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do not directly improve muscle function and propulsion.
Therefore, alternative control strategies are needed for
robotic exoskeletons to target joints and muscles in new
ways that enhance propulsion and muscle activation levels
during walking.

Mechanical manipulation of the ankle joint through apply-
ing controlled rotational perturbations is a potential strat-
egy to target the plantarflexors during push-off. Imposing
perturbations or deviations from the user’s natural joint
kinematics can be used to generate shifts from the baseline
muscle activity while walking. The human neurophysiology
community has developed open-loop approaches to elicit
increments to the soleus muscle responses (with respect
to the baseline) measured using surface electromyogra-
phy (EMG) Mazzaro et al. (2005). However, closed-loop
control methods are motivated to develop customized
neurorehabilitation programs that account for differences
in muscle capacity and gait patterns across participants.
Such closed-loop controllers can be implemented in robotic
exoskeletons and motorized orthoses to target and poten-
tially modulate the soleus muscle activity, while ensuring
safety of the participant. Recently, an integral-like EMG
error system was used to design an adaptive backstep-
ping controller by prescribing a desired muscle activation
level Rubino et al. (2023). Different from this EMG-based
approach that can be prone to sensor noise during walk-
ing, the motivation in this paper is to impose kinematic

Stroke survivors experience diminished muscle capacity
and propulsion that limit their endurance and walking
ability Weerdesteyn et al. (2008). In particular, the plan-
tarflexors including the soleus muscle are critical for walk-
ing as they produce the majority of propulsive force dur-
ing the mid-late stance phase (i.e., at ”push-off”) Win-
ter (2009). Lower-limb exoskeletons can help people with
stroke during neurorehabilitation for improving gait speed,
endurance, and the energetic costs of walking Awad et al.
(2020). However, traditional robotic exoskeletons usually
assist stroke survivors by replicating natural gait patterns
or biological joint torques Gandolla et al. (2018). Fur-
ther, human-in-the-loop exoskeleton controllers have been
developed to improve the gait energetics of people post-
stroke Walsh (2018). However, such approaches that em-
ulate healthy gait patterns or optimize the gait energetics
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1. INTRODUCTION
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Abstract: People post-stroke walk with unnatural gait patterns due to reduced propulsion
and muscle weakness in their affected leg. Powered exoskeletons can provide gait assistance
to improve their walking speed and endurance. However, these robotic devices usually provide
assistive torques to emulate healthy gait patterns and biological joint moments that do not
directly translate to improving muscle capacity and propulsion. Alternatively, applying safe
kinematic perturbations about joints at discrete instances in the step cycle can aid to target
muscles, such as the ankle plantarflexors or the soleus muscle, and thus, improve propulsion
during walking. This paper develops two closed-loop controllers for a motorized ankle-foot
orthosis with a cable-driven mechanism that strategically perturbs the ankle joint during the
loading phase of walking, which is the region where the soleus muscle is naturally most active.
First, a nonlinear tensioning controller is developed to build tension in the cable mechanism and
prevent slackness in the early stance phase. The tensioning controller is activated at heel strike
and tracks a desired electric motor trajectory generated by an admittance model. Then, a joint
perturbation controller is developed to apply kinematic deviations (perturbations) to the ankle
joint in the mid-late stance (loading) phase of walking to evoke changes in the soleus muscle
activity. A Lyapunov-based stability analysis is developed independently for each controller
ensuring exponential tracking in their respective regions of the step cycle.
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perturbations using the ankle joint angular position and
velocity to evoke changes in the soleus muscle responses.

In this paper, the main contribution is the design of two
closed-loop controllers that actuate a powered cable-driven
ankle-foot orthosis. The controllers are implemented in
separate regions of the stance phase of walking to apply
tension to the Bowden cable mechanism using an electric
motor, which is offloaded away from the body, and target
the soleus muscle to increment its activation. First, in early
stance phase, a robust indirect force controller referred to
as the tensioning controller is designed to mitigate cable
slackness, which is detrimental to achieve suitable tracking
performance. The tensioning controller tracks desired elec-
tric motor trajectories generated by an admittance model
that leverages cable tension feedback. Then, in the mid-
late stance phase, a perturbation controller is designed
to perturb the ankle joint. The perturbations are pre-
scribed deviations from the natural ankle joint kinematics
to modulate the soleus muscle activity output, which can
be used as a gait rehabilitation tool. An Euler-Lagrange
dynamic system is used to model the uncertain nonlinear
single degree-of-freedom motorized ankle-foot orthosis and
muscle-tendon. Piecewise constant switching signals are
generated using heel and toe ground reaction forces to
turn on the tensioning controller during early stance and
the perturbation controller during mid-late stance, respec-
tively. Exponential tracking is obtained for each controller
independently within their activation regions.

2. DYNAMICS

2.1 Ankle-Foot Orthosis Dynamics

The single degree-of-freedom ankle joint muscle-tendon
and powered foot orthosis system is modeled with the
following dynamics

Jq̈(t) + f(q, q̇) +G(q) + d(t) = τ(t), (1)

where q : R≥t0 → Q denotes the measurable ankle joint
angular position, Q ⊂ R denotes the set of ankle joint an-
gles, and t0 ∈ R is the initial time; q̇, q̈ : R≥t0 → R denote
the measurable ankle angular velocity and unmeasurable
angular acceleration, respectively; J ∈ R>0 denotes the
uncertain positive inertia constant of the overall ankle-
foot orthosis system; the nonlinear function f : Q ×
R → R denotes the elasticity due to the joint stiffness and
the viscous effects due to damping in the musculotendon
complex and is defined as f ≜ K1exp(−K2q)(q − K3) −
B1tanh(−B2q̇)+B3q̇, where K1,K2,K3, B1, B2, B3 ∈ R>0

are uncertain positive constants described in Downey et al.
(2017); Riener et al. (2000); Schauer et al. (2005); G :
Q → R denotes the effects of gravity and is defined as
G ≜ mglsin(q), where m ∈ R>0 is the combined mass of
the foot and orthosis, g ∈ R is the acceleration due to
gravity, and l ∈ R>0 is the distance between the ankle
joint and the lumped center of the mass of the ankle-
foot orthosis; and d : R≥t0 → R denotes an external
exogenous disturbance including unmodeled effects in the
musculoskeletal system. The torque applied by the electric
motor about the ankle joint is denoted by τ : R≥t0 → R
and is defined as

τ(t) ≜ σpBeue(t), (2)

where ue : R≥t0 → R is the motor current control input,
Be ∈ R>0 is the unknown positive constant control effec-
tiveness, and σp ∈ {0, 1} is a piecewise constant switching
signal developed to apply an ankle joint perturbation per
step cycle within the mid-late stance phase of walking and
thus, target the soleus muscle.

2.2 Electric Motor Dynamics

To develop the cable tensioning controller to mitigate cable
slackness, the electric motor system is modeled with the
following dynamics Chang et al. (2023)

Jmθ̈m(t) + bmθ̇m(t) + dm(t) = Beσmum(t), (3)

where θm, θ̇m, θ̈m : R≥t0 → R denote the measurable angu-
lar position and velocity, and unmeasurable angular accel-
eration of the electric motor, respectively; Jm, bm ∈ R≥0

are the unknown positive constant inertia and damping co-
efficient; dm : R≥t0 → R denotes unmodeled disturbances;
um : R≥t0 → R is the subsequently designed motor control
input to mitigate cable slackness; and σm ∈ {0, 1} is a
piecewise constant switching signal designed to turn the
tensioning controller on during the early stance.

The following assumptions and properties are exploited in
the subsequent control design and stability analysis.

Assumption 1. The additive disturbances d and dm are
bounded as |d| ≤ ζd and |dm| ≤ ζdm , where ζd, ζdm ∈ R>0

are known positive constants.

Assumption 2. The desired ankle trajectory qd ∈ R (i.e.,
the ankle perturbations) and its time derivatives q̇d, q̈d ∈ R
are designed to be bounded by known positive constants
such as |qd| ≤ ζ1, |q̇d| ≤ ζ2, |q̈d| ≤ ζ3 and ζ1, ζ2, ζ3 ∈ R>0.

Property 1. |G(q)| ≤ g, where g ∈ R>0 is a known
constant (Lewis et al., 2003, Ch. 3).

Property 2. The control effectiveness is bounded as ce ≤
Be ≤ cE , where ce, cE ∈ R>0 are known constants.

The ankle joint angular position and velocity q, q̇ and
electric motor angular position and velocity θm, θ̇m are
depicted in Fig. 1 along with the ankle-foot orthosis
system.

2.3 Switching Signals

In this section, piecewise constant switching signals
σp, σm ∈ {0, 1} are defined to activate the ankle perturba-
tion controller ue and cable tensioning controller um in
the mid-late stance and early stance phase of walking,
respectively. The switching signals are defined using a
gait-phase detection algorithm that exploits heel and toe
ground reaction force measurements from sensors embed-
ded in the sole of the orthosis x1, x2 : R≥t0 → R>0. The
switching signals σp, σm are defined as

σp(t) ≜

{
1, t ∈ P
0, t /∈ P , σm(t) ≜

{
1, t ∈ M
0, t /∈ M , (4)

where P denotes the ankle perturbation set (i.e., the
perturbation region within the step cycle) and M denotes
the cable tensioning set (i.e., the region within the step
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cycle in which the cable tensioning controller is applied).
The sets P,M are defined as

P ≜ {t ∈ R≥t0 | (x1(t) ≥ x) ∧ (x2(t) > x)}, (5)

M ≜ {t ∈ R≥t0 | (x1(t) ≥ x) ∧ (x2(t) ≤ x)}, (6)

where x, x ∈ R>0 denote the selected lower and upper
thresholds of ground reaction forces, respectively. The
thresholds defining M describe the early stance, where
the heel force is greater or equal to the lower threshold
and the toe force is less than or equal to the upper
threshold. The set P denotes the mid-late stance, where
the soleus muscle is most active and can be targeted using
the perturbation controller when the toe force is greater
than the upper threshold. Defining these switching signals
ensures the controllers are never active simultaneously,
preventing counteracting inputs.

3. CONTROL DEVELOPMENT

In this section, the two closed-loop controllers: the ankle
joint perturbation controller and the cable tensioning
controller are designed leveraging the ankle-foot orthosis
dynamics in (1) and the electric motor dynamics in (3).

3.1 Ankle Joint Perturbation Controller Design

The control objective is to track desired ankle joint angular
trajectories (i.e., to apply joint perturbations) within the
mid-late stance phase of walking during the perturbation
region (σp = 1). To facilitate the following control design,
a measurable angular joint position error e : R≥t0 → R
and an auxiliary filtered tracking error r : R≥t0 → R are
defined as

e(t) = qd(t)− q(t), (7)

r(t) = ė(t) + αe(t), (8)

where α ∈ R>0 is a selectable constant control gain and
qd : R≥t0 → R is the desired ankle kinematic trajectory
(i.e., the perturbation profile). The open-loop kinematic
error system is obtained by pre-multiplying the time
derivative of (8) by J , substituting for (1), (7) and (8),
and performing further algebraic manipulation yields

Jṙ = Jq̈d + f(q, q̇) +G(q) + d− τ + Jαr − Jα2e. (9)

The closed-loop dynamics can be segregated into terms
that can be upper bounded by a constant and terms that
can be upper bounded by a state-dependent function. The
following auxiliary signalsWd : R≥t0 → R,Nd : R≥t0 → R,
and Ñ : R≥t0 → R are defined as

Wd ≜ f(qd, q̇d) +G(qd), (10)

Nd ≜ d+ Jq̈d + f(qd, q̇d) +G(qd), (11)

Ñ ≜ f(q, q̇)− f(qd, q̇d) +G(q)−G(qd) + Jαr

− Jα2e+ e. (12)

Using Assumption 1 and exploiting that |Wd| ≤ βd, βd ∈
R>0, the auxiliary signal in (11) can be upper bounded as

|Nd| ≤ ξd, (13)

where ξd ∈ R>0 is a known positive constant. By using
Property 1, (7), (8), and the Mean Value Theorem, an
upper bound for (12) can be developed as

|Ñ | ≤ ϱ(||z||)||z||, (14)

where z : R≥t0 → R2 is defined as z ≜ [ e r]
T
, and

ϱ : R → R is a known positive, non-decreasing, radially

unbounded function. Given the open-loop error system
in (9), the ankle pertubation control input is designed as

ue ≜ k1r + k2sgn(r) + k3ϱ
2(∥z∥)r, (15)

where k1, k2, k3 ∈ R>0 are selectable positive gain con-
stants, and sgn(·) : R → [−1, 1] is the signum function. The
electric motor control input in (15) includes a position-
velocity feedback term, a sliding-mode term to compensate
for the constant upper bound in (13), and a nonlinear
damping term to compensate for the state-dependent up-
per bound in (14). The closed-loop kinematic error system
is obtained by substituting (15) and (2) with σp = 1 into
(9) and using the definitions in (11) and (12) as

Jṙ = Ñ+Nd−e−Be

(
k1r+k2sgn(r)+k3ϱ

2(∥z∥)r
)
. (16)

3.2 Cable Tensioning Controller Design

The cable tensioning objective is designed to mitigate
slackness during the early stance before applying the
perturbation control input. To quantify the performance
of the tensioning objective, the measurable position error
η : R≥t0 → R and filtered tracking error ν : R≥t0 → R are
defined as

η(t) = θd(t)− θm(t), (17)

ν(t) = η̇(t) + αmη(t), (18)

where θd, θ̇d, θ̈d ∈ R are the desired, bounded motor
angular position, velocity and acceleration, respectively,
and αm ∈ R>0 is a positive constant selectable gain. The
desired position, velocity, and acceleration of the motor
are generated using the following admittance model

Jdθ̈d +Bdθ̇d +Kdθd = satβ1
(Tm − Td), (19)

where Jd, Bd,Kd ∈ R>0 are the desired virtual mass,
damper, and stiffness parameters that are selected such
that the transfer function of (19) is passive H. K. Khalil
(2002); Td ∈ R is the desired bounded, smooth cable
tension; Tm ∈ R is the measurable cable tension; and β1 ∈
R is a saturation limit. Taking the time derivative of (18),
premultiplying by Jm, substituting for (3) and (18), and
performing some algebraic manipulation yields

Jmν̇ = Jmθ̈d + bmθ̇m + dm −Beσmum

+ Jmαmν − Jmα2
mη. (20)

To facilitate the subsequent control design and stability
analysis, the auxillary signal χm : R≥t0 → R is defined as

χm = Jm(θ̈d + αmν − α2
mη) + bmθ̇m + dm + η. (21)

Exploiting Assumption 1, (17), (18), and passivity of the
admittance model in (19), an upper bound for χm can be
obtained as

|χm| ≤ ρ1 + ρ2||ψm||, (22)

where ρ1, ρ2 ∈ R>0 are known constants and ψm : R≥t0 →
R2 is a composite vector of the error signals defined as
ψm ≜ [ η ν ]T . Given the open-loop error system in (20),
the cable tensioning control input is designed as

um = k4ν + (k5 + k6||ψm||)sgn(ν), (23)

where k4, k5, k6 ∈ R>0 are positive selectable control gains.
The closed-loop error system is obtained by substitut-
ing (21) and (23) into (20) and setting σm = 1

Jmν̇ = χm −Be

(
k4ν + (k5 + k6||ψm||)sgn(ν)

)
− η. (24)
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4. STABILITY ANALYSIS

The stability of the closed-loop ankle perturbation con-
troller to impose joint perturbations during the mid-late
stance phase can be examined using Theorem 1. Moreover,
the stability of the closed-loop tensioning controller imple-
mented in early stance can be examined using Theorem 2.

Theorem 1. Given the closed-loop error system in (16),
the controller in (15) ensures global exponential kine-
matic tracking within the perturbation region (i.e. mid-
late stance phase of walking) in the sense that

∥z(t)∥ ≤
√

λ2

λ1
∥z(t0)∥e−

δ
4λ2

(t−t0), (25)

provided the following sufficient gain conditions are satis-
fied

k2 ≥ ξd
ce

, δ ≜ min{α, k1ce} >
1

2k3ce
. (26)

Proof. Let V : R2 × R≥t0 → R be a positive definite,
radially unbounded, continuously differentiable Lyapunov
function candidate defined as

V ≜
1

2
e2 +

1

2
Jr2. (27)

The function in (27) satisfies the following inequalities

λ1∥z∥2 ≤ V (z, t) ≤ λ2∥z∥2, (28)

where λ1 ≜ min( 12 ,
J
2 ) and λ2 ≜ max( 12 ,

J
2 ), where J, J ∈

R>0 are positive constant bounds of the system’s inertia J .
Let z(t) be a Filippov solution to the differential inclusion
ż ∈ K[h](z), whereK[h](·) is defined as in Filippov (1964),

and h is defined by using (8) and (16) as h ≜ [ h1 h2 ],
where

h1 ≜ r − αe,

h2 ≜
1

J
{Ñ +Nd − e−Be

(
k1r + k2sgn(r) + k3ϱ

2(∥z∥)r
)
}.

The control input in (15) has the signum function; hence,
the time derivative of (27) exists almost everywhere (a.e.),
i.e., for almost all t. Based on (Fischer et al., 2013,

Lemma 2), V̇ (z, t)
a.e.
∈ ˙̃V (z, t), where ˙̃V is the generalized

time derivative of (27) along the Filippov trajectories of

ż = h(z) and is defined in Fischer et al. (2013) as ˙̃V ≜⋂
ξ∈∂V ξTK [ ė ṙ 1 ]

T
(e, r, t), where ∂V (z, t) is the gener-

alized gradient of V at (z, t). Since V (z, t) is continuously

differentiable in z, ∂V = {∇V }, ˙̃V
a.e.
⊂ [ e Jr ]K [ ė ṙ ]

T
.

Therefore, after substituting (8) and (16), canceling com-
mon terms, the generalized time derivative of (27) can be
expressed as

˙̃V
a.e.
⊂ −αe2 + r

(
Ñ +Nd

−Be(k1r + k2K[sgn(r)] + k3ϱ
2(∥z∥)r)

)
, (29)

where K[sgn(r)] = SGN(r) such that SGN(r) = 1 if r > 0,
[−1, 1] if r = 0, and −1 if r < 0. Substituting the upper
bounds obtained in (13) and (14), and using Property 2,
the previous expression can be upper bounded as

˙̃V
a.e.
≤ −αe2 − k1cer

2 − (k2ce − ξd)|r|
+ ϱ(∥z∥)∥z∥|r| − k3ceϱ

2(∥z∥)r2. (30)

By completing the squares for the last two terms in the
previous inequality, (30) can be rewritten as

˙̃V
a.e.
≤ −αe2 − k1cer

2 − (k2ce − ξd)|r|+
1

4k3ce
∥z∥2. (31)

Provided the gain conditions in (26) are satisfied, the
inequality in (31) can be further upper bounded as

˙̃V
a.e.
≤ −δ

2
∥z∥2 −

(δ
2
− 1

4k3ce

)
∥z∥2. (32)

Using the inequalities in (28) and (32) and solving the

differential inequality yields (25). Since V > 0 and V̇
a.e.
≤ 0,

V ∈ L∞; hence, e, r ∈ L∞, which implies that z ∈ L∞, and
thus ue ∈ L∞ in (15) and τ ∈ L∞ in (2). Since e, r ∈ L∞,
then ė ∈ L∞ from (8), and hence q, q̇ ∈ L∞, which implies
q̈ ∈ L∞ from (1).

Theorem 2. Given the closed-loop error system in (24),
the robust tensioning controller in (23) achieves global
exponential tracking in the sense that

|η(t)| ≤
√

λ4

λ3
|η(0)|e−

δm
2λ4

(t−t0), (33)

provided the following sufficient gain conditions are satis-
fied

k5 ≥ ρ1
ce

, k6 ≥ ρ2
ce

. (34)

Proof. Let V2 : R≥t0 → R be a positive-definite contin-
uously differentiable Lyapunov function candidate defined
as

V2 ≜
1

2
η2 +

1

2
Jmν2, (35)

that satisfies the following inequalities

λ3||ψm||2 ≤ V2(ψm, t) ≤ λ4||ψm||2, (36)

where λ3 = min
{

1
2 ,

J
m

2

}
, and λ4 = max

{
1
2 ,

Jm

2

}
, where

Jm, Jm ∈ R>0 are constant bounds. Using a similar pro-
cedure as for Theorem 1, the generalized time derivative
of (35) can be obtained after substituting (18) and (24) as

˙̃V2

a.e.
⊂ −αmη2 + νχm −Bek4ν

2

−Be(k5 + k6||ψm||)νK[sgn(ν)]. (37)

Substituting for (22), an upper bound for the previous
expression can be obtained as

˙̃V2

a.e.
≤ −αmη2 − k4ceν

2 − (k5ce − ρ1)|ν|
− (k6ce − ρ2)|ν|||ψm||. (38)

Provided the sufficient gain conditions in (34) are satisfied,
the previous inequality can be further upper bounded as

˙̃V2

a.e.
≤ −αmη2 − k4ceν

2
a.e.
≤ −δm||ψm||2, (39)

where δm ≜ min{αm, k4ce}. Using (36) and (39), the
exponential result in (33) can be obtained. Since V2 > 0

and V̇2

a.e.
≤ 0, V2 ∈ L∞. Thus, η, ν ∈ L∞ and from (23),

um ∈ L∞. Since η, ν ∈ L∞, then η̇ ∈ L∞ in (18), and

hence θm, θ̇m ∈ L∞, which implies that θ̈m ∈ L∞ in (3).

5. APPARATUS

The apparatus, depicted in Fig. 1, consists of a customized
powered ankle-foot orthosis designed to fit various foot
sizes and is affixed to the participant using straps around
the shank and foot. The device is driven by a cable
actuation system as in Andersen and Sinkjær (2003). A
24 VDC brushless electric motor (Maxon) is mounted
on a separate actuation unit to apply torque about the
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ankle joint using a Bowden cable mechanism. The cable
tension is measured using an inline load cell (Omega)
placed in the Bowden cable connecting the orthosis and
the electric motor. The ankle joint angular position and
velocity are measured and computed, respectively using
an optical encoder (US Digital) mounted on the orthosis.
Toe and heel ground reaction forces are read using force
sensitive resistors (FlexiForceA401) embedded in the sole
of the orthosis. Soleus surface EMG measurements were
collected using two 0.875 x 1.375 inch electrode pads
(13-NEURO PLUS A10041-60) placed two inches apart
along the centerline of the shank below the head of the
gastrocnemius, and are connected to an amplifier (Bortec
AMT-8). The controllers are implemented using a desktop
computer (Windows 10 OS) running a real-time target
(QUARC 2.6, Quanser) using MATLAB/Simulink 2018a
(Mathworks). A treadmill (NordicTrack T7.5S) is used for
walking and a closed-loop controller is implemented to
achieve the desired self-selected constant walking speed.
To ensure participant safety, an emergency stop button is
available and software stop conditions limit the angular
position of the ankle device and current supplied to the
motor.

Fig. 1. The powered cable-driven ankle-foot orthosis. The
load cell is in line with the actuation cable between
the device and electric motor, which applies torque
about the ankle joint. The load cell is used for cable
tensioning feedback. The electric motor pulls the
cable, rotating the ankle joint in the direction of q, q̇
(measured by an optical encoder aligned with the
ankle in the sagittal plane) to perturb the joint in mid-

late stance. The angular position and velocity, θm, θ̇m,
of the electric motor are measured using an optical
encoder mounted along the electric motor’s drive shaft
to implement the tensioning controller in early stance
phase. EMG pads are placed on the surface of the skin
to collect soleus muscle activity. Heel and toe ground
reaction forces, depicted by x1, x2, respectively, are
measured using force sensitive resistors embedded in
the sole of the device.

6. CONCLUSION

In this paper, two closed-loop nonlinear robust controllers
were designed and analyzed to control a motorized ankle-
foot orthosis with a cable-driven mechanism to target the

ankle joint and the soleus muscle during treadmill walking.
First, a cable tensioning controller was developed for
mitigating cable slackness in the early stance phase. The
cable tensioning controller exploited an admittance model
for indirect force control. Then, an ankle perturbation
controller was designed to target the soleus muscle in the
mid-late stance phase by tracking a kinematic trajectory.
A Lyapunov-based stability analysis was developed for
each controller to ensure exponential tracking. Future work
includes the implementation of the controllers with people
post-stroke, who may experience benefits in propulsion due
to increasing soleus muscle activation.
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