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The slope gap distribution of a translation surface is a measure of how random the directions of the saddle

connections on the surface are. It is known that Veech surfaces, a highly symmetric type of translation

surface, have gap distributions that are piecewise real analytic. Beyond that, however, very little is

currently known about the general behavior of the slope gap distribution, including the number of points

of nonanalyticity or the tail.

We show that the limiting gap distribution of slopes of saddle connections on a Veech translation surface

is always piecewise real analytic with finitely many points of nonanalyticity. We do so by taking an

explicit parametrization of a Poincaré section to the horocycle flow on SL.2; R/= SL.X; !/ associated to

an arbitrary Veech surface .X; !/, and establishing a key finiteness result for the first return map under

this flow. We use the finiteness result to show that the tail of the slope gap distribution of a Veech surface

always has quadratic decay.

32G15, 37D40; 14H55

1 Introduction

We will study the slope gap distributions of Veech surfaces, a highly symmetric type of translation surface.

Translation surfaces can be defined geometrically as finite collections of polygons with sides identified in

parallel opposite pairs. If we place these polygons in the complex plane C, the surface inherits a Riemann

surface structure from C, and the one-form dz gives rise to a well-defined holomorphic one-form on the

surface. This leads to a second equivalent definition of a translation surfaces as a pair .X; !/ where X is

a Riemann surface and ! is a holomorphic one-form on the surface. Every translation surface locally

has the structure of .C; dz/, except for at finitely many points that have total angle around them 2�k for

some integer k � 2. These points are called cone points and correspond to the zeros of the one-form !. A

zero of order k gives rise to a cone point of angle 2�.k C 1/.

A translation surface inherits a flat metric from C. Saddle connections are then straight-line geodesics

connecting two cone points with no cone points in the interior. The holonomy vector of a saddle connection


 is then the vector describing how far and in what direction the saddle connection travels:

v
 D

Z




!:

We will be interested in the distribution of directions of these vectors for various translation surfaces.
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Figure 1: A matrix in SL.2; R/ acting on a translation surface.

There is a natural SL.2; R/ action on translation surfaces coming from the linear action of matrices on R
2,

as can be seen in Figure 1.

Sometimes this action produces a symmetry of the surface .X; !/. That is, after acting on the surface by

the matrix, it is possible to cut and paste the new surface so that it looks like the original surface again.

The collection of these symmetries is the stabilizer under the SL.2; R/ action and is called the Veech

group of the surface. It will be denoted by SL.X; !/ and is a subgroup of SL.2; R/. When the Veech

group SL.X; !/ of a translation surface has finite covolume in SL.2; R/, the surface .X; !/ is called a

Veech surface. Sometimes such surfaces are also called lattice surfaces since SL.X; !/ is a lattice in

SL.X; R/. Veech surfaces have many nice properties, such as satisfying the Veech dichotomy: in any

direction, every infinite trajectory on the surface is periodic or every infinite trajectory is equidistributed.

For more information about translation and Veech surfaces see Hubert and Schmidt [6] and Zorich [13].

From work of Vorobets [12], it is known that, for almost every translation surface .X; !/ with respect to

the Masur–Veech volume on any strata of translation surfaces (for details about Masur–Veech volume

and strata, please see [13]), the angles of the saddle connections equidistribute in S1. That is, if we let

ƒ.X; !/ WD fholonomy vectors of saddle connections of .X; !/g

and normalize the circle to have total length 1, then for any interval I �S1, as we let R!1, the proportion

of vectors in ƒ.X; !/ of length � R that have direction in the interval I converges to the length of I .

A finer measure of the randomness of the saddle connection directions of a surface is its gap distribution,

which we will now define. The idea of the gap distribution is that it records the limiting distribution of the

spacings between the set of angles (or in our case, slopes) of the saddle connection directions of length up

to a certain length R. We will be working with slope gap distributions rather than angle gap distributions

because the slope gap distribution has deep ties to the horocycle flow on strata of translation surfaces.

Thus, dynamical tools relating to the horocycle flow can be more easily applied to analyze the slope gap

distribution.

Let us restrict our attention to the first quadrant and to slopes of at most 1, and define

S.X; !/ WD fslope.v/ j v 2 ƒ.X; !/; 0 < Re.v/ and 0 � Im.v/ � Re.v/g:

We also allow ourselves to restrict to slopes of saddle connections of at most some length R in the `1

metric, and define

SR.X; !/ WD fslope.v/ j v 2 ƒ.X; !/; 0 < Re.v/ and 0 � Im.v/ � Re.v/ � Rg:

Algebraic & Geometric Topology, Volume 24 (2024)
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We let N.R/ denote the number of unique slopes N.R/ WD jSR.X; !/j. By results of Masur [7; 8], the

growth of the number of saddle connections of length at most R in any translation surface is quadratic

in R. We can order the slopes:

SR.X; !/ D f0 � sR
0 < sR

1 < � � � < sR
N.R/�1g:

Since N.R/ grows quadratically in R, we now define the renormalized slope gaps of .X; !/ to be

GR.X; !/ WD fR2.sR
i � sR

i�1/ j 1 � i � N.R/ � 1 and si 2 SR.X; !/g:

If there exists a limiting probability distribution function f W Œ0; 1/ ! Œ0; 1/ for the renormalized

slope gaps

lim
R!1

jGR.X; !/ \ .a; b/j

N.R/
D

Z b

a

f .x/ dx;

then f is called the slope gap distribution of the translation surface .X; !/. If the sequence of slopes of

holonomy vectors of increasing length of a translation surface were independent and identically distributed

uniform Œ0; 1� random variables, then a probability computation shows that the gap distribution would be

a Poisson process of intensity 1. In all computed examples of slope gap distributions, however, this is not

the case.

We give a brief overview of the literature on gap distributions of translation surfaces. In [2], Athreya

and Chaika analyzed the gap distributions for typical surfaces and showed that, for almost every

translation surface (with respect to the Masur–Veech volume), the gap distribution exists. They also

showed that a translation surface is a Veech surface if and only if it has no small gaps, that is, if

lim infR!1.min.GR.X; !// > 0. In a later work [3], Athreya, Chaika and Lelièvre explicitly computed

the gap distribution of the golden L, and in [1] Athreya gives an overview of results and techniques about

gap distributions. Another relevant work is a paper by Taha [10] studying cross sections to the horocycle

and geodesic flows on quotients of SL.2; R/ by Hecke triangle groups. The computation of slope gap

distributions involved understanding the first return map of the horocycle flow to a particular transversal

of a quotient of SL.2; R/.

In [11], Uyanik and Work computed the gap distribution of the octagon, and also showed that the gap

distribution of any Veech surface exists and is piecewise real analytic. In [9], Sanchez went on to study

the gap distributions of doubled slit tori. Up until then, all known slope gap distributions were for Veech

surfaces. The above articles focus on gap distributions of specific translation surfaces and their SL.2; R/

orbits. This work applies to any Veech surface and gives insight to the general behavior of the graph of

the slope gap distribution of Veech surfaces. In fact, outside of [2], where it is shown that there are no

small gaps, there is no other work in this direction with this level of generality.

Uyanik and Work gave an algorithm to compute the gap distribution of any Veech surface and showed that

the gap distribution was piecewise analytic. However, their algorithm does not necessarily terminate in

finite time and can make it seem like the gap distribution can have infinitely many points of nonanalyticity,

Algebraic & Geometric Topology, Volume 24 (2024)
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as we will see in Section 2.3. We improve upon their algorithm to guarantee termination in finite time

and show as a result that every Veech translation surface has a gap distribution with finitely many points

of nonanalyticity. Uyanik and Work’s algorithm starts by taking a transversal to the horocycle flow which

a priori may break up into infinitely many components under the return map. Our key observation is that,

by carefully choosing this transversal using the geometry of our surface, it will only break up into finitely

many pieces, which will give the following theorem:

Theorem 1 The slope gap distribution of any Veech surface has finitely many points of nonanalyticity.

In addition, we show that the tail of the gap distribution of any Veech surface has a quadratic decay. Let

f .t/ � g.t/ mean that the ratio is bounded above and below by two positive constants as t ! 1.

Theorem 2 The slope gap distribution of any Veech surface has quadratic tail decay. That is, if f

denotes the density function of the slope gap distribution, then
Z

1

t

f .x/ dx � t�2:

Thus, our results and the “no small gaps” result of [2] give a good understanding of the graph of the slope

gap distribution of Veech surfaces: for some time the graph is identically zero before becoming positive.

Afterward the graph has finitely many pieces where it is real analytic and may fluctuate up and down

before it begins permanently decaying quadratically.

Organization In Section 2.1 we will go over background information on slope gap distributions, including

how to relate the gap distribution to return times to a Poincaré section of the horocycle flow. In Section 2.2,

we will outline the algorithm of Uyanik and Work, and observe some possible modifications. In Section 2.3,

we will see how a couple steps of Uyanik and Work’s algorithm apply to a specific Veech surface. A

priori, the first return map to the Poincaré section breaks the section into infinitely many pieces, but after

making some modifications to the parametrization we will see that there are in fact finitely many pieces. In

Section 3 we will give a proof of Theorem 1. The strategy of the proof is to apply a compactness argument

to show finiteness under our modified parametrization of the Poincaré section. We will show that, on

a compact set that includes the Poincaré section, every point has a neighborhood that can contribute

at most finitely many points of nonanalyticity to the gap distribution. This will give us that the slope

gap distribution has finitely many points of nonanalyticity overall. In Section 4, as an application of

Theorem 1, we prove quadratic decay of the slope gap distribution of Veech surfaces. Finally, in Section 5

we discuss a few further questions regarding slope gap distributions of translation surfaces.
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2 Background

2.1 A Poincaré section for the horocycle flow

In this section, we review a general strategy for computing the gap distribution of a translation surface by

relating slope gap distributions to the horocycle flow. For more background and proofs of the statements

given here, see [4] or [3].

Suppose that we wish to compute the slope gap distribution of a translation surface .X; !/. We let

ƒ.X; !/, sometimes shortened to just ƒ, be the set of holonomy vectors of the surface. We may start by

considering all of the holonomy vectors of .X; !/ in the first quadrant, with `1 norm � R. If we act on

.X; !/ by the matrix

g�2 log.R/ D

�

1=R 0

0 R

�

;

the slopes of the holonomy vectors of g�2 log.R/.X; !/ in Œ0; 1� � Œ0; R2� are the same as R2 times the

slopes of the holonomy vectors of .X; !/ in Œ0; R� � Œ0; R�, as we can see in Figure 2.

Another important observation is that the horocycle flow

hs D

�

1 0

�s 1

�

g�2 log.R/

R

R

1

R2

ƒ.X; !/ ƒ.g�2 log.R/.X; !//

Figure 2: Upon renormalizing a surface .X; !/ by applying g�2 log.R/, the slopes of the saddle

connections of .X; !/ scale by R2.

Algebraic & Geometric Topology, Volume 24 (2024)



956 Luis Kumanduri, Anthony Sanchez and Jane Wang

changes slopes of holonomy vectors by s. That is,

slope.hs.z// D slope.z/ � s

for z 2 R
2. As a result, slope differences are preserved by the flow hs .

Now we let the Veech group of the surface be SL.X; !/ and we define a Poincaré section or transversal

for horocycle flow on SL.2; R/=SL.X; !/. By transversal we mean a subset such that almost every orbit

under horocycle flow intersects that subset in a nonempty countable discrete set of times. Two key related

notions are given by the return time of a point in the transversal, which records how long it takes to return,

and the return map, which outputs what the point has returned to in the transversal after flowing by the

return time. Each of these are explicit in our situation and will be described below.

We consider the transversal given by the surfaces in the SL.2; R/ orbit of .X; !/ with a short horizontal

saddle connection of length � 1. That is,

�.X; !/ D fg SL.X; !/ j gƒ \ ..0; 1� � f0g/ ¤ ∅g:

By [1, Lemma 2.1], �.X; !/ indeed is transversal for horocycle flow.

Then the slope gaps of .X; !/ for holonomy vectors of `1 length � R are exactly 1=R2 times the set

of N.R/ � 1 first return times to �.X; !/ of the surface g�2 log.R/.X; !/ under the horocycle flow hs

for s 2 Œ0; R2�. Here we are thinking of return times as the amount of time between each two successive

times that the horocycle flow returns to the Poincaré section. In this way, the slope gaps of .X; !/ are

related to the return times of the horocycle flow to the Poincaré section. Summarizing, since GR.X; !/ is

the set of slope gaps renormalized by R2, we have that

GR.X; !/ D ffirst N.R/ � 1 return times of g�2 log.R/.X; !/ to �.X; !/ under hsg:

For a point z in the Poincaré section �.X; !/, we denote by Rh.z/ the return time of z to �.X; !/ under

the horocycle flow. Then as one lets R ! 1, this renormalization procedure gives us that

lim
R!1

jGR.X; !/ \ .a; b/j

N.R/
D �fz 2 �.X; !/ j Rh.z/ 2 .a; b/g;

where � is the unique ergodic probability measure on �.X; !/ for which the first return map under hs

is not supported on a periodic orbit. Computing the slope gap distribution then reduces to finding a

convenient parametrization of the Poincaré section for the horocycle flow on SL.2; R/=SL.X; !/, a

suitable measure on this parametrization, and the first return time function to this the Poincaré section.

We note that this last point also makes it clear that every surface in the SL.2; R/ orbit of a Veech surface

has the same slope gap distribution. We also note that scaling the surface by c scales the gap distribution

from f .x/ to .1=c4/f .x=c2/; see [11] for a proof of this latter fact.

Algebraic & Geometric Topology, Volume 24 (2024)
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2.2 Computing gap distributions for Veech surfaces

In [11], Uyanik and Work developed a general algorithm for computing the slope gap distribution for

Veech surfaces. In particular, their algorithm finds a parametrization for the Poincaré section of any Veech

surface and calculates the gap distribution by examining the first return time of the horocycle flow to this

Poincaré section. In this section, we’ll go over the basics of this algorithm. For more details about this

algorithm as well as a proof of why it works, please see Uyanik and Work’s original paper.

We start by supposing that .X; !/ is a Veech surface with n < 1 cusps. Then we let �1; : : : ; �n be

representatives of the conjugacy classes of maximal parabolic subgroups of SL.X; !/. We are going

to find a piece of the Poincaré section for each parabolic subgroup �i . The idea here is that the set of

shortest holonomy vectors of .X; !/ in each direction breaks up into
Sn

iD1 SL.X; !/vi , where the vi

vectors are in the eigendirections of the generators of each �i .

The Poincaré section is given by those elements g 2 SL.X; R/=SL.X; !/ such that g.X; !/ has a short

(length � 1) horizontal holonomy vector:

�.X; !/ D fg SL.X; !/ j gƒ \ ..0; 1� � f0g/ ¤ ∅g:

Here ƒ is the set of holonomy vectors of .X; !/. Up to the action of SL.X; !/, these short horizontal

holonomy vectors are then just gvi for a unique vi .

So �.X; !/ then breaks up into a piece for each �i , which we can parametrize as follows, depending on

whether �I 2 SL.X; !/.

Case 1 (�I 2 SL.X; !/) In this case, �i Š Z˚Z=2Z and we can choose a generator Pi for the infinite

cyclic factor of �i that has eigenvalue 1. Up to possibly replacing Pi with its inverse, there exists a

Ci 2 SL.2; R/ such that

Si D CiPiC
�1
i D

�

1 ˛i

0 1

�

for some ˛i > 0 and that Ci .X; !/ has a shortest horizontal holonomy vector of .1; 0/. The piece of

the Poincaré section associated to �i is then parametrized by all matrices Ma;b that take the saddle

connection of Ci .X; !/ with holonomy vector .1; 0/ to a short horizontal with holonomy vector .jaj; 0/

of Ma;bCi .X; !/ with �1 � a < 0 or 0 < a � 1. With some linear algebra, we can see that this is given

by matrices

Ma;b D

�

a b

0 1=a

�

with �1 � a < 0 or 0 < a � 1.

Since Si and �I are in the Veech group of Ci .X; !/, this set of Ma;b has some redundancies. Quotienting

out by �I gives us the set of Ma;b with 0 < a � 1 and arbitrary b. If we further quotient out by Si , we

Algebraic & Geometric Topology, Volume 24 (2024)
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a

b

1

1

b D 1

b D 1 � .˛i /a

a

b

c

1
b D ma C c

b D .m � ˛i /a C c

Figure 3: Two possible Poincaré section pieces �i .

see that Ma;b is identified with Ma;bCn.˛i /a for every n 2 Z. The result is that a Poincaré section piece

associated to �i can be parametrized by

�i D f.a; b/ 2 R
2 j 0 < a � 1 and 1 � .˛i /a < b � 1g;

where each .a; b/ 2 �i corresponds to g SL.X; !/ for g D Ma;bCi .

Remark 3 While �i is defined in this specific way in Uyanik and Work’s paper, there is actually a lot

more freedom in defining �i . We just need to choose a fundamental domain for the Ma;b matrices under

the action of hSi ; �I i. To do this, we again let 0 < a � 1, but for each a we choose a set of b values

of length .˛i /a to account for the quotienting out by Si . For any m; c 2 R, another such fundamental

domain is

�i D f.a; b/ 2 R
2 j 0 < a � 1 and ma C c � .˛i /a < b � ma C cg:

That is, instead of choosing �i to be a triangle whose top line is b D 1 for 0 < a � 1, we choose �i to

be a triangle whose top line is b D ma C c for some slope m and b–intercept c. We see the distinction

between these two Poincaré section pieces in Figure 3.

Furthermore, we can make similar modifications to �i in Case 2 below. In this case, there will be another

triangle with a < 0, and we have the freedom to choose the top line of the triangles with a > 0 and a < 0

independently. These modifications will be integral in our finiteness proofs.

Case 2 (�I … SL.X; !/) This case breaks up into two subcases, depending on whether the generator

Pi of �i Š Z has eigenvalue 1 or �1.

If Pi has eigenvalue 1, then we again can find

Si D CiPiC
�1
i D

�

1 ˛i

0 1

�

Algebraic & Geometric Topology, Volume 24 (2024)
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for some ˛i > 0 and that Ci .X; !/ has a shortest horizontal holonomy vector of .1; 0/. We again have that

the matrices Ma;b parametrize the Poincaré section piece, but now we only can quotient out by the subgroup

generated by Si . The result is that the Poincaré section piece associated to �i can be parametrized by

�i D f.a; b/ 2 R
2 j 0 < a � 1 and 1�.˛i /a < b � 1g[f.a; b/ 2 R

2 j �1 � a < 0 and 1C.˛i /a < b � 1g;

where each .a; b/ 2 �i corresponds to g SL.X; !/ for g D Ma;bCi .

When Pi has eigenvalue �1, we can only find Ci 2 SL.2; R/ such that

Si D CiPiC
�1
i D

�

�1 ˛i

0 �1

�

;

where ˛i > 0 and Ci .X; !/ has a shortest horizontal holonomy vector of .1; 0/. We again quotient out our

set of Ma;b matrices by the subgroup generated by Si . The resulting Poincaré section piece associated

to �i can be parametrized by

�i D f.a; b/ 2 R
2 j 0 < a � 1 and 1 � .2˛i /a < b � 1g;

where each .a; b/ 2 �i corresponds to g SL.X; !/ for g D Ma;bCi .

Having established what each piece of the Poincaré section associated to each �i looks like, we also need

to find the measure on the whole Poincaré section. The measure on the Poincaré section is the unique

ergodic measure � on �.X; !/, which is a scaled copy of the Lebesgue measure on each of these pieces

�i of R
2. The scaling factor is the total area of all the pieces of the transversal.

Upon finding the Poincaré section pieces, the return time function of the horocycle flow at a point

Ma;bCi .X; !/ is the smallest positive slope of a holonomy vector of Ma;bCi .X; !/ which has short

horizontal component. This is because of the way the horocycle flow acts on slopes. More precisely,

if v D .x; y/ is the holonomy vector of Ci .X; !/ such that Ma;b.x; y/ is the holonomy vector on

Ma;b.x; y/ with the smallest positive slope among all holonomy vectors with a horizontal component of

length � 1, then the return time function at that point .a; b/ 2 �i in the Poincaré section is given by the

slope of Ma;b.x; y/, which is
y

a.ax C by/
:

We call such a vector v D .x; y/ a winner or winning saddle connection. We note that while technically

v is the holonomy vector of a saddle connection, we will often use the terms holonomy vector and saddle

connection interchangeably. Our proof that the slope gap distribution of a Veech surface has finitely many

points of nonanalyticity will rely on us showing that each piece �i of the Poincaré section has finitely

many winners.

Each such v would then be a winner on a convex polygonal piece of �i , an example of which is given in

Figure 6. Furthermore, the cumulative distribution function of the slope gap distribution would then be

given by areas between the hyperbolic return time function level curves (see Figure 16 for an example

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 4: The surface L with cone point in red.

picture) and the sides of these polygons, and would therefore be piecewise real analytic with finitely many

points of nonanalyticity. For more details about this process and a worked example of a computation of a

slope gap distribution, please see [3].

2.3 Examples and difficulties

In this section, we will give an example of difficulties that arise from the choice of parametrization of the

Poincaré section. In particular, it is possible for there to be infinitely many winning saddle connections

under certain parametrizations, but only finitely many different winners under a different parametrization.

For full computations of a gap distribution we refer to [3; 11].

We will take the surface L in Figure 4 and analyze the winning saddle connection on the component �1

of the Poincaré section corresponding to the parabolic subgroup of SL.L / generated by
�

1
0

1
1

�

. L is a

7–square square-tiled surface with a single cone point.

Since
�

1
0

1
1

�

is in the Veech group and L has a length-1 horizontal saddle connection, the corresponding

piece of the Poincaré section �1 can be parametrized by matrices

Ma;b D

�

a b

0 a�1

�

with 0 < a � 1 and 1 � a < b � 1. Notice that L has all saddle connections with coordinates .n; 2/ and

.n; 3/ for n 2 Z, and no saddle connection with y–coordinate 1.

Proposition 4 In a neighborhood of the point .0; 1/ on �1, the winning saddle connection always has

y–coordinate 2.

Proof Take a saddle connection v D .n; k/ with k > 0 such that Ma;bv has horizontal component � 1.

We will show that if k > 2 and a < 1
3

, there is a saddle connection w D .m; 2/ such that the slope of

Ma;bw is less than the slope of Ma;bv, and Ma;bw has short horizontal component. Since there are no

saddle connections with k D 1, this implies that the winning saddle connection must have y–coordinate 2.

Algebraic & Geometric Topology, Volume 24 (2024)
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a

b

1

1

Am Am�1

1
2

Figure 5: Regions Am where .�m; 2/ is a winner.

The x–coordinate of Ma;bw is ma C 2b. Since L has all .m; 2/ saddle connections, we may choose an

m so that 1 � a < ma C 2b � 1. The condition that slope.Ma;bw/ < slope.Ma;bv/ rearranges to

na C kb < 1
2
k.ma C 2b/:

If k > 2, then since L is square-tiled k � 3, and when a < 1
3

we have that ma C 2b > 1 � a � 2
3

; thus
1
2
k.ma C 2b/ > 1. Since Ma;bv has a short horizontal component na C kb � 1, so the above inequality

is always true.

Let Am be the region where the saddle connection .�m; 2/ is the winning saddle connection. By

Proposition 4, in the top left corner of �1, Am is the region where Ma;b.�m; 2/ D .2b � ma; 2a�1/

has smallest slope among all saddle connections with y–coordinate 2 and short horizontal component.

The slope is 2a�1=.2b � ma/, so minimizing the slope is equivalent to maximizing 2b � ma with the

constraint that 2b � ma � 1, or in other words, �m D b.1 � 2b/=ac. But as a ! 0 inside the region �1,

b !1, so �m � �1=a ! �1. This implies that there infinitely many saddle connections that occur as

winners in the top left corner of the Poincaré section.

By Remark 3 in Section 2.2, we can change the parametrization of the Poincaré section. One problem in

our previous parametrization was that there were infinitely many winners in the upper left-hand corner

.0; 1/ of our Poincaré section. To fix this, we will change our parametrization so that the upper left corner

is at
�

0; 1
2

�

and the slope of the top line of our Poincaré section triangle is nicely compatible with the

.1; 2/ holonomy vector. This will ensure that there are finitely many winners in the top left corner, and

will result in finitely many winners across the entire Poincaré section. We will prove that we can always

do this for arbitrary Veech surfaces in Section 3.

We will use the parametrization 0 < a � 1 and 1
2

� 3
2
a < b � 1

2
� 1

2
a. This parametrization is chosen

to ensure that the saddle connection .1; 2/ of L wins in a neighborhood of the top line segment, which

prevents the problem that arises in the previous parametrization.
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a

b

1
2

�1

1

.1; 2/ wins

.2; 3/ wins

.2; 2/ wins

Figure 6: The new Poincaré section breaks up into three pieces, with saddle connection (1,2)

winning in the blue region, (2,3) in the yellow region and (2,2) in the red region.

In this case, the only winners are the .1; 2/, .2; 3/ and .2; 2/ saddle connections on L :

(1) .1; 2/ wins in the region

˚

.a; b/ j 0 < a � 1; 1
2

� a < b � 1
2

� 1
2
a and 1

3
� 2

3
a < b

	

:

(2) .2; 3/ wins in the region

˚

.a; b/ j 1
2

< a � 1 and 1
2

� a < b � 1
3

� 2
3
a
	

:

(3) .2; 2/ wins in the region

˚

.a; b/ j 0 < a � 1 and 1
2

� 3
2
a < b � 1

2
� a

	

:

To see this, notice that the saddle connection .x; y/ is the winner at .a; b/ if Ma;b.x; y/ has smallest

positive slope amongst all saddle connections with short horizontal component. Ma;b.x; y/ has short

horizontal component in the region with 0 < a � 1 and .�x=y/a < b � 1=y � .x=y/a. Minimizing

the slope at .a; b/ is equivalent to maximizing x=y over all saddle connections with a short horizontal

component.

Working out the exact winners then comes down to casework. In this case, Ma;b.m; 2/ never has a short

horizontal component for m > 2 and .a; b/ in the Poincaré section, and simple casework shows where

.1; 2/ and .2; 2/ are the winners. For saddle connections with y–coordinate greater than 2, we need to

understand those with x=y > 1
2

which can potentially win against .1; 2/ or .2; 2/. In the yellow region

.2; 3/ wins, as .2; 2/ does not have a short horizontal component for .a; b/ in that region. All other saddle

connections with y D 3 and x � 3 do not have short horizontal component in the Poincaré section. For

y � 4, a similar analysis shows that none of the saddle connections can appear as winners, giving the result.
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3 Main theorem

In Section 2.3, we examined the 7–square square-tiled surface L and saw that, in one parametrization, it

looked like the Poincaré section would admit infinitely many winning saddle connections and therefore

give the possibility of infinitely many points of nonanalyticity in the slope gap distribution. However,

when we strategically chose a different parametrization of this piece of the Poincaré section, there were

only finitely many winners. Thus this piece of the Poincaré section could only contribute finitely many

points of nonanalyticity to the slope gap distribution.

It is interesting to note that this implies that many of the potential points of nonanalyticity arising from

the Uyanik–Work parametrization must cancel each other out and not result in points of nonanalyticity in

the slope gap distribution. Choosing a strategic parametrization of the Poincaré section is one of the key

ideas of the main theorem of this paper:

Theorem 1 The slope gap distribution of any Veech surface has finitely many points of nonanalyticity.

This section is devoted to the proof of this theorem. We will begin by giving an outline of the proof, and

then will dive into the details of each step.

3.1 Outline

The idea is that after choosing strategic parametrizations of each piece of the Poincaré section of a

Veech translation surface .X; !/, we will use compactness arguments to show that there are finitely many

winners on each piece.

(1) We begin with a Veech translation surface .X; !/ and focus on a piece of its Poincaré section

corresponding to one maximal parabolic subgroup in SL.X; !/. Up to multiplication by an element of

GL.2; R/, we will assume that the generator of the parabolic subgroup has a horizontal eigenvector and

.X; !/ has a horizontal saddle connection of length 1. Based on properties of the saddle connection set

of .X; !/, we strategically choose a parametrization TX of this Poincaré section piece. TX will be some

triangle in the plane.

(2) For any saddle connection v of .X; !/, we will define a strip S�.v/ that gives a set of points

.a; b/ 2 R>0 � R where v is a potential winning saddle connection on the surface Ma;b.X; !/ 2 TX . We

will start by showing various properties of these strips that we will make use of later on in the proof.

(3) We will then show that every point .a; b/ 2 TX in the interior of a strip has an open neighborhood

with finitely many winning saddle connections.

(4) We show that every point .a; b/ on the top edge of TX has an open neighborhood with finitely many

winning saddle connections.

(5) We then move on to show that points .a; b/ 2 TX that are either in the interior of TX or on the bottom

edge not including the right vertex with a D 1 have an open neighborhood with finitely many winning

saddle connections.
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(6) Next we show that on the boundary a D 1 of TX there are finitely many winning saddle connections.

(7) Using the finiteness on the right boundary, we show that any point .a; b/ 2 TX with a D 1 has an

open neighborhood with finitely many winning saddle connections.

(8) By compactness of TX , there is a finite cover of TX with the open neighborhoods of points .a; b/ 2 TX

that we found in our previous steps. Since each of the these open neighborhoods had finitely many

winners, we find that there are finitely many winning saddle connections across all of TX .

(9) Finally, we show that finitely many winners on each piece of the Poincaré section implies finitely

many points of nonanalyticity of the slope gap distribution.

3.2 Proof

Using the method of [11] outlined in Section 2.2, it will suffice to show that every piece of the Poincaré

section can be chosen so that there are only finitely many winning saddle connections. For most of the

arguments in this section we will fix a piece of the Poincaré section and will work exclusively with it.

We recall that there is a piece of the Poincaré section for each conjugacy class of a maximal parabolic

subgroup in SL.X; !/. We will now fix such a maximal parabolic subgroup �i and work with the

corresponding component of the Poincaré section. Without loss of generality we may assume that .X; !/

has a horizontal saddle connection with x–component 1 and that �i is generated by

Pi D

�

1 ˛i

0 1

�

:

Using the notation of Section 2.2, this is essentially replacing .X; !/ with Ci .X; !/.

Since .X; !/ is a Veech surface with a horizontal saddle connection it has a horizontal cylinder decompo-

sition [6], and therefore, for all a 2 R, there are only finitely many heights 0 � h � a such that .X; !/

has a saddle connection with y–component h. Let y0 > 0 be the shortest vertical component of a saddle

connection on .X; !/, and let x0 > 0 be the shortest horizontal component of a saddle connection at

height y0. Our first step is to use this saddle connection to give a parametrization of the Poincaré section

that is adapted to the geometry of .X; !/.

By Remark 3, we can choose the following parametrization of this piece of the Poincaré section, as

pictured in Figure 7:

TX D

�

.a; b/
ˇ

ˇ

ˇ
0 < a � 1 and

1 � x0a

y0
� na � b �

1 � x0a

y0

�

:

Here n is either ˛i or 2˛i depending on which one is needed to fully parametrize this piece of the Poincaré

section, as described in Section 2.2. In the case where �I … SL.X; !/ and P1 had eigenvalue 1, the

Poincaré section has an additional triangle with a < 0. In particular, we can choose this triangle so that it

consists of points .�a; �b/ for .a; b/ 2 TX . But if v were the winning saddle connection for Ma;b.X; !/,

then �v would be the winning saddle connection for M�a;�b.X; !/, and hence when proving that there

are only finitely many winners, it suffices to consider only the portion with a > 0.
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a

b

1

y0

1

b D
�x0

y0

aC
1

y0

b D
�

�x0

y0

�n
�

aC
1

y0

Figure 7: A Poincaré section piece for .X; !/ with y0 > 0 the shortest vertical component and

x0 > 0 the shortest corresponding horizontal component of a saddle connection on .X; !/ with

vertical component y0.

Our goal now is to prove that the return time function is piecewise real analytic with finitely many pieces.

We will do so by proving that there are finitely many winning saddle connections v1; : : : ; vn 2 ƒ.X; !/

such that each point .a; b/ 2 TX has a winner Ma;bvi for some 1 � i � n. We will repeat this for every

TX corresponding to each maximal parabolic subgroup.

To achieve this goal, we will first define an auxiliary set that will help us understand for what points

.a; b/ 2 TX a particular v 2 ƒ.X; !/ is a candidate winner. By a candidate winner, we mean that Ma;bv

has a positive x–coordinate at most 1 and a positive y–coordinate. If v D .x; y/, the x–coordinate

condition is the condition that 0 < ax C by � 1. We also note that for Ma;b.x; y/ to be a winner, we

need that a�1y > 0. Since a > 0 on TX , this condition reduces to saying that y > 0.

Definition 5 Given a saddle connection v D .x; y/ with y > 0, we define S�.v/ as the strip of points

.a; b/ 2 R>0 � R such that 0 < ax C by � 1. This corresponds to the set of surfaces Ma;b.X; !/ for

which Ma;bv is a potential winning saddle connection.

Let us note some properties of these strips S�.v/ that we will use repeatedly in our proofs. We recall

that we are assuming without loss of generality that .X; !/ has a short horizontal saddle connection of

length 1. Considering the particular piece TX of the Poincaré section, we recall that TX is parametrized

by matrices

Ma;b D

�

a b

0 a�1

�

so that Ma;b.X; !/ has a horizontal saddle connection of length � 1.
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a

b

1

y 1

x

Figure 8: A strip S�.v/ for v D .x; y/. Here y > 0. The slope of the upper and lower lines of the

strip is �x=y.

Then, because .X; !/ is a Veech surface, it breaks up into horizontal cylinders, and therefore there exists a

y0 > 0 such that there is a saddle connection with height y0 and furthermore that every saddle connection

with positive height has height � y0.

With these assumptions in place, we note the following useful properties of the strips S�.v/ that are used

implicitly throughout the proof:

(1) The strip S�.v/ for v D .x; y/ is sandwiched between a solid line that intersects the b–axis at 1=y

and a dotted line that intersects the b–axis at 0. Both lines have slope �x=y. We also know that y � y0,

so 1=y � 1=y0.

(2) Fixing any c > 0, there are only finitely many y–coordinates of saddle connections v such that S�.v/

intersects the y–axis at any point � c.

This is because .X; !/ being a Veech surface and having a horizontal saddle connection implies that

the surface breaks up into finitely many horizontal cylinders of heights h1; : : : ; hn and every saddle

connection with positive y–component must have a y–component that is a nonnegative linear combination

of these hi . Since there are finitely many such y values � 1=c, there are finitely many strips that intersect

the y–axis at points � c.

(3) At a particular point .a; b/ 2 TX , the winner is the saddle connection v D .x; y/ 2 ƒ.X; !/ such that

Ma;bv D .ax Cby; a�1y/ has the least slope among those saddle connections satisfying 0 < ax Cby � 1

and a�1y > 0. Since a > 0 for any point in �i and the reciprocal of the slope of Ma;bv is a2x=y C ab,

this corresponds to the saddle connection with the greatest reciprocal slope, which corresponds to having

the greatest x=y with y > 0.

In terms of our strips, we’re fixing the point .a; b/ and looking for the strip S�.v/ that contains .a; b/ and

has the least slope, since each strip has slope �x=y. We further note that, due to our choice of Poincaré
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section, no saddle connection v D .x; y/ with x < 0 can ever be the winner at a point .a; b/ 2 TX , since

either .a; b/ will not be in the strip S�.v/ or the saddle connection .x0; y0/ that defined TX would win

over .x; y/ at .a; b/. Because of this, from now on we will only consider saddle connections with x � 0

(and y > 0) when looking for potential winners.

(4) For any given y > 0, there are only finitely many saddle connection vectors v D .x; y/ of .X; !/

with x � 0 such that S�.v/ intersects TX .

This is because S�.v/ does not intersect TX for x=y larger than some constant C that depends on TX

and y. Specifically, we can let C D x0=y0 C n, the negative of the slope of the bottom line that defines

the triangle TX . Since the saddle connection set is discrete, there are finitely many x � 0 for a given y

such that x=y � C .

With these facts established, let us first prove a lemma that shows that winning saddle connections exist

and that will be useful in proving Lemma 12.

Lemma 6 Let .a; b/ 2 TX be such that .a; 0/ is a short horizontal saddle connection of Ma;b.X; !/.

Then Ma;b.X; !/ either has a saddle connection v D .x; y/ with 0 < x < a and y > 0, or there exist

two saddle connections v1 D .a; y/ and v2 D .0; y/ with y > 0. This implies that every point in TX

has a winning saddle connection , or equivalently that every point in TX is in some strip S�.v/ for some

v D .x; y/ with y > 0.

Proof Let us take a horizontal saddle connection on our surface Ma;b.X; !/ with holonomy vector

.a; 0/, connecting two (possibly identical) cone points p and q. Then we will consider developing a

width-a vertical strip on our surface extending upward with the open horizontal segment from p to q as

its base. Since our surface is of finite area, this vertical strip must eventually hit a cone point r or come

back to overlap our original open segment from p to q. Now we’re going to define our vectors v, or v1

and v2, in each case.

In the former case when the top edge of our vertical strip hits a cone point r in the interior of the edge,

the straight segment from p to r cutting through our vertical strip gives us v.

The latter case when the top edge of our vertical strip comes back to overlap our original open segment

breaks up into two cases. If we have an incomplete overlap, then the top edge contains the cone point

p q

r

v
p

r D q

:::

:::

v

p q

:::

:::

v1

v2

Figure 9: The vectors v or v1 and v2 in the three different cases of vertical strip.
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a

b

1

y

1

h

S

b D �
x

y
a C

1

h

Figure 10: A choice of 1=h for a particular S .

r D p or r D q, and the saddle connection from p on the bottom edge to r on the top edge gives us v. If

we have a complete overlap, then the saddle connection from p on the bottom edge to q on the top edge

gives us our vector v1 and the saddle connection from p on the bottom edge to p on the top edge gives

us our vector v2.

In any of these cases, letting v0 D M�1
a;b

.v/ or M�1
a;b

.v1/ gives us that S�.v0/ contains our initial point

.a; b/ and v0 is a possible winning saddle connection.

The following lemma will help us show that there are finitely many winning saddle connections on certain

sets in TX :

Lemma 7 Let S be a closed set that is a subset of S�.v/ for v D .x; y/ with y > 0. Then there are

finitely many winning saddle connections on S .

Proof Let S be a closed set contained in S�.v/ for a saddle connection v D .x; y/ of .X; !/ with y > 0.

By definition, v is a potential winning saddle connection on all of S . That is, for any point .a; b/ 2 S ,

Ma;bv has positive y component and positive and short (� 1) x component.

We recall that for a point .a0; b0/ � S to have winner v0 D .x0; y0/ ¤ v D .x; y/, we need that v0 is a

saddle connection of .X; !/, x0=y0 > x=y, and that .a0; b0/ � S�.v0/.

This corresponds to the strip S�.v0/ having a smaller slope than S�.v/ and still intersecting S . Given

that S is closed and the bottom boundary of S�.v/ is open, there exists an h > 0 such that the line S is

completely on or above the line b D �.x=y/a C 1=h. Furthermore, since the left boundary of S�.v/ is

open, S is a positive distance away from the y–axis.

Then for S�.v0/ to intersect S and for x0=y0 > x=y, we need that y0 < h, since otherwise the strip S�.v0/

would have y–intercepts 1=y0 � 1=h and 0 and would have smaller slope than that of S�.v/ and would

therefore not intersect S .
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But since .X; !/ is a Veech surface with a horizontal saddle connection, it decomposes into finitely many

horizontal cylinders. Therefore, the set of possible vertical components y0 of saddle connections are a

discrete subset of R, and thus there are finitely many vertical components of saddle connections that

satisfy y0 < h. Since there are finitely many saddle connections in the vertical strip .0; 1� � .0; 1/ with

vertical component less than h, there are finitely many possible winning saddle connections on S .

We recall that our goal is to show that every point .a; b/ 2 TX has a neighborhood on which there are

finitely many winners. This will allow us to use a compactness argument to prove that there are finitely

many winners on all of TX . Building off of the previous lemma, we show in the next lemma that certain

points .a; b/ 2 TX have an open neighborhood on which there are finitely many winners:

Lemma 8 Let .a; b/ be in the interior of some strip S�.v/. Then there exists a neighborhood of .a; b/

with finitely many winning saddle connections.

Proof Let .a; b/ be in the interior of the strip S�.v/ for v D .x; y/ with y > 0 and x � 0. Then we can

find an � > 0 such that the closed ball of radius � around .a; b/ remains in the interior of the strip. That

is, we choose an � > 0 such that

B�..a; b// � S�.v/:

We can then use Lemma 7 to conclude that there are finitely many winning saddle connections on

B�..a; b//, and therefore on B�..a; b//.

We now look at points .a; b/ 2 TX that lie on the top edge of TX and show that these points have a

neighborhood with finitely many winners.

Lemma 9 For any .a; b/ that lies on the top edge of TX , including the point .0; 1=y0/, there exists a

neighborhood B�..a; b// such that there are finitely many winning saddle connections on B�..a; b//\TX .

Proof We recall that TX is a triangle bounded by the lines b D .�x0=y0/a C1=y0 on top, the line a D 1

on the right and the line b D .�x0=y0 � n/a C 1=y0 on the bottom.

We break up the proof of this lemma into cases, depending on the location of .a; b/ 2 TX [ f.0; 1=y0/g:

(1) b D .�x0=y0/a C 1=y0 These points are on the top line of TX . We recall that y0 was chosen to

be the least y > 0 for which X has a saddle connection .x; y0/. Then x0 was the least x > 0 for which

.x; y0/ was a saddle connection of X .

Let .a; b/ be any point on the top line of TX and let v D .x0; y0/. Then .a; b/ is on the top line of

the strip S�..x0; y0//. We can find an � > 0 such that B�..a; b// \ S�..x0; y0// is a closed subset of

S�..x0; y0//. By Lemma 7, there are then finitely many winners on B�..a; b// \ S�..x0; y0//.

(2) .a; b/ D .0; 1=y0/ This point is not in TX but is the top left corner of the triangle that makes up TX .

We can find a y1 > y0 such that every saddle connection .x; y/ of X with y > y0 must satisfy that y � y1.

Thus, we can choose an � > 0 such that B�..0; 1=y0// \ TX � S�..x0; y0// and no strip S�..x; y//, for
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.a; b/

p�

Figure 11: The strip S�.w�/.

a saddle connection with y > y0 and x � 0, intersects B�..0; 1=y0//. This would imply that the only

possible winning saddle connections on B�..0; 1=y0// are of the form .x; y0/ for x � x0.

But if we fix y D y0, since the set of saddle connections .x; y0/ is discrete and TX is bounded below by

the line b D .�x0=y0 �n/aC1=y0, there are only finitely many saddle connections v D .x; y0/ of .X; !/

whose strip S�.v/ intersects B�..0; 1=y0// — exactly those x such that x0 � x � x0 C ny0. We have

shown then that only finitely many strips S�.v/, for holonomy vectors v that could win over .x0; y0/,

intersect B�..0; 1=y0//, and therefore there are only finitely many winners on this neighborhood.

Having established that points .a; b/ 2 TX on the top edge of TX have neighborhoods with finitely many

winners, we now turn to points .a; b/ 2 TX that lie in the interior of TX or on the bottom edge of TX .

Lemma 10 For any .a; b/ that lies in the interior of TX or on the bottom edge of TX , excluding the

vertex with a D 1, there exists a neighborhood B�..a; b// such that there are finitely many winning saddle

connections on B�..a; b// \ TX .

Proof By Lemma 8, it suffices to show that .a; b/ lies on the interior of a strip S�.v/ for some saddle

connection v.

Because .a; b/ is in TX , it must lie in some strip S�.v/. If .a; b/ is in the interior of S�.v/, then we are

done. Otherwise, if .a; b/ is on the boundary of S�.v/, we consider the points p� D ..1C �/a; .1C �/b/,

with winner w� . Since .a; b/ lies in the interior of TX or on the bottom edge of TX , for � > 0 sufficiently

small p� also lies in TX . Moreover, notice that p� and .a; b/ lie on the same line through the origin. This

immediately implies that .a; b/ lies in the interior of S�.w�/, as seen in Figure 11.

Indeed, by the definition of S�.v/ for any holonomy vector v as a half-open strip with the open bottom

boundary passing through the origin, for all points p 2 S�.v/ the points tp for 0 < t < 1 lie in the interior,

which gives the desired result.

The combination of our previous lemmas shows that, for all .a; b/ 2 TX away from the right vertical

boundary, there are only finitely many winners in a neighborhood of .a; b/. We also want to show that,
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for each .1; b/ on the right vertical boundary, there are only finitely many winners in a neighborhood.

We will do this in two steps. First we will show that there are finitely many winning saddle connections

along the right boundary of TX . We will then use this result to prove that every point .1; b/ on the right

boundary of TX has a neighborhood with finitely many winning saddle connections.

For our first result, we will need the following definition:

Definition 11 Given .a; b/ 2 R
2, define the set Sƒ.a; b/ as the strip of vectors v D .x; y/ 2 R

2 such

that 0 < ax C by � 1 and y > 0. This corresponds to the set of vectors that are potential winners on the

surface Ma;b.X; !/.

We think of this definition as a sort of dual to Definition 5, where instead of thinking of the surfaces

corresponding to a particular winning saddle connection, we think about the set of possible coordinates

of winning saddle connections for a particular surface.

Lemma 12 There are only finitely many winning saddle connections along the right vertical boundary

a D 1 of TX .

Proof By Lemma 6, we know that every point .1; b/ on the right boundary of TX has a winning saddle

connection. The set of b 2 R such that .1; b/ 2 TX is some interval Œc; d �. We note that since
�

1
0

˛
1

�

is in the Veech group of our surface for some ˛ > 0, it suffices to show that there are finitely many

winners for b 2 Œc C n˛; d C n˛� for any n 2 Z. This is because .x; y/ is the winner for b0 if and only

if .x � n˛y; y/ is the winner for b0 C n˛. For convenience, we will prove that there are finitely many

winners for b 2 ŒM; N � D Œc C n˛; d C n˛� for an n such that M; N > 0.

For each such b, we let vb be its corresponding winning saddle connection. We wish to show that the set

of vectors vb is finite. We suppose that fvbg is infinite. Then, since b 2 ŒM; N �, we must be able to find

a convergent subsequence of bi 2 R with corresponding winning saddle connections .xi ; yi / such that

bi ! b0 and b0; bi 2 ŒM; N � for all i . In particular, b0 > 0.

We claim now that Sƒ.1; b0/ cannot have a winning saddle connection, which would contradict Lemma 6.

This corresponds to a saddle connection .x; y/ in the strip Sƒ.1; b0/ that maximizes x=y. The strip

Sƒ.1; b0/ satisfies that y > 0 and 0 < x Cb0y � 1, or alternatively that �.1=b0/x < y � �.1=b0/x C1=b0.

We recall that b0 > 0. Figure 12 shows a depiction of this strip.

We suppose that the winning saddle connection .x0; y0/ for b0 lies in the interior of Sƒ.1; b0/. If

x0=y0 > xi=yi and .x0; y0/ 2 Sƒ.1; bi /, then .xi ; yi / could not be the winner for .1; bi / because .x0; y0/

beats it and is still in the strip Sƒ.1; bi /.

We let Cb0 be the cone given by the intersection of y < .y0=x0/x and y > .y0=.x0 � 1//x � y0=.x0 � 1/.

We notice that if .xi ; yi / 2 Cb0 , then it follows that .x0; y0/ 2 Sƒ.1; bi /. One can see this algebraically

or visually by noting that if .xi ; yi / is in the cone Cb0 as depicted in Figure 13, then Sƒ.1; bi / contains

.xi ; yi / and is bounded by two lines with x–intercepts 0 and 1 and therefore must contain the point

.x0; y0/. Furthermore, the first inequality defining the cone gives us that x=y > x0=y0.
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1

1

b0

Figure 12: The strip Sƒ.1; b0/.

Therefore, if .xi ; yi / is a winning saddle connection for some .1; bi /, it cannot be in the open cone Cb0

as defined above. Since bi ! b0, this implies that for any � > 0 we can find an n large enough that,

for all i � n, the strips Sƒ.1; bi / all lie in a region S� that is the region where .�1=b0 C �/x � y �

.�1=b0 � �/x C .1=b0 C �/ and y > 0. Specifically, we will choose an � such that the slopes of the

two bounding lines of S� are wedged between the slopes of the bounding lines of Cb0 . That is, we will

choose � > 0 such that .�1=b0 � �/ > y0=x0 and .�1=b0 C �/ < y0=.x0 � 1/. We call this latter region S� .

Figure 13 illustrates these regions.

Given these conditions, we notice that S�nCb0 is a compact set. With the possible exception of one point

that equals .x0; y0/, the winning saddle connections .xi ; yi / for i � n must all be in this region. But the

set of holonomy vectors of saddle connections of .X; !/, of which f.xi ; yi /g is a subset, is a discrete

subset of R
2 with no accumulation points, and so there are only finitely many .xi ; yi / 2 S�nCb0 . This is a

1

.x0; y0/

S�

Cb0

Sƒ.1; b0/

Figure 13: The strip Sƒ.1; b0/ with its winner .x0; y0/ and cone Cb0 , along with the region S�

containing the winners .xi ; yi / for i � n.
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1

.x0; y0/

.x00; y00/

S�

C0
b0

Sƒ.1; b0/

Figure 14: The strip Sƒ.1; b0/ with its winner .x0; y0/, the vector .x00; y00/ on its open boundary

and its cone C0

b0 , along with the region S� containing the winners .xi ; yi / for i � n.

contradiction, since the set f.xi ; yi /g is infinite. Hence, if Sƒ..1; b0// contained a point .x0; y0/, it could

not be in the interior of the strip.

We also consider the case when .x0; y0/ is in on the boundary of Sƒ.1; b0/. That is, we suppose that

.x0; y0/ is on the line y D �.1=b0/x C1=b0. If there exists a saddle connection in the interior of Sƒ.1; b0/,

we can appeal to the reasoning in the previous case to find a contradiction. Else, after potentially applying

a shear to our surface, Lemma 6 guarantees that there is also a holonomy vector .x00; y00/ on the open

boundary y D �.1=b0/x of Sƒ.1; b0/.

We now consider the cone C0

b0 given by the intersection of the regions

y <
y0

x0
x and y >

y00

x00 � 1
x �

y00

x00 � 1
:

Similar to the previous case, we can find n large enough that the strips Sƒ.1; bi / all lie in a region S� that

is defined by .�1=b0 C �/x � y � .�1=b0 � �/x C .1=b0 C �/ and y > 0. Here we again choose � > 0

such that the slopes of the two bounding lines of S� are wedged between the slopes of the bounding lines

of C0

b0 . That is, we will choose � > 0 such that .�1=b0 � �/ > y0=x0 and .�1=b0 C �/ < y00=.x00 � 1/. We

call this latter region S�. Figure 14 illustrates these regions.

Since the set f.xi ; yi /g has no accumulation points and S�nC0

b0 is compact, all but finitely many of the

.xi ; yi / for i � n must lie in the cone C0

b0 and not be equal to .x0; y0/ or .x00; y00/. Let us consider one of

these .xi ; yi /. The corresponding strip Sƒ.1; bi / is the region between two parallel lines that intersect the

x–axis at 1 and 0, including the line through 1 but not including the line through 0. Therefore Sƒ.1; bi /

must either contain .x0; y0/ or .x00; y00/, depending on if bi � b0 or bi > b0, respectively. If it contains

.x0; y0/, then by similar reasoning as in the previous case .x0; y0/ beats .xi ; yi /, and so .xi ; yi / could not
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have been the winner for .1; bi /. If it contains .x00; y00/, then either .x00; y00/ beats .xi ; yi /, which means

that .xi ; yi / was not the winner, or .xi ; yi / was in the interior or Sƒ..1; b0//, which contradicts that the

interior of Sƒ.1; b0/ did not contain any saddle connections. In either case, we have a contradiction.

Since we found a contradiction in both the cases when there was saddle connection in the interior and

on the boundary of Sƒ.1; b0/, we see that there must have been only finitely many winners on the right

vertical boundary of TX .

We can now use the previous lemma to show that points on the right boundary of TX have a neighborhood

with finitely many winners.

Lemma 13 Given any point .a; b/ 2 TX with a D 1, there exists a neighborhood B�..a; b// such that

there are finitely many winning saddle connections on B�..a; b// \ TX .

Proof Suppose that we have a point .a; b/ 2 TX with a D 1 and b D b0. Then Lemma 6 guarantees that

.1; b0/ is in some strip S�.v/. If .1; b0/ is in the interior of S�.v/, then Lemma 8 shows that there is a

neighborhood of .1; b0/ in TX with finitely many potential winners.

We now consider the case where .1; b0/ is not in the interior of any strip. This means that .1; b0/ is on

the top boundary of some strip S�.v/. We will first deal with the case where .1; b0/ is not on the top

boundary of TX : Every point .1; b0 Cc/ for c > 0 small enough must also be in some winning strip. Since

Lemma 12 tells us that there are finitely many winning saddle connections on the right boundary of TX

where a D 1, this then implies that .1; b0/ is on the bottom boundary of some other strip S�.w/, where

w is the winning saddle connection for all .1; b0 C c/ for c > 0 small enough.

Because there are finitely many winning saddle connections on the a D 1 line of TX by Lemma 12, we

can now choose an � > 0 small enough that w is the winning saddle connection for .1; b0 C c/ and v is

the winning saddle connection for .1; b0 � c/ for any 0 < c � �.

We claim now that there are finitely many winning saddle connections on B�..1; b0//. We recall that for

a point .a; b/ 2 B�..1; b0// \ TX to have a winning saddle connection other than v or w, there must be

a strip S�.u/ for a saddle connection u that is steeper (has more negative slope) than S�.v/ or S�.w/

(whichever is the winner at .a; b/) and that contains .a; b/.

Shrinking � if necessary, B�..1; b0// lies above the line b D �.x=y/aC1=h for some h > 0 and .x; y/ D v.

Then, as in the proof of Lemma 7, we can show that there are finitely many strips of saddle connections

u of .X; !/ with strips S�.u/ intersecting B�..1; b0// and that are at least as steep as S�.v/.

If S�.u/ is at most as steep as S�.w/, then it cannot win for any point in B�..1; b0// \ TX since w or v

would win instead.

If S�.u/ has steepness strictly between that of w and v, then for u to be a winner for some point

.a; b/ 2 B�..1; b0// \ TX we must have that .a; b/ 2 S�.u/ \ .S�.w/nS�.v//. But then, by slope

considerations, S�.u/ must also intersect the a D 1 boundary of TX in B�..1; b0// above the point .1; b0/.

But this contradicts that w and v were the only winners on the right boundary of TX in B�..1; b0//.
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a

b

1

TX

B�..1; b0//

S�.v/

S�.w/

Figure 15: The winning strips S�.v/ and S�.w/ near .1; b0/ on the right boundary of TX .

Hence, only the finitely many saddle connections u with strips that intersect B�..1; b0// and have slope

steeper than that of S�.v/ can be winners on B�..1; b0// \ TX .

Combining these lemmas shows that for all points in TX there are finitely many winners in a neighborhood,

and hence by compactness there are finitely many winners on TX .

Proof of Theorem 1 We will consider TX D TX [ f.0; 1=y0/g. This is a compact set. We showed in

Lemmas 9, 10 and 13 that, for any point .a; b/ 2 TX , we can find a neighborhood B�..a; b// such that

there are finitely many possible winning saddle connections on B�..a; b// \ TX . Since TX is compact, it

is covered by finitely many of these neighborhoods. Since a finite union of finite sets is finite, the set of

possible winners on TX is finite.

Each winning saddle connection vi would then be a winner on a convex (see the remark below) polygonal

piece of TX . The cumulative distribution function of the slope gap distribution would then be given by

the sums of areas between the level curves of the hyperbolic return time functions y=.a.ax C by//, as

described in Section 2.2, and the sides of these polygons. Since there are finitely many polygonal pieces,

the cumulative distribution function and therefore also the slope gap distribution would be piecewise real

analytic with finitely many points of nonanalyticity.

Remark 14 While it is not necessary for the proof of Theorem 1, we can see that each v is a winner on a

convex polygonal piece of �i . The convexity arises because the region where v wins is the intersection of

finitely many convex regions: the strip S�.v/, the triangular region TX , and finitely many half-planes that

are the upper piece of the complement of S�.v0/ for other vectors v0 that win on some region of S�.v/\TX .
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4 Quadratic tail decay

As an application of the finiteness result (Theorem 1), we prove:

Theorem 2 The slope gap distribution of any Veech surface has quadratic tail decay. That is, if f

denotes the density function of the slope gap distribution, then
Z

1

t

f .x/ dx � t�2:

Proof We find the decay of the tail on a piece of the Poincaré section given by the triangle TX . Doing

this for all the pieces gives the decay of the tail.

The proof of Theorem 1 shows that there exists a minimal finite set of saddle connections F � ƒ.X; !/

such that, for any point in the triangle TX , there is some v 2 F with Ma;bv being the winning saddle

connection. Let S�.v/ � TX denote the strip where Ma;bv could win and W�.v/ � S�.v/ denote where

Ma;bv does win.

Fix v D .x; y/ 2 F . Then the tail on the piece W�.v/ is proportional to the area of the set of points .a; b/

in W�.v/ with
slope.Ma;bv/ D

y

a2x C aby
> t ()

1

at
�

x

y
a > b:

Let m D x=y. By adding the contribution that W�.v/ gives on the tail for each v 2 F , we get the full

contribution to the tail. In what follows we work on one such winning saddle connection v. Hence, it

suffices to understand the portion of W�.v/ below the hyperbola b D 1=.at/ � ma. Notice that this

hyperbola approaches the line b D �ma from above. Moreover, notice that the line b D �ma is the

bottom boundary of the strip S�.v/.

We have three situations, depending on how the line b D �ma intersects TX , as shown in Figure 16.

(1) Suppose b D �ma doesn’t intersect TX . This means that the line b D �ma avoids the bottom edge

of TX for a 2 Œ0; 1�. In this case we will only find contribution to the tail when the vertical of v is y0,

since otherwise we can choose large enough t so that the hyperbola misses W�.v/.

Figure 16: An illustration of cases (1)–(3) in the proof of Theorem 2 (from left to right).
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An upper bound for the contribution of W�.v/ is just the part underneath the hyperbola and inside TX .

For t large, the hyperbola b D 1=.at/ � ma intersects the triangle twice. First it intersects at the top

through the boundary line b D 1=y0 � .x0=y0/a at the point

aC

top D
�1 C

p

1 C 4y0.my0 � x0/=t

2.my0 � x0/
;

and then leaves through the bottom boundary line b D 1=y0 � .x0=y0 C n/a at the point

aC

bot D
�1 C

p

1 C 4y0.my0 � .x0 C ny0//=t

2.my0 � .x0 C ny0//
:

Thus, the contribution is given by

Z a
C
top

aD0

Z 1=y0�.x0=y0/a

bD1=y0�.x0=y0Cn/a

1 db da C

Z a
C
bot

aDa
C
top

Z 1=.at/�ma

bD1=y0�.x0=y0Cn/a

1 db da:

The first integral evaluates to 1
2
n.aC

top/2 and, by using a Taylor series on the square root, can be shown to

decay like t�2.

The second integral evaluates to

�

1

t
log.a/ C

1

2

�

x0

y0
C n � m

�

a2 �
1

y0
a

�
ˇ

ˇ

ˇ

ˇ

a
C
bot

aDa
C
top

:

By performing a Taylor series approximation on aC
top and aC

bot, we get that the second integral decays

like t�3.

Thus, the total decay on the integral is like t�2.

(2) Now consider the case when b D �ma intersects TX at the bottom vertex of TX . In this case

m D x0=y0 C n � 1=y0. If the vertical of y is the same as y0, then we get a contribution to the tail at the

top of TX as in case (1). In fact, this is the only way we can get contribution at the top of TX .

Now we find the contribution on the bottom of TX . Thus, we are interested in the intersection of the

hyperbola b D 1=.at/ � ma with the bottom boundary line of TX given by 1=y0 � .x0=y0 C n/a. This is

the point

a�

bot D
�1 �

p

1 C 4y0.my0 � .x0 C ny0//=t

2.my0 � .x0 C ny0//
:

In fact, using that the line b D �ma intersects the bottom of TX , we get that m D x0=y0 C n � 1=y0 and

so we can see

a�

bot D
1

2

�

1 C

r

1 �
4y0

t

�

:

The contribution is then given by

Z 1

aDa�
bot

Z 1=.at/�ma

bD1=y0�.x0=y0Cn/a

1 db da:
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This integral evaluates to

1

2

�

x0

y0
C n � m

�

�
1

y0
�

1

t
log.a�

bot/ �
1

2

�

x0

y0
C n � m

�

.a�

bot/
2 C

a�

bot

y0
:

By doing a Taylor series approximation on a�

bot we can show that the decay is like t�2.

(3) Now suppose that the line b D �ma does intersect TX and this intersection is above the bottom

vertex of TX , ie above b D 1=y0 � .x0=y0 C n/. We have two regions to consider: the top of the triangle

and the region above between the hyperbola b D 1=.at/ � ma and b D �ma. The behavior at the top

of the triangle is identical to cases (1) and (2), and only occurs when the vertical y is the same as y0.

Thus we have quadratic decay there. We now focus on the second region and observe that each point on

the bottom edge of S�.v/ must be in some other winning strip S�.v0/. There are finitely many such v0,

and we number them v1; : : : ; vn. Thus W�.v/ �
�

S�.v/ �
Sn

iD1 S�.vi /
�

, which is some polygonal

region whose closure is completely above the bottom boundary of S�.v/, b D �ma. Since the hyperbola

b D 1=.at/ � ma approaches b D �ma as t ! 1, for all t large enough the hyperbola is completely

below W�.v/ and therefore W�.v/ has no contribution to the tail.

Adding up the contribution of every v 2 F , we see that there is a constant C > 0 such that
Z

1

t

f .x/ dx �
C

t2
:

Now we compute a lower bound. Let v0 D .x0; y0/ be the saddle connection used to define TX , S�.v0/

denote the associated strip, and b D 1=.at/ � .x0=y0/a be the associated hyperbola. We will use this

specific saddle connection to find a lower bound to
R

1

t f .x/ dx, essentially by using the argument from

case (1) of the upper bound. That is, by analyzing the behavior at the top of the triangle. Either v0 is

the winning saddle connection for every point on S�.v0/ or there is some other saddle connection v for

which it is the winning saddle connection on S�.v0/ \ S�.v/. We deal with both cases.

(i) If v0 is the winning saddle connection for every point on S�.v0/, then a lower bound to
R

1

t f .x/ dx

comes from the part underneath the hyperbola b D 1=.at/� .x0=y0/a and inside S�.v0/. We can choose

t large enough that the hyperbola intersects S�.v0/ only once, at the point

aC

top D
�1 C

p

1 C 4y0.my0 � x0/=t

2.my0 � x0/

with contribution given by
Z a

C
top

aD0

Z 1=y0�x0=y0a

bD1=y0�..x0=y0/Cn/a

1 db da:

Earlier we showed this decays like t�2.

(ii) In the case that there is some other saddle connection v that is the winning saddle connection on

S�.v0/ \ S�.v/ we have two subcases, depending on whether v has the same vertical as v0 or not. In

the latter case we can choose t large enough that the contribution is the same as case (1). We now focus

on when the vertical of v and v0 is the same. Furthermore, since we are looking for any lower bound, it
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suffices to assume that v has the least negative slope among all vectors that win in the intersection of

S�.v0/ \ S�.v/. The contribution is given by

Z a
C
top

aD0

Z 1=y0�.x0=y0/a

bD1=y0�.x=y/a

1 db da:

The integral evaluates to 1
2
.x=y � x0=y0/.aC

top/2 and, by using a Taylor series on the square root, can be

shown to decay like t�2.

5 Further questions

We end with a few questions for further exploration:

(1) Are there bounds on the number of points of nonanalyticity of the slope gap distribution of a Veech

surface?

In [5], linear upper and lower bounds in terms of n on the number of points were found for the translation

surface given by gluing opposite sides of the 2n–gon. These surfaces each have two cusps and have

genus that grows linearly in n. This shows that bounds on the number of points of nonanalyticity based

on the number of cusps is impossible. However, we can ask if there are bounds based on the genus of

the surface.

(2) What can be said about the gap distributions of non-Veech surfaces?

In [2] it was shown that the limiting slope gap distribution exists for almost every translation surface, and

in [9] the slope gap distributions for a special family of non-Veech surfaces were shown to be piecewise

real analytic. We can ask if the limiting slope gap distributions are always piecewise real analytic, and if

so, are there always finitely many points of nonanalyticity?

(3) Where do the points of nonanalyticity lie?

Beyond just understanding the number of points of nonanalyticity, we can ask about number-theoretic

properties of the points themselves. In every example known to the authors of a limiting slope gap

distribution, after rescaling, the points of nonanalyticity lie in the trace field of the Veech group. Given

that the gap distribution is computed by integrating areas between hyperbolas in regions related to the

geometry of the surface, it is natural to conjecture that points of nonanalyticity lie in quadratic extensions

of the trace field.
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