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AN AVOIDANCE PRINCIPLE AND MARGULIS FUNCTIONS
FOR EXPANDING TRANSLATES OF UNIPOTENT ORBITS

ANTHONY SANCHEZ AND JUNO SEONG
(Communicated by Alex Eskin)

ABSTRACT. We prove an avoidance principle for expanding translates of unipo-
tent orbits for some quotients of semisimple Lie groups. In addition, we prove
a quantitative isolation result of closed orbits and give an upper bound on the
number of closed orbits of bounded volume. The proofs of our results rely on
the construction of a Margulis function and the theory of finite dimensional
representations of semisimple Lie groups.

1. INTRODUCTION

Avoidance principles—quantifying how much time trajectories avoid certain
subsets of the ambient space—have been fruitful in the study of dynamical
systems. An important example is the non-divergence of unipotent flows which
goes back to Margulis [26]. A quantitative version of non-divergence appears in
Dani [6] and was key in Ratner’s seminal theorems on unipotent flows [28, 29,
30, 31].

Two successful strategies to prove such avoidance principles are the construc-
tion of Margulis functions which originated in the influential work of Eskin—
Margulis—Mozes [13] and the linearization technique of Dani-Margulis [8].

The flexibility offered by the construction of Margulis functions makes them
applicable to settings where unipotent dynamics are not available or poorly un-
derstood. For example, they appear in the important work of Benoist-Quint
(3, 4, 5] and the recent generalizations of Eskin-Lindenstrauss [10, 11] on sta-
tionary measures of homogeneous spaces. Additionally, Margulis functions are
utilized in Eskin—-Mirzakhani-Mohammadi [15] to prove an avoidance principle
that was crucially used to show an analog of Ratner’s orbit closure theorem.

We highlight some other examples to indicate the breadth of Margulis func-
tions, but we recommend the wonderful survey of Eskin-Mozes [16] for a more
complete overview of the literature. Margulis functions appear: in the setting
of Teichmiiller dynamics by Eskin—-Masur [14] and Athreya [1], in the space
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of lattices by Kadyrov—Kleinbock-Lindenstrauss—Margulis [21] and Kleinbock-
Mirzadeh [23], for finite homogeneous spaces by Guan-Shi [20] and Rodriguez-
Hertz-Wang [32], for infinite homogeneous spaces by Mohammadi-Oh [27], and
in the space of closed subgroups of a semisimple Lie group equipped with the
Chabauty topology in the work of Gelander-Levit-Margulis [19] and Fraczyk—
Gelander [17].

We use Margulis functions and the theory of finite dimensional representa-
tions of semisimple Lie groups to prove an avoidance principle. Broadly speak-
ing, our results rely on the hyperbolicity of diagonal actions and the fact that
the perturbation by a foliation often places one in a general position where one
expects expansion by the diagonal direction.

Throughout this paper, G will be a semisimple algebraic Lie group without
compact factors and H will be a semisimple subgroup of G without compact
factors such that Cg(H) is finite. We let X := G/T" where I' is a lattice.

We equip Lie(G) with an inner product that induces a right-invariant Rie-
mannian metric on G. The notions of distance and volumes make sense with
respect to this Riemanninan metric. Denote by by inj(x) the injectivity radius at
point x. See the next section for formal descriptions of these notions.

DEFINITION 1. For a pair of positive real numbers (V, d), we say that a point
x € X is (V,d)-Diophantine with respect to H if the following holds: for any
intermediate subgroup H € S C G and any closed S-orbit Y = Sx’ with vol(Y) <
V, the distance between x and Y is at least d; namely, dist(x, Y) = d.

For r > 0, if a point x € X is (V, d)-Diophantine with respect to H and inj(x) =
r, then we say that x is (V,d, r)-Diophantine with respect to H.

We fix a one parameter subgroup of diagonalizable elements {a;} < H and let
U be the part of the unstable horospherical subgroup with respect to {a;} that
is also in H:
{fueH:a;ua_y— e ast — —oo}.
We work with the operators

(Ar f)(x) = Uf(atux)dmu(u),

)
my(BY) Jat
where Bf] is the ball of radius r in U and my is the Haar measure on the Lie
subgroup U normalized so that BIU has measure 1. Here the implicit metric on
U comes from the identification of Lie(U) with a Euclidean space. See the next
section for details. When considering A; ;, we use the notation A;.

We use the operators A, ; to prove a result on the behavior of points of the
form a;ux for ue B{] and large t > 0. The following is our main theorem.

THEOREM 2 (Avoidance Principle). Let G be a semisimple group without com-
pact factors and H be a semisimple subgroup without compact factors such that
Cg(H) is finite. Let X = G/T whereT is a lattice. There exist absolute constants
D = D(dim(G)) >0, A= A(G/T,H) >0, and C = C(G/T, H) > 0 such that the fol-
lowing dichotomy holds: for any x € X, there exists Ty > 0 such that for any pair
of T > Tx and R > 2, either:
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(1) x is not (R,1/T)-Diophantine with respect to H or
(2) forallt= AlogT,

my ({ue Bf] s a;ux is not (R, R~°, R™P)-Diophantine w.r.t. H}) < CR™L.
Moreover, if K < X is compact, then Ty can be chosen to be uniform over all x € K.

REMARK 3. We note a generalization of our main result for solvable epimor-
phic subgroups. Recall, a subgroup G’ of a real algebraic group G is called
epimorphic in G if any G'-fixed vector is also G-fixed for any finite dimensional
algebraic representation of G. Proposition 2.2. of Shah and Weiss [34] gives an
analogous result to our Linear Algebra Lemma (Lemma 8) for solvable epimor-
phic groups. Hence, it is plausible that our result can be further generalized so
that Bf] in condition (2) is replaced by B{V where N < U is an algebraic unipo-
tent subgroup normalized by {a;}, such that the subgroup generated by {a;} and
N is solvable and epimorphic in G.

A version of Theorem 2 was used in Lindenstrauss—-Mohammadi-Wang [25]
for SL(2,C) and SL(2,R) x SL(2,R) to obtain an absolute Diophantine estimate.
Additionally, Lindenstrauss—Margulis-Mohammadi-Shah [24] prove a similar
avoidance principle for unipotent flows, but work in a more general setting. It
is also similar to the work of Bénard—de Saxcé[2].

To prove our main result, we need results on the quantitative isolation of
closed orbits which are interesting in their own right. The following theorem is
analogous to Lemma 10.3.1 of Einsiedler-Margulis—Venkatesh [9].

THEOREM 4 (Quantitative Isolation of closed orbits). There exists a global con-
stant D = D(dim(G)) > 0 such that the following holds: for all intermediate sub-
group H< S C G and closed S-orbits Y = Sy and Z = Sz of finite volume,

dist(Y N K, Z) > vol(Y) Pvol(2)7P,
where K is a compact subset of X.

We note that the proof of [9, Lemma 10.3.1], relies on uniform spectral gap
for periodic S-orbits (H <€ S C G) in congruence quotients. Our proof is arguably
softer. In particular, it does not require I' to be arithmetic. The main idea of the
proof is to estimate the size of the additive constant of a Margulis function, and
goes back to Margulis’ unpublished notes (see also [27, Theorem 1.1]).

Using Theorem 4 above, an upper bound can be obtained on the number of
closed orbits of bounded volume. A qualitative version of this theorem is orig-
inally due to Dani-Margulis [8]. The theorem below is analogous to Corollary
10.7 of Mohammadi-Oh [27] for geometrically finite quotients of H3.

THEOREM 5 (Upper bound for the number of closed orbits of bounded volume).
There exists a global constant D = D(dim(G)) > 1 such that for any intermediate
subgroup HS S C G,

#{Y : Y = Sy is a closed S-orbit and vol(Y) < R} <« RP.
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2. PRELIMINARIES

In this section we fix notation.
Equip Lie(G) with the Killing form. This induces

1. anorm ||-|| on Lie(G),

2. aright-invariant Riemannian metric on G that induces a right-invariant
metric on G denoted as distg,

3. ametric on X = G/T denoted as dist so that the canonical projection G —
X is a local isometry, and

4. a volume for a closed orbit H-orbit on X induced from the Riemannian
structure on G which we denote with vol.

With respect to the norm | - || on Lie(G), we can define the unit ball in Lie(G)
which we denote as B}

We choose a inner product on Lie(U) that comes from the identification of
Lie(U) to R% where dy denotes the dimension of Lie(U). For any ) > 0, we can
use the inner product on Lie(U) to define a norm (resp. metric) on Lie(U) (resp.
U). This allows us to make sense of the unit ball in Lie(U) which we denote as
BlLle(U) (resp. in U which we denote as B{] ).

For each x € X, we denote by inj(x) the injectivity radius at point x; the supre-
mum of all n > 0 for which the projection map g — gx from G to X = G/T is
injective on B,(]; . In Section 6, we shall choose a specific ex > 0 and denote
Xe, :={x € X :inj(x) = ex} as the compact part of X. Since the exponential map
Lie(G) — G defines a local diffeomorphism, there exists an absolute constant
0o > 1 such that for all w € Lie(G) with |w|l <ex and x € X¢,,

oy llwl < dist(x, exp(w)x) < gpllwl.

By noting that the canonical projection G — X is a local isometry, we have a
way of locally measuring distances in X with the norm on Lie(G).

For any intermediate subgroup H € S < G, we denote the dimension of Lie(S)
by dim(S) or simply, ds.

We will denote the Haar measure on G by mg. For the horospherical sub-
group U of G, we denote the Haar measure on U by my.

Let T denote a maximal Cartan subgroup containing (a;)seg. Let p: G —
GL(V) be a finite dimensional representation. Let ® denote the root system of
Lie(G) and decompose the vector space into weight spaces V = & gce Vg where

Vg={veV:p(@)v=exp(flog())v,VT € T}

. . . . . dim V,
is the weight space with weight g € ®. Choose a basis (vﬁ,,-)l.:;l ? so that every
v e V can be written in the form

dimVﬁ
v=1) Y Cpilpi
Ped i=1

for some scalars cg ;.
Let S be an intermediate subgroup with H <€ S C G and consider the decom-
position of Lie(G) given by Lie(G) = Lie(S) @ Vs where Vs is Ad(Lie(S))-invariant,
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but not necessarily irreducible. If we decompose Vs into Ad(Lie(S))-invariant
subspaces, then each subspace will be non-zero since Cg(H) is finite. This will
be an important fact that we use throughout the paper when working with the
adjoint representation.

We end the section by introducing two results from Einsiedler-Margulis—
Venkatesh [9] on intermediate subgroups H c G.

LEMMA 6 ([9, Lemma 3.4.1]). Suppose H < G are semisimple Lie groups without
compact factors such that Cq(H) is finite. Then there are only finitely many inter-
mediate subgroups H< S C G. Each such S is semisimple and without compact
factors.

LEMMA 7 ([9, Appendix A]). If G is a semisimple Lie group without compact
factors, then there exists a finite collection of semisimple subgroups /€ such that
the following holds: for any semisimple Lie subgroup H < G with no compact
factors and Cg(H) finite, there exist H' € € and g € G such that H=gH'g™".

3. LINEAR ALGEBRA LEMMA

In this section we state some key technical lemmas related to the action of
horospherical subgroups and diagonal subgroups from [22] and [33] and prove
extensions of these results. The main result of this section applies to represen-
tations that are not necessarily irreducible.

LEMMA 8 (Linear algebra lemma). Suppose p : G — GL(V) is a faithful finite
dimensional representation of a semisimple Lie group G. Suppose V decomposes
into non-trivial and irreducible subspaces V = &;V;. There exists an absolute
constant 0 < 6 = 6o(dim(G), V) « 1 such that for all0 <6 < by and0< c < 1,
there exists t5 . = t5,.(G, H) > 0 with

1 f d
my(BY) Jsy llp(a;wvll®

foreveryveV, t=ts,.

C
my(u) < —
lv)®

We postpone the proof until the next page after collecting some lemmas. In
brief, these lemmas show that the action of the diagonal and horspherical sub-
groups on a vector space expand the norm. While we will follow the exposition
of Katz [22], we would like to draw the reader’s attention to Shah [33], specifi-
cally Section 5.

The following lemmas are essentially Lemma 3.1 and Lemma 3.2 of [22].

LEMMA 9 ([22, Lemma 3.11). Let u = exp(u) € BY. There exists polynomials fpj:
Lie(U) .
By — R with

dimVﬂ
pv=2 ) fpjWvp;
ped j=1
foranyveV.
Proof. The proof of Lemma 3.1 in [22] works for any u € BY where r > 0. O
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LEMMA 10 (Anchor Lemma, [22, Lemma 3.2]). Let p : G — GL(V) be a finite
dimensional irreducible representation of a semisimple Lie group G. Then for
any r >0 and non-zero v € V, there is a positive root € ®* and 1< j < dim Vp
such that

sup | fp,j(w)| > 0.
ueBY

Proof. The proof of Lemma 3.2 in [22] works for any open ball Bﬁj with r>0. O

By the Anchor lemma, the projection of the action of U in the expanding
direction is nonzero. Thus, the norm under the action of a; grows. By noting
that Lemmas 3.1 and 3.2 of Katz [22] hold for any open ball BV, we have the
following minor generalization of Lemma 2.3 of [22].

LEMMA 11. Suppose p: G— GL(V) is an irreducible finite dimensional represen-
tation of a semisimple Lie group G. There exists 0 < 6y = 0o(dim(G)) < 1 such
that for all0 <6 <8y and 0 < ¢ < 1, there exists t, > 0 with

f"
U 5 d

foreveryveV and t=t,.

c
my(u) < ——=
[

We now give a proof of the lemma stated at the beginning of the section.

Proof of Lemma 8. This essentially follows from the irreducible version of [22].
We equip V = &;V; with the max norm. That is, for v = (v;), ||v| = max; ||v;|.
We also note that the inequality we aim to prove is independent of the choice
of norm.
Let0<c<1and0<é <68y We will choose 8y in the course of the proof.
Given v = (v;), let ip be the index with ||v| = ||v;,|l. Then,

lplasu)vll zmiaXIIp(atu)vill = [|p(a;u) vj, .

By the irreducible case (Lemma 11), we have the existence of §; € (0,1) such
that for every 6 € (0,6;) contraction occurs for every v; € V; and ¢ sufficiently
large. To finish the proof, take §, := min; §; and we have

1

1
my(BY) fBg lp(a;wv)®

dmy(u) < dmy(u)

my(BY) fsg lp(aswv;, |1°
. _.c
lvi e lvl®
for every v € V and ¢ sufficiently large. O
Now we apply the above Linear algebra lemma to a specific representation

which will be used to control the height function. First we give a definition. See
also the end of Section 2 of Eskin-Margulis [12].

DEFINITION 12 (Maximal Parabolic Subgroups). When a lattice I is non-uniform,
we define a finite collection A of maximal parabolic subgroups of G as follows.
A parabolic subgroup P of G is called I'-rational if I' N R, (P) is a lattice in R, (P),
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where R, (P) is the unipotent radical of P. If G is of real rank 1, then we let
A = {Py} where Py is a I'-rational minimal parabolic subgroup of G. The exis-
tence of Py follows from Garland—-Raghunathan [18]. If the real rank of G is not
less than 2, then by the Margulis Arithmiticity theorem, I is arithmetic. Hence
we let A ={Py, P,,...,, P;} where Py are standard parabolic subgroups of G, with
respect to its maximal Q-split torus Ap. For every 1 < k < r, there exists a finite-
dimensional irreducible representation p; : G — GL(Wy) and vectors wy € Wy
such that the stabilizer of Rwy is Py.

REMARK 13 (Upper bound on the dimension of W;). For later computational
purposes (see Lemma 19 and Lemma 33), we take W} to have dimension no
greater than dim(G)2. We can do so by choosing

Wy := AT EP Lo (R, (Py)) € AP Lie(G)
and wy to be a normalized diagonal element of Wi.

The following result is an analogue of Condition A of Eskin—-Margulis [12]. We
can deduce it by applying Lemma 8 to the representation above.

LEMMA 14 (Linear algebra lemma for height functions). LetT be a non-uniform
lattice of G and consider the representation p : G — GL(Wy). Then there exists
0 <01 =61(dim(G)) < 1 such that for all0 <6 <8, and 0 < ¢ < 1, there exists
ts.c = t5,c(G, H) > 0 such that for every ve Gwy and t = t5 .,

1

C
_— | ——dmy(u)<—
my(BY) fB;'e“” lor(aiuv)®

lvlI®
4. ABSTRACT MARGULIS INEQUALITY

In this section we prove an abstract result that yields exponential decay for
Margulis functions.

THEOREM 15. Suppose F: X — (0,00) satisfies the following properties

 (Log Continuity) For any compact subset K c H, there exists 0 = or(K) > 1
such that forall ge K and x€ X,

o 'F(x) < F(gx) <o F(x)
o (Margulis Inequality for F) There exist constants0<c<1, t =t.> 1, and
b >0 such that for any x € X,

(A2, F)(x) := UF(atux)de(u) <cF(x)+Db.

!
my(By) Js}
Then, there exist absolute constants C >0 and B > 0 such that for any t = t.,

(A;F)<C-c""F+B.
Proof. Step 1: We find an upper bound on A;,;F.
Recall,

(A f)(x)'—;f F(a,ux)dmy(w)
S () Jy
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By iterating our operator, we have
(A7 ,F)(x) <c"F(x)+B',
where B’ = O(b) = bz;lzo ¢/. On the other hand,
(45, F) (x)
1
——— | Fla ()uyx) dmy(uy) | d(my)" (i),
mU(BZU)fBU (antpn 1X) ul(uy U

2

1 f
my(B) J(8)"
where ¢ : (BzU)”_1 — U is given by

U= (Un,..., U2) = Pp (i) = (A—(n-1) 1 UnA(n-1)t) - (A= Uz a2;) (A Uz ay).
Hence, there must exist some i € (BZU )"~1 g0 that

1
——— | Ff(a () uy x)dmy(uy) < c"F(x)+B'.
0 (BY) fBg (@ntpn 1X) dmy (uy
Now note that since ¢ is large, (/)((BZU)”_l) gBlU and so (,b(ﬁ)_lBlU QBZU. Hence,
Tl
_— Fla (W urx)dmy(uq)
my(BY) Jot-187 (nctr )
1

= WBzU)/BgF(antﬁbn(ﬁ) ur x) dmy (uy).

Make the substitution v = (P(I:Z)_l u and note that my is translation invariant to
obtain

—1 1
F(anipn(@uix)d :_f Flay v d ‘
my(BY) f(p(,;)lBlu (@anipn(@uix) dmy (1) oY) Jny (anvx)dmy(v)

1

Putting everything together, we obtain

(A,:F)(x) :fUF(amux)de(v) < my(BY)c"F(x) + B,

Bl
where B = B'mU(BZU).
Step 2: Now we use the previous step to show for arbitrarily large ¢ = . we have
a bound on A,F.
Let Ky ={a;:0 <t < t;} be a fixed compact set and let 0; = or(K3) be the

constant from the log continuity property of F. Suppose that t = ¢, and let
Lt/t.] = n. Since 0 < ¢t — nt; < t., by log-continuity of F,

fF(atux)de(u)=f F(ai-ne, - nr,ux) dmy(w)
BY BY

1 1

< Ulf F(ang, ux)dmy(u).
BY

By Step 1,

f F(an;,ux)dmy(u) = (AnF)(x) < my(BY)c"F(x) + B
BU

1
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and thus,

fBU F(a;ux)dmy(u) < oy (c"my(BY)F(x) + B) = o1ymy(BY ) """ F(x) + 01 B

1
<oymy(BY)c"" " F(x) + 01 B.

Letting C = almU(BzU )¢~1 and relabeling o1 B as B finishes the proof. O

5. HEIGHT FUNCTIONS AND MARGULIS INEQUALITY

For this section, we make the following assumption: I" will be taken to be a
non-uniform lattice of G.

Thus, the space X = G/T has a cuspidal part and we construct a height func-
tion k on X that measures how high a point x € X is in the cusp. We prove that
h satisfies a Margulis inequality.

This is why we assume I" is non-uniform; the height function only makes
sense in this setting. In Section 6.1, we will make a small modification so that
our results hold in the compact case as well.

The height function in use is essentially the same as in Eskin—-Margulis [12].
However, instead of taking the average over some random walk on X, we av-
erage over the expanding translates of BlU , the unit ball in the horospherical
subgroup.

THEOREM 16. For any 0 < § < 01 (01 as in Lemma 14), there exists a height
function h = hs : X — (0,00) such that the following holds: for any0 < c <1, there
exists t. > 0 such that for any t = t., there exists an absolute constant B; > 0 such
that

Az,th < Ch+Bt.

We will use Lemma 14 in the construction of the height function of Theorem
16. As such, we only consider 0 < § < §,. Also note that Theorem 16 directly
implies the (Margulis inequality) hypothesis in Theorem 15 for 4. In Lemma
19 we shall see that & is log-continuous also, and thus we get the following
exponential decay property for h.

COROLLARY 17. For any 0 < 6 < 61, height function h = hs (the same height
function as in Theorem 16) satisfies the following: there exist t;, >0, C, >0 and
By, >0 such that for all t = t,
C
Ah< 1

- 2t/th

-h+ By,.

Proof. The result directly follows from Theorem 15, Theorem 16, and Lemma
19. We note that t;, is equal to t;/2, defined as in Theorem 16. O

Construction of the height function /. The following construction is from Sec-
tion 3.2 of Eskin-Margulis [12]. The construction of individual functions dy,
which are height functions with respect to parabolic subgroups Py from Defi-
nition 12, appears in Dani-Margulis [7] too. See also Guan-Shi [20] where they
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used this height function to compute Hausdorff dimensions of divergent trajec-
tories.

Let Py denote a minimal I'-rational parabolic subgroup of G. Then we have
the Langlands decomposition Py = MyAgNy where M, is semisimple, Aq is
abelian, and Nj is the unipotent radical of Py. If G has real rank greater than 2,
then we let Ay to be the fixed maximal Q-split torus of G in Definition 12. Let a
denote the Lie algebra of Ag. We shall identify a with its dual via the Killing form.
Let aj,ay,...,a, denote the roots which we view as elements of the dual of a. A
Siegel set is a set © = K.# o/ &/ where K is the maximal compact subgroup of G,
M < My and A < Ny are compact, and of = P{ae Ap: ar(loga) <Cforall 1<
k < r} for some positive constant C.

Note that for appropriate choices of .4, .4, and C, there exists a finite set
J € G such that for every g € G, the intersection & n gI'J is not empty. See
Dani-Margulis [8] for details.

For 1<k <r, define di(g) := |l px(g) wil where pi : G — GL(Wy) and wy € Wi
are defined as in Definition 12, with respect to parabolic subgroups P;. By
structure theory, there exists absolute constants Cy and ¢y, ¢y, ..., ¢, such that for
eachl<k=<r,

di(g) = di(a) and |log(dy(a)) — crwi(loga)| < Cy

for all g € G where g = kman is the Langlands decomposition of g with respect
to Py and wy is the co-root corresponding to ay; i.e., wg(ax) =1 and wi(a;) =0
for all j # k. Let

1
ﬁk(g) - I;learx dk(g}/)llck :

Also, for x = gT" € X, we shall define B4(x) := Br(g).

REMARK 18. There exists an absolute constant C = C(G/T') > 1 such that for any
geGand g1 €6ngl],

C™'Br(g1) < Br(8) < CPr(g).

Lastly, we choose a sequence of positive real numbers {qy};_, so that ¥ qrwi
belongs to the postive Weyl chamber of a and let

hi(8) = Br(g) .

For later use (see Proposition 22), we shall take {qk}lrczl to be normalized so that

min {ciqi} =1.
<r

1<k

Equipped with this construction from Eskin-Margulis [12], we define the
height function that we use.
Our height function / will be defined to be

,
hi=C. Y hY
k=1
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for some 6. and C.. The condition 6. < 1 will be later verified in the proof
of Proposition 22 so that h satisfies the Margulis inequality, and the constant
C, > 1 will be later chosen in Remark 24 so that £ is bounded away from 1.

LEMMA 19 (Log continuity of the height function). For any compact subset K
G, there exists o, =0, (K) =1 such that for allge K and x € X,

azl -h(x) < h(gx) <oy h(x).

Moreover, o, can be chosen to be a constant only depending on a compact set K
and dim(G), each of which will be independent of latticeT'.

Proof. For each 1< k <r, the map di = l|px(-) will is log continuous. Thus, there
exists o = 0 (K) such that for all g’ € K and g € G,

o' -di(g) <di(g'g) <ok di(g).

Note that o only depends on compact set K and dim(Wy). By Remark 13,
dim(Wy). < dim(G)?) so that o := max; <i<, {0} is a constant only depending on
K and dim(G).

Now foreach 1<k <r, let a’k := g/ where ci are the constants used to
define Bi. Then, for all g’ € K and g € G,

(@)™ Br(g) < Pi(g'8) < 0l Br(Q).
If the maximum in S (g’g) is achieved by the same y € T as in f(g), then the
result directly follows from log continuity of dy and definition of o’.. Suppose
that the maximum is achieved by different choice of vy;

1 1
- - d / -
Br(g) N and fi(g'g) di(g'gyle

dr(8Y
for some yg #7y1 €. Then,

1
Br(g'g) > @ gy di(g'gyo) ™% = (0 - di(gyo) ™% = (@) 7" Br(g)
and
Br(g'g) = di(g' gy V% < (07" - di(gy)) V% < - di(gyo)) V% = 0+ Bre(g)-

Lastly, by definition
h=C Y K=y p
. " k=1 g ’ k=1 v ’
so it follows that the height function & has log continuity with constant

O := max

{(U' )5*/11k} — gMaXizk=rt0./Crqit _ 50 mimzislcedi} — 50+

1<ksr k

(Here, we are using the fact that the {g4};_, are normalized to satisfy the con-
dition that min;<;<,{cxqx} = 1.) Since 6. = %61 is a constant only dependent
on dim(G) (see Lemma 14), o, is only dependent on the compact set K and

dim(G). O
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The following lemma is a direct result of equation (33) from Eskin-Margulis
[12].

LEMMA 20. For any constant C > 1, there exists an absolute constant D¢ =
Dc(G/T) > 1 such that the following holds: if for some 1 <k <r and g € G there
exist g1 € SN gl and g»(# g1) € gT'J such that dy.(g») < Cdy(g1), then

he(g) < Dc [] 17" ()
itk

~_ gjllajap)
where A . = @

In view of Remark 18, we can rewrite the above Lemma 20 as follows.

LEMMA 21 (Upper bound for k). For any constant C > 1, there exists an absolute
constant D = D.(G/T) > 1 such that the following holds. If Bi(g) = m

for some vy €T and there exists y1(# yo) € T such that di(gy1) < Cdr(gYo), then

he(g) < D [T 1} ().
j#k

Now, we replace Condition A of Eskin-Margulis [12] with Lemma 14 and
prove an Margulis inequality for our averaging operator A;.

PROPOSITION 22 (Upper bound for Ach). Forany0<6<6, and0<c<]1, for
all t = t5 . (where 15 is as in Lemma 14), there exists an absolute constant D; >0
(depending only on t) such that foranyl<k<r,

1 A
Ay R )::—f W (a;ug) dmy(u) < ch®(g)+ Dy [ ho*
(42,072) (g o BT Joy ") dmu < chi@ + D [T 7 1g)
forany geG.

Proof. Let1 < k < r be fixed. If for every a,ug (varying u over BZU ) the maximum
in By is achieved by the exact same y € I" as in f(g), then we get (Agythg)(g) <
chi(g) directly from Lemma 14, since

1 1
di(g)0/ekax) | pr(g) wy || ©/ckan

and 6/cpqy < 61/ckqr < 01. (Here we are using the fact that the {qk}»]’C:1 are
normalized to satisfy min;<r<,{ckqi} =1.)
Suppose that the maximum in Sy is achieved by a different y for some u € BZU ;

hy(g) =

Br(g) = and fr(g'g) =

1
dk(gYO)UC" dk(g’gh)“ck

for some g’ € a[BZU and yg # y1 € I'. By definition of B, compactness of atB2U,
and log continuity of dj, we have

dr(gy1) < Cdr(g'gy1) < Cdr(g'gyo) < C*dr(gy0),
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where C=C; = Udk(atBZU). By Lemma 21 and by log continuity of &y,

1 1
_ ho(a,ug) dmy(u s—f C'ho(g)dmy(u) = C'h®
710 (BY) fBg warug)dmy(u) 57 Juy (& dmy(u) (&)

my (B
I/ OAjk
j#k
where C'=C} , = ahk(atBlU), and D’C2 is defined as in Lemma 21, for our choice
of C = Cy . We note that C = C,, C'=C; , and D’C2 = D’C2 are constants only
’ t,
depending on f and k. Thus, by taking D, := maxlsksr{CQYkD’ka}, we get the
desired result. O
THEOREM 23. For any triple of 0< 6 <61, 0<c<1, and t = ts5 2 (I5c/2 as in

Lemma 14), there exists 0 < € = € < 1 such that the height function h = h; ¢ :=
Yo (ehy)? satisfies

Ay h<ch+1.

Proof. By Proposition 22, we have

5_C .5 0Ajk
AZ,rhkSE‘thth'jl;[khj .

Taking the sum over all 1 < k < r and multiplying £° to both sides of the above
equation yields,

Ay

r c r r
2. (Ehk)6) ==Y (€h)®+ Dy Y & [] (ehphit,
k=1 2 i3 k=1 j#k

where ¢ = €9°0-Li#c4i0) foreach 1< k <.
Since } . qxwi belongs to the positive Weyl chamber, we have that

Kai,a
Zﬂj’kZZqﬂ( j k>|<1
7k izk drlak, ak)
for each 1 < k < r. See also Equation (35) of [12]. Hence, by Jensen’s inequality
[] ehp®tix = exp(z Aj (log(ehj)5) + (1 -y Aj,k) -0)

j#k 7k ik

<) Ajk-exp (log(shj)5) + (1 -y Aj,k) -exp(0)
j#k i#k

=Y Ajrehp)®+ (1— Y Aj,k)-ls Y (ehp)° +1
j#k Jj#k Jj#k
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and thus,
At Y (ehk)5) << Y (ehp) + (Dt Y ek) - (Z (eh)? + 1)
k=1 2 =2 k=1 k=1
= (g +D; ) ek) Y (eh)® + (Dt > ek).
k=1 k=1 k=1

Since e = "Li#40 and ¥, Ak <1 for each 1 < k < r, we can choose
€ = €5, < 1 small enough so that (D, Y.} _ &) <§ <1. O

Proof of Theorem 16. For fixed 0 < § < 6, the class of height functions {&; .}
with0<c<1and ¢ = 5 ¢/» defined as in Theorem 23 are linear. That is, if we let
h=hs=Y}_, h?, then

r r

1) 1) o 1)

hic= Z (€r,chi)” = €tc” Z hk =& h.
k=1 k=1

By Theorem 23, for any pair of 0 < ¢ <1 and ¢ = t5 /2, we have
(Ag,hye)(x) < chyc(x) + 1.
Multiply B;:=1/ 5‘; . to both sides of the inequality and we get
(Ag,sh)(x) < ch(x) + By.
Lastly, take t; = t5 /2 and we are done. O

REMARK 24 (Lower bound for h). For computational reasons that will become
apparent later, we want our & to be large and bounded away from 1. Since
{di(g) : g € G} (G is the Siegel set) is bounded away from zero, by Remark 18
we have that for each 1 < k < r, hy is bounded away from zero and therefore,
hs =Y, hz is bounded away from zero. Thus, by multiplying some large C >
1, we can make our height function h := Chs to be no less than 2. Note that
multiplication by a constant does not effect Margulis inequalities (see proof
of Theorem 16) except that it only makes the additive constant B; bigger; our
newly defined h = Chs also satisfies Theorem 16 and Corollary 17.

For the remainder of the paper, if I is a non-uniform lattice, then we fix
0= %6 1 and set our height function to be h = C, hs, = 2. However, note that
the exact value of 6, is not important and all arguments in the later sections
apply for any choice of 0 <d, < §;.

6. RETURN LEMMA AND NUMBER OF NEARBY SHEETS

Let H< S C G be an intermediate orbit. For a closed S-orbit Y = Sy and point
x € X, we shall define a window set Iy (x) which collects all the sheets of Y that
are nearby x. Roughly, the idea is to collect sheets of Y within the injective
ball Bi?lj( 0 (x), but the exact size of our windows will be much smaller, and will
be given in terms of the height function h. A formal definition of Iy (x) will be
given in Definition 31.
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The aim of this section is to show that #Iy (X), the number of nearby sheets,
is bounded in terms of volume of Y.

PROPOSITION 25 (Number of nearby sheets). There exists a global constant
Cl = C1 (dlm(G)) >0

such that for any intermediate subgroup H< S C G, closed S-orbit Y = Sy, and
x € X, we have

#Iy (x) < Cyvol(Y).
6.1. Height function and radius of injectivity. First we compare h(x), the value
of the our height function at x € X, with inj(x), the injectivity radius at point x.

We note that the following Proposition is as an analog of Lemma 6.3 of Benoist-
Quint [3].

PROPOSITION 26. IfT is a non-uniform lattice of G, then there is absolute con-
stants Cy >0 and m > 0 such that for all x € X,

inj(x) ™' < Ch(x)™.

Proof. Let distg denote the left invariant Riemannian metric on G. Suppose
that for some g; # g» € B¢ (e) and x = gl € X, g1x = gox € X. Then, forany y €T,
(Yg)‘l(gf 1g,)(gy) is in T. Moreover, for each point in G, there is a neighbor-
hood on which the metric distg is Lipschitz equivalent to the metric derived
from matrix norm. Thus,

. - . 1y _1y-1
2¢ > dist (e, g7 ' g2) = distg (e, (yg) ' (87" &2) gy) |Adgy) || -
Since I' is a lattice, infozyer distg(e,y) >0 and thus,
inj(x) > min |Ad(gy) ™ ||_1.
vel
Since & n gI'J is non-empty, we choose g’ € &N gl'J and take its Langlands
decomposition g’ = k'a’n’ with respect to Py; we get |Ad(g) || = |Ad(a")| and
1 r
min; <<, exp(w(log(a))))

IAd(a) || <

By Remark 18, minycr ||Ad(gy)_1||_1 is comparable with IIAd(g’)_III_1 and h(x)
is comparable with h(g’). Therefore,

inj(x) ! < h(x)™

where
r r (e}
m:= = — - max .
minlsksr{é*/qk} Oy lsksr 9k

(Here, 6. is from the definition of height function h, as in Remark 24, and
{gr}1<k<r are the positive real numbers used to define hy = ﬁllclq’“.) O
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Later in the proof of Proposition 25 and also in the construction of Margulis
function Fy (see Theorem 38), we shall see that Proposition 26 plays a key role,
together with Theorem 16 and Corollary 17. That is, the key property of the
height function # is that it is a Margulis function that is comparable with the
injectivity radius.

We now generalize our definition of height function s : X — [2,00) to the case
when I is cocompact, so that Theorem 16, Corollary 17, and Proposition 26 all
holds true also when I is cocompact.

DEFINITION 27. If T is a cocompact lattice of G, then we define h: X — (0,00)
to be the constant function i = 2.

Proof of Theorem 16 and Corollary 17 (for cocompactT'). All constant functions
are Margulis functions. That is, for any ¢ >0, £ >0, and x € X, we have

1
(Az,th) (x): = WBZU)fBZUI’z(al«ux)dmy(u)
1
= — 2d =2<ch(x)+2.
mu(BzU) fBz" my (u) ch(x)

Corollary 17 can be proved in a similar way. Simply take ¢, = 1; for any ¢ = 21y,
we have

1
(Arh)(x)=2< Wh(x)+2. O

Proof of Proposition 26 (for cocompactT'). If T is a cocompact lattice of G, then
X = G/T is compact and &g := infye x inj(x) > 0. Therefore, for any x € X,
1 1
inj(x) < — = —h(x). O
&o 2€p
For the remainder of the paper, the height function % will refer to either of
the two; if T is non-uniform, then % will refer to the function defined in Section

4 and if T is cocompact, then & will refer to the constant function in Definition
27 above.

6.2. Return lemma and number of sheets. In Lemma 32, we shall first give a
weaker bound on #Iy (x), depending on both vol(Y) and h(x). This shows that
#Iy (x) is uniformly bounded in terms of vol(Y) in the compact part of X. In
the case where I' is non-uniform, we shall make use of height function /4 to
analyze the cuspidal part of X. We shall show that if the sheets of Y are very
dense near a point x in the cuspidal part of X, then for some a;ux which lies
in the compact part of X the sheets of Y must be very dense near a;ux too.
This gives us the desired result; even when x is high up in the cuspidal part of
X, there is a uniform bound for #1y (x), only in terms of vol(Y). Results in this
section are analogous to Section 8 of Mohammadi—Oh [MO20] and Section 8 of
Eskin-Mirzakhani-Mohammadi [EMM15].

LEMMA 28 (Return lemma). There exists a global constant Cs3 = C3(dim(G)) >0
and Q = Q(G/T, H) such that the following holds: for every x € X, there exists
UEe B{] so that a;, ux € Xepe := {x € X : h(x) < Q} where t, = C3log(h(x)).
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Proof. By Lemma 7, there exists H' € # and g € G such that H=gH'g™!. For
each H' € #, we fix a one parameter subgroup {a}} of diagonalizable elements
in H', and let U’ be the unstable horospherical subgroup of G with respect to
{a}}. Then, for H we let

{a} = glayg " and BY = gBY g

Let t;, C;, and B} be the constants from Corollary 17, with respect to H' < G.
That is, th, C and By, are constants so that for all £ > £, and x € X,
!/

C,
AM@p:me¢wmdmwas -h(x)+Bj,.

ot
Take Cs := 10g2
lowing from the log continuity of & so that for any x € X, a;h(x) < h(g*lx) <
ogh(x). (Here, g is an element of G so that H = gH' g7!, as defined above. Note
that g is unbounded, dependent on H and so is 4. However, this will result in
only Q being dependent of H, not Cs.) Then, for every x € X,
!

C
(A1) (g7 4) = [, hlal,u (g7 ) dmy ) <~ (g71) B,

1

maxjge ;f(th) Also, let g > 1 be the absolute constant fol-

!
Ch

210%2 t’ log(h(x))/t

-ogh(x)+B) <C,04+B),

and thus, there exists u’ € B{]/ such that h(a’tx u'glx) < C;lag + B;@.
Now, if we take u:= gu’g‘1 (e B{]), then we have that

ha,ux)=h(ga; g™"-gu'g'x)=h(ga, u'g™'x)
<ogh(a, W'g™'x)=04(Clog+Bj).
Take Q:=0 g(C;la g+ BZ). All that is left is to show that C; is a constant that
only depends on dim(G) (and hence is independent of H and lattice I").
Recall that t' (see the proof of Theorem 23 and also the proof of Corollary
17) is the constant t5 14 t§ 1/4(G H') as in Lemma 14. From Lemma 14, we

have that 6, = 5 1 depends only on dim(G) and therefore, ¢ is a constant
that only depends on G and H' (see Lemma 14).

Since A is finite data that only depend on dim(G) (Lemma 7),

’61/4

is a constant that only depends on dim(G). The fact that C; only depends on
dim(G) will be later used to show that constant D in Theorem 2 only depends
on dim(G). O

REMARK 29. Let oy > 1 be a global constant such that for all v € Lie(G) and
ueBY,
oy vl <lluvl<oylvl,
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where u.v denotes the adjoint representation of u € G on v € Lie(G). For later
computational purposes (see the proof of Proposition 25), we shall assume that
Q > oy. Even if we replace Q = 04(C, 04+ B)) by Q = max{og4(C,0¢+ B), 00},
Lemma 28 still holds.

We shall also assume that C3 = 1 (this will also be used in the proof of Propo-
sition 25). Even if we replace C3 = @ maxge Jg(t;l) with

1
C = t, ) 1 )
3 max{ log2 Igrllea])é( h) }
Lemma 28 still holds.
REMARK 30. Note that by Proposition 26, X¢pt € X, = {x € X : inj(x) = ex},
where ex = C,"1Q™" (where C, and m as in Proposition 26):
inj(a,ux)=C, th(x) ™2 C,7'Q ™ =ex.

Recall, from the preliminaries that there exists an absolute constants o > 1

such that for all w € Lie(G) with |w| <€,
oy llwl < dist(x, exp(w)x) < apllwl.
DEFINITION 31. Let S be a subgroup with H € S C G and consider the decom-
position of Lie(G) given by Lie(G) = Lie(S) @ Vs where Vg is Ad(Lie(S))-invariant,
but not necessarily irreducible. For each closed S-orbit ¥ = Sy and x € X, we
define the set
Iy(x) ={ve Vs~ {0}: vl <ep-h(x)7", exp(v)x€ Y}

where global constants x > 1 and €, < 1 are chosen to be; x := max{m, 3Cs}
and ¢;, = min{2¥ex, 30, C; '} (m and C, as in Proposition 26, C; as in Lemma
28, and ex as in Remark 30).

LEMMA 32. Let Y = Sy be a closed S-orbit where H< S C G. For all x € X, we
have that

#Iy (x) < C4h(x)%™vol(Y)
where dg is the dimension of Lie(S) and C4 = (4C2)d3.

Proof. For any x€ X and v € Iy (x),
1 1
dist(x, exp(v)x) < ggllvl < opeph(x) ™ < ECg_lh(x)_m < Einj(x).

(Since h = 2 and €, < 2¥ey, ||vll < eph(x)™™ < ex and thus dist(x, exp(v)x)
oollvll. Also, since h = 1, x < m, and ¢;, < 30,'C, ', we have ooe,h(x)™*
3G h(x)™™)

It follows that for each v € Iy (x), inj(exp(v)x) = Linj(x), which means that the
balls

=
=<

(By (exp(v)x,inj(x)/4))
are disjoint from each other. Hence,

#Iy (x) - vol (Bs(e, inj(x)/4) = vol {U(By (exp(v)x, inj(x)/4)) : v € Iy (x)}
< vol By (x,inj(x)) < vol(Y).

vely(x)
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Therefore,
#Iy (x) < vol (Bs(e,inj(x)/4)) " -vol(Y)

< 4%inj(x) =% -vol(Y) < 49 C,% h(x)%vol(Y). O

Proof of Proposition 25. If x € X is so that h(x) < Q?, then by Lemma 32,
#Iy (x) < (AC) % Q*BMyol(Y).

Suppose that h(x) > Qz. By Lemma 28, there exist u € BlU and tx = Cslog(h(x))
such that h(a, ux) < Q.
We claim that if v € Iy (x), then a; u.v € Iy(a; ux) and moreover, the map
as u: Iy (x) — Iy(a;, ux) which sends v— a; u.v is injective. If v € Iy (x), then
lag uvl < e oylvll = exp(Cslogh(x)oyllvl = ouhx) % vl
<oyh(0)%eph(x)* <oyeph(x) 723 2-(=2x/3)
=oyenQ " <£,Q7

since k =3C3 =3, h(x) > Q?, and Q = oy. On the other hand, h(a;, ux)™ =Q7*
and thus,

soyepQ

|a: uv| <enh(agux)™.
Moreover,
a; exp(v)x =exp(ag u.vla; uxey
since Y is S-invariant. Therefore, a; u.v € Iy(a; usx) and the map v — a; u.v
from Iy (x) to Iy(a; ux) is injective. Consequently,

#Iy (x) < #Iy(a;, ux) < (4C2)% Q*%™Mvol(Y).

We complete the proposition by taking C; = (4C,)% Q?%™ where dg denotes
the dimension of Lie(G). O

We end this section with the following lemma on x, which will be later used
to show that constant D in Theorem 2 is an absolute constant that only depends
on dim(G).

LEMMA 33. Constant x in Definition 31 has an upper bound as a function of
dim(G).

Proof. Since x := max{m,3Cs} and Cj is a constant that only depends on dim(G)
(see Lemma 28), it is enough to show that m from Proposition 26 has an upper-
bound as a function of dim(G).
Recall that (see the proof of Proposition 26)
r r
m= — - max = -— - max ,
O« lsksr{qk} 16 lsksr{qk}
where 0 is as in Lemma 14 and gy are as in definition of hy. By Lemma 14, §,
is a constant that only depends on dim(G). From reduction theory, we have that
r =dim(G). Lastly, since the root system {w¢} is a datum that only depends on
G, the value of max;<<,{gx} also has an upper bound in terms of dim(G). O
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7. MARGULIS FUNCTION: CONSTRUCTION AND ESTIMATES

In this section we construct Margulis functions that we associate to the or-
bit of an intermediate subgroup. The main result of this section is a Margulis
inequality for the functions we consider (Theorem 38).

DEFINITION 34 (Margulis function). For an intermediate subgroup H=SC G
and closed S-orbit Y = Sy, define fy := X — (0,00) by

Yoty V170, if Iy (x) # @
h(x), otherwise

fr(x) :={

where dr:=min{dy/2,1/x}, §g as in Lemma 8 applied to the adjoint representa-
tion of G on the Lie algebra Lie(G) and « as in Definition 31.
For A =1, define F) y : X — (0,00) by

Fy,y (x) = fy (x) + Avol(Y) h(x).

We will later fix an explicit A in Theorem 38 so that F, y satisfies a Margulis
inequality.

REMARK 35. Note that by Lemma 8 and Lemma 33, 6 can be thought of as a
constant that only depends on dim(G). Later, this will imply that constant D in
Theorem 2 is only dependent on dim(G).

PROPOSITION 36 (Log continuity of Fy y). Let K be a compact subset of S. Then
there exists an absolute constant o = 0(K) (only depending on K and indepen-
dent on the choice of Y and A) such that for all Margulis function F, y, point
xeX,andgek,

0 Fry(x) < Fy(gx) < oF)y(x).

Proof. Recall that we denote the adjoint representation of elements g € G and
v e Lie(G) as g.v. Since K is compact, there exists Rx =1 so that

R vl < lig.vll < Rilivl

for every g € K and v € Lie(G). Also, by the log continuity of h, there exists
op=0p(K) =1 so that

o5,' - h(x) < h(gx) <oy h(x)

for every ge K and x € X.
If Iy (gx) is empty, then

fr(gx)=h(gx)<op-h(x)

Now suppose that Iy (gx) is not empty. Set € = Rlzlfhh(x)_". Note that we

can write
-0 -0
frgo= > lvl™®+ > vl
vely(gx) vely(gx)
lvli<e lvll=¢
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By Proposition 25 since #1y (gx) < Cyvol(Y), then we have the following bound
for the second term above,

Y 1017 < Civol(Ne ™ = (€1 (Rce;) vol (V) ) h()° < Csvol (V) (),
vely(gx)
II 1}128

where Cs := C; (RKsﬁl)‘sF. (Here we are using that h =1 and 0 < 1/x.) If there
is no v € Iy(gx) with ||v| < g, then this proves the claim. If there is v € Iy (gx)
with ||| <€, then
||g_1.v|| < Rge=¢eph(x)™ .
Thus, g71.v € Iy(x). Setting v' = g~! v yields that
Y owlrs Y g1 <R Y 10170 = RY fr ().

vely(gx) v'ely(x) v'ely(x)
lvii<e

In total, we have a bound of the form
fr(gx) = Rfffy (x) + (Csvol(Y) + o) h(x).
Thus,
F),y(gx) = fy(gx)+ Avol(Y)h(gx)
< RY fy () + (Csvol(Y) + 0 1) h(x) + Avol(Y) - o, h(x).

Note that vol(Y) is bounded away from zero. That is, there exists an absolute
constant 7 > 0 such that for any intermediate subgroup H < S C G and closed
S-orbit Y = Sy, vol(Y) > 7. (See Lemma 37 below.) Since A = 1, we have

Fyy(gx) < R?(ny(x) +(Cs+ 0t +apA) vol(Y) h(x)
< RY fy () + (Cs + 0177 + o) AVol(Y) h(x).
Put o := max{RI‘s(F ,Cs+0,(t~1 +1)}. We note that o is a constant only dependent

on the compact set K, independent of Y and A.
The remaining inequality

o 'Fry(x) < Fy(gx)

is proved in a similar fashion. O

LEMMA 37. There exists an absolute constant T > 0 such that for any intermediate
subgroup H< S C G and closed S-orbit Y = Sy, vol(Y) > 1.

Proof. This follows from the quantitative non-divergence of Dani-Margulis [7].
Let U’ be a 1-parameter unipotent subgroup of H. By the quantitative non-
divergence of the action of U’ on X, there exists some p > 0 such that my (X ~
X)) <0.01 for every closed S-orbit Y =Sy (H< SC G and y € Y), where my is
the probability Haar measure on Y.

Note that we have the Lie algebra decomposition Lie(G) = Lie(S) @ Vs. Let
n = p be so that the map g — gx is injective for all x € X,, and all

g € Box(n) :=exp (B,I]Jie(s)) exp (B,‘]/S) .
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For any connected component C of Y nBox(n) z with z € X,, there exists some
v € Vg such that
C=Cy:=exp (B,%ie(s)) exp(v)z.
Since my (X ~ X,) <0.01, Y N X, # @ and thus,
vol(Y) = n% =n. O

THEOREM 38 (Margulis Inequality for Fy). Let H < S C G be an intermediate
subgroup and Y = Sy a closed S-orbit. Let F)y (A = 1) denote the Margulis func-
tions associated to Y. For any 0 < ¢ < 1, there exists t = tr. > 0 such that there
exists global constants A1 = A1 (G/T', H) =1 and E, = E1(G/T, H) > 0 such that the
following holds for any closed orbit Y = Sx(H < S C G) and its corresponding
Margulis function Fy := Fy, y :

Agthy < cFy + Eyjvol(Y).
Proof. We have that Lie(G) = Lie(S) @ Vs where Vs is Ad(H)-invariant, but has

no Ad(H)-invariant vectors. Since 6 < 8y/2 < 8§, by the Linear Algebra Lemma
(Lemma 8) there exists />0 so that

1 f 1
my(BY) JBY la;u.v|oF
for every ve Vs and t = 1.

On the other hand, by Theorem 16 there exists ¢ > 0 such that for all = ¢,
there exists absolute constant B; (depending on t) so that

c
dmy(u) < ———
lv)%F

(1) Aphs §h+B[.

Let 7, and ¢/ be as above and take t = t5, = max{t,, t}.

We first find a bound on A;fy. Then we pick a particular value for A and
combine the first bound with the bound from Theorem 16 to reach the desired
bound on Fy.

Recall that (a,) and U are subsets of H. Fix the compact set K, = a;,BY ¢ H
and let Rk, = 1 be a constant so that

-1
Ri vl =lg.vll = R vl

for every ge K; and v e Vs.
If Iy (gx) is empty for every g € K;, then Fy is just a constant multiple of the
height function & and thus by (1),

Ao, cFy = Az y(Avol(Y) h) < Avol(Y) (gh +By)
< c(Avol(Y)h) + Avol(Y)B; < cFy + ABvol(Y).

Suppose that Iy(gx) is not empty. Set € = RI}rlshh(x)”‘. Note that we can

write
-0 -6
frgn =) Il + Y vl
vely(gx) vely(gx)
lvii<e lvli=e
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and by the calculation from Proposition 36, we obtain a bound of the form,

frigns Y gV 17 +(Csvol(Y) + o) h(x)
v'ely(x)
where C5 = C; (RKtezl)‘” and o, = 0, (K}) is the constant from the log continuity
property of k. Integrating over Bg yields

1

_ d
P fBUfy(atux) my(u)

2
1
< —Uf IIatu.v’II_‘SF dmy(u) + (Csvol(Y) + o) h(x)
vty Mu(By') JBY
and since ¢ = £, by Lemma 8,

1 _ _
—Ufuna[u.v’n Fdmyw<c Y vl
vty Mu(By') JBS Vely (x)

To summarize, we get the bound

: ) fB fr(asux)dmy(u) < cfy (x) + (Cs + o7~ Hvol (V) h(x)

2 R —
2) o (BY

where 7 is as in Lemma 37.
Combining equation (1) and equation (2) together we have

Ap(Fy < ¢ fy +(Cs + ot ) vol(Y) - b+ Avol(Y) (g ‘h+ By
=c-fy+ (CS +opt 4+ %)VO](Y) -h+ ABvol(Y).

Now choose A1 :=2(Cs+0,71)/c so that (C5 +o, T 4 %) = A;c and we get
the desired result,
Ay Fy < cFy + Eyvol(Y)
where E; = A B; = 2(Cs + 0,7~ )B;/c. Note that A; = 1, since Cs and o7, are
constants larger than 1 and 7 and ¢ are constants smaller than 1. We remark
that both 1; and E; depend on G/T" and H, but are independent of Y. O

For the remainder of the paper, Fy will refer to the Margulis function F) y
with fixed 1; =2(Cs +0,7"1)/c as in Theorem 38.

COROLLARY 39 (Exponential decay). There exists global constants Cr > 0 and
E, > 0 such that for any closed orbit Y and for any t = tr (Where tr := tg12
defined as in Theorem 38),

Cr
2t/tp

(A¢Fy)(x) < Fy (x) + Exvol(Y)

Proof. The result follows from Theorem 15, Proposition 36, and Theorem 38.
Especially, the fact that Cr and E, are global constants, independent of Y fol-
lows from the fact that the log continuity constants for Fy depends only on the
compact set and is independent on the choice of Y (see Proposition 36). O
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The following is following result is standard, see [27, Lemma 7.3] or [15,
Lemma 11.1].

PRrROPOSITION 40 (Margulis function on average). Let H< S C G denote an inter-
mediate subgroup and Y = Sy be a closed S-orbit. Let Fy denote the associated
Margulis function from Theorem 38. Let u be an A-ergodic U-invariant measure
with u(Y) =0. Then

Fy € L' ().
Proof. In this proof we will drop the subscript Y in Fy for simplicity. For k e N,
let Fy := min(F, k). Take ¢ to be tr, the constant obtained from Corollary 39.

By Moore’s ergodicity theorem, we have that the action of A ={a;:t € R} is
ergodic on X. Then, by the Birkhoff ergodic theorem, for p-a.e. x€ X and k€N,

h]{rnN Z Fi(anx) = kad,u.

There exists some xy € X such that for my-a.e. ue B{] ,

1 X
IIJ{PN Y Fi(anuxo) =ka du.

n=1
Thus, by Egoroff’s theorem, for each k € N there exists a subset Ey < BlU with
my(Ey) > % and Ny € N such that for every N > Ny and u € Ej,

1
— F, Fi. d
an1 k(@nruxp) > = f kap.

Integrate this inequality over B{] to obtain

1
— Z Fk(antuxo)dmy(u) > = kad,u
By Corollary 39, for all n €N,

C
f Fr(apruxg)dmy(u) Sf F(aniuxp)dmy(u) < —F(xp) + b,
BU BU 21

1 1
where C=Crand b= Ezvol(Y)
Choose ng so that 5 zno 5= F(x9) < 1. Then for each n = ng and N > max(Ny, knyg),

kad,U< - Z 5 Fi(anruxg)dmy (u)

1
=—Z , Frlancuxo)dmy () + — Z Fr(ansuxo)dmy (u)
Nn no+1 BU

klN
<X

no+1

—F(Xo) +b

1
<1+— Z (C+b)=C+b+1.

n=np+1
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Thus,
kad/.LSZ(C+b+l).

Taking k — oo and using the monotone convergence theorem, we have F €
L' (). O

8. ISOLATION OF CLOSED ORBITS

In this section, we prove Theorem 4 and Theorem 5. Results in this section
are analogous to Section 10 of [27].

Proof of Theorem 4. We shall prove the following: for any two distinct closed
S-orbits Y =Sy and Z =Sz (H< S C G) of finite volume,

dist(Y N K, Z) > vol(Y) " Y0ryol(z) 1/0r,

where K is a compact subset of X and 6 is as in Definition 34. Recall that 6 ¢
is a global constant only depending on G and H (and thus, independent of the
choice of T', see Remark 35).

Let my denote the Haar probability measure on Y. Since my is an A-ergodic
S-invariant probability measure, my (A;Fz) = my(Fz). Thus, by integrating the
Margulis inequality

A(Fz) < cFyz + Eyvol(2)

(c is some positive constant smaller than 1) from Corollary 39 over Y, we get
E;
my(Fz) < ——vol(2).
1-c
Since K is compact, € = €x := minyeg inj(x) > 0 and so for log continuity of F»
applied to BS, there exists o = 05, (BS) > 1 such that for any x€ X and g € BS,
Fz(x)<0Fz(gx).

Recall that the log continuity coefficients for F; is independent of closed orbit
Z that only depends on the set that g belongs to (Proposition 36). Thus, o is a
global constant that only depends on K.

For any point ye Y N K,

fz0N = Fz(y) = 0Fz(gy)dmy(gy)

my (BS () fger(e)

9 B vl

omy(Fz) <
y (F7) od T—c

S5
mY(Be (y))
Lastly, we observe that dist(y, Z)_5F < fz(y). If Iz(y) is non-empty, then

=Y vl =dist(y, 2) "
velz(y)

If I7(y) is empty, then dist(y, Z) > e, h(y)™* and so
f2) = h(y) 2 h(y)*°" = 5" dist(y, 2) "
(Here, we are using that h =1 and 6 := min{6y/2,1/x} < 1/x.) O
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Proof of Theorem 5. We shall prove the following: there exists a global constant
Cg > 0 such that for any intermediate subgroup H< S C G,

#{Y : Y =Sy is a closed S-orbit and vol(Y) < R} < CGRdG/5F,

where dg is the dimension of Lie(G) and 0 is as in Definition 34.

We define constants p >0 and 1 >0 as in Lemma 37. Let p > 0 be a constant
such that my (X ~ X,) < 0.01 for every closed S-orbit Y = Sy (H< S C G and
y€Y) and let n = p be a constant so that the map g — gx is injective for all
x € X; and all

g € Box(n) := exp (B};ie(S)) exp (B)]/s)

(here, Lie(G) = Lie(S) @ Vs is the Lie algebra decomposition). Then, for any
connected component C of Y nBox(n)z with z € X, there exists some v € Vg
such that

C=Cy:=exp (B,%ie(s)) exp(v)z.
For R> 0, let
% (R)={Y :Y =Sy is closed S-orbit and R/2 <Vol(Sy) < R}.
By Theorem 4, for any distinct connected components C, and C,/ in

o

Yew(2k)

NBox(n)z,

we have that
lv—v'|| 5>, 272K/0r
The cardinality of any 272¢/ Or_separated set in B,‘]/S is, up to multiplicative

constant,
(zzk/ap) (d=ds)

Since vol(Box(1)) = n%, we can cover X, by M = O(n~%) many sets of the
form Box(n)z. Choose such a cover {Box(n)z;: j=1,.., M}.
Then,

#y(2F) <2781 % vol(v)
Yew(2k)

M
<27y vol(Cy).
Jj=1C,€eBox(n)z;

Since (1) vol(C,) = nds < 1 for each Cy, (2) HCy € Box(n)z;} < (22k/5f')(d0_d3) for
each Box(n)z;, and (3) M = O(1), we have

M
2—k+l Z Z VOI(CU) < 22k(dc—ds)/6p—k+l.
Jj=1C,€eBox(n)z;
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Recall that vol(Sy) = n% since the volume of the orbit needs to contain at
least one connected component C;, in some Box(n)z;. Let ng = |dslog,(n)] and
ng = [log,(R)]. Since

ngr
{Sy: Sy is closed and vol(Sy) <R} < | @(2"),

k:ﬂo

we get

nR
#{Y :Y = Sy is a closed S-orbit and vol(Y) <R} = ) #?Z/(Zk) « R%4cl0r

]Czﬂo

9. PROOF OF THE MAIN THEOREM

In this section we prove Theorem 2.

Proof of Theorem 2. For each point x € X, our choice of Ty will be Ty := h(x)"/°F.
Note that h(x) is bounded in the compact part of X and thus, Ty can be chosen
uniformly within a compact subset of X.

We fix a point x € X. Let (T, R) be a pair of real numbers such that T > T,
and R > 2 and suppose that x is (R,1/T)-Diophantine with respect to H. Our
final goal will be to show that there exist absolute constants D = D(dim(G)), A=
A(G/T, H), and C = C(G/T, H) independent of x, R, and T, such that condition
(2) of Theorem 2 holds: for all = AlogT,

my ({ue By : a;ux is not (R, R"°,R"")-Diophantine}) < CR™".
Recall that x" € X is (R, R~", R~P)-Diophantine with respect to H if and only
if
(1) inj(x) = R~P and

(2) for all intermediate subgroups H <€ S C G and all closed S-orbit Y = Sx’
with vol(Y) < R, we have dist(x, Y) = R~P.

Step 1: Recurrence to the compact part. First, we show that there exists Dy =
D;(dim(G)) >0 and A; = A;(G/T, H) > 0 such that for all D = D; and A = A, the
following is true: for all £ = AlogT,

my ({ue BY :inj(a,ux) < R°P}) < R,
Take A; =0Fty/log2. Then, for any ¢ = AlogT,
t=AlogT = Ajlog Ty = A log(h(x)'/%F) = A1 16 -log2 =t;,
and so by Corollary 17,

Cp
2t/l’h

(Ath)(x):f h(asux)dmy(u) < h(x)+ By,
BY

Chp

h(x) + Bh = 24 log T/ ty

h
= zAlog T/t h(x) + Bh

_ Ch
" 9(A1/65 1) 1og(h(x))

h(x)+ By, = Cp, + Bp,.
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For x' € X, if inj(x") < R™P, then by Proposition 26,
h(xl) > C2—1/m _inj(x)—llm > C2—1/m _RD/m.

Applying this observation to points a;ux and using Chebyshev’s theorem we
obtain,

my ({ue BY :inj(a,ux) < R"°}) < my ({ue BY : h(a,ux) > c; V'™ RP'™})
<CYMR=PIM (A ) (x)
< C7R—D/m'
where C; := Czll "(Cy, + By,) is a global constant. Recall that m is a constant that

depends only on dim(G) (see proof of Lemma 35). Thus, by taking D; = m, we
get the desired result.

Step 2: Avoidance principle. Let H € S C G be an intermediate orbit. First
we shall fix a single closed S-orbit Y = Sy with volume less that R, and show
that there exists D, = D> (dim(G)) > 0 and A, = A>(G/T, H) > 0 such that for all
D = D, and A = Ay, the following is true: for all ¢t = AlogT,

my ({ue BY : dist(a,ux, Y) < R"P}) < R7L

Then, we will use Lemma 6 and Corollary 5 to piece together the results for
different choices of Y: we show that there exists D3 = D3(dim(G)) > D5, such
that for all D = D3 and A= Ay, for all = AlogT,

my ({ue By :dist(a,ux,Y) < R™" for some Y € Og}) < R™*

(here, Op ={Y =Sy: H= S C G,Y is closed,vol(Y) < R} is the set of all closed
orbits of volume less than R).

Step 2.1: Avoiding a single closed orbit. Construct Margulis functions fy and
Fy with respect to Y as in Section 6. If Iy (x) is empty, then

fr0) = h(x) < T < 197,
Otherwise, we have

fr= Y Ivl%F =dist(x, V) Or#1y (x).

vely(x)

Since x is (R, 1/T)-Diophantine with respect to H, x is (R,1/T)-Diophantine
with respect to Y and thus, dist(x, Y) = 1/T. Combining with Proposition 25, we
have

dist(x, V)"0 #1y (x) < dist(x, V) "°F - C;vol(Y) < C; TP R.
Thus, using that h(x) < T*F , we conclude

Fy(x) = fy(x) + Aivol(Y) h(x) < Ci T®* R+ A, TPF R = C3 T°F R,

where Cg:= C; + 1, is a global constant independent of Y.
Now take Ay = 6rtr/log2 (here, tr is as in Theorem 38). If £ = Alog T, then

t= AlogT = Aylog Ty = Aslog h(x)'/%F = A 165 -log2 = tp
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and so by Corollary 39 we have

Cr Eovol(Y
it y (x) + Eavol(Y)
Cr
< - -
~ 2AlogT/tr

logT
-CrCgT°" R+ E>R

A¢(Fy(x) =

-CsT?* R+ E»R

( 1

<|—
- 2Ag/[p
= (CrCg+ E2)R.

If dist(x’, Y) < R™P for some x’ € X, then either there exists v € Iy (x') with
lvll < R~P or eph(x) ™ < RD. In either case, we have that

Fy(x) = fr (x) + Livol(Y) h(x') > min{RDaF,Alre}l/KRD/K} > Cy - RPOF,

where Cy := )Lﬂf}l’ ¥ is a global constant independent of Y. (Here, we are again
using that 6 f := min{dy/2,1/x} and thus 6 < 1/x.)

Applying this observation to points a;ux and using Chebyshev’s theorem we
obtain,

my ({ue BY :dist(a,ux,Y) <RP}) < my ({u € BV : Fy(a,ux) = Cy- RD6F})
< Cq'R7P% . A, (Fy (x))
< CyoR™ PO,

where Cyg := (CrCg+D3)/Cq is another global constant independent of Y. Recall
that 6 is a global constant that depends only on G and H (see Remark 35). Take
Dy, =2/6F.

Step 2.2: Avoiding all closed orbits of small volume. By Lemma 6, the number
of intermediate subgroups H < S C G is finite; we shall denote this number as
N(G, H). By Theorem 5, for each fixed S, the number of closed S-orbits Y with
vol(Y) < R is bounded by CﬁRdG/ OF Therefore, the cardinality of the set

Or={Y =Sy: H<SCG,Y is closed,vol(Y) < R}
is bounded above by N(G, H) - CsR%%F and so
my ({ue BY : dist(a,ux,Y) < R™P for some Y € Og})

< Y my({ue BlU dist(a,ux,Y) < R_D})
YeOg

< Z CQR_(DaF_l)
YEOR

< N(G, H) - CgR%'%r . CqR~(POr—D
= N(G'H)CGCIO -R_D5F+d(;/§p+1‘

Take D3 = D3(dim(G)) := (dg/0r+2)/6f (so that —Dég+dg/ép+1= -1 for
any D = D3) and we get the desired avoidance principle: for all D = D3 and
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A= Ay, forall t= AlogT,
my ({u e BY : dist(a,ux,Y) < R™" for some Y € Og}) < C11R™!

(here, Cy; := N(G, H)CgCyp is another global constant).
Now combine the results of Step 1 and Step 2. Take

D = D(dim(G)) := max{D;, D3},
A= A(G/T, H) :=max{A;, A}, and C = C(G/T, H) := C7 + C11, and we get
my ({ue Bf] - a;ux is not (R, R~?, R™P)-Diophantine with respect to H})
< my ({ue BY :inj(a,ux) < R°P})
+my ({ue By :dist(a,ux,Y) < R™" for some Y € Og})

<C;R'+Ccp R '=CcRr™. O
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