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characterization  (Gawarkiewicz et al., 2018; Todd, 2020), 
wildfire surveillance (Julian & Kochenderfer, 2019), search-
and-rescue operations (Mayer, Lischke, & Woźniak, 2019; 
Waharte & Trigoni, 2010), and active target tracking Zhou 
et al. (2019); Tokekar et al. (2013); Atanasov et al. (2014). 
While these problems share structural similarities-such as 
the need to monitor evolving quantities persistently over 
time-this work focuses on environmental monitoring, where 
the objective is to sense physical processes that change con
tinuously across space and time, rather than track a small 
number of discrete moving targets.

Planning informative trajectories for such missions 
poses two key challenges: (i) designing robot trajectories 
that maximize information acquisition in dynamic environ
ments, and (ii) ensuring task persistence under energy con
straints by enabling timely recharging.

1  Introduction

Autonomous robots are increasingly deployed in missions 
requiring long-term data acquisition, such as environ
mental monitoring   (Sujit, Sousa, & Pereira, 2009; Man
janna, Li, Smith, Rekleitis, & Dudek, 2018), ocean current 
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1.1  Adaptive informative path planning

The first challenge involves adaptive planning in spatio
temporal environments-where quantities of interest (e.g., 
temperature, wind speed, gas concentration) evolve across 
space and time. Informative path planning (IPP) addresses 
this by generating robot paths that maximize information 
gain or minimize uncertainty, subject to resource con
straints. Classical approaches include orienteering-based 
formulations  (Bottarelli, Bicego, Blum, and Farinelli, 
2019), submodular optimization methods (Meliou, Krause, 
Guestrin, & Hellerstein, 2007), and Gaussian Process (GP)-
based planners (Chen, Khardon, & Liu, 2022). To improve 
adaptability and scalability in high-dimensional settings, 
sampling-based methods (Moon et al., 2025) and receding 
horizon strategies  (Sun et al., 2017) have been proposed. 
However, many struggle to adapt in real-time to variations 
in the environment.

Ergodic search offers an alternative by generating tra
jectories that match the time-averaged visitation frequency 
with a target information spatial distribution (TISD), instead 
of choosing discrete sensing points. Prior work Mathew and 
Mezić (2011); Dressel and Kochenderfer (2019); Abra
ham et al. (2021); Coffin et al. (2022); Dong et al. (2023) 
has demonstrated its value in achieving spatially balanced 
exploration. However, these methods often assume spatio
static environmentsMathew and Mezić (2011); Dong et al. 
(2023) or rely on spatiotemporal dynamics with no process 
uncertainty Dressel and Kochenderfer (2019); Rao et al. 
(2023); Garza (2021), limiting applicability in real-world 
scenarios where uncertainty arises from model mismatch, 
disturbances, or environmental variability.

To address this, we consider stochastic spatiotemporal 
environments-environments whose evolution is uncertain in 
both space and time. In such cases, information can decay 
without continued measurement, motivating online trajec
tory planning that prioritizes regions with high uncertainty 
and rapid information loss. We build on the clarity metric, 
proposed by Agrawal and Panagou (2023), a bounded infor
mation measure between [0,  1] that captures both current 
knowledge and its decay due to lack of observation. Using 
clarity, we construct a principled TISD that continuously 
evolves based on the robot’s measurement history and envi
ronmental uncertainty, allowing robots to adaptively revisit 
regions where uncertainty is increasing.

1.2  Task persistence in multi-agent systems

The second challenge is persistent operation under energy 
constraints, particularly when multiple robots must coor
dinate recharging through a shared charging resource. 

Prior work on task persistence spans both single-agent and 
multi-agent scenarios involving static and mobile charging 
infrastructure.

For static stations, some methods assume a dedicated 
charger per robot (Notomista, 2022; Notomista, Pacchierotti, 
& Giordano, 2022; Notomista, Ruf, & Egerstedt, 2018; Gao 
& Bhattacharya, 2019), while others support shared char
gers with concurrent access (Asghar, Sundaram, & Smith, 
2023; Kenzin, Bychkov, & Maksimkin, 2020). When fewer 
chargers than robots are available (Liu & Michael, 2014; Li, 
Patankar, Moridian, & Mahmoudian, 2018; Seewald, Lerch, 
Chancán, Dollar, & Abraham, 2024), strategies include 
modifying mission paths (Liu & Michael, 2014), placing sta
tions strategically (Li, Patankar, Moridian, & Mahmoudian, 
2018), or constraining charging frequency (Seewald, Lerch, 
Chancán, Dollar, & Abraham, 2024). Closest to our work 
are Bentz et al. (2018); Fouad and Beltrame (2022): the for
mer staggers robot deployments to ensure exclusivity, while 
the latter employs control barrier functions (CBFs) Ames et 
al. (2017) to enforce minimum SoC levels under simplified 
single-integrator dynamics.

Most mobile charging approaches assume a dedicated 
charging robot, with coordination either via precomputed 
rendezvous points  (Karapetyan et al., 2023; Kingry et al., 
2017) or continuous communication  (Lin, Yel, & Bezzo, 
2018). Others dynamically intercept robots during their 
mission  (Mathew, Smith, & Waslander, 2015; Couture-
Beil& Vaughan, 2009; Lin, Yazıcıoğlu, & Aksaray, 2022). 
In contrast, we consider a shared mobile charging station 
that travels alongside the robot network to extend opera
tional time. Our method does not rely on preplanned ren
dezvous or continuous communication and supports general 
nonlinear robot dynamics.

1.3  Contributions

This work presents a unified framework for adaptive 
ergodic search and energy-aware scheduling in persistent 
multi-robot missions. Our key contributions, situated in the 
context of existing state-of-the-art methods, are:

	● Principled multi-agent TISD construction via clar
ity for ergodic search: Unlike prior ergodic methods 
that assume static  (Dong, Berger, & Abraham, 2023) 
or spatiotemporal dynamics with no noise  (Dressel& 
Kochenderfer, 2019; Rao et al., 2023; Garza, 2021), 
we construct the target information spatial distribution 
(TISD) using the clarity metric  (Agrawal& Panagou, 
2023), a bounded measure that quantifies information 
decay and the maximum attainable information in sto
chastic spatiotemporal environments. This allows robots 
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to adaptively focus sensing effort in regions with high 
uncertainty and rapid information loss.

	● Robust energy-aware scheduling with fail-safe coor
dination: Unlike prior work that achieves exclusivity 
through staggered deployment  (Bentz, Hoang, Bayas
galan, & Panagou, 2018) or relies on simplified single-
integrator dynamics with fixed SoC thresholds  (Fouad 
& Beltrame, 2022), we propose Robust-meSch ( 
RmeSch ), a centralized online scheduling framework 
that supports general nonlinear robot dynamics, enforc
es exclusive access to a shared mobile charging station, 
and guarantees safe returns through a decentralized fail-
safe planner that accounts for communication delays 
and central node failures. Furthermore, we provide for
mal feasibility guarantees and derive conditions under 
which robots can be safely added to or removed from 
the mission without violating energy and return-gap 
constraints.

	● Hardware-validated multi-agent coordination: We 
validate the proposed method on a heterogeneous team 
comprising multiple aerial robots and a mobile ground-
based charging station through extensive hardware 
experiments.Comparison to our own earlier works: 
Compared to our earlier conference papers, this work 
introduces several key extensions:

	● Compared to Naveed, Agrawal, et al. (2024), we extend 
the clarity-based information model to the multi-agent 
case.

	● Compared to Naveed, Dang, et al. (2024), we introduce 
a fail-safe planner that enables safe recovery under cen
tral node failures and provide a more comprehensive 
theoretical analysis, including formal guarantees on fea
sibility and robustness.

	● In addition, this paper presents an expanded experimen
tal evaluation compared to both prior works, including 
real-world demonstrations involving multiple aerial 
robots coordinating through a shared mobile charging 
station.

2  Preliminaries

2.1  Notation

Let Z0 = {0, 1, 2, ...} and Z+ = {1, 2, 3, ...}. Let R, R≥0, 
R>0 be the set of reals, non-negative reals, and positive reals 
respectively. Let Sn

++ denote set of symmetric positive-defi
nite matrices in Rn×n. Let N (µ, Σ) denote a normal distri
bution with mean µ and covariance Σ ∈ Sn

++. The Q ∈ Sn
++, 

norm of a vector x ∈ Rn is denoted ∥x∥Q =
√

xT Qx. The 

space of continuous functions f : A → B is denoted as 
C(A, B).

2.2  System description

Consider a multi-agent system, in which each robotic sys
tem i ∈ R = {1, · · · , N}, referred to as a rechargeable 
robot, comprises the robot and battery discharge dynamics:

χ̇i =
[
ẋi

ėi

]
= f i(χi, ui)

=
[
f i

r(xi, ui)
f i

e(ei)

]
,

� (1)

where N = |R| is the cardinality of the set R, 

χi =
[
xiT

, ei

]T

∈ Zi
r ⊂ Rn+1 is the ith robotic system 

state consisting of the robot state xi ∈ X i
r ⊂ Rn and its 

State-of-Charge (SoC) ei ∈ R≥0. ui ∈ U i
r ⊂ Rm is the con

trol input, f i : Zi
r × U i

r → Rn+1 defines the continuous-
time robotic system dynamics, f i

r : X i
r × U i

r → Rn define 
robot dynamics and f i

e : R≥0 → R define worst-case bat
tery discharge dynamics. We also consider the continuous-
time dynamics of the mobile charging station (referred to as 
mobile charging robot): 

ẋc = fc(xc, uc) + w(t), w(t) ∼ N (0, W (t)),� (2a)

yc = z(xc) + v(t), v(t) ∼ N (0, V (t)),� (2b)

 where xc ∈ Xc ⊂ Rc is the charging station state, 
uc ∈ Uc ⊂ Rs is the charging station control input, 
fc : Xc × Uc → Rc defines the continuous-time system 
dynamics for the mobile charging, w(t) is the time-vary
ing process noise with zero mean and known variance 
W (t) ∈ R≥0, yc ∈ Rc is the measurement, z : Rc → Rc is 
the observation model, and v(t) is the time-varying measure
ment noise with zero mean, and known covariance V(t).

2.3  Ergodic search

Ergodic search  Mathew and Mezić (2011); Dressel and 
Kochenderfer (2019) is a technique to generate trajec
tories x : [t0, T ] → X  that cover a rectangular domain 
P = [0, L1] × · · · [0, Ls] ⊂ Rs, matching a specified target 
information spatial distribution (TISD) ϕ : P → R, where 
s is the dimensionality of the environment and ϕ(p) is the 
density at p ∈ P . Moreover, the spatial distribution of the 
trajectory x(t) is defined as
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Definition 1  The differential entropy h[X] ∈ (−∞, ∞) of 
a continuous random variable X with support S and density 
ρ : S → R is

h[X] = −
ˆ

S

ρ(x) log ρ(x)dx.� (6)

As the uncertainty in X decreases, the entropy approaches 
h[X] → −∞. Clarity is defined in terms of differential 
entropy.

Definition 2  Let X be a n-dimensional continuous ran
dom variable with differential entropy h[X]. The clarity 
q[X] ∈ (0, 1) of X is defined as:

q[X] =
(

1 + exp(2h[X])
(2πe)n

)−1

.� (7)

In other words, the clarity q[X] of a random variable X lies 
in the interval (0,  1), where q[X] → 0 corresponds to the 
case where the uncertainty in X is infinite, and q[X] → 1 
corresponds to the case where X is perfectly known in an 
ideal setting.

Example: For a multivariate Gaussian random variable 
X ∼ N (µ, Σ), where µ ∈ Rn is the mean and Σ ∈ Rn×n 
is the covariance matrix, the differential entropy and clarity 
admit closed-form expressions. The differential entropy is 
given by:

h[X] = log
(√

(2πe)n|Σ|
)

= 1
2

log ((2πe)n|Σ|) ,� (8)

and substituting this into the clarity definition:

q[X] =
(

1 + exp(2h[X])
(2πe)n

)−1

,� (9)

we obtain the simplified form:

q[X] = 1
1 + |Σ|

.� (10)

This shows that for Gaussian distributions, clarity is 
inversely related to the determinant of the covariance 
matrix. As |Σ| → 0, q[X] → 1, and as |Σ| → ∞, q[X] → 0, 
aligning with our interpretation of clarity as a normalized, 
bounded measure of certainty.

c(x(t), p) = 1
T − t0

ˆ T

t0

δ(p − Ψ(x(τ)))dτ � (3)

where δ : P → R is the Dirac delta function and Ψ : X → P  
is a mapping such that Ψ(x(τ)) is the position of the robot 
at time τ ∈ [t0, T ]. In other words, given a trajectory x(t), 
c(x(t), p) represents the fraction of time the robot spends at 
a point p ∈ P  over the interval [t0, T ]. Then, the ergodicity 
of x(t) w.r.t to a TISD ϕ is

Φ(x(t), ϕ) = ∥c − ϕ∥H−(s+1)/2 � (4)

where ∥·∥H−(s+1)/2  is the Sobolev space norm defined in 
Mathew and Mezić (2011), i.e., Φ is a function space norm 
measuring the difference between the TISD ϕ and the spatial 
distribution of the trajectory c. Given the ergodic metric, 
ergodic trajectories for a team of N robots can be com
puted by solving the following optimization problem over 
the space of trajectories xi(t) ∈ C([t0, T ], X ) and control 
inputs ui(t) ∈ C([t0, T ], U) for each robot i ∈ R:

min
{xi(t),ui(t)}

Φ({x1(t), · · · , xN (t)}; ϕ)

+
N∑

i=1

ˆ T

t0

∥∥ui(τ)
∥∥2

dτ

s.t. ẋi = fr(xi, ui), ∀i ∈ R
xi(t0) = xi

0∥∥xi(t) − xj(t)
∥∥ ≥ dmin, ∀i ̸= j

� (5)

where xi
0 is the initial state of robot i, and dmin is the minimum 

safety distance to ensure inter-robot collision avoidance. 
The multi-agent ergodic metric Φ({x1(t), · · · , xN (t)}; ϕ) 
quantifies the team’s collective coverage of the target distri
bution ϕ. It is typically computed via a Fourier decomposi
tion of both the empirical visitation statistics and the target 
distribution Dressel and Kochenderfer (2019). This optimi
zation problem can be solved using gradient-based methods. 
In this work, we do not focus on a specific trajectory opti
mization method, but rather on the principled construction 
of the TISD for guiding ergodic exploration in stochastic 
spatiotemporal environments.

2.4  Clarity

We use clarity, an information metric introduced in Agrawal 
and Panagou (2023) and is based on differential entropy:
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Substituting P = 1−q
q , we get

q̇ = (1 − q)2C(X)T R(X)−1C(X) − Qq2

= (1 − q)2
∑
i∈R

C(xi)2

R(xi)
− Qq2 � (18)

The (18) defines the clarity dynamics for the case when 
measurements from multiple robots are involved in estimat
ing the quantity of interest.

If C(xi) and R(xi) are constant for all i ∈ R, then the 
clarity dynamics (18) admit a closed-form analytical solu
tion for the initial condition q(0) = q0:

q(t; q0) = q∞

(
1 + 2γ1

γ2 + γ3e2kQt

)
� (19)

where 

k =

√∑
i∈R

C(xi)2

R(xi)
Q , q∞ = k

k+1 , γ1 = q∞ − q0, γ2 = γ1(k − 1), 
and γ3 = (k − 1)q0 − k.

As t → ∞, q(t; q0) → q∞ ≤ 1 monotonically. Thus 
q∞ defines the maximum attainable clarity. Equa
tion (19) can be inverted to determine the time required to 
increase clarity from q0 to some q1. This time is denoted 
∆T : [0, 1]2 → R≥0:

∆T (q0, q1) = t s.t. q(t, q0) = q1 for q1 ∈ [q0, q∞)� (20)

For q1 < q0, we set ∆T (q0, q1) = 0 while ∆T (q0, q1) is 
undefined for q1 ≥ q∞.

3.2  Environment specification

Consider the coverage space P . We discretize the domain 
into a set of Np cells each with size V.1 Let mp : [t0, ∞) → R 
be the (time-varying) quantity of interest at each cell 
p ∈ Pcells = {1, ..., Np}. We model the quantities of inter
est as independent stochastic processes: 

ṁp = wp(t), wp(t) ∼ N (0, Qp)� (21a)

yp = Cp(X)mp + vp(t), vp(t) ∼ N (0, R(X))� (21b)

 where yp ∈ R is the output corresponding to cell p. R(X) is 
the measurement noise, and Qp ∈ R>0 is the process noise 
variance at each cell p. Since mp varies spatially and tempo
rally under process noise Qp for each cell p ∈ Pcells, the envi
ronment becomes a stochastic spatiotemporal environment.

1  Size is length in 1D, area in 2D, and volume in 3D.

3  Problem formulation

In this section, we provide the mathematical formulation of 
the problem. We first derive the clarity dynamics for multi-
robot systems, then describe the environment model, and 
finally present the overall problem statement.

3.1  Multi-robot clarity dynamics

We consider the estimation of a scalar stochastic variable 
m ∈ R using N robots. The system dynamics are:

ṁ = w(t),w(t) ∼ N (0, Q) � (11)

where Q ∈ R≥0. Let X = [x1, x2, . . . , xN ]T ∈ RN×1 
denote the stacked state vector of all robots. Each robot 
i ∈ R measures m as follows:

yi = C(xi)m + vi(t),vi(t) ∼ N (0, R(xi)) � (12)

where yi ∈ R is the measurement of m by robot i, C : X → R 
is the mapping between robot i state and xi and the sensor 
stated, and R ∈ R is the known variance of the measure
ment noise. Assuming the measurement noise is indepen
dent across agents, the measurements can be stacked as:

y(X) = C(X)m + v(X),v(t) ∼ N (0, R(X)) � (13)

where

C(X) = [C(x1), C(x2), · · · , C(xN )]T ∈ RN×1� (14)

R(X) =




R(x1) 0 · · · 0
0 R(x2) · · · 0
...

...
. . .

...
0 0 · · · R(xN )


 ∈ RN×N � (15)

The Kalman filter equations for the scalar estimate µ and 
variance P are: 

µ̇ = PC(X)T R(X)−1(y(X) − C(X)µ) � (16a)

Ṗ = Q − PC(X)T R(X)−1C(X)P � (16b)

 Since clarity is defined as q = 1
1+P  (shown in (10)), the 

clarity dynamics can be derived as follows:

q̇ = −Ṗ

(1 + P )2

= 1
(1 + P )2

(
P 2C(X)T R(X)−1C(X) − Q

)� (17)
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clarity of the cell. If qp ≥ q∞,p for a cell p ∈ Pcells, then the 
robot would try to spend an infinite amount of time at a cell 
p, which is undesirable.

We use clarity as our information metric since it is partic
ularly effective for stochastic spatiotemporal environments:

Remark 1  The clarity of each cell is upper bounded. The 
dynamics of clarity for cell p evolve as given in (22). When 
measurements are taken from cell p, the clarity qp( increases 
over time and monotonically approaches a finite upper limit 
q∞,p < 1, provided that Qp > 0, R(xi) > 0, and C(xi) ≥ 0 
for all i ∈ R. This reflects the fact that the maximum attain
able information in each cell is inherently limited. Under 
these conditions, the clarity qp(t) remains bounded for all 
t ≥ 0 as:

0 ≤ qp(t) ≤ q∞,p := kp

kp + 1
,� (23)

where kp :=

√∑
i∈Rp

C2
i

/Ri

Qp
.

Remark 2  The clarity decay rate in cell p, i.e. −Qpq2
p, is 

explicitly dependent on the stochasticity of the environment 
Qp in (21). This allows the information decay rate to be 
determined from the environment model, and not set heuris
tically. Furthermore, spatiostatic environments are a special 
case: by setting Qp = 0, clarity cannot decay.

In this persistent task, the trajectory for each robot is replanned 
every TH ∈ R>0 seconds, i.e., at times {t0, t1, · · · } for 
tk = kTH , k ∈ N. At the k-th iteration, the objective is to 
minimize the mean clarity deficit qd(tk + TH), which is 
defined as

qd(tk + TH) = 1
Np

Np∑
p=1

max(0, qp − qp(tk + TH))� (24)

where qp(tk + TH) is the clarity at time tk + TH  of cell 
p ∈ Pcells. However, in order to persistently monitor a 
stochastic spatiotemporal environment over a long time 
horizon, the robot’s energy constraints must be taken into 
consideration.

To quantify the uncertainty in the environment, we define 
an independent clarity dynamics for each cell p ∈ Pcells. 
The clarity dynamics are given as follows:

q̇p = (1 − qp)2
∑
i∈R

C(xi)2

R(xi)
− Qpq2

p� (22)

where xi is the state of the robot i ∈ R, C : X → R is the 
mapping between robot state and sensor state, and R ∈ R 
is the known variance of the measurement noise. qp → 1 
represents the case when the state of the environment (e.g. 
smoke concentration) is perfectly known in the cell p, 
whereas lower values correspond to higher uncertainty.

3.3  Problem statement

Consider a team of N + 1 robots performing persistent cov
erage of a stochastic spatiotemporal environment () over a 
time horizon [0, ∞). Among them, N robots are recharge
able and require periodic recharging, while one robot serves 
as a mobile charging robot and does not require recharging.2 
The rechargeable robots model the mobile charging robot 
using (2). For this problem formulation, we assume the exis
tence of a high-level trajectory planner that designs a nomi
nal trajectory for the mobile charging robot. The objectives 
for the rechargeable robots are twofold:

	● Generate nominal informative trajectories for recharge
able robots using clarity-driven ergodic search;

	● Ensure mutually exclusive use of the mobile charging 
robot, which follows a nominal trajectory.

We formulate an optimization problem that captures these 
objectives. The objective function is designed to maxi
mize clarity across the regions of interest, while constraints 
ensure that each robot’s energy level remains non-negative 
and that the robots exclusively share the single mobile 
charging station.

We now define the clarity-based objective functional, 
along with the energy constraints and mutual exclusion con
straints related to charging.

3.3.1  Clarity-based objective functional

Assume the desired quality of information at each cell 
is encoded using a target clarity qp < q∞,p for each cell 
p ∈ Pcells. The target clarity can be different at each cell, 
indicating a different desired quality of information at each 
cell, but must be less than q∞,p, the maximum attainable 

2  This could represent, for instance, a ground vehicle with a battery 
that lasts several hours. A similar assumption is made in prior works 
Mathew et al. (2015); Lin et al. (2022).
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denotes all charging return times within the current planning 
horizon, and is used to enforce the minimum gap condition 
over this finite window.

It is important to note that this formulation does not 
depend on the specific nominal trajectory of the mobile 
charging robot. In this work, we provide a method to gen
erate the nominal trajectory for the mobile charging robot, 
which complements the mission (detailed in Sect.  6).

4  Method motivation & overview

4.1  Method motivation

To solve problem  (1), we draw inspiration from ergodic 
search. As discussed in section 2.3, ergodic search generates 
trajectories by solving problem (5). When the target infor
mation spatial distribution (TISD) ϕ is constructed based 
on the current clarity qp(t) and a desired target clarity qp 
at each cell, ergodic search naturally minimizes the mean 
clarity deficit  (24). In this work, we propose a principled 
method to construct ϕ using clarity.

However, the optimization in  (5) does not account for 
energy constraints  (26a) or the minimum gap require
ment  (26b). While one could include these constraints 
directly into  (5), the resulting problem is highly non-con
vex, making it difficult to ensure convergence or feasibility. 
Moreover, the terminal clarity deficit qd(T ) is not differ
entiable, making direct optimization of (1) challenging. In 
contrast, (5) is differentiable and can be efficiently approxi
mated using gradient-based trajectory optimization solvers. 
Sampling-based methods are also not suitable for solving 
problem  (1), as constraint satisfaction cannot be ensured. 
In particular, the energy and gap constraints must hold over 
the entire continuous trajectory, which these methods do not 
guarantee.

We therefore propose mEclares , shown in Fig 1, as an 
approximate solution to (1).

4.2  Method overview

Our approach decouples  (1) into two sub-problems: (A) 
each robot computes an ergodic trajectory that maximizes 
information collection while ignoring energy constraints; 
(B) each robot then generates a candidate trajectory that 
attempts to track a portion of the ergodic trajectory while 
reaching the charging station before depleting its energy. All 
candidate trajectories are sent to the base computer, where 
the RmeSch algorithm evaluates them and decides whether 
to commit each one. Committed trajectories are guaran
teed to satisfy the minimum SoC constraint  (26a) and the 
minimum gap constraint (26b). Each robot always tracks its 

3.3.2  Minimum energy and mutually exclusive charging 
constraints

Now, assuming the mobile charging robot is following a 
nominal trajectory. We define T i as the set of times ith robot 
returns to the charging station:

T i = {ti
0, ti

1, · · · , ti
m, · · · }, ∀i ∈ R, ∀m ∈ Z0� (25)

where ti
m represents the mth return time of the ith recharge

able robot. Let T = ∪i∈RT i be the union of return times for 
all robots. We now define two conditions that must hold for 
all times t ∈ [t0, ∞) to achieve the objectives stated above: 

ei(t) ≥ ei
min ∀t ∈ [t0, ∞), ∀i ∈ R � (26a)

|ti1
m1

− ti2
m2

| > Tδ ∀ti1
m1

, ti2
m2

∈ T � (26b)

 Condition (26a), the minimum SoC condition, defines the 
required minimum battery SoC for all rechargeable robots. 
Condition (26b), the minimum gap condition, ensures a suf
ficient time gap between the returns of two robots to avoid 
charging conflicts. The term Tδ = Tch + Tbf  represents the 
charging duration and the buffer time needed for a robot to 
resume its mission before the next robot arrives.

Now we define the optimization problem, which must be 
solved at times {t0, t1, · · · } for tk = kTH :

Problem 1  At each planning time tk, the problem is posed 
as: 

min
χi(t),ui(t)

qd(tk + TH) � (27a)

s.t. χi(tk) = χi
k, ∀i ∈ R � (27b)

χ̇i = f(χi, ui), ∀i ∈ R � (27c)

q̇p = g(x, qp), ∀p ∈ Pcells � (27d)

∥∥xi(t) − xj(t)
∥∥ ≥ dmin, ∀i ̸= j � (27e)

ei(t) ≥ ei
min, ∀i ∈ R � (27f)

|ti1
m1

− ti2
m2

| > Tδ, ∀ti1
m1

, ti2
m2

∈ Tk,H � (27g)

where qd(tk + TH) is the mean clarity deficit at the end of 
system trajectory χi(t; tk, χk), ∀t ∈ [tk, tk + TH ], ∀i ∈ R 
given by (24), g : X × [0, 1] → R≥0 define the clarity 
dynamics (22), and emin is the minimum energy level allowed 
for the robot. (27e) defines the collision avoidance constraint 
for all robots i, j ∈ R. The set Tk,H = T ∩ [tk, tk + TH ] 
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	– Recompute the ergodic trajectory for the recharge
able robots and the nominal trajectory of the mobile 
charging robot.

	● At each time tj = jTE , j ∈ N:

	– Each robot generates a candidate trajectory and 
sends it to the base computer.

	– The central RmeSch algorithm evaluates the can
didate trajectories and decides whether to commit 
each one of them.

	– RmeSch also publishes the fail-safe schedule in 
case the central node fails before the next decision 
iteration j + 1.

Algorithm 1  The genTISD algorithm

 While the proposed method employs centralized decision-
making, the computational workload is distributed across 
the network to enable real-time operation. Fig. 1 provides 
a high-level overview of the system architecture, and Fig. 2 
illustrates the supported communication models. Notably, 

most recent committed trajectory, ensuring persistent explo
ration while respecting energy constraints and coordinating 
exclusive access to the mobile charging station. The nomi
nal trajectory of the mobile charging robot is generated so 
that it travels along the network of rechargeable robots.

	● These components operate on different timescales. The 
ergodic trajectory is replanned every TH  seconds, while 
the committed trajectory is updated every TE < TH  
seconds.3At each time tk = kTH , k ∈ N:

	– Recompute the TISD ϕ using genTISD .

3  TE , TH ∈ R+ are user-defined parameters.

Fig. 2  The supported communication architecture of the system

 

Fig. 1  meSch : The block diagram shows the complete proposed framework mEclares
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4.3  Method organization

In the next sections, we describe the mEclares framework 
in detail. We begin with genTISD , a method for generat
ing the target information spatial distribution (TISD) used 
in multi-agent ergodic search. We then present the details of 
the RmeSch algorithm. We also establish notation for tra
jectories. Let xi([tk, tk + TH ]; tk, xi

k) represent the ergodic 
trajectory for the ith rechargeable robot at time tk, starting 
from state xi

k and defined over a time horizon of TH  sec
onds. We denote this as xi,ergo

k . The same notation applies 
to other trajectories. An overview of the notation is provided 
in table 1. Without loss of generality, we present our method 
assuming N rechargeable robots modeled as quadrotors and 
one mobile charging rover.

5  Generate target spatial distribution

 ( genTISD )

The genTISD algorithm is described in algorithm 1. Let ϕp 
denote the target information density evaluated for cell p. At 
the k-th iteration (i.e, at time tk = kTH ), we set ϕp to be the 
time that the robot would need to increase the clarity from 
qp(tk) to the target qp by observing cell p (Lines 3-6). This 
is determined using (20). The small positive constant ϵ > 0 
in Line 5 ensures that target clarity is always less than the 
maximum attainable clarity, i.e., qp < q∞,p. Finally, we nor
malize ϕp such that the sum of 

∑
p∈Pcells

ϕp = 1 (Line 8). 
Once ϕ is constructed, trajectory optimization solvers can 
be used to generate the ergodic trajectories xi,ergo

k , ∀i ∈ R.

Once the genTISD is generated, we use an off-the-shelf 
solver Dressel and Kochenderfer (2019) to solve the ergodic 
trajectory optimization problem as posed in (2.3).

6  Mobile charging station nominal 
trajectory

To support coordination with the team of rechargeable 
robots, we generate a nominal trajectory for the mobile 
charging station that tracks the geometric center of the 
team’s nominal ergodic trajectories. At each decision point 
tk, the geometric center of the team’s ergodic trajectories is 
defined as:

xcent(t) = 1
N

N∑
i=1

xi,ergo
k (t), ∀t ∈ [tk, tk + TH ].� (28)

instead of requiring a separate base station, the onboard 
computer of the mobile charging robot can serve as the cen
tral computer.

The construction of the TISD, multi-robot ergodic trajec
tory generation, generation of the mobile charging robot’s 
nominal trajectory, and the scheduling component of 
RmeSch are all executed on the central computer. At each 
planning iteration, the nominal trajectories for all robots-
both rechargeable and charging-are computed centrally and 
communicated back to the robots.

Each rechargeable robot independently generates a sin
gle candidate trajectory onboard, which attempts to track a 
portion of the ergodic trajectory before reaching the charg
ing station. These candidate trajectories are transmitted to 
the central computer, where the RmeSch algorithm jointly 
evaluates them and selects which trajectories to commit 
based on energy feasibility and coordination constraints. 
This design enables decentralized trajectory generation at 
the robot level while maintaining centralized coordination 
for safe and persistent operation.

Table 1  Time and Index Notation at a glance
Symbol                      Definition
Indices
i Rechargeable robot index
j RmeSch iteration index
k Nominal trajectory planner iteration index
l Rechargeable robot index in sorted list
Constant shared time horizons

Tδ
Tδ = Tch + Tbf  Charging + Buffer time

TN
Nominal trajectory horizon of the recharge
able robot available at time tj

TR
Charging robot nominal trajectory horizon 
available at tj  / Time taken by the recharge
able robot to reach the charging station

TE
Time interval between j and j + 1 iteration

Dynamic time horizons for robot i computed at tj

T i
L,j

Worst-case landing time

T i
C,j Candidate trajectory (T i

C,j = TR − T i
L,j)

T i
B,j

back-to-base trajectory 
(T i

B,j = T i
C,j − TN )

T l
F,j Remaining battery time of the lth robot in 

the sorted list at time tj

Time points

tj
Start time of iteration j

tj,N tj + TN

ti
j,C tj + T i

C,j

tj,R tj + TR

ti
m

mth time ith robot returns for recharging
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	● Compute the rendezvous point where the rechargeable 
robot will return for recharging.

	● Determine the reserve energy required at the rendez
vous to account for uncertainty in the charging station’s 
position.

	● Construct a trajectory that follows a portion of the ergo
dic trajectory before reaching the rendezvous point. We 
refer to this as the candidate trajectory.

	● Commit the candidate trajectory if it satisfies both the 
minimum energy condition (26a) and the minimum gap 
condition (26b). The result is the committed trajectory.

	● Along with the committed trajectory, a fail-safe return 
schedule is generated based on the current SoC level to 
ensure safe return in case of central node failure.

Before detailing each step, we first explain how RmeSch 
evaluates the satisfaction of conditions (26a) and (26b). This 
is one of our key contributions, and we explain it by first dis
cussing its motivation and then describing its mechanism.

7.1.1   RmeSch Motivation

Consider N quadrotors sharing a mobile charging rover, as 
shown in Fig. 3. To prevent charging conflicts, we propose a 
scheduling method based on two principles.

First, if multiple robots are predicted to arrive simultane
ously, one is rescheduled to arrive earlier using gap flags 
explained below. Second, if robots visit the charging station 
at different times due to varying discharge profiles, the algo
rithm checks that each robot has enough energy to continue 
its mission, ensuring that the minimum energy condition is 
never violated.

To implement this approach, we introduce two modules: 
gware and eware . The gware module enforces the 
minimum time gap between consecutive charging sessions 
by constructing gap flags and resolving conflicts by select
ing the robot with the least remaining flight time to return 
first-similar to dropping a constraint to restore feasibility. 
This allows the remaining robots to maintain the desired 
gap defined by (26b). Once the gap flags are satisfied, the 
eware module checks whether each robot has enough 
energy to continue its mission, ensuring that the minimum 
energy condition (26a) is also satisfied.

7.1.2  Key idea: construction of gap flags

We begin by describing the construction of gap flags and 
their role in preventing charging conflicts. At each iteration 
of RmeSch , rechargeable robots are sorted by their remain
ing flight time into the ordered set R′ = {1′, . . . , N ′}, where 
1′ has the least flight time. For each robot l ∈ R′\{1′}, a 
gap flag is constructed relative to 1′ as:

At time tk, the mobile charging nominal trajectory xc,nom
k , 

defined over the time interval [tk, tk,H ], is generated by solv
ing the following optimal control problem: 

min
xc(t),uc(t)

ˆ tk,H

tk

∥∥xc(t) − xcent(t)
∥∥2

Q + ∥uc(t)∥2
R dt � (29a)

s.t. xc(tk) = xc,nom
k (tk) � (29b)

ẋc = fc
r (xc, uc) � (29c)

 where Q ∈ Sn
++ and R ∈ Sm

++ weights state cost and con
trol cost respectively. This formulation ensures that the 
mobile charging robot stays centrally positioned relative to 
the rechargeable robots without requiring explicit commu
nication or coordination, enabling robust support for persis
tent operation.

7  Robust multi-agent energy-aware 
scheduling for task persistence ( RmeSch )

To facilitate readers, we organize the presentation of 
RmeSch into three subsections: section 7.1 introduces the 
motivation behind RmeSch and outlines its key ideas, sec
tion 7.2 describes the method in detail, and section 7.3 dis
cusses theoretical guarantees around RmeSch .

7.1   RmeSch Motivation and key ideas

As a low-level module, RmeSch ensures task persistence. 
The solution follows three steps, with the RmeSch module 
running every TE  seconds at discrete time steps tj = jTE , 
where j ∈ Z0:

Fig. 3  This figure illustrates the generation of candidate trajectories at 
time tj . All the candidate trajectories terminate at the rendezvous point 
xrp

j  at time ti
j,C
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7.2.2  Reserve energy for uncertainty-aware landing

Along with the rendezvous point xrp
j , we also compute the 

remaining energy the robot must have at the rendezvous 
point to account for uncertainty in the mobile charging 
robot’s position for landing. This corresponds to the energy 
cost of going from rendezvous point xrp

j  to the furthest state 
x̂cw

j  within the 95% confidence interval covariance ellipse.

Now, we compute the furthest point on the boundary of 
the 95% confidence ellipse as follows:

x̂cw
j = x̂c(tj,R) + νmax

√
χ2

c,0.95λmax� (32)

where λmax ∈ R is the largest eigenvalue of the covariance 
matrix Σc(tj,R), νmax ∈ Rc is the eigenvector correspond
ing to λmax, and χ2

c,0.95 corresponds to the value from the 
chi-squared distribution with c degrees of freedom in the 
95% confidence interval. To compute the reserve energy, we 
formulate the following problem ∀i ∈ R: 

min
χi(t),ui(t),ti

f

ti
f � (33a)

s.t. χi(ti
0) = χi

rp � (33b)

χ̇ = f i
r(χi, ui) � (33c)

xi(ti
f ) = x̂cw

j � (33d)

 where χi
rp = [[xrp

j ]T , ei
0]T  is the initial system state com

prising of xrp
j ∈ Rn and the energy e0 ∈ R>0. The reserve 

energy ei,res
j  and landing time T i

L,j  are computed as follows: 

ei,res
j = ei(ti

f ) − ei(ti
0) ∀i ∈ R � (34a)

T i
L,j = ti

f − ti
0 ∀i ∈ R � (34b)

7.2.3  Construction of Candidate Trajectories

Now, we generate the candidate trajectories for all recharge
able robots to reach the rendezvous point xrp

j  from the cur
rent state xi(tj) within T i

C,j = TR − T i
L,j  s. 

Gl = T l
F,j > (TR + TE + lTδ),� (30)

where T l
F,j  is lth robot remaining flight time at time tj , TR 

is the time to reach the charging station, TE  is the decision 
interval, and Tδ includes the charging duration and the buf
fer time required to resume the mission.

These flags enforce a minimum gap of lTδ between 
robot 1′ and robot l in R′. For example, the minimum gap 
between the first and third robots is 2Tδ . If any gap flag is 
not satisfied, the robot with the least remaining flight time, 
i.e., 1′, is rescheduled for recharging. The satisfaction of the 
gap flag condition guarantees that there will be at least Tδ 
between successive charging sessions.

7.2   RmeSch Methodology

In this section, we present RmeSch in detail. After estab
lishing the construction of gap flags, we demonstrate how 
they are iteratively checked within the full solution scheme 
to ensure conditions (26a) and (26b) hold for all t ∈ [0, ∞). 
We also discuss how the proposed method accounts for the 
uncertainty in the position of the mobile charging robot. 
This solution is developed under a few key assumptions:

Assumption 1  At each iteration of RmeSch , the nominal 
trajectories of the rechargeable robots are known for TN  
seconds, and the nominal trajectory of the mobile charging 
robot’s for TR seconds. This can be ensured by selecting 
time horizons such as they satisfy TN , TR < TH .

7.2.1  Estimating Rendezvous Point

At the jth iteration of RmeSch , we estimate the mobile 
charging robot’s position at tj + TR, i.e., x̂c(tj,R), and 
place the rendezvous point d meters above it. The recharge
able robots will return to this point, as shown in Fig. 3.

Given the current state estimate x̂c(tj) and its covariance 
Σc(tj) from the EKF, we use the EKF predict equations 
Gelb et al. (1974) to compute the mobile charging robot 
state estimate at tj,R, i.e. x̂c(tj,R) and Σc(tj,R). The ren
dezvous point xrp

j ∈ Rn is then computed as follows:

xrp
j =

[
Ψ(x̂c(tj,R))

0n−2

]
+

[
02
d

0n−3

]
� (31)

where Ψ : Rc → R2 is a mapping that returns the 2-D posi
tion coordinates, d ∈ R>0 is added to the z-dim of the state, 
and n is the rechargeable robot state dimension (1). The ren
dezvous point corresponds to the hover reference state xrp

j  
for the rechargeable robot, positioned d meters above the 
predicted position of the mobile charging robot.
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Algorithm 3  The gware algorithm

Algorithm 4  The eware algorithm

χ̇i = f(χi, ui(t)), � (37a)

χi(tj) = χi
j � (37b)

ui(t) =

{
πi

r(χi, xi,nom
j (t)), t ∈ [tj , tj,N )

πi
r(χ, xi,b2b

j (t)), t ∈ [tj,N , ti
j,C) � (37c)

where πi
r : Zi

r × X i
r → U i

r is a control policy to track the 
portion of the nominal trajectory and the b2b trajectory. Fig
ure 3 shows the candidate trajectory generation process with 
3 rechargeable robots and 1 mobile charging robot.

7.2.4  Robust Energy-aware Scheduling

Given the candidate trajectory and the reserve energy for 
each rechargeable robot i ∈ R, we check if the minimum 
SoC condition (26a) and the minimum gap condition (26b) 
are satisfied throughout the candidate trajectory. The overall 
algorithm described in algorithm 2 consists of the two sub
routines: gware (gap-aware) and eware (energy-aware).

7.2.5  Gap-aware ( gware )

gware described in algorithm  3 checks if the recharge
able robots would continue to have the gap of Tδ seconds 
between their expected returns if the candidate trajectories 
were committed.

Algorithm 2  The RmeSch algorithm

 Given nominal trajectories xi,nom
j  ∀i ∈ R, we construct a 

candidate trajectory that tracks a portion of the nominal tra
jectory for TN  s and then reaches the rendezvous point xrp

j  
within T i

B,j  = T i
C,j − TN  s. For the ith rechargeable robot, 

the candidate trajectory is constructed by concatenating the 
nominal trajectory with a back-to-base (b2b) trajectory. Let 
the ith rechargeable robot state at time tj  be xi

j ∈ X  and the 
system state at tj  be X i

j ∈ Zi
r. We construct a b2b trajectory 

xi,b2b
j  defined over interval [tj,N , ti

j,C] by solving: 

min
xi(t),ui(t)

ˆ ti
j,C

tj,N

∥∥xi(t) − xrp
j

∥∥2
Q

+
∥∥ui(t)

∥∥2
R dt � (35a)

s.t. xi(tj,N ) = xi,nom
j (tj,N ) � (35b)

ẋi = f i
r(xi, ui) � (35c)

xi(ti
j,C) = xrp

j � (35d)

where Q ∈ Sn
++ and R ∈ Sm

++ weights state cost and con
trol cost respectively.

Once b2b trajectory xi,b2b
j  is generated, we numerically 

construct the system candidate trajectory

χi,can
j =

{
xi,can

j (t), t ∈ [tj , ti
j,C)

ei,can
j (t), t ∈ [tj , ti

j,C) � (36)

over a time interval [tj , ti
j,C) by solving the initial value 

problem for each rechargeable robot system, i.e. 
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below the reserve level while following the candidate tra
jectory. We refer to this condition as the Reserve SoC 
Condition:

ei(t) > ei,res
j ∀t ∈ [tj , ti

j,C ]� (41)

If successful, the candidate trajectory replaces the current 
committed one. For the returning robot, a landing controller 
is assumed to exist:

Assumption 2  When the returning rechargeable robot 
reaches rendezvous point xc

rp at ti
j,C , there exists a land

ing controller πi
l : [ti

j,C , tj,R) × X i
r → U  that guides the 

rechargeable robot to the mobile charging robot.

Algorithm 5  Fail-safe onboard rechargeable robot i

(Lines 2-4) Here the gap flags are constructed for each 
lth robot that is not currently charging or returning, relative 
to the first robot in the sorted list (the 1st robot)

Gl = T l
F,j > (TR + TE + lTδ)� (38)

Satisfaction of the gap flag condition at the jth iteration 
implies that rechargeable robots are estimated to have at 
least Tδ of the gap between their expected returns over the 
time interval [tj , tj,R), i.e. ∀ti1

m1
, ti2

m2
∈ T :

T l
F,j > (TR + TE + lTδ) � (39)

=⇒ |ti1
m1

− ti2
m2

| > Tδ ∀t ∈ [tj , tj,R)� (40)

(Lines 5-7) If any gap flags are false, the committed trajec
tory of the first rechargeable robot in the sorted list remains 
unchanged, and it returns to the charging station. Mean
while, the candidate trajectories are committed for the sub
sequent rechargeable robots in the sorted list.

7.2.6  Energy-aware ( eware )

If no gap flag violations occur, indicating that all recharge
able robots have sufficient gaps between their expected 
return for recharging, we proceed to check if each robot 
has adequate energy to continue the mission using eware 
described in algorithm 4.

(Lines 3-6) We assess whether each rechargeable robot 
can reach the charging station without depleting its energy 

Time [sec]

RmeSch
(A) Time [sec]

No message  received within the acceptable intervel 
to commit the  new candidate 

No scheduling leads to 
simultaneous arrivals at 
the charger, causing collisions. 

Quadrotors trigger fail-safe

at the charger. 

the quadrotors’ fail-safe maneuver.

(c) The quadrotor with second least 

delayed tracking of its last trajectory.

(d) The quadrotor with the highest 

delayed tracking of its last trajectory.

(b) The quadrotor with least remaining 

and is recovered upon returning.

RmeSch(without fail-safe) RmeSch(with fail-safe) 

With the central node failureWithout the central node failure

Collision!

Fig. 4  The figure shows the behavior of the algorithm when the central node fails
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This fallback guarantees mutually exclusive access to the 
charging station and ensures energy-feasible operation even 
in the absence of centralized coordination.

2) Fail-safe maneuver onboard mobile charging robot
To detect central node failures, the mobile charging robot 

monitors the mobcontinuej  message. If this message is 
received by tj−1,TN , the robot continues executing its nomi
nal trajectory. Otherwise, if the message is not received by 
the deadline, it halts the mission at time tj,R.

7.3   RmeSch Theoretical Guarantees

This section provides the theoretical conditions under which 
RmeSch guarantees feasibility, robustness, and adaptabil
ity. We begin by deriving an upper bound on the number of 
robots that can be supported at mission start based on the 
minimum remaining flight time. We then present a general 
feasibility theorem that guarantees all robots return safely 
with the required energy and time separation under both 
nominal conditions and central node failure. Finally, we dis
cuss robustness by addressing two key scenarios: recharge
able robot failure and the addition of new robots during the 
mission, and provide conditions under which feasibility is 
preserved in both cases.

7.3.1  Upper bound on number of robots

Lemma 1  At iteration j = 0, given the sorted list of remain
ing flight times {T 1′

F,0, T 2′

F,0, . . . } where T 1′

F,0 is the mini
mum remaining flight time, the maximum number of robots 
that can be safely supported by the mission while satisfying 
all gap flags is

N∗ = 1 +

⌊
T 1′

F,0 − TR − TE

Tδ

⌋
,� (44)

where TR is the time a rechargeable robot takes to reach the 
charging station, TE  is the iteration interval, and Tδ is the 
minimum required gap between two consecutive returns.

Proof  We prove that for any number of rechargeable robots, 
the time-shifted scheduling mechanism guarantees that 
each robot can be safely assigned a return slot to the mobile 
charger before running out of energy, provided a minimum 
recharge time and gap between returns are maintained. The 
result holds under worst-case battery discharge and travel 

Algorithm 6  Fail-safe onboard mobile charging robot

7.2.7  Fail-safe maneuver planning

At each iteration of RmeSch , we also plan a fail-safe 
maneuver to handle scenarios involving central node failure 
or communication delays. Specifically, RmeSch transmits 
to each rechargeable robot a message indicating whether 
to commit the new trajectory. Along with this, each robot 
is assigned a return position in the sorted list R′, which is 
generated based on remaining flight time. This position pro
vides each robot with its rank in the return sequence in case 
no message is received due to failure. The logic executed 
onboard each rechargeable robot i is detailed in algorithm 5 
and the fail-safe logic for the mobile charging robot is 
detailed in algorithm 6. Figure 4 illustrates the behavior of 
the fail-safe maneuver.

1) Fail-safe maneuver onboard rechargeable robot 
(Lines 1–3) Once the candidate trajectories are generated 
onboard, each rechargeable robot transmits its candidate 
trajectory to the base computer, which executes RmeSch 
to determine whether the trajectory should be committed. 
Starting at time tj , each robot awaits a response from the 
base until tj−1,N . Nominally, the robot should receive this 
message by tj,T +E < tj−1,N ; however, due to potential 
communication delays, a response may arrive later. If a 
valid response is received by tj,N , the robot executes the 
new committed trajectory.

(Lines 4–9) If no message is received from the central 
node by time tj,N , robot i executes a fallback maneuver 
using its previously committed trajectory xi,com

j−1  and its 
return index reti

j−1 from the previous decision epoch. If 
reti

j−1 = 1, the robot continues executing its last commit
ted trajectory:

xi,com
j (t) = xi,com

j−1 (t), t ∈ [tj , tj + TR]� (42)

If reti
j−1 > 1, the robot remains idle (e.g., hovers) for 

reti
j−1(Tδ) seconds, and then begins executing a time-

shifted version of its previous trajectory:

xi,com
j (t) = xi,com

j−1 (t − reti
j−1Tδ),

t ∈ [tj + reti
j−1Tδ, tj + reti

j−1Tδ + TR]
� (43)
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execution. If such failures are detected and the correspond
ing robots are excluded from future gap flag evaluations, 
then the minimum energy condition (26a) and the minimum 
return gap condition (26b) continue to hold for the remain
ing robots.

Remark 4  Following from lemma 1, at any decision itera
tion j, a new robot can be safely added to the mission if the 
minimum remaining flight time satisfies

T 1′

F,j ≥ TR + TE + (Ncurr) · Tδ,� (45)

where T 1′

F,j  is the minimum remaining flight time at time tj  
and Ncurr is the number of robots currently in the mission. 
This condition ensures that the updated team remains within 
the admissible bound derived in lemma 1 and all robots sat
isfy the return gap (26b) and energy (26a) constraints.

8  Results & Discussion

In this section, we evaluate mEclares through case stud
ies, baseline comparisons, and hardware experiments. We 
use quadrotors with 3D nonlinear dynamics from (Jackson 
et al. (2021),  Eq. (10)) as rechargeable robots and rovers 
with unicycle models as mobile charging robots. We assume 
instantaneous recharging (Tch = 0.0 s) and a buffer time of 
Tbf = 15.0 s, with TN = 2.0 s and TR = 18.0 s, consistent 
across all experiments.

To generate b2b trajectories, we solve (35) using MPC 
with the reduced linear quadrotor dynamics from Jackson et 
al. (2021). We use an LQR controller for (33) and an LQG 
controller for landing. Trajectories are generated at 1.0 Hz 
and tracked at 50.0 Hz with zero-order hold, using the RK4 
integration.

durations. Please see Appendix A Proofs section A.1 for the 
detailed proof. � □

7.3.2  Feasibility guarantees

Theorem 1  Given |R| ≤ N∗ derived in Lemma 1, suppose 
that at j = 0, the Gap flag condition (38) and the Reserve 
SoC condition (41) are satisfied. Then, the minimum energy 
constraint (26a) and the return gap condition (26b) hold for 
all t ∈ [t0, ti

0,R). For all subsequent iterations j ≥ 1, if solu
tions for (33) and (35) exist, and the committed trajectories 
xi,com

j = xi([tj , ti
j,C ]; tj , xi

j) are computed for all i ∈ R 
using algorithm 2, algorithm 5 and algorithm 6, then the con
ditions (26a) and (26b) are satisfied for all t ∈ [tj , tj−1,R) 
and for all j ∈ Z+.

Proof  We show that as long as the central node remains 
functional and the recharge gap constraint is respected, 
all robots will receive recharge assignments in time, even 
under uncertainty. The proof uses induction to confirm that 
feasible scheduling holds for all robots.

We demonstrate that, in the event of a central node fail
ure, robots can safely fall back to previously committed 
return trajectories, ensuring no robot depletes its battery. We 
also show that the fallbacks collectively satisfy recharge gap 
and energy feasibility constraints.

Please see Appendix A Proofs section A2 for detailed 
proof. � □

7.3.3  Robustness to rechargeable robot failures and 
additions

Remark 3  Given Lemma  1, Lemma  1 also applies in the 
case when a subset of robots in R fail during the mission 
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The nominal trajectories are collision-free, ergodic paths 
with a horizon of TH = 30.0 s. All quadrotors follow dis
charge dynamics given by ė = −0.667. Figure 5 (a) shows 
the target clarity distribution and the decay field of the test 
environment, where the decay field corresponds to the Q 

8.1  Multi-Agent Energy-Aware Persistent Ergodic 
Search

We evaluate RmeSch by simulating a scenario in which 
four quadrotors and one rover explore a 10 × 10 m domain. 
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The parameter TH  controls how often the central
ized planner recomputes ergodic trajectories based on the 
evolving clarity map. It should be chosen to balance plan
ning responsiveness and computational cost: smaller val
ues allow quicker adaptation to information changes but 
increase computational load, while larger values reduce 
overhead but slow responsiveness. In contrast, TE  deter
mines how frequently each robot proposes a new candidate 
trajectory for evaluation by the scheduler. It must satisfy 
TE < TN < TH  to ensure that a new trajectory can be com
mitted before the nominal segment of the last committed 
trajectory is exhausted. This ensures a safe fallback to a 
return trajectory if no new plan is accepted.

8.2  Multi-agent Clarity-driven ergodic planner 
performance comparison to baseline methods

We compare the performance of the proposed method gen
TISD against two widely used baseline strategies. The first 
is a lawnmower coverage path Chosetand Pignon (1998), a 
classical approach that provides dense spatial coverage and 
serves as a strong heuristic in the absence of prior informa
tion. The second is ergodic control with a uniform target 
information spatial distribution (TISD) Dong et al. (2023); 
Mathew and Mezić (2011), representing the standard prac
tice in the ergodic search literature. This baseline uses the 
same ergodic trajectory generation method as genTISD , 
enabling a direct comparison of the effect of using an adap
tive clarity-driven TISD.

Performance is evaluated across five synthetic environ
ments (shown in fig. 6), each defined by a target clarity dis
tribution and a decay field, where the latter corresponds to 
the value of Q across the domain as defined in (22). Results 
for the ergodic methods are averaged over 20 trials with ran
domly sampled initial feasible states.

The results, summarized in Figure 6, show that the pro
posed genTISD consistently achieves a lower mean clarity 
deficit compared to both baseline methods across all envi
ronments. Specifically, the lawnmower coverage strategy 
exhibits relatively poor performance, especially in environ
ments with nonuniform decay, as it does not adapt to spatial 

values across the domain, as defined in (22). Figure 5b pres
ents still frames from the lightweight UAV simulator, where 
four quadrotors explore a stochastic spatiotemporal envi
ronment. The mobile charging rover tracks the geometric 
center of the four rechargeable quadrotors.

Figure 5c illustrates the battery discharge profiles of the 
quadrotors, while Figure 5 (d) shows the distance of each 
quadrotor to the charging station over time. The results 
indicate that the quadrotors maintain the minimum required 
gap between successive visits to the charging station. Col
lision avoidance is implemented using a potential field 
method, which generates artificial repulsive forces to steer 
robots away from each other in real time. To ensure that no 
more than two quadrotors are on charging-related paths at 
the same time, the Tδ parameter is set such that a quadro
tor returning from the charging station has sufficient time 
to rejoin the mission before another begins its return to 
the charger. Finally, Figure 5 (e) shows the inter-quadrotor 
distances, confirming that no collisions occur during the 
mission.

Table 2  Comparison of baseline methods and proposed RmeSch
Method Robot Model 

(Supports Non
linear Dynamics)

Total 
Recharg
ing Visits

Gap 
Violations

Min 
Energy 
Violations

Scalability 
Analysis

Staggered 
Deployment

Mobile 
Charging

Central 
Node 
failure

Baseline 1 SI (No) 8 0 0 Not provided No No No
Baseline 2 Quadrotor (Yes) 8 0 0 Not provided Yes No No
Baseline 3 Quadrotor (Yes) 8 2 0 Not provided No No No
Baseline 4 [ meSch 
with only gware ]

Quadrotor (Yes) 4 0 4 O(N log N) No Yes No

Baseline 5 [ meSch ] Quadrotor (Yes) 8 0 0 O(N log N) No Yes No

Proposed [RmeSch] Quadrotor (Yes) 8 0 0 O(N log N) No Yes Yes
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while visiting the charging station
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8.3   RmeSch performance comparison to baseline 
methods

We compare RmeSch to baseline methods using eight met
rics, as shown in table 2. For each method, four robots are 
used with the same discharge model, ė = −0.667. The total 
recharging visits are the same across all methods, except for 
Baseline 4, which focuses only on the timing of robot visits 
and does not account for the minimum energy requirements.

Compared to Baseline 1 Fouad and Beltrame (2022), 
RmeSch supports nonlinear dynamic models, making it 
more applicable to real-world robotic platforms, as demon
strated with 3D quadrotor dynamics Jackson et al. (2021). 
Unlike Baseline 2 Bentz et al. (2018), meSch effectively 
handles both identical and varying discharge rates and state-
of-charge (SoC) capacities without requiring robots to be 
deployed at different times. Deploying robots at different 
times reduces the number of robots available for the mis
sion at any given moment, limiting overall efficiency. By 
allowing all robots to be deployed simultaneously, RmeSch 
simplifies mission planning and increases adaptability to 
different discharge patterns, as shown in fig.  7 with four 
quadrotors. Compared to Baseline 3 Naveed, Agrawal, et al. 
(2024), RmeSch eliminates simultaneous charging station 
visits. In Baseline 3, four robots returned concurrently on 
two occasions, leading to a violation of (26b). While Base
line 4, which only includes the gware module from meSch 
( RmeSch without fail-safe planner), successfully avoids 
overlapping visits, it fails to enforce minimum energy con
straints, resulting in a violation of (26a). Finally, none of the 
baseline methods support mobile charging stations-a limita
tion in environments where fixed charging locations may be 
infeasible. They also lack safe recovery maneuvers in the 
event of a central node failure. By addressing these gaps, 
RmeSch enhances mission endurance and scalability while 
providing provable safety and feasibility guarantees.

Furthermore, we show in fig. 8 the performance of the 
algorithm under central node failure. In these experiments, 
the failure was simulated by terminating the central node 
responsible for committing trajectories and constructing gap 
flags. The results demonstrate that, even in the absence of 
the central node, the minimum SoC condition and the mini
mum gap constraint remain feasible.

8.3.1  Computational efficiency and scalability

Distributing computation across the robot network improves 
the efficiency of the RmeSch module. The main overhead 
comes from generating candidate trajectories, with solving 
(35) and integrating the system’s nonlinear dynamics taking 
150 ms and 30 ms on average, respectively. We employ the 
communication architecture(s) shown in fig. 2.

variations in target clarity or information decay rates. The 
ergodic control using uniform TISD improves over lawn
mower coverage by distributing effort more evenly; how
ever, it still fails to prioritize regions according to their 
target clarity. In contrast, genTISD dynamically allocates 
exploration effort toward regions with faster clarity decay or 
higher target clarity, resulting in more efficient information 
acquisition and lower overall clarity deficits over time.

It is important to note that in Environments 2 through 
5, the mean clarity deficit does not converge to zero. This 
behavior is expected because the decay field Q is non-zero 
in these environments, causing the target clarity to continu
ously degrade over time. As a result, it is not possible to 
achieve perfect target clarity even under optimal explora
tion. In contrast, Environment 1 has a decay field with Q = 0 
everywhere, allowing the robots to eventually drive the 
mean clarity deficit to zero through persistent exploration.

Fig. 9  RmeSch scalability is demonstrated through two simulation 
case studies: (A) 30 quadrotors performing a persistent mission, and 
(B) 30 quadrotors following irregular trajectories
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mobile charging rover. Each quadrotor runs onboard com
putation on an NVIDIA Orin NX, while the rover uses a 
Raspberry Pi. The communication architecture used in these 
experiments is shown in fig. 2. All experiments were con
ducted in the FlyLab facility at Michigan Robotics-a three-
floor indoor arena equipped with 15 Vicon cameras for 
high-precision state estimation.

In all experiments, only the next TN = 2.0 seconds of 
the nominal trajectory is provided by the high-level planner. 
Candidate trajectories are generated onboard each quadrotor 
and transmitted to the base station computer, which verifies 
gap flags and minimum state-of-charge (SoC) conditions. 
The rover (when mobile charging is used) continuously 
publishes its own state and nominal trajectory to support 

To support real-time applications, each rechargeable 
robot (e.g. Quad 1) generates candidate trajectories on 
board, which are transmitted to the central node (Base) for 
scheduling. The scheduling algorithm has time complexity 
O(N log N), mainly due to the sorting function in line 2 
of algorithm 3. Thus, the method scales with O(N log N), 
where N is the number of rechargeable robots. To demon
strate scalability, we evaluate the method with 30 recharge
able quadrotors as shown in fig.  9. In these simulations, 
quadrotors return with (3 ± 1)% battery SoC remaining.

8.3.2  Hardware demonstration

We validate mEclares through a set of real-world hard
ware experiments involving rechargeable quadrotors and a 
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maneuver is triggered, prompting the quadrotors to return 
safely to the charging station. In our three-quadrotor experi
ments, we observed a latency of 600 ± 150 ms, with TE  set 
to 1.5 s.

All simulation and experimental code is publicly released. 
RmeSch is available as a Julia module that functions as a 
low-level filter for any high-level planner. We also provide 
a Python-ROS2 wrapper for Julia, a Docker container for 
easy deployment, and our in-house-developed Orin-based 
DevQuad platform Agrawal et al. (2023).

9  Limitations and future directions

First, while the current framework assumes that battery dis
charge dynamics are independent of the control input, this 
assumption is made to support planning before low-level 
controls are available. Our approach can be extended to 
input-dependent discharge models by estimating or bound
ing the worst-case control effort required along candidate 
trajectories. Similarly, although we assume instantaneous 
charging in our experiments, this is not a structural limita
tion. The recharge duration Tchar can be specified by the 
user to reflect realistic charging times; as long as the initial 
scheduling problem is feasible with the chosen Tchar, the 
solution remains valid. Moreover, the current method does 
not optimize the back-to-base (b2b) trajectory for informa
tion gain. This results in sub-optimal behavior, especially in 
large-scale environments.

The proposed environment model represents each cell 
as an independent stochastic process with linear dynamics 
and process noise, enabling spatial and temporal variability 
without imposing a global correlation structure. A current 
limitation is the absence of cross-cell correlations; exploit
ing such correlations could accelerate uncertainty reduction 
and improve overall clarity. Existing GP-based approaches 
either assume a global, stationary lengthscale shared across 
the environment Nguyen et al. (2024); Kontoudis and Otte 
(2023); Jakkala and Akella (2024), or introduce non-sta
tionarity only in the spatial dimension Chen et al. (2022). 
Our recent work has combined GP inference, expressed in 
its Kalman filtering form, with the Clarity model to cap
ture both spatial and temporal correlations through the GP 
lengthscales Agrawaland Panagou (2024).

As future work, we aim to extend this approach to envi
ronments where different regions possess distinct spatial and 
temporal lengthscales. This would allow the model to exploit 
localized correlation patterns and adapt sensing strategies to 
region-specific dynamics, enabling targeted measurements 
that yield the greatest clarity improvement. Achieving this 
will require GP models that support locally and direction
ally varying correlation scales, along with planners that can 

trajectory generation. The experiments highlight three key 
aspects of our framework:

	● the ability to generate ergodic trajectories online in real 
time,

	● the ability to generate candidate trajectories onboard 
each quadrotor at 1.0 Hz using only 2.0 s of the avail
able nominal trajectory and validate them at a central 
node, and

	● the modularity of RmeSch , which functions as a low-
level scheduling module that remains effective even 
when the high-level planner is replaced with a non-er
godic coverage strategy.

Experiments are summarized in fig.  10. In the first set of 
experiments (Experiments 1–2), the quadrotors track ergo
dic trajectories that are replanned every 30 s. These trials 
validate that ergodic exploration and energy-aware sched
uling can operate in tandem under real-world conditions. 
The target clarity for this set of experiments corresponds to 
Environment 2 in fig. 6, where the quadrotors are observed 
to spend more time in regions with higher clarity deficit.

In Experiment 3, we demonstrate the use of a mobile 
charging station. We also show that the charging rover’s 
path can be changed to a Lissajous curve, and the frame
work still functions correctly-highlighting the flexibility of 
the mEclares design.

Experiments 4–6 evaluate RmeSch under a non-ergodic 
high-level planner. In these experiments, the quadrotors fol
low Lissajous coverage trajectories. Candidate trajectories 
are generated onboard every second and validated at the 
central node. RmeSch continues to ensure safe and effec
tive scheduling under this design.

Collision avoidance is implemented in all experiments 
using a potential field method, which generates artificial 
repulsive forces in real time to prevent inter-robot collisions.

Figure 10(a) shows the coverage paths followed by the 
quadrotors. Fig. 10(b) and (c) present the battery discharge 
profiles and distances to the charging station, respectively, 
confirming that robots never violate the minimum energy 
requirement (which is zero) and consistently satisfy the 
minimum desired gap requirement between charging 
returns. Finally, Fig. 10(d) confirms that no collisions occur 
during the experiments.

Our implementation also accounts for delays introduced 
by computational overhead and ROS2 message latency. The 
primary sources of delay include candidate trajectory gen
eration and forward propagation (T1), gap flag construction 
and verification (T2), and message latency in ROS2 (T3). 
As long as T1 + T2 + T3 < TE , where TE  is the RmeSch 
decision interval, the mission proceeds as intended. If these 
delays exceed the worst-case allowed duration, a fail-safe 
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flight time, T 1′

F,0, is assumed to return first. Each subsequent 
robot must return with a delay of at least Tδ from the previ
ous one.

Therefore, the last robot (i.e., the N∗-th robot) must com
plete its return no later than

TR + (N∗ − 1) · Tδ + Te,� (A1)

where TR accounts for the time required to return, and TE  
accounts for a one-iteration delay before the return com
mand can be issued.

To guarantee that even the last robot returns safely before 
depleting its energy, this total return time must be less than 
or equal to the smallest available remaining flight time:

TR + (N∗ − 1) · Tδ + TE ≤ T 1′

F,0.� (A2)

Rearranging the inequality:

(N∗ − 1) · Tδ ≤ T 1′

F,0 − TR − TE ,� (A3)

N∗ − 1 ≤
T 1′

F,0 − TR − TE

Tδ
,� (A4)

N∗ ≤ 1 +
T 1′

F,0 − TR − TE

Tδ
.� (A5)

Taking the floor on the right-hand side ensures conserva
tiveness and integer feasibility:

N∗ = 1 +

⌊
T 1′

F,0 − TR − TE

Tδ

⌋
.� (A6)

� □

A.2 Proof of Theorem 1

Proof  We complete this proof considering two scenarios: 
In the first scenario, we prove recursive feasibility without 
central node failure. In the second scenario, we show that 
when the central node fails, the robots can be safely recov
ered while still respecting the constraints (26a) and (26b).

A.2.1 Feasibility guarantee without central node 
failure

The proof, inspired by (Agrawal et al. (2023), Thm. 1), uses 
induction.

efficiently learn and update these structure-adaptive mod
els online. Developing such methods is a challenging but 
important next step for advancing our framework.

Finally, we highlight that our algorithm relies on a cen
tralized node for scheduling decisions. While we do pro
vide a recovery protocol for central node failure to ensure 
safety, we cannot ensure task continuity under such failure. 
Designing a fully decentralized version of the algorithm 
strategy remains an important direction for future research.

10  Conclusion

This paper presented mEclares , a unified framework 
for adaptive ergodic exploration and robust energy-aware 
scheduling in persistent multi-robot missions. We addressed 
two key challenges in long-term autonomous operations: (i) 
planning informative trajectories in stochastic spatiotempo
ral environments, and (ii) coordinating energy-constrained 
robots through a shared mobile charging station. By mod
eling information decay using the clarity metric and inte
grating it into ergodic search, we enabled the construction 
of time-evolving target information distributions that guide 
exploration under uncertainty. To ensure task persistence, 
we introduced RmeSch , an online scheduling algorithm 
that guarantees mutually exclusive access to the charging 
station and provides robustness to communication delays 
and central node failures via fail-safe coordination.

Our approach supports general nonlinear dynamics, han
dles uncertain charging station state, and scales to teams of 
robots. Through extensive simulations and real-world hard
ware experiments, we demonstrated the effectiveness of 
mEclares in maintaining persistent, informative coverage 
while adhering to energy and safety constraints. Theoretical 
guarantees further support the feasibility and robustness of 
our method under well-defined conditions.

Future work will explore extensions to fully decentral
ized scheduling under communication constraints, inte
gration with online learning of environmental dynamics, 
and deployment in larger-scale, real-world missions with 
diverse robotic platforms.

Appendix A Proofs

A.1 Proof of Lemma 1

Proof  To ensure safe and sequential return of all N∗ robots, 
the algorithm requires that each return is separated by at 
least Tδ seconds. The robot with the smallest remaining 
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Since tj+1,R > tk
j,C , the claim holds.

A.2.2 Safe recovery and feasibility guarantee with 
central node failure

Suppose that at time tj , all rechargeable robots generate 
new candidate trajectories and send requests to the central 
node for validation. Each robot then waits for a response 
until tj−1,N , as specified by the fail-safe protocol. If no 
message is received from the central node by this deadline, 
each robot executes its onboard fail-safe maneuver using its 
previously committed trajectory xi,com

j−1  and its stored return 
index reti

j−1.

	● If reti
j−1 = 1, the robot immediately continues follow

ing xi,com
j−1 , ensuring a return by tj + TR.

	● If reti
j−1 > 1, the robot idles for reti

j−1Tδ  seconds and 
then executes a time-shifted version of xi,com

j−1  over the 
interval [tj + reti

j−1Tδ, tj + reti
j−1Tδ + TR].This 

structure ensures two properties: 
1.	 Gap constraint satisfaction: The time-shifting mecha

nism guarantees that no two robots attempt to return 
simultaneously. Since each robot delays its return by 
(reti

j−1 − 1) · Tδ, mutual exclusion at the charging sta
tion is preserved, and the gap condition (26b) holds.

2.	 Minimum energy constraint satisfaction: Since each 
robot had already committed a feasible trajectory at tj−1 
with enough energy to return after the assigned delay, 
the energy constraint (26a) remains satisfied.Thus, even 
in the absence of centralized coordination, the robots 
return safely, respecting both the return gap and mini
mum energy requirements. Hence, recursive feasibility 
also holds under central node failure. � □
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Base Case

At the time t1 and iteration j = 1, since both Gap flag con
dition (38) and the Reserve SoC condition (41) are true, the 
candidate trajectories are committed for all rechargeable 
robots i.e. ∀i ∈ R and ∀ti1

m1
, ti2

m2
∈ T

xi,com
1 (t) ← xi,can

1 (t) ∀t ∈ [t1, ti
1,C)

=⇒
{

T k
F,1 > (TR + TE + kTδ) ∀k ∈ R′

ei(t) > eres
1 ∀t ∈ [t1, ti

1,C)

=⇒
{

|ti1
m1

− ti2
m2

| > Tδ ∀t ∈ [t1, t1,R)
ei(t) > ei

min ∀t ∈ [t1, t1,R)

Since t1,R > t0,R > ti
0,C∀i ∈ R, the claim holds.

Induction step

Suppose the claim is true for some j ∈ Z+. We show that 
the claim is true for j + 1.

Case 1

When candidate trajectories for all rechargeable robots are 
valid, i.e. ∀i ∈ R and and ∀ti1

m1
, ti2

m2
∈ T

xi,com
j+1 (t) ← xi,can

j+1 (t) ∀t ∈ [tj+1, ti
j+1,C)

=⇒
{

T k
F,j+1 > (TR + TE + kTδ) ∀k ∈ R′

ei(t) > eres
j+1 ∀t ∈ [tj+1, ti

j+1,C)

=⇒
{

|ti1
m1

− ti2
m2

| > Tδ ∀t ∈ [tj+1, tj+1,R)
ei(t) > ei

min ∀t ∈ [tj+1, tj+1,R)

Since tj+1,R > tj,R, ∀i ∈ R the claim holds.

Case 2

This case corresponds to the scenario when the 1′th robot in 
R′ returns either due to violation of Gap flag condition or 
the Reserve SoC condition, i.e.,

x1′,com
j+1 (t) ← x1′,com

j (t) ∀t ∈ [tj+1, t1′

j,C).

The candidate trajectories are committed for the remaining 
robots, i.e. ∀k ∈ R′\{1′} and ∀ti1

m1
, ti2

m2
∈ T

xk,com
j+1 ← xk,can

j+1 ∀t ∈ [tj+1, tk
j+1,C)

=⇒
{

T k
F,j+1 > (TR + TE + kTδ)

ek(t) > eres
j+1 ∀t ∈ [tj+1, tk

j+1,C)

=⇒
{

|ti1
m1

− ti2
m2

| > Tδ ∀t ∈ [tj+1, tj+1,R)
ek(t) > ek

min ∀t ∈ [tj+1, tj+1,R)
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