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Abstract

Autonomous robots are increasingly deployed for long-term information-gathering tasks, which pose two key challenges:
planning informative trajectories in environments that evolve across space and time, and ensuring persistent operation
under energy constraints. This paper presents a unified framework, mEclares, that addresses both challenges through
adaptive ergodic search and energy-aware scheduling in multi-robot systems. Our contributions are two-fold: (1) we model
real-world variability using stochastic spatiotemporal environments, where the underlying information evolves continu-
ously over space and time under process noise. To guide exploration, we construct a target information spatial distribution
(TISD) based on clarity, a metric that captures the decay of information in the absence of observations and highlights
regions of high uncertainty; and (2) we introduce Robust-meSch ( RmeSch ), an online scheduling method that enables
persistent operation by coordinating rechargeable robots sharing a single mobile charging station. Unlike prior work, our
approach avoids reliance on preplanned schedules, static or dedicated charging stations, and simplified robot dynamics.
Instead, the scheduler supports general nonlinear models, accounts for uncertainty in the estimated position of the charging
station, and handles central node failures. The proposed framework is validated through real-world hardware experiments,
and feasibility guarantees are provided under specific assumptions. [Code: https://github.com/kalebbennaveed/mEclares-m
ain.git][Experiment Video: https://www.youtube.com/watch?v=dmaZDvxJgF§]

Keywords Informative path planning - Energy-aware planning - Ergodic search - Multi-agent coordination

1 Introduction

Autonomous robots are increasingly deployed in missions
requiring long-term data acquisition, such as environ-
mental monitoring (Sujit, Sousa, & Pereira, 2009; Man-
janna, Li, Smith, Rekleitis, & Dudek, 2018), ocean current
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characterization (Gawarkiewicz et al., 2018; Todd, 2020),
wildfire surveillance (Julian & Kochenderfer, 2019), search-
and-rescue operations (Mayer, Lischke, & Wozniak, 2019;
Waharte & Trigoni, 2010), and active target tracking Zhou
et al. (2019); Tokekar et al. (2013); Atanasov et al. (2014).
While these problems share structural similarities-such as
the need to monitor evolving quantities persistently over
time-this work focuses on environmental monitoring, where
the objective is to sense physical processes that change con-
tinuously across space and time, rather than track a small
number of discrete moving targets.

Planning informative trajectories for such missions
poses two key challenges: (i) designing robot trajectories
that maximize information acquisition in dynamic environ-
ments, and (ii) ensuring task persistence under energy con-
straints by enabling timely recharging.
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1.1 Adaptive informative path planning

The first challenge involves adaptive planning in spatio-
temporal environments-where quantities of interest (e.g.,
temperature, wind speed, gas concentration) evolve across
space and time. Informative path planning (IPP) addresses
this by generating robot paths that maximize information
gain or minimize uncertainty, subject to resource con-
straints. Classical approaches include orienteering-based
formulations (Bottarelli, Bicego, Blum, and Farinelli,
2019), submodular optimization methods (Meliou, Krause,
Guestrin, & Hellerstein, 2007), and Gaussian Process (GP)-
based planners (Chen, Khardon, & Liu, 2022). To improve
adaptability and scalability in high-dimensional settings,
sampling-based methods (Moon et al., 2025) and receding
horizon strategies (Sun et al., 2017) have been proposed.
However, many struggle to adapt in real-time to variations
in the environment.

Ergodic search offers an alternative by generating tra-
jectories that match the time-averaged visitation frequency
with a target information spatial distribution (TISD), instead
of choosing discrete sensing points. Prior work Mathew and
Mezi¢ (2011); Dressel and Kochenderfer (2019); Abra-
ham et al. (2021); Coffin et al. (2022); Dong et al. (2023)
has demonstrated its value in achieving spatially balanced
exploration. However, these methods often assume spatio-
static environmentsMathew and Mezi¢ (2011); Dong et al.
(2023) or rely on spatiotemporal dynamics with no process
uncertainty Dressel and Kochenderfer (2019); Rao et al.
(2023); Garza (2021), limiting applicability in real-world
scenarios where uncertainty arises from model mismatch,
disturbances, or environmental variability.

To address this, we consider stochastic spatiotemporal
environments-environments whose evolution is uncertain in
both space and time. In such cases, information can decay
without continued measurement, motivating online trajec-
tory planning that prioritizes regions with high uncertainty
and rapid information loss. We build on the clarity metric,
proposed by Agrawal and Panagou (2023), a bounded infor-
mation measure between [0, 1] that captures both current
knowledge and its decay due to lack of observation. Using
clarity, we construct a principled TISD that continuously
evolves based on the robot’s measurement history and envi-
ronmental uncertainty, allowing robots to adaptively revisit
regions where uncertainty is increasing.

1.2 Task persistence in multi-agent systems
The second challenge is persistent operation under energy

constraints, particularly when multiple robots must coor-
dinate recharging through a shared charging resource.

@ Springer

Prior work on task persistence spans both single-agent and
multi-agent scenarios involving static and mobile charging
infrastructure.

For static stations, some methods assume a dedicated
charger per robot (Notomista, 2022; Notomista, Pacchierotti,
& Giordano, 2022; Notomista, Ruf, & Egerstedt, 2018; Gao
& Bhattacharya, 2019), while others support shared char-
gers with concurrent access (Asghar, Sundaram, & Smith,
2023; Kenzin, Bychkov, & Maksimkin, 2020). When fewer
chargers than robots are available (Liu & Michael, 2014; Li,
Patankar, Moridian, & Mahmoudian, 2018; Seewald, Lerch,
Chancan, Dollar, & Abraham, 2024), strategies include
modifying mission paths (Liu & Michael, 2014), placing sta-
tions strategically (Li, Patankar, Moridian, & Mahmoudian,
2018), or constraining charging frequency (Seewald, Lerch,
Chancan, Dollar, & Abraham, 2024). Closest to our work
are Bentz et al. (2018); Fouad and Beltrame (2022): the for-
mer staggers robot deployments to ensure exclusivity, while
the latter employs control barrier functions (CBFs) Ames et
al. (2017) to enforce minimum SoC levels under simplified
single-integrator dynamics.

Most mobile charging approaches assume a dedicated
charging robot, with coordination either via precomputed
rendezvous points (Karapetyan et al., 2023; Kingry et al.,
2017) or continuous communication (Lin, Yel, & Bezzo,
2018). Others dynamically intercept robots during their
mission (Mathew, Smith, & Waslander, 2015; Couture-
Beil& Vaughan, 2009; Lin, Yazicioglu, & Aksaray, 2022).
In contrast, we consider a shared mobile charging station
that travels alongside the robot network to extend opera-
tional time. Our method does not rely on preplanned ren-
dezvous or continuous communication and supports general
nonlinear robot dynamics.

1.3 Contributions

This work presents a unified framework for adaptive
ergodic search and energy-aware scheduling in persistent
multi-robot missions. Our key contributions, situated in the
context of existing state-of-the-art methods, are:

e Principled multi-agent TISD construction via clar-
ity for ergodic search: Unlike prior ergodic methods
that assume static (Dong, Berger, & Abraham, 2023)
or spatiotemporal dynamics with no noise (Dressel&
Kochenderfer, 2019; Rao et al., 2023; Garza, 2021),
we construct the target information spatial distribution
(TISD) using the clarity metric (Agrawal& Panagou,
2023), a bounded measure that quantifies information
decay and the maximum attainable information in sto-
chastic spatiotemporal environments. This allows robots
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to adaptively focus sensing effort in regions with high
uncertainty and rapid information loss.

e Robust energy-aware scheduling with fail-safe coor-
dination: Unlike prior work that achieves exclusivity
through staggered deployment (Bentz, Hoang, Bayas-
galan, & Panagou, 2018) or relies on simplified single-
integrator dynamics with fixed SoC thresholds (Fouad
& Beltrame, 2022), we propose Robust-meSch (
RmeSch ), a centralized online scheduling framework
that supports general nonlinear robot dynamics, enforc-
es exclusive access to a shared mobile charging station,
and guarantees safe returns through a decentralized fail-
safe planner that accounts for communication delays
and central node failures. Furthermore, we provide for-
mal feasibility guarantees and derive conditions under
which robots can be safely added to or removed from
the mission without violating energy and return-gap
constraints.

o Hardware-validated multi-agent coordination: We
validate the proposed method on a heterogeneous team
comprising multiple aerial robots and a mobile ground-
based charging station through extensive hardware
experiments.Comparison to our own earlier works:
Compared to our earlier conference papers, this work
introduces several key extensions:

e Compared to Naveed, Agrawal, et al. (2024), we extend
the clarity-based information model to the multi-agent
case.

e Compared to Naveed, Dang, et al. (2024), we introduce
a fail-safe planner that enables safe recovery under cen-
tral node failures and provide a more comprehensive
theoretical analysis, including formal guarantees on fea-
sibility and robustness.

e In addition, this paper presents an expanded experimen-
tal evaluation compared to both prior works, including
real-world demonstrations involving multiple aerial
robots coordinating through a shared mobile charging
station.

2 Preliminaries
2.1 Notation

Let Zo = {0,1,2,...} and Z; = {1,2,3,...}. Let R, R,
R+ be the set of reals, non-negative reals, and positive reals
respectively. Let ™! | denote set of symmetric positive-defi-
nite matrices in R"*". Let N'(u, X) denote a normal distri-
bution with mean p and covariance X € S, . The Q € S7

norm of a vector z € R™ is denoted ||z 5 = /27 Q. The

space of continuous functions f:.4 — B is denoted as

C(A, B).

2.2 System description

Consider a multi-agent system, in which each robotic sys-
tem i € R = {1,---, N}, referred to as a rechargeable
robot, comprises the robot and battery discharge dynamics:

=0

X' = [x] = [1(xu)

e

o (D
_ |[frh )
fele') J7
where N =|R| is the cardinality of the set R,

- . . T 7 . . .
X' = [xlT, el} € Z! C R*M! is the i robotic system

state consisting of the robot state z' € X7 C R™ and its
State-of-Charge (SoC) ¢! € R>q. u’ € Ul C R™ is the con-
trol input, f: Z! x U! — R"*! defines the continuous-
time robotic system dynamics, f¢: X? x U: — R™ define
robot dynamics and f!: R>o — R define worst-case bat-
tery discharge dynamics. We also consider the continuous-
time dynamics of the mobile charging station (referred to as
mobile charging robot):

£ = fe(x,u®) +w(t), w(t) ~N(0,W(1)), (2a)

y¢ = z(z%) +v(t), v(t) ~N(0,V (1)), (2b)

where z¢ € X, C R® is the charging station state,
u® €U, CR® is the charging station control input,
fe: X xU, — R® defines the continuous-time system
dynamics for the mobile charging, w(¢) is the time-vary-
ing process noise with zero mean and known variance
W (t) € R>g, y© € R° is the measurement, z : R® — R€ is
the observation model, and v(?) is the time-varying measure-
ment noise with zero mean, and known covariance V().

2.3 Ergodic search

Ergodic search Mathew and Mezi¢ (2011); Dressel and
Kochenderfer (2019) is a technique to generate trajec-
tories x : [tg,T] — X that cover a rectangular domain
P =10,L1] x ---[0, Ls] C R®, matching a specified target
information spatial distribution (TISD) ¢ : P — R, where
s is the dimensionality of the environment and ¢(p) is the
density at p € P. Moreover, the spatial distribution of the
trajectory x(f) is defined as

@ Springer
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c(xz(t),p) =

T
o | = wtat)ir o

where ¢ : P — Risthe Dirac delta functionand ¥ : X — P
is a mapping such that ¥(z(7)) is the position of the robot
at time 7 € [to, T]. In other words, given a trajectory x(f),
c(x(?), p) represents the fraction of time the robot spends at
a point p € P over the interval [to, T']. Then, the ergodicity
of x(¢#) w.r.t to a TISD ¢ is

O(x(t),d) = |lc— ¢||H*(S+1)/2 “4)

where ||| - (s+1)/2 is the Sobolev space norm defined in
Mathew and Mezi¢ (2011), i.e., @ is a function space norm
measuring the difference between the TISD ¢ and the spatial
distribution of the trajectory c. Given the ergodic metric,
ergodic trajectories for a team of N robots can be com-
puted by solving the following optimization problem over
the space of trajectories x%(t) € C([to, T], X) and control
inputs u’(t) € C([to, T],U) for each robot i € R:

2N (1)} 9)

N T )
+ Zl/to ||’LLZ(T)H2 dr

VieR

min d({zt(t),- -
{zi(t),u’(t)} (=)

_ o O]
st. &' = fi(a'ut),
z(to) = xb

Hxl(t) - I](t)H > dmina Vi 7é.7

where z{, is the initial state of robot 7, and dy;y, is the minimum
safety distance to ensure inter-robot collision avoidance.
The multi-agent ergodic metric ®({z!(t),---, 2™ (t)}; )
quantifies the team’s collective coverage of the target distri-
bution ¢. It is typically computed via a Fourier decomposi-
tion of both the empirical visitation statistics and the target
distribution Dressel and Kochenderfer (2019). This optimi-
zation problem can be solved using gradient-based methods.
In this work, we do not focus on a specific trajectory opti-
mization method, but rather on the principled construction
of the TISD for guiding ergodic exploration in stochastic
spatiotemporal environments.

2.4 Clarity

We use clarity, an information metric introduced in Agrawal
and Panagou (2023) and is based on differential entropy:

@ Springer

Definition 1 The differential entropy h[X] € (—o0, 00) of
a continuous random variable X with support S and density
p:S—Ris

hX) = = [ pla)log pla)da. ©)

As the uncertainty in X decreases, the entropy approaches
h[X] — —oo. Clarity is defined in terms of differential
entropy.

Definition 2 Let X be a n-dimensional continuous ran-
dom variable with differential entropy A[X]. The clarity
q[X] € (0,1) of X is defined as:

exp(2h[X])\ "
q[X] = (1 + W) . 7
In other words, the clarity g[X] of a random variable X lies
in the interval (0, 1), where ¢[X] — O corresponds to the
case where the uncertainty in X is infinite, and ¢[X] — 1
corresponds to the case where X is perfectly known in an
ideal setting.

Example: For a multivariate Gaussian random variable
X ~ N(u,X), where p € R™ is the mean and X € R"*"
is the covariance matrix, the differential entropy and clarity
admit closed-form expressions. The differential entropy is
given by:

hIX] = log (V3 ) = 5 log (2re)"[S),  (®)

and substituting this into the clarity definition:

exp(2h[X])\ "
X]=(14+4—7F—"+ 9
q[X] ( + @re) : ©)
we obtain the simplified form:
[X] = — 10
=1y (19)

This shows that for Gaussian distributions, clarity is
inversely related to the determinant of the covariance
matrix. As |X| — 0, ¢[X] — 1,and as [X| — o0, ¢[X] — 0,
aligning with our interpretation of clarity as a normalized,
bounded measure of certainty.
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3 Problem formulation

In this section, we provide the mathematical formulation of
the problem. We first derive the clarity dynamics for multi-
robot systems, then describe the environment model, and
finally present the overall problem statement.

3.1 Multi-robot clarity dynamics

We consider the estimation of a scalar stochastic variable
m € R using N robots. The system dynamics are:

= w(t),w(t) ~N(0,Q) (1)

where Q € R>o. Let X = [2l,2% ... 2N]T e RVX1
denote the stacked state vector of all robots. Each robot
1 € 'R measures m as follows:

y' = C(z)m + v’ (t) v’ (t) ~ N(0, R(z;)) (12)

wherey’ € Risthe measurement of mbyroboti,C : X — R
is the mapping between robot i state and z* and the sensor
stated, and R € R is the known variance of the measure-
ment noise. Assuming the measurement noise is indepen-
dent across agents, the measurements can be stacked as:

y(X) =C(X)m +v(X)w(t) ~N(0,R(X)) (13)

-+, CaM)T e RV (14)

R(z1) 02 0
R
Ry - | 0 DRy )
0 0 R(z™)

The Kalman filter equations for the scalar estimate ;o and
variance P are:

fr=PC(X)"R(X) ! (y(X) = C(X)p) (162)

P=Q-PCX)"R(X)'C(X)P (16b)

Since clarity is defined as ¢ = 1= (shown in (10)), the

clarity dynamics can be derived as follows:

R
1= TR
_ ﬁ (PPC(X)"R(X) ™ C(X) - Q)

(17

Substituting P = %, we get
¢=(1-¢*CX)TRX)"'C(X) - Q¢*
-0t Y G - ar {19

i€ER

The (18) defines the clarity dynamics for the case when
measurements from multiple robots are involved in estimat-
ing the quantity of interest.

If C(z*) and R(z") are constant for all i € R, then the
clarity dynamics (18) admit a closed-form analytical solu-

tion for the initial condition ¢(0) = go:

2 ) (19)

tqo) = [ £ —
q(t; qo) qoo< +72+7362th

where

Z C(I’z)z
k= =G oo = g0 = oo — q0s72 = (k= 1),
andy3 = (k— 1)go — k.

As t— 00, q(t;q0) = oo <1 monotonically. Thus
(o defines the maximum attainable clarity. Equa-
tion (19) can be inverted to determine the time required to
increase clarity from qg to some ¢;. This time is denoted
AT : [07 1]2 — Rzol

AT(qo,q1) =t s.t. q(t,q0) =q1 for 1 € [g0,9)  (20)

For q1 < qo, we set AT(qo,q1) = 0 while AT (qo,q1) is
undefined for q¢; > ¢oo.

3.2 Environment specification

Consider the coverage space P. We discretize the domain
into a set of N, cells each with size V.! Letm,, : [to,0) — R
be the (time-varying) quantity of interest at each cell
P € Peents = {1, ..., N, }. We model the quantities of inter-
est as independent stochastic processes:
wy(t) ~ N(0,Qp)

1y = wp(t), (21a)

Yp = Cp(X)my + vp(t),  vp(t) ~ N (0, R(X)) (21b)
where y,, € R is the output corresponding to cell p. R(X) is
the measurement noise, and @), € R~ is the process noise
variance at each cell p. Since m,, varies spatially and tempo-
rally under process noise @, foreach cell p € Pcelrs, the envi-

ronment becomes a stochastic spatiotemporal environment.

! Size is length in 1D, area in 2D, and volume in 3D.

@ Springer
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To quantify the uncertainty in the environment, we define
an independent clarity dynamics for each cell p € Peeis.
The clarity dynamics are given as follows:

— Qpd; (22)

G = R
i€R

where x; is the state of the robot i € R, C : X — R is the
mapping between robot state and sensor state, and R € R
is the known variance of the measurement noise. g, — 1
represents the case when the state of the environment (e.g.
smoke concentration) is perfectly known in the cell p,
whereas lower values correspond to higher uncertainty.

3.3 Problem statement

Consider a team of N + 1 robots performing persistent cov-
erage of a stochastic spatiotemporal environment () over a
time horizon [0, c0). Among them, N robots are recharge-
able and require periodic recharging, while one robot serves
as a mobile charging robot and does not require recharging.’
The rechargeable robots model the mobile charging robot
using (2). For this problem formulation, we assume the exis-
tence of a high-level trajectory planner that designs a nomi-
nal trajectory for the mobile charging robot. The objectives
for the rechargeable robots are twofold:

e Generate nominal informative trajectories for recharge-
able robots using clarity-driven ergodic search;

e Ensure mutually exclusive use of the mobile charging
robot, which follows a nominal trajectory.

We formulate an optimization problem that captures these
objectives. The objective function is designed to maxi-
mize clarity across the regions of interest, while constraints
ensure that each robot’s energy level remains non-negative
and that the robots exclusively share the single mobile
charging station.

We now define the clarity-based objective functional,
along with the energy constraints and mutual exclusion con-
straints related to charging.

3.3.1 Clarity-based objective functional

Assume the desired quality of information at each cell
is encoded using a target clarity G, < g, for each cell
D € Peens- The target clarity can be different at each cell,
indicating a different desired quality of information at each
cell, but must be less than g 5, the maximum attainable

2 This could represent, for instance, a ground vehicle with a battery
that lasts several hours. A similar assumption is made in prior works
Mathew et al. (2015); Lin et al. (2022).

@ Springer

clarity of the cell. If qp 2 oo,p for a cell p € Peens, then the
robot would try to spend an infinite amount of time at a cell
P, which is undesirable.

We use clarity as our information metric since it is partic-
ularly effective for stochastic spatiotemporal environments:

Remark 1 The clarity of each cell is upper bounded. The
dynamics of clarity for cell p evolve as given in (22). When
measurements are taken from cell p, the clarity g, ( increases
over time and monotonically approaches a finite upper limit
@oo,p < 1,provided that @, > 0, R(z*) > 0,and C(z*) > 0
for all 7 € R. This reflects the fact that the maximum attain-
able information in each cell is inherently limited. Under
these conditions, the clarity ¢,(¢) remains bounded for all
t>0as:

k
0 < gp(t) < goo L,
ap(t) < Goop ky + 1 (23)
 C2/R
where k,, := Z"ERQPP

Remark 2 The clarity decay rate in cell p, i.e. —quf), is

explicitly dependent on the stochasticity of the environment
Q, in (21). This allows the information decay rate to be
determined from the environment model, and not set heuris-
tically. Furthermore, spatiostatic environments are a special
case: by setting (), = 0, clarity cannot decay.

Inthis persistenttask, the trajectory for eachrobotis replanned
every Ty € Ry seconds, i.e., at times {tg,¢1, -} for
ty = kTy, k € N. At the k-th iteration, the objective is to
minimize the mean clarity deficit qq(ty + Tx), which is
defined as

Np

qalti + Tr) = NiZ ax(0,3, — ap(tx + Twr)  (24)

where gp,(t, + Tr) is the clarity at time ¢, + Tx of cell
p € Peens. However, in order to persistently monitor a
stochastic spatiotemporal environment over a long time
horizon, the robot’s energy constraints must be taken into
consideration.
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3.3.2 Minimum energy and mutually exclusive charging
constraints

Now, assuming the mobile charging robot is following a
nominal trajectory. We define 7 as the set of times i*"* robot
returns to the charging station:

Th={th,th, - th, - },Vi € R,Vm € Zg (25)
where ¢ represents the m*" return time of the i*" recharge-
able robot. Let 7 = U;c= 7 be the union of return times for

all robots. We now define two conditions that must hold for
all times ¢ € [to, 00) to achieve the objectives stated above:

ety >el ., VtEtg,00),ViER (26a)
[ty — 2| >Ts vt 62 €T (26b)

Condition (26a), the minimum SoC condition, defines the
required minimum battery SoC for all rechargeable robots.
Condition (26b), the minimum gap condition, ensures a suf-
ficient time gap between the returns of two robots to avoid
charging conflicts. The term T5 = T¢;, + T}y represents the
charging duration and the buffer time needed for a robot to
resume its mission before the next robot arrives.

Now we define the optimization problem, which must be
solved at times {tg, t1,- - } for ty = kTq:

Problem 1 At each planning time ¢, the problem is posed

as:

iy 0T Ta) (272)
st. xX'(tk) =Xh ViER (27b)
X' =f(xhut), VieR (27¢c)
dp = 9(x,qp); Vp € Peents (27d)
|2 (t) — 27 (t)|| = dunin, Vi # j (27¢)
el(t) > e, VieR (279)
|, — 12| > Ts, Vi 2 €T (27g)

where qq(tx + T ) is the mean clarity deficit at the end of
system trajectory x*(¢;tx, X&), Vt € [tk tr + TH], Vi € R
given by (24), g: X x [0,1] = R>o define the clarity
dynamics (22), and e, is the minimum energy level allowed
for the robot. (27¢) defines the collision avoidance constraint
for all robots ,j € R. The set Tp.g = T N [tk, tr + Ta)

denotes all charging return times within the current planning
horizon, and is used to enforce the minimum gap condition
over this finite window.

It is important to note that this formulation does not
depend on the specific nominal trajectory of the mobile
charging robot. In this work, we provide a method to gen-
erate the nominal trajectory for the mobile charging robot,
which complements the mission (detailed in Sect. 6).

4 Method motivation & overview
4.1 Method motivation

To solve problem (1), we draw inspiration from ergodic
search. As discussed in section 2.3, ergodic search generates
trajectories by solving problem (5). When the target infor-
mation spatial distribution (TISD) ¢ is constructed based
on the current clarity g,(t) and a desired target clarity g,
at each cell, ergodic search naturally minimizes the mean
clarity deficit (24). In this work, we propose a principled
method to construct ¢ using clarity.

However, the optimization in (5) does not account for
energy constraints (26a) or the minimum gap require-
ment (26b). While one could include these constraints
directly into (5), the resulting problem is highly non-con-
vex, making it difficult to ensure convergence or feasibility.
Moreover, the terminal clarity deficit ¢4(T") is not differ-
entiable, making direct optimization of (1) challenging. In
contrast, (5) is differentiable and can be efficiently approxi-
mated using gradient-based trajectory optimization solvers.
Sampling-based methods are also not suitable for solving
problem (1), as constraint satisfaction cannot be ensured.
In particular, the energy and gap constraints must hold over
the entire continuous trajectory, which these methods do not
guarantee.

We therefore propose mEclares , shown in Fig 1, as an
approximate solution to (1).

4.2 Method overview

Our approach decouples (1) into two sub-problems: (A)
each robot computes an ergodic trajectory that maximizes
information collection while ignoring energy constraints;
(B) each robot then generates a candidate trajectory that
attempts to track a portion of the ergodic trajectory while
reaching the charging station before depleting its energy. All
candidate trajectories are sent to the base computer, where
the RmeSch algorithm evaluates them and decides whether
to commit each one. Committed trajectories are guaran-
teed to satisfy the minimum SoC constraint (26a) and the
minimum gap constraint (26b). Each robot always tracks its

@ Springer
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mEclares

Persistent mission Multi-Agent Clarity

Multi-Agent Energy-

Low-level Controller

parameters . Driven Ergodic ' Aware Scheduling —> Control input
e Trajectory Planner for Task Persistence
In case of persistent exploration, N
parameters can be environment
model and desired coverage level mClares RmeSch 1
mEclares
Environment Model Current states . .
Ergodic trajectory 1 Candiate trajectory RmeSch
> Reserve energy 1
mClares l &
. Ergodic trajectory 2 Candiate trajectory 2
Generate Target  Claritv-based > “Reserve energy 2| E
g e B > &
Spatial Distribution TisD | < > 2211;21 uTi:;Zre
genTISE (cp) 10 (€B)
N Ergodic Ergodic lrajeclmg/ N Candiate trajectory N
Current Clarity  Turget Clarity trajectories — Reserve energy N
Map
Current mobile charging = Committed trajectories for

Mobile nominal trajectory

> )
. W all robots
+

Fail-safe maneuver

(0Q) Onboard quadrotor compute

(CB) Centralised base station compute

Fig. 1 meSch : The block diagram shows the complete proposed framework mEclares

System Communication Architecture

RR RR
% A
4 .y

. P

RR

5=

<=

RR Rechargeable robot
BS Base Station

MC Mobile charging robot
<---» Bi-directional communication

Fig. 2 The supported communication architecture of the system

most recent committed trajectory, ensuring persistent explo-
ration while respecting energy constraints and coordinating
exclusive access to the mobile charging station. The nomi-
nal trajectory of the mobile charging robot is generated so
that it travels along the network of rechargeable robots.

e These components operate on different timescales. The
ergodic trajectory is replanned every Ty seconds, while
the committed trajectory is updated every Tr < Ty
seconds.’At each time t, = kT, k € N:

— Recompute the TISD ¢ using genTISD.

3 Tw,Ty € Ry are user-defined parameters.
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— Recompute the ergodic trajectory for the recharge-
able robots and the nominal trajectory of the mobile
charging robot.

e Ateachtimet; = j1g, j € N:

— Each robot generates a candidate trajectory and
sends it to the base computer.

— The central RmeSch algorithm evaluates the can-
didate trajectories and decides whether to commit
each one of them.

— RmeSch also publishes the fail-safe schedule in
case the central node fails before the next decision
iteration j + 1.

Algorithm 1 The genTISD algorithm

1: function genTISD (g, q,,, environment model (21))

2: for p € {1,...,N,} do
C’(zi)2

YieRr 7
k <+ 7(?}3(”” )

3

4 oo +— k/(k+ 1)

5 q + min(q,, goo,p — €)

6: ¢p < AT(q, qp) using (20)

7 end for N

8 bp — ¢p/(p L1 dp), VP EA{L ..., Np}
9 return ¢, Vp € {1,..., N, }

0: end function

While the proposed method employs centralized decision-
making, the computational workload is distributed across
the network to enable real-time operation. Fig. 1 provides
a high-level overview of the system architecture, and Fig. 2
illustrates the supported communication models. Notably,
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instead of requiring a separate base station, the onboard
computer of the mobile charging robot can serve as the cen-
tral computer.

The construction of the TISD, multi-robot ergodic trajec-
tory generation, generation of the mobile charging robot’s
nominal trajectory, and the scheduling component of
RmeSch are all executed on the central computer. At each
planning iteration, the nominal trajectories for all robots-
both rechargeable and charging-are computed centrally and
communicated back to the robots.

Each rechargeable robot independently generates a sin-
gle candidate trajectory onboard, which attempts to track a
portion of the ergodic trajectory before reaching the charg-
ing station. These candidate trajectories are transmitted to
the central computer, where the RmeSch algorithm jointly
evaluates them and selects which trajectories to commit
based on energy feasibility and coordination constraints.
This design enables decentralized trajectory generation at
the robot level while maintaining centralized coordination
for safe and persistent operation.

Table 1 Time and Index Notation at a glance

Symbol Definition

Indices

i Rechargeable robot index

j RmeSch iteration index

k Nominal trajectory planner iteration index
/ Rechargeable robot index in sorted list

Constant shared time horizons
Ts = Ten + Ty Charging + Buffer time

Ts
T Nominal trajectory horizon of the recharge-
N . :
able robot available at time ¢;
T Charging robot nominal trajectory horizon
" available at ¢; / Time taken by the recharge-
able robot to reach the charging station
Ty Time interval between j and j + 1 iteration
Dynamic time horizons for robot i computed at ¢;
T p Worst-case landing time
Té’ i Candidate trajectory (Téy i =Tr — Ti, i)

back-to-base trajectory
(Tg; =T¢,; —TN)

Tfp’ J Remaining battery time of the I*” robot in
the sorted list at time ¢;

i
Tp,;

Time points

t; Start time of iteration j
tj,N ti +Tn
;’,C tj + Té, J
tiR t; + Tr
t m!" time i*” robot returns for recharging

4.3 Method organization

In the next sections, we describe the mEclares framework
in detail. We begin with genTISD , a method for generat-
ing the target information spatial distribution (TISD) used
in multi-agent ergodic search. We then present the details of
the RmeSch algorithm. We also establish notation for tra-
jectories. Let 2 ([tx, tx + Trl; ty, },) represent the ergodic
trajectory for the i*" rechargeable robot at time ¢, starting
from state a:}C and defined over a time horizon of Ty sec-
onds. We denote this as z}*"°
to other trajectories. An overview of the notation is provided
in table 1. Without loss of generality, we present our method
assuming N rechargeable robots modeled as quadrotors and
one mobile charging rover.

. The same notation applies

5 Generate target spatial distribution
(genTISD)

The genTISD algorithm is described in algorithm 1. Let ¢,
denote the target information density evaluated for cell p. At
the k-th iteration (i.e, at time ¢, = kTyr), we set ¢, to be the
time that the robot would need to increase the clarity from
qp(t) to the target g, by observing cell p (Lines 3-6). This
is determined using (20). The small positive constant € > 0
in Line 5 ensures that target clarity is always less than the
maximum attainable clarity, i.e., g, < goo,p. Finally, we nor-
malize ¢, such that the sum of Zpepcells ¢p = 1 (Line 8).

Once ¢ is constructed, trajectory optimization solvers can
i,ergo

be used to generate the ergodic trajectories x;, Vi e R.

Once the genTISD is generated, we use an off-the-shelf
solver Dressel and Kochenderfer (2019) to solve the ergodic
trajectory optimization problem as posed in (2.3).

6 Mobile charging station nominal
trajectory

To support coordination with the team of rechargeable
robots, we generate a nominal trajectory for the mobile
charging station that tracks the geometric center of the
team’s nominal ergodic trajectories. At each decision point
tx, the geometric center of the team’s ergodic trajectories is
defined as:

N
1 .
cent _ 1,ergo
z (t)—N;:la:k (t), Vte€l[trtr+Tu). (28)

@ Springer
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c,nom

At time ¢}, the mobile charging nominal trajectory x ,
defined over the time interval [¢, ¢, i ], is generated by solv-
ing the following optimal control problem:

tk,H
s ' c cen’ 2 c
min / () = 2% ()| + [u @)l dt (29a)
we(t)ue(t) Jy,

st af(ty) = """ (tr) (29b)

(29¢)

where Q € S | and R € S, weights state cost and con-
trol cost respectively. This formulation ensures that the
mobile charging robot stays centrally positioned relative to
the rechargeable robots without requiring explicit commu-
nication or coordination, enabling robust support for persis-
tent operation.

7 Robust multi-agent energy-aware
scheduling for task persistence (RmeSch)

To facilitate readers, we organize the presentation of
RmeSch into three subsections: section 7.1 introduces the
motivation behind RmeSch and outlines its key ideas, sec-
tion 7.2 describes the method in detail, and section 7.3 dis-
cusses theoretical guarantees around RmeSch .

7.1 RmeSch Motivation and key ideas

As a low-level module, RmeSch ensures task persistence.
The solution follows three steps, with the RmeSch module
running every T seconds at discrete time steps t; = 1,
where j € Zy:

Current state z? at time t;
Current state :c? at time t;

-

1 at ti .
Current state z; at time ¢; Time ¢;,5

Growing uncertainty

Estimated state  p at time t; r ‘
-

Current state z§ at time t;
Nominal trajectory [ )
-+ Nominal trajectory over [t;,t;n)

-+ b2b trajectory over [t;n,t}c)
+ Candidate trajectory over [t;, 1)

Rendezvous point " at time ]

................... Charging trajectory over [¢;,¢; )
Error ball representing uncertainity
in charging station state

Fig. 3 This figure illustrates the generation of candidate trajectories at
time ¢;. All the candidate trajectories terminate at the rendezvous point
3P at time ] o
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e Compute the rendezvous point where the rechargeable
robot will return for recharging.

e Determine the reserve energy required at the rendez-
vous to account for uncertainty in the charging station’s
position.

e Construct a trajectory that follows a portion of the ergo-
dic trajectory before reaching the rendezvous point. We
refer to this as the candidate trajectory.

e Commit the candidate trajectory if it satisfies both the
minimum energy condition (26a) and the minimum gap
condition (26b). The result is the committed trajectory.

e Along with the committed trajectory, a fail-safe return
schedule is generated based on the current SoC level to
ensure safe return in case of central node failure.

Before detailing each step, we first explain how RmeSch
evaluates the satisfaction of conditions (26a) and (26b). This
is one of our key contributions, and we explain it by first dis-
cussing its motivation and then describing its mechanism.

7.1.1 RmeSch Motivation

Consider N quadrotors sharing a mobile charging rover, as
shown in Fig. 3. To prevent charging conflicts, we propose a
scheduling method based on two principles.

First, if multiple robots are predicted to arrive simultane-
ously, one is rescheduled to arrive earlier using gap flags
explained below. Second, if robots visit the charging station
at different times due to varying discharge profiles, the algo-
rithm checks that each robot has enough energy to continue
its mission, ensuring that the minimum energy condition is
never violated.

To implement this approach, we introduce two modules:
gware and eware . The gware module enforces the
minimum time gap between consecutive charging sessions
by constructing gap flags and resolving conflicts by select-
ing the robot with the least remaining flight time to return
first-similar to dropping a constraint to restore feasibility.
This allows the remaining robots to maintain the desired
gap defined by (26b). Once the gap flags are satisfied, the
eware module checks whether each robot has enough
energy to continue its mission, ensuring that the minimum
energy condition (26a) is also satisfied.

7.1.2 Key idea: construction of gap flags

We begin by describing the construction of gap flags and
their role in preventing charging conflicts. At each iteration
of RmeSch , rechargeable robots are sorted by their remain-
ing flight time into the ordered set R’ = {1/,..., N'}, where
1’ has the least flight time. For each robot [ € R'\{1'}, a
gap flag is constructed relative to 1’ as:
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G' =T}, > (Tp + T +UTy), (30)

where T% ;18 It" robot remaining flight time at time ¢;, T

is the time to reach the charging station, Tz is the decision
interval, and T} includes the charging duration and the buf-
fer time required to resume the mission.

These flags enforce a minimum gap of {75 between
robot 1’ and robot / in R'. For example, the minimum gap
between the first and third robots is 275. If any gap flag is
not satisfied, the robot with the least remaining flight time,
i.e., 1/, is rescheduled for recharging. The satisfaction of the
gap flag condition guarantees that there will be at least T
between successive charging sessions.

7.2 RmeSch Methodology

In this section, we present RmeSch in detail. After estab-
lishing the construction of gap flags, we demonstrate how
they are iteratively checked within the full solution scheme
to ensure conditions (26a) and (26b) hold for all ¢ € [0, c0).
We also discuss how the proposed method accounts for the
uncertainty in the position of the mobile charging robot.
This solution is developed under a few key assumptions:

Assumption 1 At each iteration of RmeSch , the nominal
trajectories of the rechargeable robots are known for Ty
seconds, and the nominal trajectory of the mobile charging
robot’s for Tr seconds. This can be ensured by selecting
time horizons such as they satisfy T, Tr < TH.

7.2.1 Estimating Rendezvous Point

At the j*" iteration of RmeSch , we estimate the mobile
charging robot’s position at t; + Tg, i.e., 2°(t; r), and
place the rendezvous point d meters above it. The recharge-
able robots will return to this point, as shown in Fig. 3.
Given the current state estimate £¢(¢;) and its covariance
Y¢(t;) from the EKF, we use the EKF predict equations
Gelb et al. (1974) to compute the mobile charging robot
state estimate at ¢; g, i.e. °(¢; ) and X°(¢; g). The ren-
dezvous point z;” € R™ is then computed as follows:

2P [W(:%%tm))] o 1 (31)
n—2 On—S

where ¥ : R¢ — R? is a mapping that returns the 2-D posi-
tion coordinates, d € R+ is added to the z-dim of the state,
and n is the rechargeable robot state dimension (1). The ren-
dezvous point corresponds to the hover reference state a:;p

for the rechargeable robot, positioned d meters above the
predicted position of the mobile charging robot.

7.2.2 Reserve energy for uncertainty-aware landing

Along with the rendezvous point ", we also compute the

remaining energy the robot must have at the rendezvous
point to account for uncertainty in the mobile charging
robot’s position for landing. This corresponds to the energy
cost of going from rendezvous point z;fp to the furthest state

5" within the 95% confidence interval covariance ellipse.

Now, we compute the furthest point on the boundary of
the 95% confidence ellipse as follows:

A CW

l‘j - jc(t]’7R) + Vmazx Xao_gs)\max (32)

where A4, € R is the largest eigenvalue of the covariance
matrix X°(t; r), Vmaz € RC is the eigenvector correspond-
ing to Apqq, and X§70,95 corresponds to the value from the
chi-squared distribution with ¢ degrees of freedom in the
95% confidence interval. To compute the reserve energy, we
formulate the following problem Vi € R:

con b (33a)
s.t. Xi(té) = Xip (33b)
X = f0¢ ) (330)
ot (th) = &5 (33d)
where x;,, = [[#]"]", ef]" is the initial system state com-

prising of z7” € R" and the energy ey € R~o. The reserve

i,1res

energy e, and landing time Ti ; are computed as follows:
e = el(th) —e'(th) VieR (34a)
Ti; =ty —ty VieR (34b)

7.2.3 Construction of Candidate Trajectories

Now, we generate the candidate trajectories for all recharge-
able robots to reach the rendezvous point x;p from the cur-

rent state 2*(¢;) within Té,j =Tg — Ti,j S.
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Algorithm 2 The RmeSch algorithm

Algorithm 3 The gware algorithm

1: function B.meSch(r;’can, x;’f?m, e;’res)

2: if x;’ca”, ;f‘im, e;’res not received for all : € R then

3: return lih'ﬂeSch(x;.’CM7 z;f‘im, j’res)

4: end if ) )

5: GapVio, x;’com,R' + gware(z ™", x2°7™)

6: ret’ « index(i, R') s.t. R'[l] =4 » Index of robot i
in R/

7 if GapVio == 1 then

8: Publish mobcon; = True > publishes message to
mobile charging station to continue the mission

9: return z;’com, I YieR

10: end if ] ) ]

11: zh O™ eware(:zﬁ}’cau7 z;f‘im, ;’res)

12: Publish mobcon; = True

13: return m;’com, ret;- Vi eER

14: end function

,nom

Given nominal trajectories x Vi € R, we construct a

candidate trajectory that track; a portion of the nominal tra-
jectory for Ty s and then reaches the rendezvous point x;fp
within T}'& ;= Té ; — T s. For the i*" rechargeable robot,
the candidate trajectory is constructed by concatenating the
nominal trajectory with a back-to-base (b2b) trajectory. Let
the i rechargeable robot state at time ¢; be } € X and the
system state at ¢; be X € Z]. We construct a b2b trajectory

mé’be defined over interval [t v, té‘,c] by solving:

L [ - ol oo
st. x'(tjn) = ac;-’"om(tj’N) (35b)
@' = fr(a’,u’) (35¢)
2! (t;.0) = 2} (35d)

where Q € S, and R € S, weights state cost and con-
trol cost respectively.

i,b2b

Once b2b trajectory w] is generated, we numerically

construct the system candidate trajectory

;’Can(tL te [tmt;,c)

] 36
Lelt, i) (36)

S
o
IS
3
I
—_—
DB
o
Q
3
P
=
S~—

over a time interval [¢;, t;,c) by solving the initial value
problem for each rechargeable robot system, i.e.

@ Springer

i,can i,com
N xX

1: function gvare(z; i )

2 Sort x;’ca" based on T4

3 forle R"\{1'} ={2/,...,N' — 1} do
4 G' « (TL —Tr — Tg) > I(Ts)

5: if G == 0 and l.charging # 1 then
6.

7

8

1/,com ll,con)

J j—1

mé’com — xéfcan for alll € R’
: return True, m;’com, R

9: end if

10: end for )

11: return False, =", R

12: end function

Algorithm 4 The eware algorithm

1: function eware(ar:;’mn7 x;‘fqm, ;’res)

2 for i € {1,...,N} do

3 if e'(t) > ei™° Vt € [t;,t) o] then

4- $;,com P x;,can

5: else ]

6. ;,CO!H H x;,f?m

7 end if

8 end for

9: end function
X' = FO (1), (37a)
X' (t5) = Xj (37b)

i i _i,nom
ui(t) _ W:?(XZ, xiijb (t))7 te [tj7tj’]\_7) (37¢)
7T71"(X7xj’ (t))7 te [tj7N7 ;’,C)

where 7 : Z1 x X! — U is a control policy to track the
portion of the nominal trajectory and the b2b trajectory. Fig-
ure 3 shows the candidate trajectory generation process with
3 rechargeable robots and 1 mobile charging robot.

7.2.4 Robust Energy-aware Scheduling

Given the candidate trajectory and the reserve energy for
each rechargeable robot ¢ € R, we check if the minimum
SoC condition (26a) and the minimum gap condition (26b)
are satisfied throughout the candidate trajectory. The overall
algorithm described in algorithm 2 consists of the two sub-
routines: gware (gap-aware) and eware (energy-aware).

7.2.5 Gap-aware (gware)

gware described in algorithm 3 checks if the recharge-
able robots would continue to have the gap of 75 seconds
between their expected returns if the candidate trajectories
were committed.
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(Lines 2-4) Here the gap flags are constructed for each
I robot that is not currently charging or returning, relative
to the first robot in the sorted list (the 1 robot)

G'=Th,; > (T + Tg + UT5) (38)

Satisfaction of the gap flag condition at the ;" iteration
implies that rechargeable robots are estimated to have at
least T of the gap between their expected returns over the

time interval [t;,¢; ), i.e. VtiL ,ti2 € T:
Tk, > (Tr + Te + IT5) (39)
= |t —t2 | >Ts Vtelt,tjr) (40)

(Lines 5-7) If any gap flags are false, the committed trajec-
tory of the first rechargeable robot in the sorted list remains
unchanged, and it returns to the charging station. Mean-
while, the candidate trajectories are committed for the sub-
sequent rechargeable robots in the sorted list.

7.2.6 Energy-aware (eware)

If no gap flag violations occur, indicating that all recharge-
able robots have sufficient gaps between their expected
return for recharging, we proceed to check if each robot
has adequate energy to continue the mission using eware
described in algorithm 4.

(Lines 3-6) We assess whether each rechargeable robot
can reach the charging station without depleting its energy

Without the central node failure

Message received at time (A) within

below the reserve level while following the candidate tra-
jectory. We refer to this condition as the Reserve SoC
Condition:

el(t) > eVt € [t), 1 o] (41)

If successful, the candidate trajectory replaces the current
committed one. For the returning robot, a landing controller
is assumed to exist:

Assumption 2 When the returning rechargeable robot
reaches rendezvous point z7,, at t;yc, there exists a land-

ing controller j : [t} o,t; r) X X} — U that guides the
rechargeable robot to the mobile charging robot.

Algorithm 5 Fail-safe onboard rechargeable robot i

—_

Try (x;.‘com, ret;) < RmeSch(:t;.’Ca"7 e e;’res) until

i—1
tj—1,N

2: if successful then

3: Execute z} ™

4: else )

5: if ret;-_1 == 1 then

6: Execute m;fqm (t) over [tj, t; + Tr]

7 else )

8: Idle (hover) for time ret}_;(Ts)

9: E?cecute (¢ - ret;;l(T(;)) over time horizon
[t +ret;_1(T5), t; +reti_;(Ts) + Tr]

10 end if

11: end if

With the central node failure

No message received within the acceptable intervel
to commit the new candidate

Trajectory committed

[

I / acceptable time interval [t ¢, 1]

Attime ¢

&

No scheduling leads to
simultaneous arrivals at
the charger, causing collisions.

Attime t;1p

P

«—

—

==

HEG

tj1 ti A LN BN Time(seq) ti-LR tir tja B BN N Timelsed L1 tir
RmeSch RmeSch (without fail-safe) RmeSch (with
Attime ¢;_; - Attime 2y - Attime ¢,
(a) Uncommitted trajectories trigger
- - the quadrotors' fail-safe maneuver.

4,

Attime t;_1p+Ts
(c) The quadrotor with second least
flight time hovers briefly, then resumes
delayed tracking of its last trajectory.

=¥ Collision! N

4

Trajectory not committed

Quadrotors trigger fail-safe
and arrive sequentially
at the charger.

fail-safe)

Attime t;_1n
(b) The quadrotor with least remaining
flight time follows its last trajectory
and is recovered upon returning.

~— -

A

Attime tj1,r+ 2T5
(d) The quadrotor with the highest
remaining flight time hovers, then resumes
delayed tracking of its last trajectory.

A

Bt

Fig.4 The figure shows the behavior of the algorithm when the central node fails
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Algorithm 6 Fail-safe onboard mobile charging robot

: At time t; Initialize mobcontinue; = False
Try Message mobcontinue; received until t;_1 N
if successful then
if mobcontinue; == True then
Continue executing the nominal trajectory
end if
else
Execute stopping at time t; + Tr
: end if

CPIIaRPE

7.2.7 Fail-safe maneuver planning

At each iteration of RmeSch , we also plan a fail-safe
maneuver to handle scenarios involving central node failure
or communication delays. Specifically, RmeSch transmits
to each rechargeable robot a message indicating whether
to commit the new trajectory. Along with this, each robot
is assigned a return position in the sorted list R’, which is
generated based on remaining flight time. This position pro-
vides each robot with its rank in the return sequence in case
no message is received due to failure. The logic executed
onboard each rechargeable robot i is detailed in algorithm 5
and the fail-safe logic for the mobile charging robot is
detailed in algorithm 6. Figure 4 illustrates the behavior of
the fail-safe maneuver.

1) Fail-safe maneuver onboard rechargeable robot
(Lines 1-3) Once the candidate trajectories are generated
onboard, each rechargeable robot transmits its candidate
trajectory to the base computer, which executes RmeSch
to determine whether the trajectory should be committed.
Starting at time t;, each robot awaits a response from the
base until ¢;_; . Nominally, the robot should receive this
message by t;7+r < tj—1,~n; however, due to potential
communication delays, a response may arrive later. If a
valid response is received by t; n, the robot executes the
new committed trajectory.

(Lines 4-9) If no message is received from the central

node by time Z; n, robot i executes a fallback maneuver
1,com
i—1

return index ret’_; from the previous decision epoch. If

using its previously committed trajectory x and its
reté_1 = 1, the robot continues executing its last commit-
ted trajectory:

P () = 2 0)

: tet;, t; + Tg] (42)

If ret} , > 1, the robot remains idle (e.g., hovers) for
reté_l(T(s) seconds, and then begins executing a time-
shifted version of its previous trajectory:

2N (1) = 2t = vty Ty),

i i @)
t e [tj + I‘etjfng, t; + retjfng + TR]
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This fallback guarantees mutually exclusive access to the
charging station and ensures energy-feasible operation even
in the absence of centralized coordination.

2) Fail-safe maneuver onboard mobile charging robot

To detect central node failures, the mobile charging robot
monitors the mobcontinue; message. If this message is
received by t;_1 Ty, the robot continues executing its nomi-
nal trajectory. Otherwise, if the message is not received by
the deadline, it halts the mission at time ¢; g.

7.3 RmeSch Theoretical Guarantees

This section provides the theoretical conditions under which
RmeSch guarantees feasibility, robustness, and adaptabil-
ity. We begin by deriving an upper bound on the number of
robots that can be supported at mission start based on the
minimum remaining flight time. We then present a general
feasibility theorem that guarantees all robots return safely
with the required energy and time separation under both
nominal conditions and central node failure. Finally, we dis-
cuss robustness by addressing two key scenarios: recharge-
able robot failure and the addition of new robots during the
mission, and provide conditions under which feasibility is
preserved in both cases.

7.3.1 Upper bound on number of robots

Lemma1 Atiteration j = 0, given the sorted list of remain-
ing flight times {T}:O, TI%:O, ...} where T}:O is the mini-
mum remaining flight time, the maximum number of robots
that can be safely supported by the mission while satisfying

all gap flags is

(44)

TY —Tr—T
N*:1+{F’O r EJ

Ts

where T, is the time a rechargeable robot takes to reach the
charging station, Tz is the iteration interval, and T} is the
minimum required gap between two consecutive returns.

Proof We prove that for any number of rechargeable robots,
the time-shifted scheduling mechanism guarantees that
each robot can be safely assigned a return slot to the mobile
charger before running out of energy, provided a minimum
recharge time and gap between returns are maintained. The
result holds under worst-case battery discharge and travel



Autonomous Robots (2025) 49:27

Page 150f 24 27

durations. Please see Appendix A Proofs section A.1 for the
detailed proof. |

7.3.2 Feasibility guarantees

Theorem 1 Given |R| < N* derived in Lemma 1, suppose
that at ;7 = 0, the Gap flag condition (38) and the Reserve
SoC condition (41) are satisfied. Then, the minimum energy
constraint (26a) and the return gap condition (26b) hold for
allt € [to, t{, ). For all subsequent iterations j > 1, if solu-

tions for (33) and (35) exist, and the committed trajectories
a7 = 2 ([ty, th o) t,2%) are computed for all i € R
using algorithm 2, algorithm 5 and algorithm 6, then the con-
ditions (26a) and (26b) are satisfied for all t € [t;,t,_1 r)

and forall j € Z,..

Proof We show that as long as the central node remains
functional and the recharge gap constraint is respected,
all robots will receive recharge assignments in time, even
under uncertainty. The proof uses induction to confirm that
feasible scheduling holds for all robots.

We demonstrate that, in the event of a central node fail-
ure, robots can safely fall back to previously committed
return trajectories, ensuring no robot depletes its battery. We
also show that the fallbacks collectively satisfy recharge gap
and energy feasibility constraints.

Please see Appendix A Proofs section A2 for detailed
proof. O

7.3.3 Robustness to rechargeable robot failures and
additions

Remark 3 Given Lemma 1, Lemma 1 also applies in the
case when a subset of robots in R fail during the mission

I 0.5

(a) Environment

Target Clarity

S

ﬂ»f

Decay Field

75 Y

(b) Robots Trjaectoires
through Time

00 (c) Battery Discharge Profile

l 0.050

Battery SoC (%)

0.000

Distance (m)

execution. If such failures are detected and the correspond-
ing robots are excluded from future gap flag evaluations,
then the minimum energy condition (26a) and the minimum
return gap condition (26b) continue to hold for the remain-
ing robots.

Remark 4 Following from lemma 1, at any decision itera-
tion j, a new robot can be safely added to the mission if the
minimum remaining flight time satisfies

T]%":j > TR + TE + (Ncurr) . T57 (45)

where T}, ; 1s the minimum remaining flight time at time ¢,

and Ny, is the number of robots currently in the mission.
This condition ensures that the updated team remains within
the admissible bound derived in lemma 1 and all robots sat-
isfy the return gap (26b) and energy (26a) constraints.

8 Results & Discussion

In this section, we evaluate mEclares through case stud-
ies, baseline comparisons, and hardware experiments. We
use quadrotors with 3D nonlinear dynamics from (Jackson
et al. (2021), Eq. (10)) as rechargeable robots and rovers
with unicycle models as mobile charging robots. We assume
instantaneous recharging (7., = 0.0 s) and a buffer time of
Tyy = 15.0 s, with Ty = 2.0 s and Tr = 18.0 s, consistent
across all experiments.

To generate b2b trajectories, we solve (35) using MPC
with the reduced linear quadrotor dynamics from Jackson et
al. (2021). We use an LQR controller for (33) and an LQG
controller for landing. Trajectories are generated at 1.0 Hz
and tracked at 50.0 Hz with zero-order hold, using the RK4
integration.

(d) Distance to charging station

(e) Distance between Quadrotors

Distance (m)

00 300 300
Time (sec)

s0 100
Time (sec)

Time (sec)

Fig. 5 Demonstration of mEclares through a case study: the rechargeable quadrotors track ergodic trajectories that are replanned every 30 s,
while the mobile charging rover follows the geometric center of the nominal ergodic trajectories of all rechargeable robots
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Fig. 6 Comparison of mean clarity deficit over time across five synthetic environments
8.1 Multi-Agent Energy-Aware Persistent Ergodic The nominal trajectories are collision-free, ergodic paths

Search

with a horizon of T = 30.0 s. All quadrotors follow dis-
charge dynamics given by é = —0.667. Figure 5 (a) shows

We evaluate RmeSch by simulating a scenario in which  the target clarity distribution and the decay field of the test
four quadrotors and one rover explore a 10 x 10 m domain.  environment, where the decay field corresponds to the O
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Table 2 Comparison of baseline methods and proposed RmeSch

Method Robot Model Total Gap Min Scalability Staggered  Mobile Central
(Supports Non-  Recharg- Violations Energy Analysis Deployment Charging Node
linear Dynamics) ing Visits Violations failure

Baseline 1 SI (No) 8 0 0 Not provided No No No

Baseline 2 Quadrotor (Yes) 8 0 0 Not provided Yes No No

Baseline 3 Quadrotor (Yes) 8 2 0 Not provided No No No

Bgseline 4 [ meSch Quadrotor (Yes) 4 0 4 O(Nlog N) No Yes No

with only gware |

Baseline 5 [ meSch ] Quadrotor (Yes) 8 0 0 O(Nlog N) No Yes No

Proposed [RmeSch)] Quadrotor (Yes) 8 O(N log N) No Yes Yes

(A) Identical SoC capacity with
identical discharge rates

(B) Identical SoC capacity with
different discharge rates

%]

State of Charge (SoC) [

100 3 200 500 %o o0 200
Time [s] Time [s]

(C) Different SoC capacity with
identical discharge rates

o ) oo w0
Time [s] Time [s]

(D) Different SoC capacity with
different discharge rates

State of Charge (SoC) [%]

300

Fig. 7 These plots show results for the scenarios when four quadrotors
have different SoC capacities and different discharge rates. The plots
validate that quadrotors always maintain the minimum of (7s) gap
while visiting the charging station

values across the domain, as defined in (22). Figure 5b pres-
ents still frames from the lightweight UAV simulator, where
four quadrotors explore a stochastic spatiotemporal envi-
ronment. The mobile charging rover tracks the geometric
center of the four rechargeable quadrotors.

Figure Sc illustrates the battery discharge profiles of the
quadrotors, while Figure 5 (d) shows the distance of each
quadrotor to the charging station over time. The results
indicate that the quadrotors maintain the minimum required
gap between successive visits to the charging station. Col-
lision avoidance is implemented using a potential field
method, which generates artificial repulsive forces to steer
robots away from each other in real time. To ensure that no
more than two quadrotors are on charging-related paths at
the same time, the Ts parameter is set such that a quadro-
tor returning from the charging station has sufficient time
to rejoin the mission before another begins its return to
the charger. Finally, Figure 5 (¢) shows the inter-quadrotor
distances, confirming that no collisions occur during the
mission.

The parameter T controls how often the central-
ized planner recomputes ergodic trajectories based on the
evolving clarity map. It should be chosen to balance plan-
ning responsiveness and computational cost: smaller val-
ues allow quicker adaptation to information changes but
increase computational load, while larger values reduce
overhead but slow responsiveness. In contrast, T deter-
mines how frequently each robot proposes a new candidate
trajectory for evaluation by the scheduler. It must satisfy
Tr < Tn < Ty to ensure that a new trajectory can be com-
mitted before the nominal segment of the last committed
trajectory is exhausted. This ensures a safe fallback to a
return trajectory if no new plan is accepted.

8.2 Multi-agent Clarity-driven ergodic planner
performance comparison to baseline methods

We compare the performance of the proposed method gen-
TISD against two widely used baseline strategies. The first
is a lawnmower coverage path Chosetand Pignon (1998), a
classical approach that provides dense spatial coverage and
serves as a strong heuristic in the absence of prior informa-
tion. The second is ergodic control with a uniform target
information spatial distribution (TISD) Dong et al. (2023);
Mathew and Mezi¢ (2011), representing the standard prac-
tice in the ergodic search literature. This baseline uses the
same ergodic trajectory generation method as genTISD ,
enabling a direct comparison of the effect of using an adap-
tive clarity-driven TISD.

Performance is evaluated across five synthetic environ-
ments (shown in fig. 6), each defined by a target clarity dis-
tribution and a decay field, where the latter corresponds to
the value of Q across the domain as defined in (22). Results
for the ergodic methods are averaged over 20 trials with ran-
domly sampled initial feasible states.

The results, summarized in Figure 6, show that the pro-
posed genTISD consistently achieves a lower mean clarity
deficit compared to both baseline methods across all envi-
ronments. Specifically, the lawnmower coverage strategy
exhibits relatively poor performance, especially in environ-
ments with nonuniform decay, as it does not adapt to spatial
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(a) Central node fails at 100 s (b) Central node fails at 75 s
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Battery SoC (%)

Battery Discharge Profile
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Distance (m)
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Fig. 8 The plots shows the algorithm performance for two different
cases when the central node fails

Persistent Formation Irregular Trajectories

Fig. 9 RmeSch scalability is demonstrated through two simulation
case studies: (A) 30 quadrotors performing a persistent mission, and
(B) 30 quadrotors following irregular trajectories

variations in target clarity or information decay rates. The
ergodic control using uniform TISD improves over lawn-
mower coverage by distributing effort more evenly; how-
ever, it still fails to prioritize regions according to their
target clarity. In contrast, genTISD dynamically allocates
exploration effort toward regions with faster clarity decay or
higher target clarity, resulting in more efficient information
acquisition and lower overall clarity deficits over time.

It is important to note that in Environments 2 through
5, the mean clarity deficit does not converge to zero. This
behavior is expected because the decay field O is non-zero
in these environments, causing the target clarity to continu-
ously degrade over time. As a result, it is not possible to
achieve perfect target clarity even under optimal explora-
tion. In contrast, Environment 1 has a decay field with @ = 0
everywhere, allowing the robots to eventually drive the
mean clarity deficit to zero through persistent exploration.

@ Springer

8.3 RmeSch performance comparison to baseline
methods

We compare RmeSch to baseline methods using eight met-
rics, as shown in table 2. For each method, four robots are
used with the same discharge model, é = —0.667. The total
recharging visits are the same across all methods, except for
Baseline 4, which focuses only on the timing of robot visits
and does not account for the minimum energy requirements.

Compared to Baseline 1 Fouad and Beltrame (2022),
RmeSch supports nonlinear dynamic models, making it
more applicable to real-world robotic platforms, as demon-
strated with 3D quadrotor dynamics Jackson et al. (2021).
Unlike Baseline 2 Bentz et al. (2018), meSch effectively
handles both identical and varying discharge rates and state-
of-charge (SoC) capacities without requiring robots to be
deployed at different times. Deploying robots at different
times reduces the number of robots available for the mis-
sion at any given moment, limiting overall efficiency. By
allowing all robots to be deployed simultaneously, RmeSch
simplifies mission planning and increases adaptability to
different discharge patterns, as shown in fig. 7 with four
quadrotors. Compared to Baseline 3 Naveed, Agrawal, et al.
(2024), RmeSch eliminates simultaneous charging station
visits. In Baseline 3, four robots returned concurrently on
two occasions, leading to a violation of (26b). While Base-
line 4, which only includes the gware module from meSch
( RmeSch without fail-safe planner), successfully avoids
overlapping visits, it fails to enforce minimum energy con-
straints, resulting in a violation of (26a). Finally, none of the
baseline methods support mobile charging stations-a limita-
tion in environments where fixed charging locations may be
infeasible. They also lack safe recovery maneuvers in the
event of a central node failure. By addressing these gaps,
RmeSch enhances mission endurance and scalability while
providing provable safety and feasibility guarantees.

Furthermore, we show in fig. 8 the performance of the
algorithm under central node failure. In these experiments,
the failure was simulated by terminating the central node
responsible for committing trajectories and constructing gap
flags. The results demonstrate that, even in the absence of
the central node, the minimum SoC condition and the mini-
mum gap constraint remain feasible.

8.3.1 Computational efficiency and scalability

Distributing computation across the robot network improves
the efficiency of the RmeSch module. The main overhead
comes from generating candidate trajectories, with solving
(35) and integrating the system’s nonlinear dynamics taking
150 ms and 30 ms on average, respectively. We employ the
communication architecture(s) shown in fig. 2.
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Fig. 10 Demonstration of mEclares and RmeSch on hardware

To support real-time applications, each rechargeable
robot (e.g. Quad 1) generates candidate trajectories on
board, which are transmitted to the central node (Base) for
scheduling. The scheduling algorithm has time complexity
O(N log N), mainly due to the sorting function in line 2
of algorithm 3. Thus, the method scales with O(NN log N),
where N is the number of rechargeable robots. To demon-
strate scalability, we evaluate the method with 30 recharge-
able quadrotors as shown in fig. 9. In these simulations,
quadrotors return with (3 & 1)% battery SoC remaining.

8.3.2 Hardware demonstration

We validate mEclares through a set of real-world hard-
ware experiments involving rechargeable quadrotors and a

Time (sec)

" Time (sec) " Time (seq)

mobile charging rover. Each quadrotor runs onboard com-
putation on an NVIDIA Orin NX, while the rover uses a
Raspberry Pi. The communication architecture used in these
experiments is shown in fig. 2. All experiments were con-
ducted in the FlyLab facility at Michigan Robotics-a three-
floor indoor arena equipped with 15 Vicon cameras for
high-precision state estimation.

In all experiments, only the next 7Ty = 2.0 seconds of
the nominal trajectory is provided by the high-level planner.
Candidate trajectories are generated onboard each quadrotor
and transmitted to the base station computer, which verifies
gap flags and minimum state-of-charge (SoC) conditions.
The rover (when mobile charging is used) continuously
publishes its own state and nominal trajectory to support
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trajectory generation. The experiments highlight three key
aspects of our framework:

e the ability to generate ergodic trajectories online in real
time,

e the ability to generate candidate trajectories onboard
each quadrotor at 1.0 Hz using only 2.0 s of the avail-
able nominal trajectory and validate them at a central
node, and

e the modularity of RmeSch , which functions as a low-
level scheduling module that remains effective even
when the high-level planner is replaced with a non-er-
godic coverage strategy.

Experiments are summarized in fig. 10. In the first set of
experiments (Experiments 1-2), the quadrotors track ergo-
dic trajectories that are replanned every 30 s. These trials
validate that ergodic exploration and energy-aware sched-
uling can operate in tandem under real-world conditions.
The target clarity for this set of experiments corresponds to
Environment 2 in fig. 6, where the quadrotors are observed
to spend more time in regions with higher clarity deficit.

In Experiment 3, we demonstrate the use of a mobile
charging station. We also show that the charging rover’s
path can be changed to a Lissajous curve, and the frame-
work still functions correctly-highlighting the flexibility of
the mEclares design.

Experiments 4—6 evaluate RmeSch under a non-ergodic
high-level planner. In these experiments, the quadrotors fol-
low Lissajous coverage trajectories. Candidate trajectories
are generated onboard every second and validated at the
central node. RmeSch continues to ensure safe and effec-
tive scheduling under this design.

Collision avoidance is implemented in all experiments
using a potential field method, which generates artificial
repulsive forces in real time to prevent inter-robot collisions.

Figure 10(a) shows the coverage paths followed by the
quadrotors. Fig. 10(b) and (c) present the battery discharge
profiles and distances to the charging station, respectively,
confirming that robots never violate the minimum energy
requirement (which is zero) and consistently satisfy the
minimum desired gap requirement between charging
returns. Finally, Fig. 10(d) confirms that no collisions occur
during the experiments.

Our implementation also accounts for delays introduced
by computational overhead and ROS2 message latency. The
primary sources of delay include candidate trajectory gen-
eration and forward propagation (77), gap flag construction
and verification (75), and message latency in ROS2 (73).
As long as 71 + 15 + T5 < Tg, where Tk is the RmeSch
decision interval, the mission proceeds as intended. If these
delays exceed the worst-case allowed duration, a fail-safe
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maneuver is triggered, prompting the quadrotors to return
safely to the charging station. In our three-quadrotor experi-
ments, we observed a latency of 600 &= 150 ms, with 75 set
to1.5s.

All simulation and experimental code is publicly released.
RmeSch is available as a Julia module that functions as a
low-level filter for any high-level planner. We also provide
a Python-ROS2 wrapper for Julia, a Docker container for
easy deployment, and our in-house-developed Orin-based
DevQuad platform Agrawal et al. (2023).

9 Limitations and future directions

First, while the current framework assumes that battery dis-
charge dynamics are independent of the control input, this
assumption is made to support planning before low-level
controls are available. Our approach can be extended to
input-dependent discharge models by estimating or bound-
ing the worst-case control effort required along candidate
trajectories. Similarly, although we assume instantaneous
charging in our experiments, this is not a structural limita-
tion. The recharge duration T, can be specified by the
user to reflect realistic charging times; as long as the initial
scheduling problem is feasible with the chosen Tcy,,, the
solution remains valid. Moreover, the current method does
not optimize the back-to-base (b2b) trajectory for informa-
tion gain. This results in sub-optimal behavior, especially in
large-scale environments.

The proposed environment model represents each cell
as an independent stochastic process with linear dynamics
and process noise, enabling spatial and temporal variability
without imposing a global correlation structure. A current
limitation is the absence of cross-cell correlations; exploit-
ing such correlations could accelerate uncertainty reduction
and improve overall clarity. Existing GP-based approaches
either assume a global, stationary lengthscale shared across
the environment Nguyen et al. (2024); Kontoudis and Otte
(2023); Jakkala and Akella (2024), or introduce non-sta-
tionarity only in the spatial dimension Chen et al. (2022).
Our recent work has combined GP inference, expressed in
its Kalman filtering form, with the Clarity model to cap-
ture both spatial and temporal correlations through the GP
lengthscales Agrawaland Panagou (2024).

As future work, we aim to extend this approach to envi-
ronments where different regions possess distinct spatial and
temporal lengthscales. This would allow the model to exploit
localized correlation patterns and adapt sensing strategies to
region-specific dynamics, enabling targeted measurements
that yield the greatest clarity improvement. Achieving this
will require GP models that support locally and direction-
ally varying correlation scales, along with planners that can
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efficiently learn and update these structure-adaptive mod-
els online. Developing such methods is a challenging but
important next step for advancing our framework.

Finally, we highlight that our algorithm relies on a cen-
tralized node for scheduling decisions. While we do pro-
vide a recovery protocol for central node failure to ensure
safety, we cannot ensure task continuity under such failure.
Designing a fully decentralized version of the algorithm
strategy remains an important direction for future research.

10 Conclusion

This paper presented mEclares , a unified framework
for adaptive ergodic exploration and robust energy-aware
scheduling in persistent multi-robot missions. We addressed
two key challenges in long-term autonomous operations: (i)
planning informative trajectories in stochastic spatiotempo-
ral environments, and (ii) coordinating energy-constrained
robots through a shared mobile charging station. By mod-
eling information decay using the clarity metric and inte-
grating it into ergodic search, we enabled the construction
of time-evolving target information distributions that guide
exploration under uncertainty. To ensure task persistence,
we introduced RmeSch , an online scheduling algorithm
that guarantees mutually exclusive access to the charging
station and provides robustness to communication delays
and central node failures via fail-safe coordination.

Our approach supports general nonlinear dynamics, han-
dles uncertain charging station state, and scales to teams of
robots. Through extensive simulations and real-world hard-
ware experiments, we demonstrated the effectiveness of
mEclares in maintaining persistent, informative coverage
while adhering to energy and safety constraints. Theoretical
guarantees further support the feasibility and robustness of
our method under well-defined conditions.

Future work will explore extensions to fully decentral-
ized scheduling under communication constraints, inte-
gration with online learning of environmental dynamics,
and deployment in larger-scale, real-world missions with
diverse robotic platforms.

Appendix A Proofs

A.1 Proof of Lemma 1

Proof To ensure safe and sequential return of all N* robots,
the algorithm requires that each return is separated by at
least T5 seconds. The robot with the smallest remaining

flight time, T}:O, is assumed to return first. Each subsequent

robot must return with a delay of at least 7T from the previ-
ous one.

Therefore, the last robot (i.e., the N *-th robot) must com-
plete its return no later than
TR+(N*71)’T5+T63 (Al)
where Tr accounts for the time required to return, and Ty
accounts for a one-iteration delay before the return com-
mand can be issued.

To guarantee that even the last robot returns safely before

depleting its energy, this total return time must be less than
or equal to the smallest available remaining flight time:

Tr+ (N* =1)-Ts + T < Thy. (A2)
Rearranging the inequality:
(N*—1)-T5 < Thy— Tr — T, (A3)
T: —Tr —T
Nf—1< B0 R7TE (A4)
< T,
TV —Tr—T
A Wt Rt (AS)
Ts

Taking the floor on the right-hand side ensures conserva-
tiveness and integer feasibility:

(A6)

TY —Thp—T
N*:HVOREJ.
Ts

A.2 Proof of Theorem 1

Proof We complete this proof considering two scenarios:
In the first scenario, we prove recursive feasibility without
central node failure. In the second scenario, we show that
when the central node fails, the robots can be safely recov-
ered while still respecting the constraints (26a) and (26b).

A.2.1 Feasibility guarantee without central node
failure

The proof, inspired by (Agrawal et al. (2023), Thm. 1), uses
induction.
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Base Case

At the time ¢; and iteration 7 = 1, since both Gap flag con-
dition (38) and the Reserve SoC condition (41) are true, the
candidate trajectories are committed for all rechargeable
robots i.e. Vi € R and Vit ,t2 €T
() () VEE [t o)

T11«21 > (TR+TE +/€T5) vk e R

= il res 7
& (t) > 61 Vt 6 [tl,tl’c)

eit) > el Vt € [t1,t1,R)

min

Since t1,r > to,r > th Vi € R, the claim holds.

Induction step

Suppose the claim is true for some j € Z,. We show that
the claim is true for j + 1.

Case 1

When candidate trajectories for all rechargeable robots are
valid, i.e. Vi € Rand and Vi1 ti2 ¢ T

mi? “mo

i,com

i1 (t) + x;’_ﬁn(t) vt e [tj+1»t§'+1,c)
. { T}Ig,j—&-l > (TR +Tg + kT(s). vk e R/
e'(t) > ey VEE [ttty o)

— { |t%1 — ti%2| > T5 YVt € [tj+1,tj+17R)
e'(t) > €nin Vt € [tj41,tj41,R)

X

Since t;1,r > t; r, Vi € R the claim holds.

Case 2

This case corresponds to the scenario when the 1'th robot in
R’ returns either due to violation of Gap flag condition or
the Reserve SoC condition, i.e.,

1, 1, !
2 () @ () VEE [ty t o)

The candidate trajectories are committed for the remaining
robots, i.e. Vk € R'\{1'} and Vi1 ti2 €T

mi1? “mo

k,com k,can

k
i e Ve[t o)
N T1’§7j+1 > (TR+TE+/€T5)
ef(t) > effy Vet th, o)

. { 't,?“ —ti%kz| >Ts Vteltjyitjir)
€ (t) > Cmin vt € [tj+17tj+1,R)

X
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Since tj41,r > t} ¢, the claim holds.

A.2.2 Safe recovery and feasibility guarantee with
central node failure

Suppose that at time t;, all rechargeable robots generate
new candidate trajectories and send requests to the central
node for validation. Each robot then waits for a response
until t;_1 n, as specified by the fail-safe protocol. If no
message is received from the central node by this deadline,
each robot executes its onboard fail-safe maneuver using its

7,com

previously committed trajectory ;" and its stored return
index ret’ ;.

o If ret;;l = 1, the robot immediately continues follow-

i,com

ing z,;7 ", ensuring a return by ¢; + T’g.
e Ifret) ; > 1, the robot idles for ret}_,T; seconds and

7,com
j—1
[tj + ret}fng, t; + ret}71T5 + TR}.ThiS
structure ensures two properties:

then executes a time-shifted version of x over the

interval

1. Gap constraint satisfaction: The time-shifting mecha-
nism guarantees that no two robots attempt to return
simultaneously. Since each robot delays its return by
(ret’ ; — 1) - T5, mutual exclusion at the charging sta-

tion is preserved, and the gap condition (26b) holds.

2. Minimum energy constraint satisfaction: Since each
robot had already committed a feasible trajectory at¢;_;
with enough energy to return after the assigned delay,
the energy constraint (26a) remains satisfied. Thus, even
in the absence of centralized coordination, the robots
return safely, respecting both the return gap and mini-
mum energy requirements. Hence, recursive feasibility
also holds under central node failure. g
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