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AN AVOIDANCE PRINCIPLE AND MARGULIS FUNCTIONS

FOR EXPANDING TRANSLATES OF UNIPOTENT ORBITS

ANTHONY SANCHEZ AND JUNO SEONG

(Communicated by Alex Eskin)

ABSTRACT. We prove an avoidance principle for expanding translates of unipo-

tent orbits for some quotients of semisimple Lie groups. In addition, we prove

a quantitative isolation result of closed orbits and give an upper bound on the

number of closed orbits of bounded volume. The proofs of our results rely on

the construction of a Margulis function and the theory of finite dimensional

representations of semisimple Lie groups.

1. INTRODUCTION

Avoidance principles—quantifying how much time trajectories avoid certain

subsets of the ambient space—have been fruitful in the study of dynamical

systems. An important example is the non-divergence of unipotent flows which

goes back to Margulis [26]. A quantitative version of non-divergence appears in

Dani [6] and was key in Ratner’s seminal theorems on unipotent flows [28, 29,

30, 31].

Two successful strategies to prove such avoidance principles are the construc-

tion of Margulis functions which originated in the influential work of Eskin–

Margulis–Mozes [13] and the linearization technique of Dani–Margulis [8].

The flexibility offered by the construction of Margulis functions makes them

applicable to settings where unipotent dynamics are not available or poorly un-

derstood. For example, they appear in the important work of Benoist–Quint

[3, 4, 5] and the recent generalizations of Eskin–Lindenstrauss [10, 11] on sta-

tionary measures of homogeneous spaces. Additionally, Margulis functions are

utilized in Eskin–Mirzakhani–Mohammadi [15] to prove an avoidance principle

that was crucially used to show an analog of Ratner’s orbit closure theorem.

We highlight some other examples to indicate the breadth of Margulis func-

tions, but we recommend the wonderful survey of Eskin–Mozes [16] for a more

complete overview of the literature. Margulis functions appear: in the setting

of Teichmüller dynamics by Eskin–Masur [14] and Athreya [1], in the space
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of lattices by Kadyrov–Kleinbock–Lindenstrauss–Margulis [21] and Kleinbock–

Mirzadeh [23], for finite homogeneous spaces by Guan–Shi [20] and Rodriguez-

Hertz–Wang [32], for infinite homogeneous spaces by Mohammadi–Oh [27], and

in the space of closed subgroups of a semisimple Lie group equipped with the

Chabauty topology in the work of Gelander–Levit–Margulis [19] and Fraczyk–

Gelander [17].

We use Margulis functions and the theory of finite dimensional representa-

tions of semisimple Lie groups to prove an avoidance principle. Broadly speak-

ing, our results rely on the hyperbolicity of diagonal actions and the fact that

the perturbation by a foliation often places one in a general position where one

expects expansion by the diagonal direction.

Throughout this paper, G will be a semisimple algebraic Lie group without

compact factors and H will be a semisimple subgroup of G without compact

factors such that CG (H) is finite. We let X :=G/Γ where Γ is a lattice.

We equip Lie(G) with an inner product that induces a right-invariant Rie-

mannian metric on G . The notions of distance and volumes make sense with

respect to this Riemanninan metric. Denote by by inj(x) the injectivity radius at

point x. See the next section for formal descriptions of these notions.

DEFINITION 1. For a pair of positive real numbers (V ,d), we say that a point

x ∈ X is (V ,d)-Diophantine with respect to H if the following holds: for any

intermediate subgroup H ¦ S ªG and any closed S-orbit Y = Sx ′ with vol(Y ) f

V , the distance between x and Y is at least d ; namely, dist(x,Y ) g d .

For r > 0, if a point x ∈ X is (V ,d)-Diophantine with respect to H and inj(x) g

r , then we say that x is (V ,d ,r )-Diophantine with respect to H .

We fix a one parameter subgroup of diagonalizable elements {at } ¦ H and let

U be the part of the unstable horospherical subgroup with respect to {at } that

is also in H :

{u ∈ H : at ua−t → e as t →−∞}.

We work with the operators

(Ar,t f )(x) =
1

mU (BU
r )

∫

BU
r

f (at ux)dmU (u),

where BU
r is the ball of radius r in U and mU is the Haar measure on the Lie

subgroup U normalized so that BU
1 has measure 1. Here the implicit metric on

U comes from the identification of Lie(U ) with a Euclidean space. See the next

section for details. When considering A1,t , we use the notation At .

We use the operators Ar,t to prove a result on the behavior of points of the

form at ux for u ∈ BU
1 and large t > 0. The following is our main theorem.

THEOREM 2 (Avoidance Principle). Let G be a semisimple group without com-

pact factors and H be a semisimple subgroup without compact factors such that

CG (H) is finite. Let X =G/Γ where Γ is a lattice. There exist absolute constants

D = D(dim(G)) > 0, A = A(G/Γ, H) > 0, and C =C (G/Γ, H) > 0 such that the fol-

lowing dichotomy holds: for any x ∈ X , there exists Tx > 0 such that for any pair

of T > Tx and R > 2, either:
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(1) x is not (R,1/T )-Diophantine with respect to H or

(2) for all t g A logT ,

mU

({

u ∈ BU
1 : at ux is not (R,R−D ,R−D )-Diophantine w.r.t. H

})

<C R−1.

Moreover, if K ¦ X is compact, then Tx can be chosen to be uniform over all x ∈ K .

REMARK 3. We note a generalization of our main result for solvable epimor-

phic subgroups. Recall, a subgroup G ′ of a real algebraic group G is called

epimorphic in G if any G ′-fixed vector is also G-fixed for any finite dimensional

algebraic representation of G . Proposition 2.2. of Shah and Weiss [34] gives an

analogous result to our Linear Algebra Lemma (Lemma 8) for solvable epimor-

phic groups. Hence, it is plausible that our result can be further generalized so

that BU
1 in condition (2) is replaced by B N

1 where N ¦U is an algebraic unipo-

tent subgroup normalized by {at }, such that the subgroup generated by {at } and

N is solvable and epimorphic in G .

A version of Theorem 2 was used in Lindenstrauss–Mohammadi–Wang [25]

for SL(2,C) and SL(2,R)×SL(2,R) to obtain an absolute Diophantine estimate.

Additionally, Lindenstrauss–Margulis–Mohammadi–Shah [24] prove a similar

avoidance principle for unipotent flows, but work in a more general setting. It

is also similar to the work of Bénard–de Saxcé[2].

To prove our main result, we need results on the quantitative isolation of

closed orbits which are interesting in their own right. The following theorem is

analogous to Lemma 10.3.1 of Einsiedler–Margulis–Venkatesh [9].

THEOREM 4 (Quantitative Isolation of closed orbits). There exists a global con-

stant D = D(dim(G)) > 0 such that the following holds: for all intermediate sub-

group H ¦ S ªG and closed S-orbits Y = Sy and Z = Sz of finite volume,

dist(Y ∩K , Z ) kK vol(Y )−D vol(Z )−D ,

where K is a compact subset of X .

We note that the proof of [9, Lemma 10.3.1], relies on uniform spectral gap

for periodic S-orbits (H ¦ S ªG) in congruence quotients. Our proof is arguably

softer. In particular, it does not require Γ to be arithmetic. The main idea of the

proof is to estimate the size of the additive constant of a Margulis function, and

goes back to Margulis’ unpublished notes (see also [27, Theorem 1.1]).

Using Theorem 4 above, an upper bound can be obtained on the number of

closed orbits of bounded volume. A qualitative version of this theorem is orig-

inally due to Dani–Margulis [8]. The theorem below is analogous to Corollary

10.7 of Mohammadi–Oh [27] for geometrically finite quotients of H3.

THEOREM 5 (Upper bound for the number of closed orbits of bounded volume).

There exists a global constant D = D(dim(G)) k 1 such that for any intermediate

subgroup H ¦ S ªG,

#{Y : Y = Sy is a closed S-orbit and vol(Y ) f R} j RD .
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2. PRELIMINARIES

In this section we fix notation.

Equip Lie(G) with the Killing form. This induces

1. a norm ∥ ·∥ on Lie(G),

2. a right-invariant Riemannian metric on G that induces a right-invariant

metric on G denoted as distG ,

3. a metric on X =G/Γ denoted as dist so that the canonical projection G →

X is a local isometry, and

4. a volume for a closed orbit H-orbit on X induced from the Riemannian

structure on G which we denote with vol.

With respect to the norm ∥ ·∥ on Lie(G), we can define the unit ball in Lie(G)

which we denote as B Lie(G)
1 .

We choose a inner product on Lie(U ) that comes from the identification of

Lie(U ) to RdU where dU denotes the dimension of Lie(U ). For any ¸> 0, we can

use the inner product on Li e(U ) to define a norm (resp. metric) on Lie(U ) (resp.

U ). This allows us to make sense of the unit ball in Lie(U ) which we denote as

B Lie(U )
1 (resp. in U which we denote as BU

1 ).

For each x ∈ X , we denote by inj(x) the injectivity radius at point x; the supre-

mum of all ¸ > 0 for which the projection map g → g x from G to X = G/Γ is

injective on BG
¸ . In Section 6, we shall choose a specific εX > 0 and denote

XεX
:= {x ∈ X : inj(x) g εX } as the compact part of X . Since the exponential map

Lie(G) → G defines a local diffeomorphism, there exists an absolute constant

Ã0 > 1 such that for all w ∈ Lie(G) with ∥w∥ f ϵX and x ∈ XεX
,

Ã−1
0 ∥w∥ f dist(x,exp(w)x) fÃ0∥w∥.

By noting that the canonical projection G → X is a local isometry, we have a

way of locally measuring distances in X with the norm on Lie(G).

For any intermediate subgroup H ¦ S ¦G , we denote the dimension of Lie(S)

by dim(S) or simply, dS .

We will denote the Haar measure on G by mG . For the horospherical sub-

group U of G , we denote the Haar measure on U by mU .

Let T denote a maximal Cartan subgroup containing (at )t∈R. Let Ä : G →

GL(V ) be a finite dimensional representation. Let ¨ denote the root system of

Lie(G) and decompose the vector space into weight spaces V =·´∈¨V´ where

V´ = {v ∈V : Ä(Ä)v = exp(´(log(Ä)))v,∀Ä ∈ T }

is the weight space with weight ´ ∈¨. Choose a basis (v´,i )
dim V´

i=1
so that every

v ∈V can be written in the form

v =
∑

´∈¨

dim V´
∑

i=1

c´,i v´,i

for some scalars c´,i .

Let S be an intermediate subgroup with H ¦ S ªG and consider the decom-

position of Lie(G) given by Lie(G) = Lie(S)·VS where VS is Ad(Lie(S))-invariant,
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but not necessarily irreducible. If we decompose VS into Ad(Lie(S))-invariant

subspaces, then each subspace will be non-zero since CG (H) is finite. This will

be an important fact that we use throughout the paper when working with the

adjoint representation.

We end the section by introducing two results from Einsiedler–Margulis–

Venkatesh [9] on intermediate subgroups H ¢G .

LEMMA 6 ([9, Lemma 3.4.1]). Suppose H ¦G are semisimple Lie groups without

compact factors such that CG (H) is finite. Then there are only finitely many inter-

mediate subgroups H ¦ S ªG. Each such S is semisimple and without compact

factors.

LEMMA 7 ([9, Appendix A]). If G is a semisimple Lie group without compact

factors, then there exists a finite collection of semisimple subgroups H such that

the following holds: for any semisimple Lie subgroup H ¦ G with no compact

factors and CG (H) finite, there exist H ′ ∈H and g ∈G such that H = g H ′g−1.

3. LINEAR ALGEBRA LEMMA

In this section we state some key technical lemmas related to the action of

horospherical subgroups and diagonal subgroups from [22] and [33] and prove

extensions of these results. The main result of this section applies to represen-

tations that are not necessarily irreducible.

LEMMA 8 (Linear algebra lemma). Suppose Ä : G → GL(V ) is a faithful finite

dimensional representation of a semisimple Lie group G. Suppose V decomposes

into non-trivial and irreducible subspaces V = ·i Vi . There exists an absolute

constant 0 < ¶0 = ¶0(dim(G),V ) j 1 such that for all 0 < ¶ < ¶0 and 0 < c < 1,

there exists t¶,c = t¶,c (G , H) > 0 with

1

mU

(

BU
2

)

∫

BU
2

1

∥Ä(at u)v∥¶
dmU (u) <

c

∥v∥¶

for every v ∈V , t g t¶,c .

We postpone the proof until the next page after collecting some lemmas. In

brief, these lemmas show that the action of the diagonal and horspherical sub-

groups on a vector space expand the norm. While we will follow the exposition

of Katz [22], we would like to draw the reader’s attention to Shah [33], specifi-

cally Section 5.

The following lemmas are essentially Lemma 3.1 and Lemma 3.2 of [22].

LEMMA 9 ([22, Lemma 3.1]). Let u = exp(u) ∈ BU
r . There exists polynomials f´, j :

B Lie(U )
r →R with

Ä(u)v =
∑

´∈¨

dimV´
∑

j=1

f´, j (u)v´, j

for any v ∈V .

Proof. The proof of Lemma 3.1 in [22] works for any u ∈ BU
r where r > 0.
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LEMMA 10 (Anchor Lemma, [22, Lemma 3.2]). Let Ä : G → GL(V ) be a finite

dimensional irreducible representation of a semisimple Lie group G. Then for

any r > 0 and non-zero v ∈V , there is a positive root ´ ∈¨
+ and 1 f j f dim V´

such that

sup
u∈BU

r

∣

∣ f´, j (u)
∣

∣> 0.

Proof. The proof of Lemma 3.2 in [22] works for any open ball BU
r with r > 0.

By the Anchor lemma, the projection of the action of U in the expanding

direction is nonzero. Thus, the norm under the action of at grows. By noting

that Lemmas 3.1 and 3.2 of Katz [22] hold for any open ball BU
r , we have the

following minor generalization of Lemma 2.3 of [22].

LEMMA 11. Suppose Ä : G →GL(V ) is an irreducible finite dimensional represen-

tation of a semisimple Lie group G. There exists 0 < ¶0 = ¶0(dim(G)) j 1 such

that for all 0 < ¶< ¶0 and 0 < c < 1, there exists tc > 0 with

1

mU

(

BU
2

)

∫

BU
2

1

∥Ä(at u)v∥¶
dmU (u) <

c

∥v∥¶

for every v ∈V and t g tc .

We now give a proof of the lemma stated at the beginning of the section.

Proof of Lemma 8. This essentially follows from the irreducible version of [22].

We equip V = ·i Vi with the max norm. That is, for v = (vi ), ∥v∥ = maxi ∥vi∥.

We also note that the inequality we aim to prove is independent of the choice

of norm.

Let 0 < c < 1 and 0 < ¶< ¶0. We will choose ¶0 in the course of the proof.

Given v = (vi ), let i0 be the index with ∥v∥ = ∥vi0
∥. Then,

∥Ä(at u)v∥ = max
i

∥Ä(at u)vi∥ g ∥Ä(at u)vi0
∥.

By the irreducible case (Lemma 11), we have the existence of ¶i ∈ (0,1) such

that for every ¶ ∈ (0,¶i ) contraction occurs for every vi ∈ Vi and t sufficiently

large. To finish the proof, take ¶0 := mini ¶i and we have

1

mU

(

BU
2

)

∫

BU
2

1

∥Ä(at u)v∥¶
dmU (u) f

1

mU

(

BU
2

)

∫

BU
2

1

∥Ä(at u)vi0
∥¶

dmU (u)

<
c

∥vi0
∥¶

=
c

∥v∥¶

for every v ∈V and t sufficiently large.

Now we apply the above Linear algebra lemma to a specific representation

which will be used to control the height function. First we give a definition. See

also the end of Section 2 of Eskin–Margulis [12].

DEFINITION 12 (Maximal Parabolic Subgroups). When a lattice Γ is non-uniform,

we define a finite collection ∆ of maximal parabolic subgroups of G as follows.

A parabolic subgroup P of G is called Γ-rational if Γ∩Ru(P ) is a lattice in Ru(P ),
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where Ru(P ) is the unipotent radical of P . If G is of real rank 1, then we let

∆ = {P0} where P0 is a Γ-rational minimal parabolic subgroup of G . The exis-

tence of P0 follows from Garland–Raghunathan [18]. If the real rank of G is not

less than 2, then by the Margulis Arithmiticity theorem, Γ is arithmetic. Hence

we let ∆= {P1,P2, ...,Pr } where Pk are standard parabolic subgroups of G , with

respect to its maximal Q-split torus A0. For every 1 f k f r , there exists a finite-

dimensional irreducible representation Äk : G → GL(Wk ) and vectors wk ∈ Wk

such that the stabilizer of Rwk is Pk .

REMARK 13 (Upper bound on the dimension of Wk ). For later computational

purposes (see Lemma 19 and Lemma 33), we take Wk to have dimension no

greater than dim(G)2. We can do so by choosing

Wk :='
dim(Ru (Pk ))Lie(Ru(Pk )) ¦'

dim(Ru (Pk ))Lie(G)

and wk to be a normalized diagonal element of Wk .

The following result is an analogue of Condition A of Eskin–Margulis [12]. We

can deduce it by applying Lemma 8 to the representation above.

LEMMA 14 (Linear algebra lemma for height functions). Let Γ be a non-uniform

lattice of G and consider the representation Ä : G → GL(Wk ). Then there exists

0 < ¶1 = ¶1(dim(G)) j 1 such that for all 0 < ¶ < ¶1 and 0 < c < 1, there exists

t¶,c = t¶,c (G , H) > 0 such that for every v ∈Gwk and t g t¶,c ,

1

mU

(

BU
2

)

∫

B Lie(U )
2

1

∥Äk (at u)v∥¶
dmU (u) <

c

∥v∥¶
.

4. ABSTRACT MARGULIS INEQUALITY

In this section we prove an abstract result that yields exponential decay for

Margulis functions.

THEOREM 15. Suppose F : X → (0,∞) satisfies the following properties

• (Log Continuity) For any compact subset K ¢ H, there exists Ã=ÃF (K ) > 1

such that for all g ∈ K and x ∈ X ,

Ã−1F (x) f F (g x) fÃF (x)

• (Margulis Inequality for F) There exist constants 0 < c < 1, t = tc k 1, and

b > 0 such that for any x ∈ X ,

(A2,t F )(x) :=
1

mU

(

BU
2

)

∫

BU
2

F (at ux)dmU (u) < cF (x)+b.

Then, there exist absolute constants C > 0 and B > 0 such that for any t g tc ,

(At F ) fC · c t/tc F +B.

Proof. Step 1: We find an upper bound on Ant F .

Recall,

(A2,t f )(x) :=
1

mU

(

BU
2

)

∫

BU
2

F (at ux)dmU (u).
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By iterating our operator, we have
(

An
2,t F

)

(x) < cnF (x)+B ′,

where B ′ =O(b) = b
∑n

j=0
c j . On the other hand,

(

An
2,t F

)

(x)

=
1

mn
U

(

BU
2

)

∫

(

BU
2

)n−1

(

1

mU

(

BU
2

)

∫

BU
2

F
(

antÆn(u⃗)u1x
)

dmU (u1)

)

d(mU )n−1(u⃗),

where Æ : (BU
2 )n−1 →U is given by

u⃗ = (un , . . . ,u2) 7→Æn(u⃗) =
(

a−(n−1)t un a(n−1)t

)

· · · (a−2t u3a2t )(a−t u2at ).

Hence, there must exist some u⃗ ∈ (BU
2 )n−1 so that

1

mU

(

BU
2

)

∫

BU
2

F
(

antÆn(u⃗)u1x
)

dmU (u1) < cnF (x)+B ′.

Now note that since t is large, Æ((BU
2 )n−1) ¦ BU

1 and so Æ(u⃗)−1BU
1 ¦ BU

2 . Hence,

1

mU

(

BU
2

)

∫

Æ(u⃗)−1BU
1

F
(

antÆn(u⃗)u1x
)

dmU (u1)

f
1

mU

(

BU
2

)

∫

BU
2

F
(

antÆn(u⃗)u1x
)

dmU (u1).

Make the substitution v =Æ(u⃗)−1u and note that mU is translation invariant to

obtain

1

mU

(

BU
2

)

∫

Æ(u⃗)−1BU
1

F
(

antÆn(u⃗)u1x
)

dmU (u1) =
1

mU

(

BU
2

)

∫

BU
1

F (ant v x)dmU (v).

Putting everything together, we obtain

(Ant F )(x) =

∫

BU
1

F (ant v x)dmU (v) < mU

(

BU
2

)

cnF (x)+B ,

where B = B ′mU (BU
2 ).

Step 2: Now we use the previous step to show for arbitrarily large t g tc we have

a bound on At F .

Let K1 = {at : 0 f t f tc } be a fixed compact set and let Ã1 = ÃF (K1) be the

constant from the log continuity property of F . Suppose that t g tc , and let

+t/tc, = n. Since 0 f t −ntc < tc , by log-continuity of F ,
∫

BU
1

F (at ux)dmU (u) =

∫

BU
1

F
(

at−ntc
·antc

ux
)

dmU (u)

fÃ1

∫

BU
1

F (antc
ux)dmU (u).

By Step 1,
∫

BU
1

F (antc
ux)dmU (u) = (Ant F )(x) f mU

(

BU
2

)

cnF (x)+B

JOURNAL OF MODERN DYNAMICS VOLUME 20, 2024, 409–439



AN AVOIDANCE PRINCIPLE AND MARGULIS FUNCTIONS 417

and thus,
∫

BU
1

F (at ux)dmU (u) fÃ1

(

cnmU

(

BU
2

)

F (x)+B
)

=Ã1mU

(

BU
2

)

c+t/tc,F (x)+Ã1B

fÃ1mU

(

BU
2

)

c t/tc−1F (x)+Ã1B.

Letting C =Ã1mU (BU
2 )c−1 and relabeling Ã1B as B finishes the proof.

5. HEIGHT FUNCTIONS AND MARGULIS INEQUALITY

For this section, we make the following assumption: Γ will be taken to be a

non-uniform lattice of G .

Thus, the space X =G/Γ has a cuspidal part and we construct a height func-

tion h on X that measures how high a point x ∈ X is in the cusp. We prove that

h satisfies a Margulis inequality.

This is why we assume Γ is non-uniform; the height function only makes

sense in this setting. In Section 6.1, we will make a small modification so that

our results hold in the compact case as well.

The height function in use is essentially the same as in Eskin–Margulis [12].

However, instead of taking the average over some random walk on X , we av-

erage over the expanding translates of BU
1 , the unit ball in the horospherical

subgroup.

THEOREM 16. For any 0 < ¶ < ¶1 (¶1 as in Lemma 14), there exists a height

function h = h¶ : X → (0,∞) such that the following holds: for any 0 < c < 1, there

exists tc > 0 such that for any t g tc , there exists an absolute constant Bt > 0 such

that

A2,t h < ch +Bt .

We will use Lemma 14 in the construction of the height function of Theorem

16. As such, we only consider 0 < ¶ < ¶1. Also note that Theorem 16 directly

implies the (Margulis inequality) hypothesis in Theorem 15 for h. In Lemma

19 we shall see that h is log-continuous also, and thus we get the following

exponential decay property for h.

COROLLARY 17. For any 0 < ¶ < ¶1, height function h = h¶ (the same height

function as in Theorem 16) satisfies the following: there exist th > 0, Ch > 0 and

Bh > 0 such that for all t g th ,

At h f
Ch

2t/th
·h +Bh .

Proof. The result directly follows from Theorem 15, Theorem 16, and Lemma

19. We note that th is equal to t1/2, defined as in Theorem 16.

Construction of the height function h. The following construction is from Sec-

tion 3.2 of Eskin-Margulis [12]. The construction of individual functions dk ,

which are height functions with respect to parabolic subgroups Pk from Defi-

nition 12, appears in Dani–Margulis [7] too. See also Guan–Shi [20] where they
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used this height function to compute Hausdorff dimensions of divergent trajec-

tories.

Let P0 denote a minimal Γ-rational parabolic subgroup of G . Then we have

the Langlands decomposition P0 = M0 A0N0 where M0 is semisimple, A0 is

abelian, and N0 is the unipotent radical of P0. If G has real rank greater than 2,

then we let A0 to be the fixed maximal Q-split torus of G in Definition 12. Let a

denote the Lie algebra of A0. We shall identify a with its dual via the Killing form.

Let ³1,³2, . . . ,³r denote the roots which we view as elements of the dual of a. A

Siegel set is a set S= K MA N where K is the maximal compact subgroup of G ,

M ¦ M0 and N ¦ N0 are compact, and A =P {a ∈ A0 : ³k (log a) <C for all 1 f

k f r } for some positive constant C .

Note that for appropriate choices of M , N , and C , there exists a finite set

J ¦ G such that for every g ∈ G , the intersection S∩ gΓJ is not empty. See

Dani–Margulis [8] for details.

For 1 f k f r , define dk (g ) := ∥Äk (g )wk∥ where Äk : G →GL(Wk ) and wk ∈Wk

are defined as in Definition 12, with respect to parabolic subgroups Pk . By

structure theory, there exists absolute constants C0 and c1,c2, ...,cr such that for

each 1 f k f r ,

dk (g ) = dk (a) and | log(dk (a))− ckωk (log a)| <C0

for all g ∈G where g = kman is the Langlands decomposition of g with respect

to Pk and ωk is the co-root corresponding to ³k ; i.e., ωk (³k ) = 1 and ωk (³ j ) = 0

for all j ̸= k. Let

´k (g ) = max
µ∈Γ

1

dk (gµ)1/ck
.

Also, for x = gΓ ∈ X , we shall define ´k (x) :=´k (g ).

REMARK 18. There exists an absolute constant C =C (G/Γ) > 1 such that for any

g ∈G and g1 ∈S∩ gΓJ ,

C−1´k (g1) <´k (g ) <C´k (g1).

Lastly, we choose a sequence of positive real numbers {qk }r
k=1

so that
∑

k qkωk

belongs to the postive Weyl chamber of a and let

hk (g ) =´k (g )1/qk .

For later use (see Proposition 22), we shall take {qk }r
k=1

to be normalized so that

min
1fkfr

{ck qk } = 1.

Equipped with this construction from Eskin-Margulis [12], we define the

height function that we use.

Our height function h will be defined to be

h :=C∗

r
∑

k=1

h
¶∗

k
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for some ¶∗ and C∗. The condition ¶∗ j 1 will be later verified in the proof

of Proposition 22 so that h satisfies the Margulis inequality, and the constant

C∗ k 1 will be later chosen in Remark 24 so that h is bounded away from 1.

LEMMA 19 (Log continuity of the height function). For any compact subset K ¢

G, there exists Ãh = Ãh(K ) g 1 such that for all g ∈ K and x ∈ X ,

Ã−1
h ·h(x) f h(g x) fÃh ·h(x).

Moreover, Ãh can be chosen to be a constant only depending on a compact set K

and dim(G), each of which will be independent of lattice Γ.

Proof. For each 1 f k f r , the map dk = ∥Äk (·)wk∥ is log continuous. Thus, there

exists Ãk =Ãk (K ) such that for all g ′ ∈ K and g ∈G ,

Ã−1
k ·dk (g ) f dk (g ′g ) fÃk ·dk (g ).

Note that Ãk only depends on compact set K and dim(Wk ). By Remark 13,

dim(Wk ). f dim(G)2) so that Ã := max1fkfr {Ãk } is a constant only depending on

K and dim(G).

Now for each 1 f k f r , let Ã′
k

:= Ã1/ck , where ck are the constants used to

define ´k . Then, for all g ′ ∈ K and g ∈G ,

(Ã′
k )−1

·´k (g ) f´k (g ′g ) fÃ′
k ·´k (g ).

If the maximum in ´k (g ′g ) is achieved by the same µ ∈ Γ as in ´k (g ), then the

result directly follows from log continuity of dk and definition of Ã′
k

. Suppose

that the maximum is achieved by different choice of µ;

´k (g ) =
1

dk (gµ0)1/ck
and ´k (g ′g ) =

1

dk (g ′gµ1)1/ck

for some µ0 ̸= µ1 ∈ Γ. Then,

´k (g ′g ) >
1

dk (g ′gµ0)1/ck
= dk (g ′gµ0)−1/ck g (Ã ·dk (gµ0))−1/ck = (Ã′

k )−1
·´k (g )

and

´k (g ′g ) = dk (g ′gµ1)−1/ck f (Ã−1
·dk (gµ1))−1/ck <Ã′

k ·dk (gµ0))−1/ck =Ã′
k ·´k (g ).

Lastly, by definition

h :=C∗

r
∑

k=1

h
¶∗

k
=C∗

r
∑

k=1

´
¶∗/qk

k
,

so it follows that the height function h has log continuity with constant

Ãh := max
1fkfr

{

(Ã′
k )¶∗/qk

}

=Ãmax1fkfr {¶∗/ck qk }
=Ã¶∗/min1fkfr {ck qk }

=Ã¶∗ .

(Here, we are using the fact that the {qk }r
k=1

are normalized to satisfy the con-

dition that min1fkfr {ck qk } = 1.) Since ¶∗ =
1
2
¶1 is a constant only dependent

on dim(G) (see Lemma 14), Ãh is only dependent on the compact set K and

dim(G).
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The following lemma is a direct result of equation (33) from Eskin–Margulis

[12].

LEMMA 20. For any constant C > 1, there exists an absolute constant DC =

DC (G/Γ) > 1 such that the following holds: if for some 1 f k f r and g ∈G there

exist g1 ∈S∩ gΓJ and g2( ̸= g1) ∈ gΓJ such that dk (g2) <C dk (g1), then

hk (g ) f DC

∏

j ̸=k

h
¼ j ,k

j
(g )

where ¼ j ,k =
q j |+³ j ,³k ,|

qk +³k ,³k ,
.

In view of Remark 18, we can rewrite the above Lemma 20 as follows.

LEMMA 21 (Upper bound for hk ). For any constant C > 1, there exists an absolute

constant D ′
C = D ′

C (G/Γ) > 1 such that the following holds. If ´k (g ) = 1
dk (gµ0)1/ck

for some µ0 ∈ Γ and there exists µ1( ̸= µ0) ∈ Γ such that dk (gµ1) <C dk (gµ0), then

hk (g ) f D ′
C

∏

j ̸=k

h
¼ j ,k

j
(g ).

Now, we replace Condition A of Eskin–Margulis [12] with Lemma 14 and

prove an Margulis inequality for our averaging operator At .

PROPOSITION 22 (Upper bound for At h¶
k

). For any 0 < ¶< ¶1 and 0 < c < 1, for

all t g t¶,c (where t¶,c is as in Lemma 14), there exists an absolute constant D t > 0

(depending only on t) such that for any 1 f k f r ,

(

A2,t h¶
k

)

(g ) :=
1

mU

(

BU
2

)

∫

BU
2

h¶
k (at ug )dmU (u) f ch¶

k (g )+D t

∏

j ̸=k

h
¶¼ j ,k

j
(g )

for any g ∈G.

Proof. Let 1 f k f r be fixed. If for every at ug (varying u over BU
2 ) the maximum

in ´k is achieved by the exact same µ ∈ Γ as in ´k (g ), then we get (A2,t h¶
k

)(g ) f

ch¶
k

(g ) directly from Lemma 14, since

hk (g ) =
1

dk (g )(¶/ck qk )
=

1

∥Äk (g )wk∥
(¶/ck qk )

and ¶/ck qk < ¶1/ck qk f ¶1. (Here we are using the fact that the {qk }r
k=1

are

normalized to satisfy min1fkfr {ck qk } = 1.)

Suppose that the maximum in ´k is achieved by a different µ for some u ∈ BU
2 ;

´k (g ) =
1

dk (gµ0)1/ck
and ´k (g ′g ) =

1

dk (g ′gµ1)1/ck

for some g ′ ∈ at BU
2 and µ0 ̸= µ1 ∈ Γ. By definition of ´k , compactness of at BU

2 ,

and log continuity of dk , we have

dk (gµ1) <C dk (g ′gµ1) <C dk (g ′gµ0) <C 2dk (gµ0),
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where C =Ct ,k =Ãdk
(at BU

2 ). By Lemma 21 and by log continuity of hk ,

1

mU

(

BU
2

)

∫

BU
2

h¶
k (at ug )dmU (u) f

1

mU

(

BU
2

)

∫

BU
2

C ′h¶
k (g )dmU (u) =C ′h¶

k (g )

fC ′D ′

C 2

∏

j ̸=k

h
¶¼ j ,k

j
(g ),

where C ′ =C ′
t ,k

=Ãhk
(at BU

1 ), and D ′

C 2 is defined as in Lemma 21, for our choice

of C =Ct ,k . We note that C =Ct ,k , C ′ =C ′
t ,k

, and D ′

C 2 = D ′

C 2
t ,k

are constants only

depending on t and k. Thus, by taking D t := max1fkfr {C ′
t ,k

D ′

C 2
t ,k

}, we get the

desired result.

THEOREM 23. For any triple of 0 < ¶ < ¶1, 0 < c < 1, and t g t¶,c/2 (t¶,c/2 as in

Lemma 14), there exists 0 < ε= εt ,c j 1 such that the height function h = ht ,c :=
∑r

k=1
(εhk )¶ satisfies

A2,t h f ch +1.

Proof. By Proposition 22, we have

A2,t h¶
k f

c

2
·h¶

k +D t ·
∏

j ̸=k

h
¶¼ j ,k

j
.

Taking the sum over all 1 f k f r and multiplying ε¶ to both sides of the above

equation yields,

A2,t

(

r
∑

k=1

(εhk )¶

)

f
c

2
·

r
∑

k=1

(εhk )¶+D t ·

r
∑

k=1

εk

∏

j ̸=k

(εh j )¶¼ j ,k ,

where εk = ε¶·(1−
∑

j ̸=k ¼ j ,k ) for each 1 f k f r .

Since
∑

k qkωk belongs to the positive Weyl chamber, we have that

∑

j ̸=k

¼ j ,k =
∑

j ̸=k

q j |+³ j ,³k,|

qk+³k ,³k,
< 1

for each 1 f k f r . See also Equation (35) of [12]. Hence, by Jensen’s inequality

∏

j ̸=k

(εh j )¶¼ j ,k = exp

(

∑

j ̸=k

¼ j ,k ·

(

log(εh j )¶
)

+

(

1−
∑

j ̸=k

¼ j ,k

)

·0

)

f
∑

j ̸=k

¼ j ,k ·exp
(

log(εh j )¶
)

+

(

1−
∑

j ̸=k

¼ j ,k

)

·exp(0)

=
∑

j ̸=k

¼ j ,k (εh j )¶+

(

1−
∑

j ̸=k

¼ j ,k

)

·1 f
∑

j ̸=k

(εh j )¶+1
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and thus,

A2,t

(

r
∑

k=1

(εhk )¶

)

f
c

2
·

r
∑

k=1

(εhk )¶+

(

D t

r
∑

k=1

εk

)

·

(

r
∑

k=1

(εhk )¶+1

)

=

(

c

2
+D t

r
∑

k=1

εk

)

·

r
∑

k=1

(εhk )¶+

(

D t

r
∑

k=1

εk

)

.

Since εk = ε¶·(1−
∑

j ̸=k ¼ j ,k ) and
∑

j ̸=k ¼ j ,k < 1 for each 1 f k f r , we can choose

ε= ε¶,c j 1 small enough so that
(

D t
∑r

k=1
εk

)

<
c
2
< 1.

Proof of Theorem 16. For fixed 0 < ¶ < ¶1, the class of height functions {ht ,c }

with 0 < c < 1 and t g t¶,c/2 defined as in Theorem 23 are linear. That is, if we let

h = h¶ =
∑r

k=1
h¶

k
, then

ht ,c =

r
∑

k=1

(εt ,c hk )¶ = ε¶t ,c ·

r
∑

k=1

h¶
k = ε¶t ,c ·h.

By Theorem 23, for any pair of 0 < c < 1 and t g t¶,c/2, we have

(A2,t ht ,c )(x) f cht ,c (x)+1.

Multiply Bt := 1/ε¶t ,c to both sides of the inequality and we get

(A2,t h)(x) f ch(x)+Bt .

Lastly, take tc = t¶,c/2 and we are done.

REMARK 24 (Lower bound for h). For computational reasons that will become

apparent later, we want our h to be large and bounded away from 1. Since

{dk (g ) : g ∈S} (S is the Siegel set) is bounded away from zero, by Remark 18

we have that for each 1 f k f r , hk is bounded away from zero and therefore,

h¶ =
∑r

k=1
h¶

k
is bounded away from zero. Thus, by multiplying some large C k

1, we can make our height function h := C h¶ to be no less than 2. Note that

multiplication by a constant does not effect Margulis inequalities (see proof

of Theorem 16) except that it only makes the additive constant Bt bigger; our

newly defined h =C h¶ also satisfies Theorem 16 and Corollary 17.

For the remainder of the paper, if Γ is a non-uniform lattice, then we fix

¶∗ := 1
2
¶1 and set our height function to be h = C∗h¶∗

g 2. However, note that

the exact value of ¶∗ is not important and all arguments in the later sections

apply for any choice of 0 < ¶∗ < ¶1.

6. RETURN LEMMA AND NUMBER OF NEARBY SHEETS

Let H ¦ S ªG be an intermediate orbit. For a closed S-orbit Y = Sy and point

x ∈ X , we shall define a window set IY (x) which collects all the sheets of Y that

are nearby x. Roughly, the idea is to collect sheets of Y within the injective

ball BG
inj(x)

(x), but the exact size of our windows will be much smaller, and will

be given in terms of the height function h. A formal definition of IY (x) will be

given in Definition 31.
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The aim of this section is to show that #IY (X ), the number of nearby sheets,

is bounded in terms of volume of Y .

PROPOSITION 25 (Number of nearby sheets). There exists a global constant

C1 =C1(dim(G)) > 0

such that for any intermediate subgroup H ¦ S ªG, closed S-orbit Y = Sy, and

x ∈ X , we have

#IY (x) <C1vol(Y ).

6.1. Height function and radius of injectivity. First we compare h(x), the value

of the our height function at x ∈ X , with inj(x), the injectivity radius at point x.

We note that the following Proposition is as an analog of Lemma 6.3 of Benoist-

Quint [3].

PROPOSITION 26. If Γ is a non-uniform lattice of G, then there is absolute con-

stants C2 > 0 and m > 0 such that for all x ∈ X ,

inj(x)−1
fC2h(x)m .

Proof. Let distG denote the left invariant Riemannian metric on G . Suppose

that for some g1 ̸= g2 ∈ BG
ϵ (e) and x = gΓ ∈ X , g1x = g2x ∈ X . Then, for any µ ∈ Γ,

(µg )−1(g−1
1 g2)(gµ) is in Γ. Moreover, for each point in G , there is a neighbor-

hood on which the metric distG is Lipschitz equivalent to the metric derived

from matrix norm. Thus,

2ϵg distG

(

e, g−1
1 g2

)

g distG

(

e, (µg )−1
(

g−1
1 g2

)

gµ
)∥

∥Ad(gµ)−1
∥

∥

−1
.

Since Γ is a lattice, infe ̸=µ∈Γ distG (e,µ) > 0 and thus,

inj(x) k min
µ∈Γ

∥

∥Ad(gµ)−1
∥

∥

−1
.

Since S∩ gΓJ is non-empty, we choose g ′ ∈S∩ gΓJ and take its Langlands

decomposition g ′ = k ′a′n′ with respect to P0; we get ∥Ad(g ′)∥ ≍ ∥Ad(a′)∥ and

∥Ad(a′)∥j

(

1

min1fkfr exp(ωk (log(a′)))

)r

.

By Remark 18, minµ∈Γ ∥Ad(gµ)−1∥
−1

is comparable with ∥Ad(g ′)−1∥
−1

and h(x)

is comparable with h(g ′). Therefore,

inj(x)−1
j h(x)m

where

m :=
r

min1fkfr {¶∗/qk }
=

r

¶∗
· max

1fkfr
{qk }.

(Here, ¶∗ is from the definition of height function h, as in Remark 24, and

{qk }1fkfr are the positive real numbers used to define hk =´
1/qk

k
.)
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Later in the proof of Proposition 25 and also in the construction of Margulis

function FY (see Theorem 38), we shall see that Proposition 26 plays a key role,

together with Theorem 16 and Corollary 17. That is, the key property of the

height function h is that it is a Margulis function that is comparable with the

injectivity radius.

We now generalize our definition of height function h : X → [2,∞) to the case

when Γ is cocompact, so that Theorem 16, Corollary 17, and Proposition 26 all

holds true also when Γ is cocompact.

DEFINITION 27. If Γ is a cocompact lattice of G , then we define h : X → (0,∞)

to be the constant function h ≡ 2.

Proof of Theorem 16 and Corollary 17 (for cocompact Γ). All constant functions

are Margulis functions. That is, for any c > 0, t > 0, and x ∈ X , we have

(

A2,t h
)

(x) : =
1

mU

(

BU
2

)

∫

BU
2

h(at ux)dmU (u)

=
1

mU

(

BU
2

)

∫

BU
2

2dmU (u) = 2 < ch(x)+2.

Corollary 17 can be proved in a similar way. Simply take th = 1; for any t g 2th ,

we have

(At h)(x) = 2 <
1

2t/th
h(x)+2.

Proof of Proposition 26 (for cocompact Γ). If Γ is a cocompact lattice of G , then

X =G/Γ is compact and ε0 := infx∈X inj(x) > 0. Therefore, for any x ∈ X ,

inj(x)−1
f

1

ε0
=

1

2ε0
h(x).

For the remainder of the paper, the height function h will refer to either of

the two; if Γ is non-uniform, then h will refer to the function defined in Section

4 and if Γ is cocompact, then h will refer to the constant function in Definition

27 above.

6.2. Return lemma and number of sheets. In Lemma 32, we shall first give a

weaker bound on #IY (x), depending on both vol(Y ) and h(x). This shows that

#IY (x) is uniformly bounded in terms of vol(Y ) in the compact part of X . In

the case where Γ is non-uniform, we shall make use of height function h to

analyze the cuspidal part of X . We shall show that if the sheets of Y are very

dense near a point x in the cuspidal part of X , then for some at ux which lies

in the compact part of X the sheets of Y must be very dense near at ux too.

This gives us the desired result; even when x is high up in the cuspidal part of

X , there is a uniform bound for #IY (x), only in terms of vol(Y ). Results in this

section are analogous to Section 8 of Mohammadi–Oh [MO20] and Section 8 of

Eskin–Mirzakhani–Mohammadi [EMM15].

LEMMA 28 (Return lemma). There exists a global constant C3 =C3(dim(G)) > 0

and Q = Q(G/Γ, H) such that the following holds: for every x ∈ X , there exists

u ∈ BU
1 so that atx

ux ∈ Xcpt := {x ∈ X : h(x) fQ} where tx =C3 log(h(x)).
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Proof. By Lemma 7, there exists H ′ ∈ H and g ∈G such that H = g H ′g−1. For

each H ′ ∈H , we fix a one parameter subgroup {a′
t } of diagonalizable elements

in H ′, and let U ′ be the unstable horospherical subgroup of G with respect to

{a′
t }. Then, for H we let

{at } = g {a′
t }g−1 and BU

1 = g BU ′

1 g−1.

Let t ′
h

, C ′
h

, and B ′
h

be the constants from Corollary 17, with respect to H ′ ¢ G .

That is, t ′
h

, C ′
h

, and B ′
h

are constants so that for all t g t ′
h

and x ∈ X ,

A′
t h(x) :=

∫

BU ′

1

h(a′
t u′x)dmU ′(u′) f

C ′
h

2t/t ′
h

·h(x)+B ′
h .

Take C3 := 1
log2

maxH ′∈H (t ′
h

). Also, let Ãg > 1 be the absolute constant fol-

lowing from the log continuity of h so that for any x ∈ X , Ã−1
g h(x) f h(g±1x) f

Ãg h(x). (Here, g is an element of G so that H = g H ′g−1, as defined above. Note

that g is unbounded, dependent on H and so is Ãg . However, this will result in

only Q being dependent of H , not C3.) Then, for every x ∈ X ,

(

A′
tx

h
)(

g−1x
)

=

∫

BU ′

1

h
(

a′
tx

u′
(

g−1x
))

dmU ′(u′) f
C ′

h

2tx /t ′
h

·h
(

g−1x
)

+B ′
h

f
C ′

h

2
1

log2
t ′

h
log(h(x))/t ′

h

·Ãg h(x)+B ′
h fC ′

hÃg +B ′
h

and thus, there exists u′ ∈ BU ′

1 such that h(a′
tx

u′g−1x) fC ′
h
Ãg +B ′

h
.

Now, if we take u := g u′g−1(∈ BU
1 ), then we have that

h(atx
ux) = h

(

g a′
tx

g−1
· g u′g−1x

)

= h
(

g a′
tx

u′g−1x
)

fÃg h
(

a′
tx

u′g−1x
)

=Ãg (C ′
hÃg +B ′

h).

Take Q :=Ãg (C ′
h
Ãg +B ′

h
). All that is left is to show that C3 is a constant that

only depends on dim(G) (and hence is independent of H and lattice Γ).

Recall that t ′
h

(see the proof of Theorem 23 and also the proof of Corollary

17) is the constant t ′
¶∗,1/4

= t ′
¶∗,1/4

(G , H ′) as in Lemma 14. From Lemma 14, we

have that ¶∗ =
1
2
¶1 depends only on dim(G) and therefore, t ′

¶∗,1/4
is a constant

that only depends on G and H ′ (see Lemma 14).

Since H is finite data that only depend on dim(G) (Lemma 7),

C3 =
1

log2
max
H ′∈H

(t ′h)

is a constant that only depends on dim(G). The fact that C3 only depends on

dim(G) will be later used to show that constant D in Theorem 2 only depends

on dim(G).

REMARK 29. Let ÃU > 1 be a global constant such that for all v ∈ Lie(G) and

u ∈ BU
1 ,

Ã−1
U ∥v∥ f ∥u.v∥ fÃU∥v∥,
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where u.v denotes the adjoint representation of u ∈ G on v ∈ Lie(G). For later

computational purposes (see the proof of Proposition 25), we shall assume that

Q >ÃU . Even if we replace Q =Ãg (C ′
h
Ãg +B ′

h
) by Q = max{Ãg (C ′

h
Ãg +B ′

h
),ÃU },

Lemma 28 still holds.

We shall also assume that C3 g 1 (this will also be used in the proof of Propo-

sition 25). Even if we replace C3 =
1

log2
maxH ′∈H (t ′

h
) with

C3 = max

{

1

log2
max
H ′∈H

(

t ′h
)

,1

}

,

Lemma 28 still holds.

REMARK 30. Note that by Proposition 26, Xcpt ¦ XϵX
= {x ∈ X : inj(x) g ϵX },

where ϵX =C2
−1Q−m (where C2 and m as in Proposition 26):

inj(atx
ux) gC2

−1h(x)−m
gC2

−1Q−m
= ϵX .

Recall, from the preliminaries that there exists an absolute constants Ã0 > 1

such that for all w ∈ Lie(G) with ∥w∥ f ϵX ,

Ã−1
0 ∥w∥ f dist(x,exp(w)x) fÃ0∥w∥.

DEFINITION 31. Let S be a subgroup with H ¦ S ªG and consider the decom-

position of Lie(G) given by Lie(G) = Lie(S)·VS where VS is Ad(Lie(S))-invariant,

but not necessarily irreducible. For each closed S-orbit Y = Sy and x ∈ X , we

define the set

IY (x) =
{

v ∈VS à {0} : ∥v∥ f εh ·h(x)−», exp(v)x ∈ Y
}

where global constants » k 1 and εh j 1 are chosen to be; » := max{m,3C3}

and εh = min{2»ϵX , 1
2
Ã−1

0 C−1
2 } (m and C2 as in Proposition 26, C3 as in Lemma

28, and ϵX as in Remark 30).

LEMMA 32. Let Y = Sy be a closed S-orbit where H ¦ S ª G. For all x ∈ X , we

have that

#IY (x) <C4h(x)dS mvol(Y )

where dS is the dimension of Lie(S) and C4 = (4C2)dS .

Proof. For any x ∈ X and v ∈ IY (x),

dist(x,exp(v)x) fÃ0∥v∥ fÃ0εhh(x)−» f
1

2
C2

−1h(x)−m
f

1

2
inj(x).

(Since h g 2 and εh f 2»ϵX , ∥v∥ f εhh(x)−» f ϵX and thus dist(x,exp(v)x) f

Ã0∥v∥. Also, since h g 1, » f m, and εh f
1
2
Ã−1

0 C−1
2 , we have Ã0εhh(x)−» f

1
2

C2
−1h(x)−m .)

It follows that for each v ∈ IY (x), inj(exp(v)x) g 1
4

inj(x), which means that the

balls
(

BY (exp(v)x, inj(x)/4)
)

v∈IY (x)

are disjoint from each other. Hence,

#IY (x) ·vol
(

BS(e, inj(x)/4
)

= vol
{

∪(BY (exp(v)x, inj(x)/4)) : v ∈ IY (x)
}

f vol
(

BY (x, inj(x)
)

f vol(Y ).
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Therefore,

#IY (x) f vol
(

BS(e, inj(x)/4)
)−1

·vol(Y )

< 4dS inj(x)−dS ·vol(Y ) f 4dS C2
dS h(x)dS mvol(Y ).

Proof of Proposition 25. If x ∈ X is so that h(x) fQ2, then by Lemma 32,

#IY (x) < (4C2)dS Q2dS mvol(Y ).

Suppose that h(x) >Q2. By Lemma 28, there exist u ∈ BU
1 and tx =C3 log(h(x))

such that h(atx
ux) fQ.

We claim that if v ∈ IY (x), then atx
u.v ∈ IY (atx

ux) and moreover, the map

atx
u : IY (x) → IY (atx

ux) which sends v 7→ atx
u.v is injective. If v ∈ IY (x), then

∥atx
u.v∥ f e txÃU∥v∥ = exp(C3 log(h(x)))ÃU∥v∥ =ÃU h(x)C3∥v∥

fÃU h(x)C3εhh(x)−» fÃUεhh(x)−2»/3
fÃUεhQ2·(−2»/3)

=ÃUεhQ−4»/3
f εhQ−»

since »g 3C3 g 3, h(x) >Q2, and Q gÃU . On the other hand, h(atx
ux)−» gQ−»

and thus,
∥

∥atx
u.v

∥

∥< εhh
(

atx
ux

)−»
.

Moreover,

atx
exp(v)x = exp(atx

u.v)atx
ux ∈ Y

since Y is S-invariant. Therefore, atx
u.v ∈ IY (atx

us x) and the map v 7→ atx
u.v

from IY (x) to IY (atx
ux) is injective. Consequently,

#IY (x) f #IY

(

atx
ux

)

< (4C2)dS Q2dS mvol(Y ).

We complete the proposition by taking C1 = (4C2)dG Q2dG m where dG denotes

the dimension of Lie(G).

We end this section with the following lemma on », which will be later used

to show that constant D in Theorem 2 is an absolute constant that only depends

on dim(G).

LEMMA 33. Constant » in Definition 31 has an upper bound as a function of

dim(G).

Proof. Since » := max{m,3C3} and C3 is a constant that only depends on dim(G)

(see Lemma 28), it is enough to show that m from Proposition 26 has an upper-

bound as a function of dim(G).

Recall that (see the proof of Proposition 26)

m =
r

¶∗
· max

1fkfr
{qk } =

r
1
2
¶1

· max
1fkfr

{qk },

where ¶1 is as in Lemma 14 and qk are as in definition of hk . By Lemma 14, ¶1

is a constant that only depends on dim(G). From reduction theory, we have that

r f dim(G). Lastly, since the root system {ωk } is a datum that only depends on

G , the value of max1fkfr {qk } also has an upper bound in terms of dim(G).
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7. MARGULIS FUNCTION: CONSTRUCTION AND ESTIMATES

In this section we construct Margulis functions that we associate to the or-

bit of an intermediate subgroup. The main result of this section is a Margulis

inequality for the functions we consider (Theorem 38).

DEFINITION 34 (Margulis function). For an intermediate subgroup H ¦ S ªG

and closed S-orbit Y = Sy , define fY := X → (0,∞) by

fY (x) :=

{

∑

v∈IY (x) ∥v∥−¶F , if IY (x) ̸= ;

h(x), otherwise
.

where ¶F := min{¶0/2,1/»}, ¶0 as in Lemma 8 applied to the adjoint representa-

tion of G on the Lie algebra Lie(G) and » as in Definition 31.

For ¼g 1, define F¼,Y : X → (0,∞) by

F¼,Y (x) = fY (x)+¼vol(Y )h(x).

We will later fix an explicit ¼ in Theorem 38 so that F¼,Y satisfies a Margulis

inequality.

REMARK 35. Note that by Lemma 8 and Lemma 33, ¶F can be thought of as a

constant that only depends on dim(G). Later, this will imply that constant D in

Theorem 2 is only dependent on dim(G).

PROPOSITION 36 (Log continuity of F¼,Y ). Let K be a compact subset of S. Then

there exists an absolute constant Ã = Ã(K ) (only depending on K and indepen-

dent on the choice of Y and ¼) such that for all Margulis function F¼,Y , point

x ∈ X , and g ∈ K ,

Ã−1F¼,Y (x) f F¼,Y (g x) fÃF¼,Y (x).

Proof. Recall that we denote the adjoint representation of elements g ∈G and

v ∈ Lie(G) as g .v . Since K is compact, there exists RK g 1 so that

R−1
K ∥v∥ f ∥g .v∥ f RK ∥v∥

for every g ∈ K and v ∈ Lie(G). Also, by the log continuity of h, there exists

Ãh =Ãh(K ) g 1 so that

Ã−1
h ·h(x) f h(g x) fÃh ·h(x)

for every g ∈ K and x ∈ X .

If IY (g x) is empty, then

fY (g x) = h(g x) fÃh ·h(x)

Now suppose that IY (g x) is not empty. Set ε = R−1
K εhh(x)−». Note that we

can write

fY (g x) =
∑

v∈IY (g x)
∥v∥<ε

∥v∥−¶F +
∑

v∈IY (g x)
∥v∥gε

∥v∥−¶F .
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By Proposition 25 since #IY (g x) fC1vol(Y ), then we have the following bound

for the second term above,
∑

v∈IY (g x)
∥v∥gε

∥v∥−¶F fC1vol(Y )ε−¶F =

(

C1

(

RK ε
−1
h

)¶F
vol(Y )

)

·h(x)¶F» fC5vol(Y )h(x),

where C5 :=C1(RK ε
−1
h

)¶F . (Here we are using that h g 1 and ¶F f 1/».) If there

is no v ∈ IY (g x) with ∥v∥ < ε, then this proves the claim. If there is v ∈ IY (g x)

with ∥v∥ < ε, then
∥

∥g−1.v
∥

∥< RK ε= εhh(x)−».

Thus, g−1.v ∈ IY (x). Setting v ′ = g−1v yields that
∑

v∈IY (g x)
∥v∥<ε

∥v∥−¶F f
∑

v ′∈IY (x)

∥g .v ′
∥
−¶F f R

¶F

K

∑

v ′∈IY (x)

∥v ′
∥
−¶F = R

¶F

K
fY (x).

In total, we have a bound of the form

fY (g x) f R
¶F

K
fY (x)+ (C5vol(Y )+Ãh)h(x).

Thus,

F¼,Y (g x) = fY (g x)+¼vol(Y )h(g x)

f R
¶F

K
fY (x)+ (C5vol(Y )+Ãh)h(x)+¼vol(Y ) ·Ãhh(x).

Note that vol(Y ) is bounded away from zero. That is, there exists an absolute

constant Ä> 0 such that for any intermediate subgroup H ¦ S ªG and closed

S-orbit Y = Sy , vol(Y ) > Ä. (See Lemma 37 below.) Since ¼g 1, we have

F¼,Y (g x) f R
¶F

K
fY (x)+

(

C5 +ÃhÄ
−1

+Ãh¼
)

vol(Y )h(x)

f R
¶F

K
fY (x)+

(

C5 +ÃhÄ
−1

+Ãh

)

¼vol(Y )h(x).

Put Ã := max{R
¶F

K
,C5+Ãh(Ä−1+1)}. We note that Ã is a constant only dependent

on the compact set K , independent of Y and ¼.

The remaining inequality

Ã−1F¼,Y (x) f F¼,Y (g x)

is proved in a similar fashion.

LEMMA 37. There exists an absolute constant Ä> 0 such that for any intermediate

subgroup H ¦ S ªG and closed S-orbit Y = Sy, vol(Y ) > Ä.

Proof. This follows from the quantitative non-divergence of Dani–Margulis [7].

Let U ′ be a 1-parameter unipotent subgroup of H . By the quantitative non-

divergence of the action of U ′ on X , there exists some Ä > 0 such that mY (X à

XÄ) < 0.01 for every closed S-orbit Y = Sy (H ¦ S ªG and y ∈ Y ), where mY is

the probability Haar measure on Y .

Note that we have the Lie algebra decomposition Lie(G) = Lie(S)·VS . Let

¸≍ Ä be so that the map g 7→ g x is injective for all x ∈ XÄ and all

g ∈ Box(¸) := exp
(

B Lie(S)
¸

)

exp
(

B
VS
¸

)

.
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For any connected component C of Y ∩Box(¸)z with z ∈ XÄ , there exists some

v ∈VS such that

C =Cv := exp
(

B Lie(S)
¸

)

exp(v)z.

Since mY (X àXÄ) < 0.01, Y ∩XÄ ̸= ; and thus,

vol(Y ) g ¸dS g ¸dH .

THEOREM 38 (Margulis Inequality for FY ). Let H ¦ S ª G be an intermediate

subgroup and Y = Sy a closed S-orbit. Let F¼,Y (¼g 1) denote the Margulis func-

tions associated to Y . For any 0 < c < 1, there exists t = tF,c > 0 such that there

exists global constants ¼1 =¼1(G/Γ, H) g 1 and E1 = E1(G/Γ, H) > 0 such that the

following holds for any closed orbit Y = Sx (H ¦ S ª G) and its corresponding

Margulis function FY := F¼1,Y :

A2,t FY f cFY +E1vol(Y ).

Proof. We have that Lie(G) = Lie(S)·VS where VS is Ad(H)-invariant, but has

no Ad(H)-invariant vectors. Since ¶F f ¶0/2 < ¶0, by the Linear Algebra Lemma

(Lemma 8) there exists t ′c > 0 so that

1

mU

(

BU
2

)

∫

BU
2

1

∥at u.v∥¶F
dmU (u) <

c

∥v∥¶F

for every v ∈VS and t g t ′c .

On the other hand, by Theorem 16 there exists t ′′c > 0 such that for all t g t ′′c ,

there exists absolute constant Bt (depending on t ) so that

A2,t h f
c

2
h +Bt .(1)

Let t ′c and t ′′c be as above and take t = tF,c = max{t ′c , t ′′c }.

We first find a bound on At fY . Then we pick a particular value for ¼ and

combine the first bound with the bound from Theorem 16 to reach the desired

bound on FY .

Recall that (at ) and U are subsets of H . Fix the compact set Kt = at BU
1 ¦ H

and let RKt
g 1 be a constant so that

R−1
Kt

∥v∥ f ∥g .v∥ f RKt
∥v∥

for every g ∈ Kt and v ∈VS .

If IY (g x) is empty for every g ∈ Kt , then FY is just a constant multiple of the

height function h and thus by (1),

A2,t FY = A2,t (¼vol(Y )h) f¼vol(Y )
(c

2
h +Bt

)

f c(¼vol(Y )h)+¼vol(Y )Bt f cFY +¼Bt vol(Y ).

Suppose that IY (g x) is not empty. Set ε = R−1
Kt

εhh(x)−». Note that we can

write

fY (g x) =
∑

v∈IY (g x)
∥v∥<ε

∥v∥−¶F +
∑

v∈IY (g x)
∥v∥gε

∥v∥−¶F ,
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and by the calculation from Proposition 36, we obtain a bound of the form,

fY (g x) f
∑

v ′∈IY (x)

∥g .v ′
∥
−¶F + (C5vol(Y )+Ãh)h(x)

where C5 =C1(RKt
ε−1

h
)¶F and Ãh =Ãh(Kt ) is the constant from the log continuity

property of h. Integrating over BU
2 yields

1

mU

(

BU
2

)

∫

BU
2

fY (at ux)dmU (u)

f
∑

v ′∈IY (x)

1

mU

(

BU
2

)

∫

BU
2

∥at u.v ′
∥
−¶F dmU (u)+ (C5vol(Y )+Ãh)h(x)

and since t g t ′c by Lemma 8,

∑

v ′∈IY (x)

1

mU

(

BU
2

)

∫

BU
2

∥at u.v ′
∥
−¶F dmU (u) < c

∑

v ′∈IY (x)

∥v∥−¶F .

To summarize, we get the bound

1

mU

(

BU
2

)

∫

BU
2

fY (at ux)dmU (u) f c fY (x)+ (C5 +ÃhÄ
−1)vol(Y )h(x)(2)

where Ä is as in Lemma 37.

Combining equation (1) and equation (2) together we have

A2,t FY f c · fY +
(

C5 +ÃhÄ
−1

)

vol(Y ) ·h +¼vol(Y )
(c

2
·h +Bt

)

= c · fY +

(

C5 +ÃhÄ
−1

+
¼c

2

)

vol(Y ) ·h +¼Bt vol(Y ).

Now choose ¼1 := 2(C5+ÃhÄ
−1)/c so that

(

C5 +ÃhÄ
−1 +

¼1c
2

)

=¼1c and we get

the desired result,

A2,t FY f cFY +E1vol(Y )

where E1 = ¼1Bt = 2(C5 +ÃhÄ
−1)Bt /c. Note that ¼1 g 1, since C5 and Ãh are

constants larger than 1 and Ä and c are constants smaller than 1. We remark

that both ¼1 and E1 depend on G/Γ and H , but are independent of Y .

For the remainder of the paper, FY will refer to the Margulis function F¼1,Y

with fixed ¼1 = 2(C5 +ÃhÄ
−1)/c as in Theorem 38.

COROLLARY 39 (Exponential decay). There exists global constants CF > 0 and

E2 > 0 such that for any closed orbit Y and for any t g tF (where tF := tF,1/2

defined as in Theorem 38),

(At FY )(x) f
CF

2t/tF
FY (x)+E2vol(Y )

Proof. The result follows from Theorem 15, Proposition 36, and Theorem 38.

Especially, the fact that CF and E2 are global constants, independent of Y fol-

lows from the fact that the log continuity constants for FY depends only on the

compact set and is independent on the choice of Y (see Proposition 36).
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The following is following result is standard, see [27, Lemma 7.3] or [15,

Lemma 11.1].

PROPOSITION 40 (Margulis function on average). Let H ¦ S ªG denote an inter-

mediate subgroup and Y = Sy be a closed S-orbit. Let FY denote the associated

Margulis function from Theorem 38. Let µ be an A-ergodic U -invariant measure

with µ(Y ) = 0. Then

FY ∈ L1(µ).

Proof. In this proof we will drop the subscript Y in FY for simplicity. For k ∈N,

let Fk := min(F,k). Take t to be tF , the constant obtained from Corollary 39.

By Moore’s ergodicity theorem, we have that the action of A = {at : t ∈ R} is

ergodic on X . Then, by the Birkhoff ergodic theorem, for µ-a.e. x ∈ X and k ∈N,

lim
N

1

N

N
∑

n=1

Fk (ant x) =

∫

Fk dµ.

There exists some x0 ∈ X such that for mU -a.e. u ∈ BU
1 ,

lim
N

1

N

N
∑

n=1

Fk (ant ux0) =

∫

Fk dµ.

Thus, by Egoroff’s theorem, for each k ∈ N there exists a subset Ek ¦ BU
1 with

mU (Ek ) > 1
2

and Nk ∈N such that for every N > Nk and u ∈ Ek ,

1

N

N
∑

n=1

Fk (ant ux0) >
1

2

∫

Fk dµ.

Integrate this inequality over BU
1 to obtain

1

N

N
∑

n=1

∫

BU
1

Fk (ant ux0)dmU (u) >
1

2

∫

Fk dµ.

By Corollary 39, for all n ∈N,
∫

BU
1

Fk (ant ux0)dmU (u) f

∫

BU
1

F (ant ux0)dmU (u) <
C

2n
F (x0)+b,

where C =CF and b = E2vol(Y ).

Choose n0 so that 1
2n0

F (x0) f 1. Then for each n g n0 and N > max(Nk ,kn0),

1

2

∫

Fk dµ<
1

N

N
∑

n=1

∫

BU
1

Fk (ant ux0)dmU (u)

=
1

N

n0
∑

n=1

∫

BU
1

Fk (ant ux0)dmU (u)+
1

N

N
∑

n=n0+1

∫

BU
1

Fk (ant ux0)dmU (u)

f
n0k

N
+

1

N

N
∑

n=n0+1

(

C

2n
F (x0)+b

)

f 1+
1

N

N
∑

n=n0+1

(C +b) =C +b +1.
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Thus,
∫

Fk dµf 2(C +b +1).

Taking k → ∞ and using the monotone convergence theorem, we have F ∈

L1(µ).

8. ISOLATION OF CLOSED ORBITS

In this section, we prove Theorem 4 and Theorem 5. Results in this section

are analogous to Section 10 of [27].

Proof of Theorem 4. We shall prove the following: for any two distinct closed

S-orbits Y = Sy and Z = Sz (H ¦ S ªG) of finite volume,

dist(Y ∩K , Z ) kK vol(Y )−1/¶F vol(Z )−1/¶F ,

where K is a compact subset of X and ¶F is as in Definition 34. Recall that ¶F

is a global constant only depending on G and H (and thus, independent of the

choice of Γ, see Remark 35).

Let mY denote the Haar probability measure on Y . Since mY is an A-ergodic

S-invariant probability measure, mY (At FZ ) = mY (FZ ). Thus, by integrating the

Margulis inequality

At (FZ ) < cFZ +E2vol(Z )

(c is some positive constant smaller than 1) from Corollary 39 over Y , we get

mY (FZ ) f
E2

1− c
vol(Z ).

Since K is compact, ϵ= ϵK := minx∈K inj(x) > 0 and so for log continuity of FZ

applied to B S
ϵ , there exists Ã=ÃFZ

(B S
ϵ ) > 1 such that for any x ∈ X and g ∈ B S

ϵ ,

FZ (x) fÃFZ (g x).

Recall that the log continuity coefficients for FZ is independent of closed orbit

Z that only depends on the set that g belongs to (Proposition 36). Thus, Ã is a

global constant that only depends on K .

For any point y ∈ Y ∩K ,

fZ (y) f FZ (y) f
1

mY

(

B S
ϵ (y)

)

∫

g∈B S
ϵ (e)

ÃFZ (g y)dmY (g y)

f
1

mY

(

B S
ϵ (y)

)ÃmY (FZ ) f
Ã

ϵdS
·

E2

1− c
vol(Y )vol(Z ).

Lastly, we observe that dist(y, Z )−¶F j fZ (y). If IZ (y) is non-empty, then

fZ (y) =
∑

v∈IZ (y)

∥v∥−¶F g dist(y, Z )−¶F .

If IZ (y) is empty, then dist(y, Z ) > εhh(y)−» and so

fZ (y) = h(y) g h(y)»¶F g ε
¶F

h
dist(y, Z )−¶F .

(Here, we are using that h g 1 and ¶F := min{¶0/2,1/»} f 1/».)
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Proof of Theorem 5. We shall prove the following: there exists a global constant

C6 > 0 such that for any intermediate subgroup H ¦ S ªG ,

#{Y : Y = Sy is a closed S-orbit and vol(Y ) f R} <C6RdG /¶F ,

where dG is the dimension of Lie(G) and ¶F is as in Definition 34.

We define constants Ä > 0 and ¸> 0 as in Lemma 37. Let Ä > 0 be a constant

such that mY (X à XÄ) < 0.01 for every closed S-orbit Y = Sy (H ¦ S ª G and

y ∈ Y ) and let ¸ ≍ Ä be a constant so that the map g 7→ g x is injective for all

x ∈ XÄ and all

g ∈ Box(¸) := exp
(

B Lie(S)
¸

)

exp
(

B
VS
¸

)

(here, Lie(G) = Lie(S)·VS is the Lie algebra decomposition). Then, for any

connected component C of Y ∩Box(¸)z with z ∈ XÄ , there exists some v ∈ VS

such that

C =Cv := exp
(

B Lie(S)
¸

)

exp(v)z.

For R > 0, let

Y (R) = {Y : Y = Sy is closed S-orbit and R/2 < Vol(Sy) f R}.

By Theorem 4, for any distinct connected components Cv and Cv ′ in
(

⋃

Y ∈Y (2k )

Y

)

∩Box(¸)z,

we have that

∥v − v ′
∥kÄ 2−2k/¶F .

The cardinality of any 2−2k/¶F -separated set in B
VS
¸ is, up to multiplicative

constant,
(

22k/¶F

)(dG−dS )
.

Since vol(Box(¸)) = ¸dG , we can cover XÄ by M = O(¸−dG ) many sets of the

form Box(¸)z. Choose such a cover {Box(¸)z j : j = 1, ..., M }.

Then,

#Y
(

2k
)

f 2−k+1
∑

Y ∈Y (2k )

vol(Y )

j 2−k+1
M
∑

j=1

∑

Cv∈Box(¸)z j

vol(Cv ).

Since (1) vol(Cv ) = ¸dS j 1 for each Cv , (2) #{Cv ∈ Box(¸)z j } j (22k/¶F )(dG−dS ) for

each Box(¸)z j , and (3) M =O(1), we have

2−k+1
M
∑

j=1

∑

Cv∈Box(¸)z j

vol(Cv ) j 22k(dG−dS )/¶F−k+1.
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Recall that vol(Sy) g ¸dS since the volume of the orbit needs to contain at

least one connected component Cv in some Box(¸)z j . Let n0 = +dS log2(¸), and

nR = +log2(R),. Since

{Sy : Sy is closed and vol(Sy) f R} ¦
nR
⋃

k=n0

Y
(

2k
)

,

we get

#{Y : Y = Sy is a closed S-orbit and vol(Y ) f R} f
nR
∑

k=n0

#Y
(

2k
)

j R2dG /¶F .

9. PROOF OF THE MAIN THEOREM

In this section we prove Theorem 2.

Proof of Theorem 2. For each point x ∈ X , our choice of Tx will be Tx := h(x)1/¶F .

Note that h(x) is bounded in the compact part of X and thus, Tx can be chosen

uniformly within a compact subset of X .

We fix a point x ∈ X . Let (T,R) be a pair of real numbers such that T > Tx

and R > 2 and suppose that x is (R,1/T )-Diophantine with respect to H . Our

final goal will be to show that there exist absolute constants D = D(dim(G)), A =

A(G/Γ, H), and C =C (G/Γ, H) independent of x, R, and T , such that condition

(2) of Theorem 2 holds: for all t g A logT ,

mU

({

u ∈ BU
1 : at ux is not (R,R−D ,R−D )-Diophantine

})

<C R−1.

Recall that x ′ ∈ X is (R,R−D ,R−D )-Diophantine with respect to H if and only

if

(1) inj(x) g R−D and

(2) for all intermediate subgroups H ¦ S ª G and all closed S-orbit Y = Sx ′

with vol(Y ) f R, we have dist(x,Y ) g R−D .

Step 1: Recurrence to the compact part. First, we show that there exists D1 =

D1(dim(G)) > 0 and A1 = A1(G/Γ, H) > 0 such that for all D g D1 and A g A1, the

following is true: for all t g A logT ,

mU

({

u ∈ BU
1 : inj(at ux) < R−D

})

j R−1.

Take A1 = ¶F th/log2. Then, for any t g A logT ,

t g A logT g A1 logTx = A1 log(h(x)1/¶F ) g A1/¶F · log2 = th

and so by Corollary 17,

(At h)(x) =

∫

BU
1

h(at ux)dmU (u) f
Ch

2t/th
h(x)+Bh

f
Ch

2A logT /th
h(x)+Bh f

Ch

2A1 logTx /th
h(x)+Bh

=
Ch

2(A1/¶F th )·log(h(x))
h(x)+Bh =Ch +Bh .
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For x ′ ∈ X , if inj(x ′) f R−D , then by Proposition 26,

h(x ′) gC−1/m
2 · inj(x)−1/m

>C−1/m
2 ·RD/m .

Applying this observation to points at ux and using Chebyshev’s theorem we

obtain,

mU

({

u ∈ BU
1 : inj(at ux) f R−D

})

f mU

({

u ∈ BU
1 : h(at ux) >C−1/m

2 ·RD/m
})

<C 1/m
2 R−D/m

· (At h)(x)

fC7R−D/m ,

where C7 :=C 1/m
2 (Ch +Bh) is a global constant. Recall that m is a constant that

depends only on dim(G) (see proof of Lemma 35). Thus, by taking D1 = m, we

get the desired result.

Step 2: Avoidance principle. Let H ¦ S ª G be an intermediate orbit. First

we shall fix a single closed S-orbit Y = Sy with volume less that R, and show

that there exists D2 = D2(dim(G)) > 0 and A2 = A2(G/Γ, H) > 0 such that for all

D g D2 and A g A2, the following is true: for all t g A logT ,

mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D

})

j R−1.

Then, we will use Lemma 6 and Corollary 5 to piece together the results for

different choices of Y : we show that there exists D3 = D3(dim(G)) > D2 such

that for all D g D3 and A g A2, for all t g A logT ,

mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D for some Y ∈OR

})

j R−1

(here, OR = {Y = Sy : H ¦ S ª G ,Y is closed,vol(Y ) < R} is the set of all closed

orbits of volume less than R).

Step 2.1: Avoiding a single closed orbit. Construct Margulis functions fY and

FY with respect to Y as in Section 6. If IY (x) is empty, then

fY (x) = h(x) f T
¶F
x f T ¶F .

Otherwise, we have

fY (x) =
∑

v∈IY (x)

∥v∥−¶F f dist(x,Y )−¶F #IY (x).

Since x is (R,1/T )–Diophantine with respect to H , x is (R,1/T )–Diophantine

with respect to Y and thus, dist(x,Y ) g 1/T . Combining with Proposition 25, we

have

dist(x,Y )−¶F #IY (x) f dist(x,Y )−¶F ·C1vol(Y ) fC1T ¶F R.

Thus, using that h(x) f T ¶F , we conclude

FY (x) = fY (x)+¼1vol(Y )h(x) fC1T ¶F R +¼1T ¶F R =C8T ¶F R,

where C8 :=C1 +¼1 is a global constant independent of Y .

Now take A2 = ¶F tF /log2 (here, tF is as in Theorem 38). If t g A logT , then

t g A logT g A2 logTx g A2 logh(x)1/¶F g A2/¶F · log2 = tF
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and so by Corollary 39 we have

At (FY (x)) f
CF

2t/tF
FY (x)+E2vol(Y )

f
CF

2A logT /tF
·C8T ¶F R +E2R

f

(

1

2A2/tF

)logT

·CF C8T ¶F R +E2R

= (CF C8 +E2)R.

If dist(x ′,Y ) < R−D for some x ′ ∈ X , then either there exists v ∈ IY (x ′) with

∥v∥ < R−D or εhh(x ′)−» < R−D . In either case, we have that

FY (x ′) = fY (x ′)+¼1vol(Y )h(x ′) > min
{

RD¶F ,¼1Äε
1/»
h RD/»

}

gC9 ·RD¶F ,

where C9 :=¼1Äε
1/»
h

is a global constant independent of Y . (Here, we are again

using that ¶F := min{¶0/2,1/»} and thus ¶F f 1/».)

Applying this observation to points at ux and using Chebyshev’s theorem we

obtain,

mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D

})

f mU

({

u ∈ BU
1 : FY (at ux) gC9 ·RD¶F

})

<C−1
9 R−D¶F · At (FY (x))

fC10R−(D¶F−1),

where C10 := (CF C8+D2)/C9 is another global constant independent of Y . Recall

that ¶F is a global constant that depends only on G and H (see Remark 35). Take

D2 = 2/¶F .

Step 2.2: Avoiding all closed orbits of small volume. By Lemma 6, the number

of intermediate subgroups H ¦ S ªG is finite; we shall denote this number as

N (G , H). By Theorem 5, for each fixed S, the number of closed S-orbits Y with

vol(Y ) < R is bounded by C6RdG /¶F . Therefore, the cardinality of the set

OR =
{

Y = Sy : H ¦ S ªG ,Y is closed,vol(Y ) < R
}

is bounded above by N (G , H) ·C6RdG /¶F and so

mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D for some Y ∈OR

})

f
∑

Y ∈OR

mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D

})

f
∑

Y ∈OR

C9R−(D¶F−1)

< N (G , H) ·C6RdG /¶F ·C10R−(D¶F−1)

= N (G , H)C6C10 ·R−D¶F+dG /¶F+1.

Take D3 = D3(dim(G)) := (dG /¶F +2)/¶F (so that −D¶F +dG /¶F +1 g −1 for

any D g D3) and we get the desired avoidance principle: for all D g D3 and
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A g A2, for all t g A logT ,

mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D for some Y ∈OR

})

<C11R−1

(here, C11 := N (G , H)C6C10 is another global constant).

Now combine the results of Step 1 and Step 2. Take

D = D(dim(G)) := max{D1,D3},

A = A(G/Γ, H) := max{A1, A2}, and C =C (G/Γ, H) :=C7 +C11, and we get

mU

({

u ∈ BU
1 : at ux is not (R,R−D ,R−D )-Diophantine with respect to H

})

f mU

({

u ∈ BU
1 : inj(at ux) < R−D

})

+mU

({

u ∈ BU
1 : dist(at ux,Y ) < R−D for some Y ∈OR

})

<C7R−1
+C11R−1

=C R−1.
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