βu′(t)− αγu(t) (34a)

y0 =
u′(0)

αu(0)
(34b)

This linear second-order differential equation has a unique

solution

u(t) =
(

c2e
δt + c1

)

e−
1

2
t(β+δ) (35)

where δ =
√
β − 4αγ and the constants c1, c2 depend on the

boundary condition. Evaluating the boundary conditions, we

have the relationship

y0 =
1
2 (c1 + c2)(−β − δ) + c2δ

α(c1 + c2)
(36)

Evaluating y = u′/(αu), we have

y(t) =
1

2α

(

−β + δ − 2c1δ

c2eδt + c1

)

(37)

Plugging in the boundary condition, we arrive at

y(t) =
1

2α

(

−β + δ +
2δρ0

(2δ + ρ0) eδt − ρ0

)

(38)

where ρ0 = β − δ + 2αy0, independent of c1, c2.

Corollary 4. The limiting value of (32) is

y∞ = lim
t→∞

y(t) =
δ − β

2α
. (39)

Corollary 5. The inverse of (32) is given by

t =
1

δ
log

(

ρ0 (2δ + ρf )

ρf (2δ + ρ0)

)

(40)

where δ2 = β2 − 4αγ, ρ0 = β − δ + 2αy0 and ρf = β −
δ + 2αyf .
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